
Some Notes on Interprocedural Program Slicing

K. B. Gallagher∗

Computer Science Department

University of Durham

South Road

Durham DH1 3LE, UK

k.b.gallagher@durham.ac.uk

Abstract

Weiser’s algorithm for computing interproce-
dural slices has a serious drawback: it gen-
erates spurious criteria which are not fea-
sible in the control flow of the program.
When these extraneous criteria are used the
slice becomes imprecise in that it has state-
ments that are not relevant to the computa-
tion. Horwitz, Reps and Binkley solved this
problem by devising the System Dependence
Graph with an associated algorithm that pro-
duced more precise interprocedural slices. We
take a “step backward” and show how to gen-
erate exactly the interprocedural slicing crite-
ria needed, using the program’s call graph or
a stack. This technique can also be used on
a family of program dependence graphs that
represent all procedures in a program and are
not interconnected by a system dependence
graph. Then we show how to use the Horwitz,
Reps and Binkley interprocedural slicing al-
gorithm to generate criteria and show that
the criteria so generated are equal to those
generated by the call-graph/stack technique.
Thus we present alternative, equivalent ways
to generate precise slicing criteria across pro-
cedure boundaries. And finally we show that
under certain circumstances, Weiser’s tech-
nique for slicing across procedures is a bit
“too strong,” for it always generates suffi-
cient criteria to obtain the entire program as
a slice on any criteria.

∗On leave from Loyola College in Maryland

1 Introduction

Program slicing is a pretty simple idea. It’s fun-
damental concepts are easily grasped by novices. It’s
a good idea because it applies to many problem do-
mains; who doesn’t want help in restricting a compli-
cated problem to the relevant focus of inquiry?

We are so familiar with the concepts and arcana
of program slicing that we are liable to forget that
there are some deep and sophisticated concepts “un-
der the hood;” when it comes to actually construct-
ing algorithms, data structures and especially writing
a program slicer, significant difficulties arise. (Note:
how many production quality slicers do you know of?
And as soon as you know of one you ask: “Does it
work on language / dialect X?” The answer to the
second question is usually negative.) The problems
are myriad: getting the language to an invertible rep-
resentation, so that the statements not in the slice are
elided; implementing slicing algorithms on the repre-
sentation; consideration of parameter passing, object
creation and aliasing. . . . Then we move on to im-
proved algorithms, better data structures; it seems
every technical conference has an “Improved Slicing”
paper. Indeed, the Source Code and Manipulation
Conference (SCAM) is one of the venues in which one
can discuss these sophisticated ideas without the ne-
cessity of a fully functioning slicing system and an
application on which it can be applied.

This paper is the result of a series lectures that
the author gave at the University of Durham, enti-
tled “Program Slicing.” The audience was third (final)
year students in Computer Science and Software En-
gineering. The initial lectures were as above: This is
a slice (Everybody understands.) Here is how to com-
pute one. The fog of confusion rolls in. (Followed by
the question: “Are you going to make us write one?”)

The following lecture approach was used. Use the
simple data-flow control-flow approach outlined by
Weiser, so that the computational concepts were un-
derstood; followed by the Program Dependence / Sys-
tem Dependence Graph (PDG/SDG) approach to im-
prove the algorithms and address weaknesses of the
data-flow control-flow method. The results from the
early method could be used to check solutions and
compare for accuracy with the SDG approach.

The particular problem was interprocedural pro-
gram slicing. The ideas for this paper came while
preparing and giving the lectures and as such do not
offer any improved technique for computing slices. It
was in trying to explain these concepts that some in-
sights and simplifications came that connected some
heretofore unnoticed concepts. These connections
helped the students understand the central point of
the lectures: how to compute an interprocedural pro-
gram slice.

First, we show how to generate exactly the inter-
procedural slicing criteria needed, using the call graph.
Then we show how to use the Horwitz, Reps and
Binkley[2] interprocedural slicing algorithm (hereafter
referred to as the “HRB algorithm” or just “HRB”)
can also be used to generate criteria and show that the
criteria so generated are equal to those generated by
the call-graph technique. Thus we present an alterna-
tive, equivalent way to generate precise slicing crite-
ria across procedure boundaries. And finally we show
that under certain circumstances, Weiser’s technique
for slicing across procedures is a bit “too strong,” for it
always generates sufficient criteria to obtain the entire
program as a slice on any criteria.

2 Background

Wieser’s paper on program slicing [4] has a method
for going through procedure calls.

For each criterion C for a procedure P,
there is a set of criteria UP0(C) which are
those needed to slice callers of P and a
set DOWN0(C) which are those needed to
slice procedures called by P . . . UP0(C) and
DOWN0(C) can be extended by functions
UP and DOWN which map sets of criteria
into sets of criteria. Let CC be any set of
criteria. Then

UP(CC) =
⋃

C∈CC

UP0(C)

main {

sum := 0;

i := 1;

while (i < 11) do

call A(sum, i);

od;

end

A (x, y) {

call Add(x,y);

call Increment(y);

return;

}

Add (a, b) {

a = a + b;

return;

}

Increment (z) {

Call Add (z, 1);

return;

}

Figure 1: Interprocedural program from [2] used for
illustration.

DOWN(CC) =
⋃

C∈CC

DOWN0(C)

The union and transitive closure are de-
fined in the usual way for relations.
(UP∪DOWN)∗ will map any set of criteria
into all those necessary to to complete the
corresponding slices through all calling and
called routines. The complete interprocedu-
ral slice for criterion C is then just the union
of the interprocedural slices for each criterion
in (UP∪DOWN)∗(C).

The noted problem with Weiser’s method is the
generation of too many criteria which are extraneous
to the program’s feasible call graph. Criteria are gen-
erated which has a procedure returning from one other
than the one from which it was called. An inspection
of the call graph of Figure 2 shows what the problem
is: When slicing from procedure Increment a criterion
is generated that goes DOWN into Add; from there a
criterion is generated that goes UP into A. It is this
criterion that does not respect the feasibility of return

Figure 2: Call graph of the program of Figure 1.

from Increment through A.
Horwitz, et al., [2] present a thorough discussion of

this problem:

Using Weiser’s algorithm to slice this pro-
gram with respect to the the variable z and
the return statement of procedure Incre-
ment, we obtain everything from the origi-
nal program. . . . The reason these compo-
nents are included in the slice computed by
Weiser’s algorithm is as follows: The initial
crite-
rion “<end of procedure Increment, z >” is
mapped by the DOWN relation to a slicing
criteria “<end of procedure Add, a >.” The
latter criterion is then mapped by the UP
relation to two slicing criteria — correspond-
ing to all the sites that call Add — the
criterion “<call on Add in Increment, z >”
and the (irrelevant) criterion
“<call on Add in A, x >.”Wieser’s
algorithm does not produce as precise a
slice as possible because transitive closure
fails to account for the calling context
(Increment) of a called procedure (Add)
and thus generates a spurious criterion
(<call on Add in Increment, z >).

. . . The chief difficulty in interprocedural slic-
ing is correctly accounting for the calling con-
text of a called procedure.

Recall that the HRB language is a simple but suf-
ficient reduction of production languages, and that in

their model, parameters are passed by value result.

We will use a <ProcedureName.VariableName,

point> form to refer to criteria. For example,
the criteria used in the HRB example will now be
noted <Increment.z, return>. When a criterion
is placed in a code sample the point will be omitted:
<Increment.z>. Only the variable of interest will be
noted as the point of interest is precisely where the
criterion is inserted.

3 Generating Accurate Interprocedu-

ral Criteria

The problem of extraneous criteria arose from the
generation of a criterion from a return back through
an uncalled procedure; we want to eliminate this cri-
terion. That is, we only want criteria that are on
feasible call paths. The feasible call sequences can be
obtained from an inspection of a slightly modified call
graph, described next.

The call graph of Figure 3 has the same informa-
tion as that of Figure 2, albeit in a different form. In
Figure 3 each call to Add is noted explicitly. Using this
graph it is relatively straightforward to get the precise
criteria. Starting with the criteria <Increment.z,

return>, we go DOWN into procedure Add and get
criteria <Add.a, return>. Once we have gone back-
ward across Add we go back UP into Increment with
criteria <Increment.z, Call Add>. We have con-
cluded slicing across Increment and now go UP into
A with criteria <A.y, Call Increment>. Proceeding
backward, we go DOWN into Add again with criteria
<Add.b, return> (collecting no statements as vari-
able Add.b is not defined) and come back UP with cri-
teria <A.y, Call Add>, and so on. Figure 4 shows
the program of Figure 1 with the criteria inserted as
they were produced in this discussion.

What we have done here is to “slow down” the
generation of criteria and insert them only as needed
from the context. Weiser’s UP/DOWN relations, in
an attempt to generate complete criteria early in the
slicing process, generate the infeasible criteria. The
above method is akin to the Weiser’s original approach
of adding referenced variables to the original slicing
criterion as they were needed. For instance, when
a statement was determined to be in the slice, all
variables referenced in all controlling predicates were
added to the current slicing criteria. Of course, this
only works in the iterative data-flow control-flow tech-
nique that Weiser used. This method is not suited to
the PDG/SDG of HRB in which slices can be taken

only where a variable is defined or referenced, unless
the structure is augmented. It does, however, help the
students grasp what is going on as an inter-procedural
slice is computed. And it helps the student grasp some
of subtlety of the HRB technique.

This procedure can also be done without explicit
reference to the modified call graph. A stack with a
can be used to keep track of the calling context. The
intuitive mapping of the DOWN operations to push
and the UP operations to pop fails. Consider the ex-
ample of Figure 4 in which there is one DOWN fol-
lowed by two UPs. A simple generalization of UP
and DOWN to ENTER and LEAVE, regardless of
the UP/DOWN direction suffices nicely. We EN-
TER a procedure, without regard to direction (UP
or DOWN), slice through the procedure and LEAVE
it, without regard to the direction. If, while slicing
through a procedure, we ENTER another procedure,
we will get a corresponding LEAVE. Now we map EN-
TER and LEAVE to push and pop and the problem
of popping an empty stack goes away. This is similar
to the realizable path (balanced parentheses) approach
used in [3].

This still leaves the problem of recursive calls,
which fortunately can be easily addressed by using a
set to guard the insertion of criteria. More precisely,
regard each criterion as an element of a set. Then,
before each ENTER (push) operation, we determine
if the new candidate criterion is in the set of criteria.
If it is not, we continue as above; if it is in the set, do
nothing.

By using a call graph or a stack, we have accounted
for the calling context and give an accessible solution
to the spurious criterion problem. To reiterate, the
point of this section is to show students how slicing
criteria can be accurately generated in a data-flow
control-flow environment. Once they understand this,
it is easier for them to comprehend the SDG approach.

4 Using SDG’s to Generate Slicing

Criteria

This section shows a few ways to use SDG’s to gen-
erate the same criteria that were derived in the previ-
ous section. This can be done by noting that the SDG
has a call graph embedded in it. The call graph is
embedded in the call-enter portion of the SDG. See
Figure 5. Since we know how to use the call graph to
generate criteria, we can use this embedded call graph
to generate criteria. This is not a typical use of the
SDG!

Figure 3: Call graph of the program of Figure 1 with
each procedure call/return made explicit.

4.1 Linkage Grammars

A linkage grammar is used in HRB to compute the
transitive dependence due to procedure calls. The
linkage grammar is an attribute grammar. The at-
tributes of the linkage grammar are used the obtain
the in/out variable flow across procedure boundaries;
its context free part is used to determine the calling
structure (the call graph). This context free part to
generates a call tree. This is also similar to the realiz-
able path approach used in [3]. Once we have the call
tree in place, we proceed as previously outlined.

The HRB algorithm may also be used to emit crite-
ria. The HRB algorithm proceeds in two phases. The
first phase delivers the slice that is above the proce-
dure of interest; that is it “identifies veritices that can
reach [variable] s [in procedure P], and are either in
P itself or a procedure that calls P. . . ”[2]. The sec-
ond phase does the other half of the work: it follows
(transitively) the flows that reach s when called by P.

This gives an alternative (explanatory) names to
some of the edges added to PDG’s to create an
SDG. The parameter-out edges are the not-followed-
in-phase-1 edges. (Why this is so makes a good
exam question.) Similarly, the parameter-in and call
edges are not-followed-in-phase-2 edges. (Another
good exam question!)

4.2 A Combined Method

So, in the middle of the System Dependence Graph
lecture (as the students’ eyes are clouding over, trying

main {

sum := 0;

i := 1;

while (i < 11) do

call A(sum, i);

od;

end

A (x, y) {

/* 6. < A.y >

UP from Add */

call Add(x,y);

/* 4. < A.y >

UP from Increment */

call Increment(y);

return;

}

Add (a, b) {

a = a + b;

return;

/* 2. < Add.a >

DOWN from INCREMENT

using the call graph */

/* 5. < Add.b >

this time DOWN from Add */

}

Increment (z) {

/* 3. < Increment.z >

coming UP from Add */

Call Add (z, 1);

return;

/* 1. <Increment.z> */

}

Figure 4: Program from [2] and Figure 1 with criteria
inserted as C comments and showing the order in which
they were inserted.

to keep all the new edge and vertex types in their
heads) I ask “Can we do this with out the System
Dependence Graph?”. It turns out that the answer is
“yes.”

Instead of building the SDG, we build only a named
family of PDG’s, joined by a call-graph. Starting at
the relevant point in the procedure of interest, we
chase the edges in each procedure’s PDG. Crossing
over a Call we match up the parameters and gener-
ate a new criteria for the called procedure, F . Slice
across that and so on. Then when slicing across F is
concluded, map the parameters from F back to the
caller. When an enter node is traversed in the PDG,
generate new criteria for each procedure that calls,
and continue.

This is the same approach as outlined in section 3.
This is a one-pass linear time method. It is one pass
because we are using the as-needed technique for cri-
teria generation and one-pass because we are using the
PDG.

4.3 Are They The Same Criteria?

The argument the emitted criteria are the same
comes from the observation that they are generated
from the (perhaps embedded) call-graph and not from
the SDG/PDG or the control-flow graph. As we pass
up or down marking the calling sequence, the form
from which the criteria are generated is moot.

Note that this uses SDG’s to generate the criteria,
not the slice.

5 Concurrent Assignments
There is one more observation to be made in rela-

tion to slicing across procedure boundaries. Reps, et
al. [3] note:

A procedure call is treated like a mul-
tiple [concurrent] assignment statement
“v1, v2, . . . , vn := x1, x2, . . . , xm[sic]”, where
the vi are the set of variables that might be
modified by the call, and the xj are the set
of variables that might be used by the call.
Thus, the value of every vi is assumed to de-
pend on the value of of every xj before the
call. This may lead to an overly conserva-
tive slice (i.e., one that includes extra com-
ponents. . .)

In Weiser’s slicing method, we then have that the
DEF’ed set of the above statement is {v1, v2, . . . , vn}
while the REF’ed set is {x1, x2, . . . , xm}. This would
mean that when any of the xi are REF’ed, all of the

vi are DEF’ed. A program slice in a language that
uses value-result parameter passing, as in HRB, must
proceed carefully when slicing across concurrent as-
signment statements. In this context, if a concurrent
assignment is used to map actuals to formals, then
when any actual parameter is passed, all formal pa-
rameters are captured. This is clearly too strong and
would lead to the entire procedure being included in
the slice, along with all calling and called procedures:
the whole program! (If a procedure were not in such
a slice, it would be dead code.)

This situation can be easily remedied by serializing
the concurrent assignment as described in [1], chapter
3.

6 Conclusion

Interprocedural slicing is an interesting problem.
Getting the criteria correct across calls and returns
requires careful attention to detail. Attending to the
feasible calling sequences adds another layer of partic-
ulars. The System Dependence Graph and its associ-
ated algorithms solve all of these problem all at once.
This is why is it is a superior representation.

Trying to learn about interprocedural program slic-
ing is another matter. It helps the novice to have the
both the issues and their respective solutions broken
into more accessible concepts. Once these individual
problems and solutions are discussed, the true power
and beauty of the SDG representation can be fully
appreciated. This paper has given some direction on
how to do that.

Thanks to Liz Burd, for reminding me that call-
graphs are different from control-flow graphs, and the
referees, for improving the presentation.

References

[1] J. Gannon, J. Purtilo, and M. Zelkowitz. Software
Specification: A Comparison of Formal Methods.
Ablex, 1994.

[2] S. Horwitz, T. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs. ACM Trans-
actions on Programming Languages and Systems,
12(1):35–46, January 1990.

[3] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay.
Speeding up slicing. In Proceedings of the Sec-
ond ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 11–20, 1994. Pub-
lished in ACM SIGSOFT Notes v19 n4.

[4] M. Weiser. Program slicing. IEEE Transactions
on Software Engineering, 10:352–357, July 1984.

���

ENTER Main

sum := 0 i := 1 while i < 11

call A

FinalUse(sum) FinalUse(i)

x_in := sum y_in := i sum := x_out i := y_out

ENTER A

call Addx := x_in y := y_in call Inc x_out := x y_out := y

a_in := x b_in := y x := a_out y := b_out z_in := y y := z_out

ENTER Inc

z := z_in call Add z_out := z

a_in := z b_in := 1 z := a_out

ENTER Add

a := a_in b := b_in a := a + b a_out := a b_out := b

Edge Key
control

intraprocedural flow
(loop-independent)

| intraprocedural flow
(loop-carried)

interprocedural flow

call,parameter-in,parameter-out

���

Example system’s system dependence graph. Control dependences, shown unlabeled, are represented using
medium-bold arrows; intraprocedural flow dependences are represented using arcs; transitive interprocedural flow
dependences (corresponding to subordinate characteristic graph edges) are represented using heavy bold arcs; call
edges, parameter-in edges, and parameter-out edges (which connect program and procedure dependence graphs togeth-
er) are represented using dashed arrows.

Figure 5: System Dependence Graph of Figure 1.
Used by permission.

