Using Program Slicing to Estimate Software Robustness

Keith Gallagher*
Computer Science Department
Loyola College
Baltimore, MD 21228

Abstract

In most instances, the quantification of software re-
liability by empirical test is infeasible. Therefore, al-
ternative measures and methods have been sought to
gain assurance of the integrity of software operation.
Statistically inferred measures of robustness, the ex-
tent to which a system can continue to operate cor-
rectly in the presence of faults, have been used for this
purpose. Two problems arise in this approach: deter-
mination the location of “high-impact” points (ones
where failure ripples widely); and exact nature of the
error that could have a high impact. Program slic-
ing provides a rigorous, automated method by which
the dependency of a nominated variable on all other
source statements in the program can be determined.
This paper presents a method for automatically deter-
mining o “unique” fault injection point for any given
variable of interest; that is, a point where a variable’s
value has the greatest impact on system output. This
point is located using program slicing. Moreover, the
location of the point assists an analyst in determining
the kind of error that should be introduced. A rigorous
assessment of the acceptability of output data subject
to the susceptibility of failure of software due to cor-
rupted or malicious incoming data is possible using
this approach, and we provide such a measure. The
benefits of this approach are the improved repeatability
of the process, the rigorous mathematical basis, and
greater objectivity in selection of fault injection points
for a given test. These benefits provide a greater in-
sight into the nature of failure within the software, and
improved capacity to assess failure modes and robust-
ness of software.

1 Introduction

A system is comprised of components integrated
in a specified manner to fulfill a designated function

*Supported in part by CSIRO while on sabbatical leave.

Neale Fulton
Mathematical and Information Sciences
CSIRO
Canberra, Australia

or need. The analysis of a system may require many
abstractions to fully describe its functionality and be-
havior. There is an obvious need for abstracting sim-
ple, yet rigorous system models. Specifically, system
designers need to understand the likelihood of success-
ful operation for any given use of the system and the
limits which these abstractions and analyses place on
conclusions.

A system may be considered as a network when
considering how it may fail. In Reliability Engineer-
ing, a sub-discipline of Systems Engineering, success
and failure are related through a method of analysis
called the Reliability Block Diagram (RBD)([3, 11, 13].
The RBD is derived from an understanding of how the
physical system is to work. The relationships among
all the possible paths through the system, by which
it may succeed, are considered. This diagram is then
used to predict the overall reliability of a system, given
the knowledge of the individual reliabilities of their
sub-systems.

The RBD abstracts system complexity highlighting
success and failure. RBD’s vary markedly in complex-
ity. For simple systems, the RBD may simply be a se-
ries of sequentially connected components, all of which
are required for system success (e.g. links in a chain).
More complex systems are represented as parallel com-
binations of components in which only one operating
component out of several is required for success (e.g.
one back-up power supply operating when the primary
power supply has failed). In practice the RBD of a
complex system will be represented by combinations
of both series and parallel constructs. The RBD pro-
vides a logical model which can be interpreted as a
series of success paths and subsystem failure combi-
nations within the system.

Figure 1 shows a small RBD augmented with spe-
cial start and end points, which are not part of the
RBD. The nodes that start points to are the entry
points and the nodes that point to end are the exit
points. Note that node 2 is a possible exit.

A minimal tie-set is a group of edges through the

Figure 1: A small reliability block diagram

RBD which form a connection between the input and
output when traversed in the direction of flow of the
paths within the RBD and with no node encountered
more than once. The minimal tie-set elaborates all
possible paths which can produce a successful result
for the system mission or nominated operational pro-
file. In figure 1, {A,D,H,L,P} is a tie-set. Tie-sets can
also be enumerated by the nodes that are traversed on
the path; in the example the nodes would be {1,3,5,8}.

Conversely, a minimal cut-set is the set of system
components such that if all components of the cut-set
fail then the system will fail. However, if a member
of the cut-set has not failed then the system can still
operate and achieve mission success. That is, all com-
ponents of the minimal cut-set must fail for the system
to fail. In figure 1, {C,D,E,F} is a minimum cut-set.
Cut-sets may also be described as sets of nodes; in this
instance, {1,2} forms a cut-set of nodes.

We are interested in deriving an analogous repre-
sentation of software operation which may be used to
analyze successful operation and to identify specific
failure mechanisms of the code. Program slicing pro-
vides a mathematically robust method of decomposing
software into a graph whose edges represent success-
paths and whose nodes represent software which may
fail under given conditions. The assignment of reli-
ability for each component, as is done for hardware
systems, may be more appropriately computed for
software by an empirical measure of robustness as re-
ported by Voas, et al. [15]. This new approach pro-
vides a meaningful measure of performance and as-
suages some of the difficulties of measuring software
reliability [4].

The relationship between program slices can be re-
lated to RBDs of hardware. This method permits an
estimate of the lower bound of robustness of the soft-
ware of a system to be established. The graph of cer-

tain slices can be used to build a logical representation
of the software similar to an RBD. By considering sin-
gle paths through the diagram / graph we obtain the
collection of possible system executions. Examining
the robustness of the software components in series
provides estimates of the lower bound of the failure tol-
erance for a given operational profile. If components
are in parallel then an upper bound may be inferred.

Information represented in this graph of slices also
represents a logical sequence of relationships which
must all be satisfied if the output is to be free from
failure. Assigning reliability measures to software is
not yet always meaningful; however, assigning failure
tolerance measures can be. Thus the program slices
represent a logical series construct from which we can
make valid inferences on the estimated bound of ro-
bustness, i.e., failure tolerance, of the subject software.

In summary, methods exist for evaluating success
and failure of systems at high levels of abstraction;
similar methods have not yet been fully developed for
software. In this paper we define a method for software
analogous to the success-path / fail-set network for
hardware.

2 Background
2.1 Terminology

We introduce our terminology[10], so that the
reader is not confused by our usage. We believe that
our usage is consistent with the framework proposed
by Prasad, et al.[12].

Fail / Failure A system failure occurs when the de-
livered service deviates from the intended service.
The user perceives that the software has failed to
deliver an expected service. Severity levels may

be associated with faults, depending on the im-
pact to expected service.

Error is a discrepancy between the computed state
value and the correct value. An error is the part
of the system state which is liable to lead to a
failure. Errors may be latent or detected.

Fault / “Bug” is the cause of

1. a failure

2. an internal error (discovered without a fail-
ure)

Defect A generic term for fault or failure.

Mistake A human action resulting in a fault. This
term is used to avoid confusion with error.

Robust / Robustness the extent to which a system
can continue to operate correctly in the presence
of faults.

Tolerance The ability of a system to provide opera-
tions in the presence of unusual or abnormal con-
ditions.

“...asoftware failure is an incorrect result with re-
spect to the specification or an unexpected behavior
perceived by the user at the boundary of the software
system, while a software fault is the identified or hy-
pothesized cause of the software failure.” [10] Robust-
ness characterizes the behavior of the system in the
presence of failure.

Some authors use the term “tolerance” to note the
techniques or means by which systems are constructed
so as to continue operating in the presence of faults.
Note that our usage is different from this; we are dis-
cussing an attribute of a system, not the technique by
which it was constructed.

2.2 Software Robustness and Failure Tol-
erance

Voas, et al. [15] introduce a measure of a software
statement/location internal error tolerance through a
method called Extended Propagation Analysis (EPA).
The EPA method seeds errors by injecting them into
instrumented source code to corrupt the program’s in-
ternal state; determines the effects of the propagation
of the error; and then assesses the acceptability of the
output data values. EPA is based on the following
definition. Software is robust (i.e. failure tolerant in
the terminology of Voas) if and only if:

1. the program can compute an acceptable
result even if the program itself suffers
from incorrect logic, and

2. the program, whether correct or incor-
rect, can compute an acceptable result,
even if the program itself receives cor-
rupted or malicious incoming data dur-
ing execution. [15]

EPA generates a data-state error, known as an in-
fection, which may result in more than one infected
variable. Although largely automated, EPA requires
some manual set-up which requires advising an ana-
lyst where in the software to perform fault injection,
and what constitutes an unacceptable output. An ac-
ceptable result is simply an output result within the
range of specified acceptable values for a given input.

The result of EPA analysis is that each program
statement is assigned a measure of robustness: a num-
ber between 0 and 1. The number 1 indicates code
which is highly tolerant of aberrant data and the num-
ber 0 indicates code which is intolerant of aberrant
data. This is a measure of the attribute of tolerance.

2.2.1 EPA Model

A program may be completely specified by a triple:
a finite set of states; a finite set of inputs; and a set
of mappings determining the possible transitions from
each and every state to each and every other state.
This model is general although accounting for all the
states in the program may quickly become a practical
impossibility as the set of program states increases in
number. Never-the-less for a practically small set of
data inputs and program states this model is tractable.
Software tools for program slicing can accommodate
program sizes of order 100,000 lines of code, whilst
robustness measures may be required on critical soft-
ware of order 10 to 1000 lines of code. This model is
tractable for these latter practically small sets of data
inputs and program states.

The EPA analysis model assumes a program P
which has a set Ap of all possible program states.
We refine the set Ap by considering only those states
Ap, which result from the execution of the program
P at statement n. This set of states is uniquely de-
termined by the possible initial states of the program
immediately before execution of statement n; the data
input to the program for the execution of statement
n (that is the data that statement n acts upon); and
on the logic and algorithms embedded in statement
n code. Further refinement leads to only identifying
those states A, p, which can be reached by execution

of statement n and which were created by an input x.
The program can only be in one state at a time so if
the nature of the program is a loop, for example, then
we identify the unique state of the program, due to an
input z, at the 3" iteration through n as A, pi.

Thus for a specific statement n of a program P,
when subjected to a specific data input z the resultant
set of program states over I, iterations of statement
n is given by:

Since the resulting state is dependent on the input
data z, and since that data can take on a range of
values the EPA model denotes the set of all possible
data values as A. A single value of the input data is
z, such that x € A. The manner in which data is used
over time, is called an operational profile. This unique
use of the input data identifies a certain probability
distribution denoted Q).

The requirements on a program will typically be
expressed in terms of both the functions the program
is to implement and, in the case of safety critical sys-
tems, functions which a program must not implement.
The purpose of a program is then to generate an out-
put either in terms of a state-variable change, or an
output event. From the knowledge of the requirements
and the nature of the variable under question, a pred-
icate, s, can be formed to define the acceptable ranges
of data for the output. In the case of a program state,
a given range of data with respect to an ideal value
may be acceptable. However, in the case of an output
variable only one value may be acceptable. When the
programs are regarded as partial functions over the
input domain, the output(s) will be uniquely deter-
mined by the function that the program computes. If
such a function is known, it may be used for an oracle.

Definition 1 (Failure Tolerance of v at n)

T(1}7 n7 87 P7 A? Q)

Let s be a predicate describing acceptable states. Then
the failure tolerance of v at statement n, denoted
U(v,n,s, P,A,Q), is the percentage of the successes
of s with respect to variable v at statement n of pro-
gram P with inputs selected from A using distribution

Q.

Thus, high values for ¥(v,n,s, P,A,Q) indicate
highly tolerant computations and low values indicate
intolerant computations. This notation is slightly dif-
ferent than that used by Voas, et al. [15]. We have
added two parameters: the predicate s and A, the in-
put set. We have also moved the parameters into a
list, rather than denoting them with subscripts.

Figure 2: A simple program, with large differences in
EPA values

The ¥(v,n,s,P,A,Q) values are dependent both
on a value and a position (statement) in the source.
For instance, when s is a predicate that evaluates
whether the value of i is the same as the value that
was actually input, the program of figure 2 has high
U(i,k,s,P,A,Q) for i for k < 3, (before statement
3), but low values for k£ > 3 (after statement 3). We
would like provide a systematic method for finding
such locations.

We propose to refine the EPA estimation process by
locating the the “most likely” point in the the program
at which the perturbation will have the largest impact
and thereby automate this process of the analyst. We
use program slicing to find such points.

2.3 Program Slicing

Program slicing provides an automated method
which analyzes the dependency of a nominated vari-
able on all other source statements in the program.
Program slicing provides a method to rigorously iden-
tify all possible sources of infection of a given variable.

A program slice, SBSp(v, n), of program P on vari-
able v, or set of variables, at statement n yields the
portions of the program that contributed to the value
of v just before statement n is executed [16]. The pair
(v,n) is called a slicing criteria. Another way to think
of this to answer the question “What statements may
have contributed to the value of the variable v at the
statement n?”

This formulation is now called static backward
slices, hence the SB in the definition of the function.
Static because they are computed as the solution to a
static analysis problem (i.e., without considering the
program’s input). And backwards because they com-
puted from the statement in question back to the be-
ginning of the program.

A dynamic backward slice, DBSp, (v,n), of pro-
gram P with input z on variable v at statement n
is the portions of the program that contribute to the
value of v at statement n with input . A dynamic
slice answers the question “What statements actually

contributed to the value of a variable v at statement
n for a particular input, z?”

Forward slices may also be computed. SFSp(v,n)
is the static formulation; DFSp_ (v,n) is the dynamic.
A forward slice answers the question “What state-
ments are affected by the value of v at statement n?”
The propagation of the data state error may be traced,
by application of forward program slicing, to all po-
tentially infected variables.

We have discussed backward/forward,
static/dynamic dimensions of a “slicing space;” there
is a third dimension, executable/non-executable, that
determines whether or not the output of a slicer is
a compilable source. For the purposes of our discus-
sion, we will require that that the program slices be
executable.

The backward/forward, static/dynamic
and executable/non-executable attributes of program
slices defines a framework for analysis of slicing meth-
ods. The static/dynamic character of program slices
may be parameterized [6] to obtain constrained slices.
The parameter/constraint refers to the amount of
input available. A fully constrained slice is a dy-
namic slice; a completely unconstrained slice is a static
slice. Recent surveys of program slicing may be found
in [2, 14]. The interested reader is referred to those.

In all of our definitions, we include the statement
at which the slice is taken in the slice.

2.3.1 Decomposition Slicing

A decomposition slice [8] does not depend on state-
ment numbers. It is the union of a collection of slices,
which is still a program slice [16]. A decomposition
slice captures all relevant computations involving a
given variable and is defined as follows:

Definition 2 (Decomposition Slice) DS(v,p)
Let

1. Out(p,v) be the set of statements in program p

that output variable v,

2. last! be the last statement of p,

3. N = Out(p,v) U {last}.
The statements in DS (v,p) =
the decomposition slice on v.

nen SBS,(v,n) form

We take the decomposition slice for each variable
in the program and form a graph,? using the partial
ordering induced by proper subset inclusion. Larger
sets will be toward the top; smaller sets will be lower;

I This assumes single-exit functions, but can be extended to
multiple-exit functions.
2The term “lattice” was used in [8].

edges point downward. An edge between A and B
means B C A and there isno C, such that B C C C A.

A decomposition slice is mazimal if it is not con-
tained in any other decomposition slice. We abuse
the notation and identify the decomposition slice by
its variable name. It is usually, but not always the
case, that the maximal variables are the outputs of
the program.

The graph of decomposition slices was originally in-
tended to give software maintainers a method for vi-
sual impact analysis [7, 9]. The decomposition slice
graph provides information to a software engineer
about dependencies that exist between variables in a
system. The graph shows what slices for variables are
included in the slices for other variables in a system.
This information is useful to a software engineer in
trying to gain an understanding of a system as it can
be used to identify the data that impacts on a particu-
lar variable (those variables on which it depends) and
the impact of a variable (those variables which depend
on it).

The graph can be used to assist the analyst in de-
termining the fault injection point. Each node in the
graph represents the largest possible slice on the given
variable. We would like to insert the fault immediately
“after” the code represented in the nodes of the graph.
In effect, we injecting the fault on all the edges of the
graph that point to a given node. Another way to
think of this is that the computation represented by
the node in the the graph is replaced by a random,
perturbed, value.

3 Determining the Fault Injection
Point

Clearly, there is more than one point in a program
that will generate this decomposition slice. However,
we want to be able to speak about the fault injection
point.

Definition 3 (Fault Injection Point) FZIP(v)
Let DS(v,p) be the decomposition slice for v. The
fault injection point for v is the last definition of v in
its decomposition slice.

Now we can talk about THE fault injection point
of a variable. We use the “uniqueness” of this point
define a new kind of slicing.

Definition 4 (Software Robustness Slice)
SOROS (v, p)
Let SBSp(v, FIP(v)) be the static backward slice at

main:var?
size: 18

main:var3
size: 18

main:var4
size: 18

main:varl
size: 26

main:vars
size: 28

main:t2 main:t3 main:ssq main:tl
size: 25 size: 25 size: 14 size: 15

main:dev
size: 23

main:jj
size: 9

main:x
size: 12

main:ii
size: 9

main:n
size: 4

Figure 3: The decomposition slice graph of a program. The source for this program is shown in figure 4.

on v, FIP() and SFSp(v, FIP(v)), be the forward
static slice, from FIP(v) on v. The union of these 2
slices is SOROS (v, p), the static software robustness
slice on v.

There are static and dynamic formulations of
SOROS(v,p). The dynamic version will, of course,
attend to input x and permit an abuse of notation in
the definition: FZP(v) == i is taken to mean the
ith iteration of statement FZP(v). The idea behind
these formulations is to slice backward from FZP(v)
and forward from it.

3.1 The Connection

There is a natural association between FZIP(v),
SOSRS(v) and the location for an EPA evaluation.
The points of interest for EPA evaluations are reason-
able candidates for slicing statements and vice-versa.
The engineer selects the variables of interest in both
cases. In fact, from the robustness point of view, pro-
gram slices were invented to answer the question “why
isn’t our program robust (i.e., working correctly) at
this location?”

A decomposition slice is generated for a specified
program variable. Since each program slice subgraph
is associated with a unique variable, and contains all
statements relating to that variable, then EPA failure
tolerance results can be associated with each program
statement within the sub-graph. This association to-
gether with the graphical presentation of the program
slice provides a powerful, automated analysis tool for
identifying potential failure modes of the software un-
der examination.

3.2 Robustness and Decomposition Slice
Graphs

The graph of slices shows set inclusion i.e., compu-
tational dependence; the RBD shows subsystem de-
pendence. To construct a robustness indication from
the slice graph we need to map the idea of a decom-
position slice into system component. We do this by
noting that each decomposition slice is a computation
— a complete compilable program.

Some of these slices may not have outputs, per se,
but they do define a state transition, and in this sense,
can be regarded as having “outputs.” Each above and
adjacent node in the slice graph determines an “ex-
tension” by which the computation is extended.

For instance, in figure 3, main:x represents the
computation that fills and array x with values. The

node main:ssq represents the extension of the compu-
tation of x by one that also computes the sum of the
squares of the components of x. Similarly, main:avg
extends x, but in a different manner than main:ssq.

A node/computation/decomposition-slice may
have more than one extension. To remedy this, we
will place 2 parameters in the robustness indicator:
from and to.

Definition 5 (Robustness of a Component)
R(v, w)
Let

1. DS(v,p) C DS(w, p)

2. s(w) be a predicate describing the acceptable
states of w.
3. SOROS(v) be the software robustness slice on v,

Then
R(v,w) =1—¥(v, FIP(v),s(w),SOROS(v), A, Q)
is the robustness of component v, with respect to com-
ponent w.

As FIP(v) is obtainable from v, we have a loca-
tion independent, single parameter version of robust-
ness. By taking the union of w such that DS(v,p) C
DS (w,p), we can speak of the robustness of variable
v, R(v). Thus, the maximal slices taken in paral-
lel, give an upper bound on system tolerance.Lower
bounds may be inferred from RBD’s by considering
the components (nodes) in series.

Thus, each node in the decomposition slice graph
can be regarded as a “component” that must success-
fully perform if the entire system is to succeed. In this
interpretation, tie-sets mean that a computation has
been “successfully” extended to its (next) additional
functionality. Cut-sets may be interpreted as failure
of the extension.

3.3 Analyzing the Components

For instance, a calculation that sums the elements
of an array could be one “component.” The compu-
tation of the average would be an extension to (the
state produced by) this computation, and would be
considered a system component. A failure in the com-
putation “average” while the computation “total” was
correct, would indicate that all decomposition slices
that contain “average” would be suspect. The rea-
son for suspicion and not assurance is that subsequent
components may mask, compensate, or tolerate the
error. Moreover, we are attempting to obtain a lower
bound on the tolerance of the system, not an exact
measure; the system may still have reliable output in
some instances.

1 #include <stdio.h>
2 #define MAX 1024

ii =

ii + 1)

var3 = (ssq - n % avg * avg) / (n - 1);

ij =

n) /

pass):
pass,
pass,
pass,
pass,

jj + 1

(n - 1);

%f \n",varl);

using square of sum): }f \n",var2);
using average): %f \n",var3);
using average, sum): %f \n",var4);
corrected): %f \n",varb);

3 main()

4 {

5 float x[MAX];

6 float varl, var2, var3, var4, varb ;
7 float ssq, avg, dev;

8 float t1, t2, t3;

9 int ii, jj , n;

10 t1 = 0.0 ;

11 t2 = 0.0 ;

12 t3 = 0.0 ;

13 ssq = 0.0 ;

14 scanf ("%d", &n);

15 for (ii =0 ; ii < n ;

16 {

17 scanf ("4f", &x[iil);

18 tl = t1 + x[ii];

19 ssq = ssq + x[1i] * x[iil;
20 }

21 avg = t1 / n;

22

23 vard = (ssq - tl * avg) / (n - 1);
24 tl1 = tl * t1 / n;

25 var2 = (ssq - t1) / (n - 1);
26 for (jj=0; jj<mn;

27 {

28 dev = x[jjl - avg ;

29 t2 = t2 + dev ;

30 t3 = t3 + dev * dev ;

31 }

32 varl = t3 / (n - 1);

33 varb = (t3 - t2 * t2 /

34

35 printf("variance 1 (two

36 printf("variance 2 (one

37 printf("variance 3 (one

38 printf("variance 4 (one

39 printf("variance 5 (two

40 }

Figure 4: The variance program

4 Example

We use a very simple example to illustrate. The
program of figure 4 computes the variance of a set of
values using 5 different techniques. The first value is
the number of values to be read, the subsequent input
are the values whose variance is to be computed.

We propose to demonstrate how to use the graph
on the variable avg, the average. First, we obtain
FIP(avg), which is statement 21. (Recall that we in-
clude this statement in the slice.) The program passes
through the injection point only once.

We then perturb avg. In the static formulation,
we compute the forward slice SFSp(avg,21). This
has statements 22, 23, 26-33. These statements are
represented by the shaded areas in Figure 5.

We can observe from Figure 5 that var2 is
not impacted by the computation of avg; i.e.,
R(avg,var2) = 1. This fact makes it a suit-
able candidate for an output oracle (in this in-
stance). Outputs varl, var2, var4 and varb are
impacted by the computation of avg, so we com-
pute R(avg,varl), R(avg,var3), R(avg,vard) and
R(avg,varb). (Other sensible values are R(avg,dev),
R(avg,t2) and R(avg,t3). We omit these from the
discussion.)

To simulate the infection, we assign a random value
to avg. For this infection we determined that vari,
(two pass), is always wrong; var3, (one pass, using
average), is always wrong; and var4 (one pass, using
average, sum), is always wrong; i.e., R(avg,varl) =
R(avg,var3d) = R(avg,vard) = 0. However, for varb
(two pass, corrected), R(avg,vard) = 0.043 i.e., varb
was still correctly computed for 4.3% values of avg
that were randomly perturbed?.

5 Conclusion

In this paper we have shown how program slicing
can be used to further automate the determination of
robustness measures for software operation. One of
the keys to determining robustness is the selection of
a fault injection point which is used to test the soft-
ware with respect to aberrant input data behavior.
Program slicing can identify which variables within a
program may influence the value of a specified vari-
able, or alternatively which variables will be subse-
quently influenced by the value of a specified vari-

31t was ultimately uncovered as a floating point truncation
error in the evaluation of the sub-expression t3 - t2 * t2 of
line 33.

able. The mathematical rigor associated with pro-
gram slicing allows a unique fault injection point to
be identified. Automation of program slicing tech-
niques means that higher levels of process assurance
can be achieved than with processes which use man-
ual heuristic means and guesswork to identify injection
points. Program slicing enables the scope of influence
of a selected variable to be consistently and completely
determined. This is significant in the maintenance of
software where changes are considered and the impact
of change needs to be assessed; or where existing soft-
ware is exhibiting aberrant behavior and the scope of
influence needs to be determined. Thus the ability to
automate the slice process means that the determina-
tion of scope of influence can be determined repeatedly
and consistently.

Robustness of software performance is crucial to
safety critical and other high integrity systems. The
method proposed by this paper enables a higher level
of assurance to be claimed for those critical elements of
code, and enhances productivity of test in establishing
the practical limits of test for those elements. In prac-
tical terms the completeness of robustness assessment
may limited if the slicing techniques presented in this
paper are not available to the developer or maintainer
in versions of program slicers available on the market.
Secondly it is still the case that each variable within
the scope of influence of a specified variable, will re-
quire manual inspection of the computed robustness
measure. Whether the robustness measure is satis-
factory for any one variable of this set can only be
determined by a criticality assessment of the specific
functionality under consideration.

For high integrity systems software robustness mea-
sures based on program slicing provide an essential
verification tool set required to ensure design assur-
ance.

References

[1] M. Aboelfoh and C. Colburn. Series parallel
bounds for the two-terminal reliability problem.
ORSA Journal of Computing, 1(4), 1989.

[2] D. Binkley and K. Gallagher. A survey of pro-
gram slicing. In M. Zelkowitz, editor, Advances
in Computers. Academic Press, 1996.

[3] Benjamin S. Blanchard. System FEngineering
Management. John Wiley & Sons Inc., 1991.

[4] R. Butler and G. Finelli. The infeasibility of ex-
perimental quantification of life-critical systems.

main:varS main:varl main:vard main:var3 main:var2
size: 28 size: 26 size: 18 size: 18 size: 18

main:t2 in: main:ssq| |main:tl
size: 25 size: 25 size: 14 size: 15

main:dev
size: 23

h 4
main:jj main:avg
size: 9 size: 15

main:x
size: 12

main:ii
size: 9

main:n
size: 4

Figure 5: Impact of avg.

[10]

[11]

[12]

[13]

[16]

In Proceedings of the ACM SIGSOFT Confer-
ence on Software for Critical Systems, volume 16.
ACM, December 1991. Software Engineering
Notes.

C. Colburn and L. Neel. Using and abus-
ing bounds for network reliability. IEEE global
Telecommunications Conference, December 1990.

J. Field, G . Ramalingam, and F. Tip. Para-
metric program slicing. In Conference Record of
the Twenty-Second ACM Symposium on Princi-
ples of Programming Languages, pages 379-392,
1995.

K. B. Gallagher. Visual impact analysis. In Pro-
ceedings of the Conference on Software Mainte-
nance - 1996, 1996.

K. B. Gallagher and J. R. Lyle. Using program
slicing in software maintenance. IEEE Trans-
actions on Software Engineering, 17(8):751-761,
August 1991.

K. B. Gallagher and L. O’Brien. Reducing visu-
alization complexity using decomposition slices.
In Proceedings of the 1997 Software Visualization
Workshop, SoftVis97, number ISBN 0725806303,
Dec 1997.

M. Lyu, editor. Handbook of Software Reliability
Engineering. McGraw-Hill, 1995.

M. Moderres. What Every Engineer Should Know
About Reliability and Risk Analysis. Morcel
Dekker, Inc, 1993.

D. Prasad, J. McDermidt, and I. Wand. Depend-
ability terminology: Similarities and differences.
In AES Systems. IEEE, January 1996.

R. Ramakumar. FEngineering Reliability, Funda-
mentals and applications. Prentice Hall Interna-
tional, 1993.

Frank Tip. A survey of programming slicing
techniques. Journal Of Programming Languages,
13(3):121-189, 1995.

J. Voas, F. Charron, G. McGraw, K. Miller, and
M. Friedman. Predicting how badly “good” soft-
ware can behave. IEEE Software, August 1997.

M. Weiser. Program slicing. IEEE Transactions
on Software Engineering, 10:352-357, July 1984.

