1

Program comprehension is the process by which software engineers gain an
understanding of a system. Since the amount of raw information is over-
whelming, abstraction techniques must be applied to aid the comprehender.
There are a plethora of such techniques that involve processing, abstracting
and then visualizing program information for the comprehender. Call graphs

Analyzing Programs via Decomposition
Slicing: Initial Data and Observations*

Keith Gallagher Liam O’Brien

Loyola College Software Engineering Institute

Baltimore, MD Pittsburgh, PA
Abstract

We use Unravel to perform decomposition slicing on a collection of
programs. The number of decomposition slices obtained is overwhelm-
ing. We reduce the complexity by displaying equivalently computed
slices as a single node. Best case reductions show an 80% reduction in
the number of nodes needed to display a decomposition slice graph.
We present initial results of a continuing study using this reduction
technique.

Introduction

are a simple example of such a technique.

Program slicing is another of these techniques. However, program slices
can themselves be very large and difficult to comprehend. So, rather than
examining slices themselves, we examine the relationship between slices, using

*Both authors acknowledge partial support from CSIRO Mathematical and Information

Sciences, Canberra, Australia.

the simple is-contained-in relation, and represente the entire slice as one node
in a partially ordered graph. Using this relation also proved to be problematic
also, since there would be one node in the graph for each variable declared
in the program.

Two observations helped us assuage this problem. The first was that the
graphs exhibited a wide “fan-out” at the bottom. Examining the content of
the slices showed them to be empty; they had no executable statements! It
was a simple exercise to remove these from the graph. The second observation
was that many of the slices had the same size. This lead us to investigate
whether or not the slices themselves were actually equal. It turns out that
many of the slices are the same. In the best case analyzed, the reduction
removes over 80% of the slices that were equal to some other slice. So we
can represent many slices as one node in the graph. Thus, we have a way to
significantly simplify the presentation while not losing information content
proportional to the size of the reduction.

We have begun to apply this reduction technique to real programs and
herein we report some initial data of this work-in-progress. This work is
tightly focused and self-contained; we are collecting and examining data.

Organization

This paper is organized into 5 sections. Section 2 provides background and
context; section 3 gives the preliminary data; section 4 discusses results; and
section 5 outlines future work and concludes.

2 Background

A program slice, SLICE,)(p), of program p on variable v, or set of vari-
ables, at statement n yields the portions of the program that contributed to
the value of v just before statement n is executed [8]. The pair (v,n) is called
a slicing criterion. Slices can be approximated automatically on source pro-
grams by analyzing data flow and control flow. Surveys of program slicing
may be found in [2].

A decomposition slice [4] does not depend on statement numbers. It is
the union of a collection of slices, which is still a program slice [8]. A decom-
position slice captures all relevant computations involving a given variable

and is defined as follows:

Definition 1 (Decomposition Slice) DS(v, p)

Let
1. Out(p,v) be the set of statements in program p that output variable v,

2. last be the last statement of p,

3. N = Out(p,v) U {last}.
The statements in DS(v,p) = Upen SLICE,) (p) form the decomposition
slice on v.

We take the decomposition slice for each variable in the program and
form a graph,! using the partial ordering induced by proper subset inclusion.
Larger sets will be toward the top; smaller sets will be lower; edges point
downward. An edge between A and B means B C A and there is no C, such
that B C C' C A.

Figure 1 is the decomposition slice graph of a differencing program. It
has 95 nodes and 364 edges. Unravel [7] is used to compute the slices. Un-
ravel generates a Language Independent Form (LIF) upon which a generic
slicing algorithm operates. The LIF is an augmented control flow graph, and
the number of nodes in the LIF is approximately the number of executable
statements. A tool for Visualizing Compiler Graphs (VCG) [6] is used to
display the graphs.

Figure 2 is an enlargement of a node of the graph in Figure 1. The
nodes show the variable names in the form name-of-function:variable-name,
where name-of-function is the function in which variable-name is declared; the
annotation size: xx is the number of nodes in the LIF representation of the
decomposition slice. The second parameter of DS(v, p) is not displayed.

The graph of decomposition slices was originally intended to give software
maintainers a method for visual impact analysis [3, 5]. The decomposition
slice graph provides information to a software engineer about dependencies
that exist between variables in a system. The graph shows what slices for
variables are included in the slices for other variables in a system. This
information is useful to a software engineer in trying to gain an understanding
of a system as it can be used to track the data-flow for a variable, and it
can be used to identify the data that impacts on a particular variable (those
variables on which it depends) and the impact of a variable (those variables
which depend on it).

!The term “lattice” was used in [4].

Figure 1: The decomposition slice graph of a differencing program.

showsame :count
size: 298

\

Figure 2: An enlargement of a node from the graph in Figure 1.

|) [[renpre] g

3 Data

Programs selected for discussion are

e dif.c, a differencing program whose graph was displayed previously;

e lattice.c, the program that computes the decomposition slices and
the output graph data for input to VCG;

e unravel.c is the interface to the Unravel tool;

e analyzer.c is the interface, called by Unravel, to the program analysis
portions of Unravel;

e parser.c is the suite of programs that do the actual parsing, analysis,
and generation of the language independent form;

e P1.c and P2.c are proprietary programs that manage a database.

Table 1 summarizes the original data that we collected when analyzing
these programs. Lines of code was obtained by passing the source through
the Unix utility wc, admittedly a weak measure; however it gives an idea of
the size of the systems that we analyzed. The parenthesized value next to
the system name is the number of C source files that comprise the system.
Column 3 is the number of nodes in the language independent form (LIF)
used by Unravel. Column 4 of Table 1 lists the number of nodes in the
decomposition graph computed by lattice, the number of decomposition
slices. This is the count of the number of declared variables and the total of
enumeration values declared in the system. The value includes all variables
declared in header files; structs are counted as the number of fields in the
struct plus 1 (for the struct itself). Column 5 is the number of edges.

Every variable or programmer defined constant (enum value) generated
a slice. However, most of these decomposition slices were “empty”; that is,
when Unravel is handed a variable to slice on, it first generates a slice with
3 nodes (from the .LIF): the entry point to the function and the open and
close braces. Thus many slices have size 3. This is the cause of the “fan
out” at the bottom of Figure 1. Table 2 shows the node and edge counts
when these empty slices are removed from our samples. The percentage in
column 4 is the reduction from the original count of decomposition slices. In
terms of viewing the graphs, the reduction effectively removes the bottom
of the decomposition slice graph. Thus, the accompanying edge clutter is

‘ System ‘ LOC ‘ LIF ‘ Nodes ‘ Edges ‘
dif.c (1) 767 | 513 95 364
lattice.c (6) 1625 | 685 168 | 1468
unravel.c (1) 803 | 388 482 | 1251
analyzer.c (1) | 1287 | 702 817 | 8505
parser.c (11) | 6314 | 4751 788 | 18061
Pl.c (5) 2678 | 2493 344 | 7660
P2.c (7) 4539 | 3874 315 | 7972

Table 1: Analyzed Systems

Non-empty | Reduction of
System Nodes ‘ Edges | Node Count
dif.c 66 161 31%
lattice.c 104 139 38%
unravel.c 281 527 42%
analyzer.c 327 | 2581 59%
parser.c 470 | 7542 40%
Pl.c 267 | 7429 22%
P2.c 279 | 7864 11%

Table 2: Node and edge counts after removing “empty” decomposition slices

Reduced Reduction of
System Nodes ‘ Edges | Node Count
dif.c 34 43 62%
lattice.c 83 104 51%
unravel.c 129 161 73%
analyzer.c 198 230 76%
parser.c 201 238 75%
Pl.c 76 89 78%
P2.c 61 67 81%

Table 3: Reduction by equivalent slices, including “empty” slices

removed. The graph that results when this reduction is applied to the graph
of Figure 1 is not shown.

Figure 3 shows the result of reducing the graph of Figure 1. The reduced
graph of Figure 3 has 34 nodes and 43 edges. The “empty” slices are not
removed, but are collapsed into the single node with the wide border at the
bottom of the figure. We also augmented the node information to show how
many other nodes are equivalent with the annotation equiv: x. The border of
the node was also widened in proportion to the number of equivalent nodes.
Figure 4 shows a sample node.

Due to the vagaries of VCG layout algorithms, the reduced graph is ro-
tated about the vertical axis with respect to graph of Figure 1. The five
upper leftmost nodes of Figure 1 are the five upper rightmost nodes of Fig-
ure 3. The three nodes to the upper right of Figure 1 are collapsed to the
single node in the upper left of Figure 3. Following the edges from these
nodes downward in Figure 1 leads to the “fan-out” in the lower center of the
figure. This fan-out of 14 nodes is reduced to two nodes in Figure 3; and the
node reduction induces a drastic reduction in the number of edges.

Table 3 shows the results of applying the reduction to the selected sample
programs. The counts include the “empty” slices. The precipitous drop in
the number of edges is a side-effect of the reduction of the number of nodes.

Tlobal cprintstatus

Tloba.

1ianyprinted
Bize: 347

Sipreu zoldline

Shausymb

o1
e

eunade g ine Scanblocks soldfront,
siza: 84 siza: 2
cquiv: 2

g1obal block]en|
size: 331
equiv: 5

Shousane -count

cizo: 738

equiv: 0

eutine

Ccarbiocks
200

gTaba
equiv
Scanafter aldline,
ize: 154
equiv
scanunique:oldiine| [transformmeuline
size: 122 cize
equiv

equi

5ymboT fsunique ;psynbol
ize: 113

Tineofsynba T psynbal
ize: 117
equiv: 0

equiv: 0

Scanunique meul ne.
equiv:

910bal toldinfo.symbol
size: o
equiv: 12

]

oquiv: 1

Transformaldmax.
01

|gwmw einta T ina

oquiv

|mpummmbmgr

Trputscan:Tinelen
ciza: 32
equiv: 1

0

| ||

opentile:filenane| [globalineuinfo.fite| [alobal:oldinfo.file.
equiv: 1 equiv: 0 equiv: 0 equiv:

Figure 3: The reduced decomposition slice graph of Figure 1.

global :blocklen
size: 337

equiv: 5

Figure 4: A node from the reduced graph.

4 Discussion

The reductions are significant. In removing empty slices, in the worst case
improvement was an 11% reduction in the number of nodes; the best was
nearly 60%. The large variance in these values is determined by the number
of included library files. P2.c has only 2 included files, string.h, and one
declared by the programmer. analyzer.c uses the X-windowing libraries,
with its myriad of structs and typedefs.

In reducing by equivalent slices, the worst improvement was still over
50%; the best over 80%. This turns a graph of 279 nodes and 7864 edges
into one with 61 nodes and 67 edges. The second graph is comprehensible;
the first is not. Even in the worst case, lattice.c, after the removing the
empty slices, some 20% of the variables yielded the same decomposition slice.

The data base programs, P1.c and P2.c, had a reduced graph structure
markedly different from the other systems. [AUTHOR’S NOTE: I'll bring
the pictures!] They were very wide at the top and quickly “fanned-in” to a
single large node, which was the decomposition slice on some 200 variables!
This large node had a few more levels below it. (It looks like the letter “Y”,
but with many arms extending upward from the join.) We are not sure of
everything that this means; our best current guess is that the data base is
embedded in these computations and that the other computations compute
with the data. One thing we are sure of is that this reduction has a drastic
impact on system testing. Since, in this instance, some 200 variables induce
the same computation, any testing criterion that is used to validate one of

9

main

ﬁnputscaﬁl |transf0rm ﬁnﬁtsymtabl |0penfﬁ18
storelinel |scanafter| |scanb10:ks| |scanbefcre| |scanunique| (lshowchangel |newc0nsume| |showsame| |01dconsume
v
|addsymb01| Symbolwsuanuel |aneof5ymb01| |showwnser1| IshowdeWetel |showmove

|match¥§mbol| showsymb01| |skwpnew| |5kwp01d|

v

|newnode|

Figure 5: The call-graph of the differencing program.

these variables would meet all the rest. This may turn out to be the deepest
insight of all.

Figure 5 shows the call graph of the differencing program. The program
describes itself as “pedagogic,” i.e., “an example of one professional’s style of
keeping things organized and maintainable.” It has a simple structure: two
initialization functions; an input, a transformation and an output function.
What is lost in the call graph and shown by the decomposition slice graph
is the fact that the functions scanblocks and showmove have some 200 LIF
nodes in common! This means that approximately a common 40% of the pro-
gram is used in the evaluation of each of these functions. The decomposition
slice graph shows how the computations are interleaved. We presume that
this is useful information to an engineer contemplating a change to either of
these functions.

10

5 Conclusion and Future Directions

We are continuing to analyze programs and examine the decomposition slice
graphs. The analysis itself has generated more questions than it has an-
swered. The most important seems to be: “Why do so many different vari-
ables yield the same decomposition slice?” We are currently studying this.
The answer to this requires a lot of old-fashioned code reading. Once we
actually ascertain why so many decomposition slices are the same we can
generate a hypothesis for an experiment.

The attempts to answer these questions have generated hypotheses for
other empirical studies.

1. Does this graph actually assist the comprehension process? If so, how?
We are currently evaluating this. The graphs tell us what decomposi-
tion slice(s) to examine. Is there some other application of this in the
comprehension process?

2. Does the structure of the graph yield insights about the architecture of
the system?

3. Why all those empty slices?

4. Do the properties of these graphs yield metrics? That is, is “wide and
shallow” or “narrow and deep”, or some combination thereof a good
or bad property? There is a natural relation to Beiman and Ott’s [1]
work on slice-based measures of cohesion that needs to be explored.

We also have a system that has gone through 18 releases; we are analyzing
these in turn to observe the change, if any, in the graphs pass through in the
evolution of this system.

Other ways to improve the graphical presentation are:

1. List all node names that have been collapsed into a single reduced node,
rather than showing only the count.

2. Remove variables included from libraries, while leaving programmer
defined ones.

3. Visualize the non-empty intersections in the partial order. The decom-
position graph shows the is-contained-in partial order; however, items
can have a non-empty intersection and not be in the partial order. We
would like to display this.

11

A software engineer is presented with an overwhelming amount of infor-
mation in attempting to understand a program. Easily computable reduc-
tions by equivalent information is one way to reduce this clutter. By using set
equivalence, we can reduce the complexity of graphs of decomposition slices.
The significant size of the reduction provides a maintainer/comprehender
with a valuable tool for impact analysis.

Authors’ notes to reviewers

The bibliography is brief for two reasons.
1. This is a workshop paper, reporting a work-in-progress.

2. These are the only works used in this work. The paper has only
a “background” section, intended to make the paper self-contained.
It does not have a “related work” section in which would contain a
thorough literature survey.

Yes, I (kbg) am aware of the current work in program slicing.

References

[1] J. Bieman and L. Ott. Measuring functional cohesion. IEEE Transactions
on Software Engineering, 20(8):644-657, August 1994.

[2] D. Binkley and K. Gallagher. A survey of program slicing. In
M. Zelkowitz, editor, Advances in Computers. Academic Press, 1996.

[3] K. B. Gallagher. Visual impact analysis. In Proceedings of the Conference
on Software Maintenance - 1996, 1996.

[4] K. B. Gallagher and J. R. Lyle. Using program slicing in software main-
tenance. IEEE Transactions on Software Engineering, 17(8):751-761,
August 1991.

[5] K. B. Gallagher and L. O’Brien. Reducing visualization complexity using
decomposition slices. In Proceedings of the 1997 Software Visualization
Workshop, SoftVis97, number ISBN 0725806303, Dec 1997.

12

[6]

I. Lemke and G. Sander. Visualization of Compiler Graphs: Design Re-
port and Documentation. Universitat des Saarlandes, Saarbrucken, Ger-
many, May 1994. vcCG.

J.R. Lyle, D.R. Wallace, J.R. Graham, K.B. Gallagher, J.E. Poole,
and D.W. Binkley., A CASE tool to evaluate functional diversity
in high integrity software. U.S. Department of Commerce, Tech-
nology Administration, National Institute of Standards and Tech-
nology, Computer Systems Laboratory, Gaithersburg, MD, 1995.
http://hissa.ncsl.nist.gov/”~ jimmy/unravel.html.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10:352-357, July 1984.

13

