
Data Clustering Using Grouping
Hyper-heuristics

Anas Elhag and Ender Özcan

University of Nottingham, School of Computer Science,
ASAP Research Group, Nottingham, UK

Anas.Abdalla@outlook.com,Ender.Ozcan@nottingham.ac.uk

Abstract. Grouping problems represent a class of computationally hard
to solve problems requiring optimal partitioning of a given set of items
with respect to multiple criteria varying dependent on the domain. A
recent work proposed a general-purpose selection hyper-heuristic search
framework with reusable components, designed for rapid development
of grouping hyper-heuristics to solve grouping problems. The framework
was tested only on the graph colouring problem domain. Extending the
previous work, this study compares the performance of selection hyper-
heuristics implemented using the framework, pairing up various heuris-
tic/operator selection and move acceptance methods for data clustering.
The selection hyper-heuristic performs the search processing a single so-
lution at any decision point and controls a fixed set of generic low level
heuristics specifically designed for the grouping problems based on a bi-
objective formulation. An archive of high quality solutions, capturing
the trade-off between the number of clusters and overall error of cluster-
ing, is maintained during the search process. The empirical results verify
the effectiveness of a successful selection hyper-heuristic, winner of a re-
cent hyper-heuristic challenge for data clustering on a set of benchmark
problem instances.

Keywords: heuristic, multiobjective optimisation, reinforcement learn-
ing, adaptive move acceptance

1 Introduction

Solving a grouping problem which is an NP-hard combinatorial optimisation
problem [1] requires partitioning of set of objects/items into a minimal col-
lection of mutually disjoint subsets. Different grouping problems impose dif-
ferent problem specific constraints, and introduce different objectives to op-
timise. Consequently, not all groupings are allowed for all problems, since a
solution must satisfy the problem specific constraints. These problem specific
constraints/objectives forbid the ‘trivial’ solutions which consist of placing all
the objects into one group.

Data clustering is a grouping problem which requires partitioning a given
set of data items or property vectors into a minimal number of disjoint clus-
ters/groups, such that the items in each group are close to each other with



2 Anas Elhag and Ender Özcan

respect to a given similarity measure, and are distant from the items in the
other groups with respect to the same measure. Data clustering plays an impor-
tant role in many disciplines where there is a need to learn the inherent grouping
structure of data such as data miningand bioinformatics [2–4].

Selection hyper-heuristics have emerged as metaheuristics searching the space
formed by operators/heuristics for solving combinatorial optimisation problems
[5]. In this study, we use a bi-objective formulation of data clustering as a group-
ing problem with the goal of simultaneously optimising the number of clusters
and error/cost. [6] proposed a grouping hyper-heuristic framework for solving
grouping problems, exploiting the bi-objective nature of the grouping problems
to capture the best of the two worlds. The results showed the potential of se-
lection hyper-heuristics based on the framework for graph colouring. In here,
we extend that previous work, apply and compare the performance of selection
hyper-heuristics implemented based on the grouping hyper-heuristic framework
for data clustering on a set of well-known benchmarks.

Section 2 discusses commonly used encoding schemes to represent solutions
to grouping problems and related work on data clustering. Section 3 describes
the selection hyper-heuristic framework for grouping problems. The details of the
experimental design, including the benchmark instances, tested selection hyper-
heuristics, parameter settings and evaluation criteria used for performance com-
parison of algorithms, are given in Section 4. Section 4.4 presents the empirical
results and finally, conclusion is provided in Section 5.

2 Related Work

2.1 Solution Representation in Grouping Problems

A variety of encoding schemes and population-based operators have been pro-
posed and applied to various grouping problems [1]. Examples include the objects
membership representation [7] which uses a constant-length encoding in which
each position corresponds to one object; the Locus-Based Adjacency (LBA) rep-
resentation [8, 4] and the Linear Linkage Encoding (LLE) [9], which are linkage-
based fixed-length encodings in which each location represents one object and
stores an integer value that represents a link to another object in the same group.
However, most of these schemes violate one or more of the six design principles
for constructing useful representations [10]. For instance, the NE and LBA repre-
sentations allow multiple chromosomes in the search space to represent the same
solution [11], and hence violate the “minimal redundancy” principle, which states
that each solution should be represented by as few distinct points in that search
space as possible; ideally one point only.

In this study we implemented a modified version of the Grouping Genetic
Algorithm Encoding (GGAE) representation which was proposed as part of a
genetic algorithm that was heavily modified to suit the structure of the grouping
problems [12], and has successfully been applied in many real world problems
such as data clustering [2] and machine-part cell formation [13]. The encoding



Data Clustering Using Grouping Hyper-heuristics 3

in the GGAE consists of two parts. The object membership part is used only
to identify which objects are in which groups. No operators are applied to this
part. The groups part encodes the groups on a ‘one gene per group’ basis. The
group part is written after the standard NE part, and the two are separated by
a colon. For example, a solution that puts the first three items in one group and
the last two items in a different group is represented as follows: {D,D,D,C,C :
D,C}. GGAE operators are applied only to the groups part, and might lead
to increasing or decreasing the number of groups in the given solution. This
approach implies that the length of the GGAE encoding is not fixed and can
not be known in advance. Further discussion of grouping representations could
be found in [6, 1].

2.2 Data Clustering

Given a set X of n vectors in a given feature space S, X={x1, x2, x3, ..., xn},
the data clustering problem requires finding an optimal partition U={u1, u2,
u3, ..., uk} of X, where ui is the ith cluster/group of U , such that an overall
similarity measure between the vectors that belong to the same group, or an
overall dissimilarity measure of the vectors that belong to different groups, is
maximized, in terms of a given cost function f(U).

There are different supervised and unsupervised measures that are used to
evaluate the clustering results [14], including the Sum of Quadratic Errors (SSE)
[2], the Silhouette Width (SW) [15], the Davies-Bouldin Index (DB) [16] and the
Rand Index (R) [17], among others. The most well-known evaluation method in
the data clustering literature is based on the Euclidean distance which is used to
give an overall measure of the error of the clustering. In this study, a well-known
unsupervised distance measure known as the ‘sum of quadratic errors’ (SSE)
is adopted. Assuming that each data item has p properties, the SSE calculates
a centroid vector for each cluster. The resulting centroid is also composed of p
values, one for each property. The sum of the distances; i.e. errors; of each item’s
properties corresponds to the distances to the property values of the centroid of
the cluster to which the item belongs.

error =

k∑
l=1

n∑
i=1

W il

p∑
j=1

(xij − ulj)2 (1)

k ≡ the number of clusters, n ≡ the number of items, p ≡ the number of prop-
erties, Wil = 1 if the ith item is in kth cluster, and 0 otherwise, xij ≡ the ith

item’s jth property, and ulj ≡ the center of the jth property of the kth cluster.
Traditionally, clustering approaches are classified to partitional, hierarchical and
density-based approaches [18]. [8] and [19] categorize the clustering approaches
into 3 and 4 groups, respectively, based on the clustering criterion being op-
timized. The first group in both studies consists of the clustering algorithms
that look for compact clusters by optimizing intra-cluster variations, such as
variations between items that belong to the same cluster or between the items
and cluster representatives. Well-known algorithms such as the k-means [20],



4 Anas Elhag and Ender Özcan

model-based clustering [21], average link agglomerative clustering [22] and self-
organizing maps [23] belong to this category. The second group, consists of the
clustering algorithms that strive for connected clusters by grouping neighbor-
ing data into the same cluster. Classical clustering techniques such as single
link agglomerative clustering [22] and density-based methods [24] belong to this
group.

The third group according to [8] consists of clustering algorithms that look
for spatially-separated clusters. However, this objective on its own may result in
clustering the oultiers individually while merging the rest of the data items into
one big cluster. Clustering objective such as the Dunn Index and the Davies-
Bouldin Index [14] combine this objective with other clustering objectives, such
as compactness and connectedness, in order to improve the resulting solution.
In contrast to the first two groups, this objective has not been used in any
specialized clustering algorithm. According to [19], the third group includes si-
multaneous row-column clustering techniques known as bi-clustering algorithms
[25]. Finally, the the fourth group according to [19] includes the multi-objective
clustering algorithms that seek to optimize different characteristics of the given
data set [3] along with the clustering ensembles approaches [26].

3 A Grouping Hyper-heuristic Approach to Solve
Grouping Problems

Algorithm 1 describes the steps of the grouping approach used in this study.
Firstly, an initial set of (UB − LB + 1) non-dominated solutions is generated
such that there is exactly 1 solution for each value of k ∈ [LB,UB] (steps 1-3 of
Algorithm 1). Consequently, one of the low level heuristics is selected (using the
hyper-heuristic selection method) and applied on a solution that is randomly
selected from the current set of solutions (steps 5-8 of Algorithm 1). It is vital to
ensure that none of the solutions in the non-dominated set that is maintained by
the framework break the dominance requirement throughout the search process.
To this end, an adaptive acceptance mechanism that involves multiple tests is
introduced. Traditionally, the hyper-heuristic’s move acceptance makes the final
decision regarding the acceptance of a solution. In our approach however, this
component acts only as a pre-test for the final acceptance. New solutions are
accepted only after successfully passing multiple tests. The decision made by
the traditional hyper-heuristic move acceptance only indicates whether the new
solution snew is to be considered for acceptance by the grouping framework (step
9 of Algorithm 1). snew could still be a worsening solution based on the nature
of the traditional move acceptance used. At this point, two main possibilities,
one of which involves the application of local search to further improve the set
of non-dominated solutions:

1. If a worsening solution snew passes the traditional move acceptance pre-test,
it does not immediately replace the solution si in the non-dominated set
(steps 10 of Algorithm 1). Instead, snew is compared to si−1. Only if the cost



Data Clustering Using Grouping Hyper-heuristics 5

value of snew is better than si−1, it gets to replace si in the non-dominated
set. Otherwise, snew is rejected, despite having passed the pre-test (steps
11-16 of Algorithm 1).

2. If an improving solution snew passes the traditional move acceptance pre-
test, it replaces the solution si in the non-dominated set immediately without
further tests (step 17 of Algorithm 1). However, this replacement might lead
to a violation of the dominance rule if snew, which has fewer groups than
si+1, also has a better cost value than si+1 (step 2 of Algorithm 2). This
situation leads to two cases:

2.1 If the cost value of si+1 is better than that of snew, then no violations have
occurred to the dominance rule, and no further action is required (steps 2-3
of Algorithm 2).

2.2 If the cost value of si+1 is worse than that of snew, then si+1 violates the
dominance rule and hence the framework removes it from the set of non-
dominated solutions being maintained. The framework then applies one of
the divide heuristics on snew in order to generate a new solution to replace
the solution that has been removed (steps 4-8 of Algorithm 2). The for loop
in Algorithm 2 is to repeat this process for solutions at i+1 and i+2. In the
worst case scenario, all the solutions between i and UB will get replaced.
This process can be considered as local search.

3.1 Low Level Heuristics

Three types of low level heuristics were implemented in this study. Merge Heuris-
tics merge two groups, ui and uj , into one, ul, and decrease the number of
grouping in the selected solution. 3 merge heuristics were developed. In M1, the
2 groups to be merged are selected at random. In M2, the 2 groups containing
the fewest items are merged. In M3, the 2 groups with the smallest partial costs
are merged. These heuristics yields big jumps in the search space, and hence,
are regarded to be diversifying components.

Similarly, Divide Heuristics divide a selected group ui into two, ui1 and ui2,
and increase the number of groups in the given solution. 3 versions of the divide
heuristic were developed. In D1, a group that is selected at random is divided.
In D2, the group to be divided is the group with the most number of items. In
D3, the group with the biggest partial cost value is divided. These heuristics
can be considered as intensifying components.

Change Heuristics attempt to make small alterations in a selected solution
by moving selected items between different groups while preserving the original
number of the groupings in the selected solution. 4 change heuristics have been
developed. In C1, a randomly selected item is moved to a randomly selected
group. In C2, the item with the largest number of conflicts in a group is moved
into a randomly selected group. C3 and C4 find the item with the largest number
of conflicts in the group with the largest number of conflicts. C3 moves this item
into a randomly selected group, while C4 moves it into the group with the
minimum number of conflicts.



6 Anas Elhag and Ender Özcan

Algorithm 1 A Grouping Hyper-heuristic Framework

1: Create an initial set of non-dominated solutions, containing 1 solution for each
value of k ∈ [LB,UB].

2: Calculate the cost values of all solutions in the solutions set.
3: Keep an external archive copy of the solutions set in order to keep track of the best

solutions found.
4: while (elapsedTime < maxTime) do
5: Randomly select a solution sj from the current set of non-dominated solutions

j ← UniformRandom(LB,UB).
6: Select one of the low level heuristics, LLH.
7: snew ← Apply(LLH, sj) {snew contains i =(j − 1) or j or (j + 1) groups based

on the applied LLH}.
8: Calculate f(snew).
9: result ← moveAcceptance(snew, si). // Compare the cost value of snew to the

cost value of si from the current non-dominated set using the move acceptance
method returning ACCEPT or REJECT
// When a worsening solution passes the traditional moveAcceptance pre-test,
it is handled as follows

10: if ((result is ACCEPT ) and (f(snew) > f(si))) then
11: if (f(snew) > f(si−1)) then
12: Do nothing. // snew is rejected
13: else
14: si ← snew. // si is replaced by snew in the non-dominated set
15: end if
16: end if
17: if ((result is ACCEPT ) and (f(snew) ≤ f(si))) then
18: si ← snew. // si is replaced by snew in the non-dominated set
19: improveNonDominatedSet(i)
20: end if

// if result is REJECT continue
21: end while

Algorithm 2 improveNonDominatedSet(i): Aims at improving the cost of
solutions in the non-dominated set starting from the ith solution to the UBth

using a divide heuristic

1: for (j = i, UB) do
2: if (f(s(j+1)) ≤ f(sj)) then
3: BREAK. // No further improvement is possible
4: else
5: Randomly select a divide heuristic, LLDH.
6: snew ← Apply(LLDH, sj).
7: s(j+1) ← snew. // s(j+1) is replaced by snew in the non-dominated set
8: end if
9: end for



Data Clustering Using Grouping Hyper-heuristics 7

3.2 Selection Hyper-heuristic Components

An investigation of the performance of the grouping hyper-heuristic framework
over a set of selected benchmark instances from the data clustering problem
domain is carried out using different selection hyper-heuristic implementations.
A total of 9 selection hyper-heuristics is generated using the combinations of
the Simple Random (SR), Reinforcement Learning (RL) and Adaptive Dynamic
Heuristic Set (ADHS) heuristic selection methods, and the Late Acceptance
(LACC), Great Deluge (GDEL) and Iteration Limited Threshold Accepting
(ILTA) move acceptance methods. From this point onward, a selection hyper-
heuristic will be denoted as heuristics selection-move acceptance. For example,
SR-GDEL is the hyper-heuristic that combines simple random selection method
with great deluge move acceptance criterion.

SR chooses a low level heuristic at random. RL [27] maintains a utility score
for each low level heuristic. If a selected heuristic generates an improved solu-
tion then its score is increased by one, otherwise it is decreased by one. At each
decision point, the heuristic with the maximum score is selected. LACC [28]
accepts all improving moves, however a worsening current solution is compared
to a previous solution which was visited at a fixed number of steps prior during
the search. If the current solution’s objective value is better than that previous
solution’s objective value, it is accepted. Hence, a fixed size list containing pre-
vious solutions is maintained and this list gets updated at each step. A slightly
modified version of GDEL is used in here and multiple lists are maintained,
where a list is formed for each active group number (number of clusters). GDEL
[29] sets a target objective value and accepts all solutions whether improving or
worsening as long as the objective value of the current solution is better than the
target value. The target values is often taken as the objective value of the initial
solution and it is decreased linearly in time towards a minimum expected objec-
tive value. ADHS-ILTA [30] is one of the best performing hyper-heuristics in the
literature. This elaborate online learning hyper-heuristic won the CHeSC 2011
competition across six hard computational problem domains [31]. The learning
heuristic selection method consists of various mechanisms, such as for creating
new heuristics vi relay hybridisation or for excluding the low level heuristics
with poor performance. The move acceptance component is adaptive threshold
method. The readers can refer to [30] for more details on this hyper-heuristic.

4 Application of Grouping Hyper-heuristics to Data
Clustering

In this section, we provide the performance comparison of nine selection hyper-
heuristics formed by the combination of {SR, RL, DH} heuristic selection and
{ILTA, LACC, GDEL} move acceptance methods for data clustering. The per-
formance of the approaches proposed based on the developed framework are
further compared to previous approaches from the literature.



8 Anas Elhag and Ender Özcan

4.1 Experimental Data

16 data clustering problem instances that have different properties and sizes were
used in this study. The first 12 of these instances, shown in Table 1 and Figure 1,
were taken from [8]. The top 6 instances are 2-D hand-crafted problem instances
that contain interesting data properties, such as different cluster sizes and high
degrees of overlap between the clusters. Instances Square1, Square4 and Sizes5
contain four clusters each. The main difference between these instances is that
clusters in Square1 and Square4 are of equal size, whereas the clusters in Sizes5
are not. On the other hand, data instance Long1 consists of two well-connected
long clusters. Problem instances Twenty and Forty exhibit a mixture of the
properties discusses above. The 6 problem instances on the bottom half of Figure

Table 1. The characteristics of the synthetic, Gaussian and real-world data clustering
problem instances used during the experiments. N is the number of items, D is the
number of dimensions/attributes and k∗ is the best number of clusters [8]. L and U
are the lower and upper bounds for the k values used during the experiments.

Data Clustering Range (k)

Instance N D k∗ LB UB

S
y
n
th

e
ti
c

Square1 1000 2 4 2 9

Square4 1000 2 4 2 9

Sizes5 1000 2 4 2 9

Long1 1000 2 4 2 9

Twenty 1000 2 20 16 24

Fourty 1000 2 40 36 44

G
a
u
ss
ia
n

2D-4c 1623 2 4 2 9

2D-10c 2525 2 10 6 14

2D-20c 1517 2 20 16 24

2D-40c 2563 2 40 36 44

10D-4c 958 10 4 2 9

10D-10c 3565 10 10 6 14

R
e
a
l

Zoo 101 16 7 3 11

Iris 150 4 3 2 7

Dermatology 366 34 6 2 10

Breast-cancer 699 9 2 2 7

1 are randomly generated instances that were created using the Gaussian cluster
generator described in [8]. Instances 2D-4c, 2D-10c, 2D-20c and 2D-40c are all 2
dimensional instances containing 4, 10, 20 and 40 clusters respectively. Similarly,
instances 10D-4c and 10D-10c are 10 dimensional instances that contain 4 and
10 clusters respectively.

Additionally, 4 real world problem instances were used in this study. These
are taken from the UCI Machine Learning Repository [32], which maintains mul-
tiple data sets as a service to the machine learning community. These selected
real-world instances differ from each other in many ways, such as in the num-
ber of clusters, number of dimensions as well as the data type of the values



Data Clustering Using Grouping Hyper-heuristics 9

●

●●
●● ●

●●
●

●

●
●

●●● ●
● ●

● ● ●
●

●●●●
●

●●

● ●
●● ●

●
●

●
●

●

●
●

●●● ●
●

●

●●

● ●

●●

●
●●

●
●

● ●

●

●
●

●
●

●
●

●

●
● ●●● ●

●●
●

●
● ●●

●

●

● ●●
●●

●
●

●
●

●

●
●
●

●
●● ●

●
●●

●
●●

●●
● ●

●
● ●● ●

●
●

●

●● ●● ●
●

●

● ●
●

●● ● ●
● ●

●
●

●
● ●

● ●● ●
●●
●

●

●

●

●●
● ●

●
●

●

●

●
●

●

●

●
●● ●

●

●

●●
●

● ●
●

●●

●
●

●
●

●
●● ●

●

●
●● ●

●●
●● ● ●

●●
●

●
●

●

●
●●●

●
●
●

● ●
● ●

●
●● ●

●
● ●

●
●●●

●
●●●●

●
●

●
●●

●
●●

● ●
●

●

●
●
●

●
●●

● ●
●

●
●

●

●
●

●
●●● ●
●

● ● ●● ●
● ●●●● ●

●
●

●●
●

●

●
●

●

● ●

●

●●●
●●●

●●●
●

●●
●●

●
●

●
●

●●●
●

●●● ●●

●
●
●

●
●

●
●

●
●

●
●

● ●●
●

●●●
● ●●

●

●

●●

●

●
● ●●● ● ●

●
●

●

●

●
●

●

●

●
●

● ●
●●● ●

●

●
●● ●●

●●
● ●

●

●
●●

●●●
●

●

●

●
●●
●
●

●
●

●
●●● ●

● ●

●● ●

●

● ●●

●●

●

●
●●

●
●

● ●
●●

● ●

●

●
● ●●

●

●
●

●

●● ●

●
●●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●●

●

●

● ●
●

●

● ●● ●●

● ●
●

●●

●

●
●

●

●●

●

●● ●●●
●

● ●

●

●

●
● ●● ●

●

●●

●
●

●
●

●

●
●

●

●●
●

●
●●

● ●
●

●
● ●●

●

●

●

●
●

● ●
●

●● ●
●

●●●
●
●

● ● ●
●

●
●●

●

●
●●●

●●
●

●
●

●
● ●

●
●

●●●● ●
●

●
●

●●

●●
●● ●

●
●●

● ● ●
●

●

●

●

●●
●

●
●

●

●
●

●●
●

●●●
●

●
● ●

●●
● ●

●
●●● ●

●
●● ●● ● ●● ●

●

●● ●●

●
●

●

●●
●

●●

●

●● ●
●

●●●

●

●● ●

●
●
●● ● ●●

●
● ●

●

●

● ●●●
● ●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
● ●
●

●
● ●

●
●

● ●
●●

●

●
●

●
●●

●
●● ●

●
● ●●

●
●

●

●

●
●

● ●
●

● ● ●
●

● ●
●

●●
●●

●
●●

●
●● ●

●
●●
●

●

● ●
●

●●
●●
●● ● ●●

●
●

●

●
●

● ●
● ●●

●●●
●

●
●●●●●●●

●●
●

●
● ●

●●
●

●
●

●●
●

●

●●
●● ●

●

●

●●

●
●

● ●●
● ●

● ●
●

●

●
●

●●
●

●
●

● ●●
●

●
●

● ●

● ●

● ●

●

●●
●

●

● ●

●

●
●
● ●

● ●

●

● ●●
●

●
● ●

●

●
●

●
●
●

●

●●
●

●●

●

●
● ●

●●
●●●

● ●● ●●
●●

●
●

●

●
●
●

●●

●
●●

● ●
● ● ●●

●
●

●
●

●
●

●●

●●

●

● ●
●

●
●

●
●

● ●
●

●
●● ●

●●

●
●
●●●

●
●

●

●

●

●
●

● ●
●

●
●

● ●

●
●●

● ●●
●● ●●

● ●
●

●
●

●
●

● ●● ●
●

●●

●●
●

●

●
●● ●●

●
●● ● ●

●

●●●
●

●

●

●

●
●

●●●
●

●●
● ●

●
● ●● ●

●
●●
● ●● ●

●

●● ●●●
●

−5 0 5 10 15

−5

0

5

10

15
Square1

V1

●

● ●

●

●

● ●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●
● ●

●
●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●
●

● ●●
●● ●● ●

●●

●●●
●

●

●

● ●
●

●
●

●●
●●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●●

●
●

●

●
● ●

●
●

● ●

●●
●●

●

●
●● ●●
●●

●

●

●

●●

● ●

●●

●

●
●

●●

●
● ●

●

●
●

● ●

●

●
●

●
●

●
● ●
●
●

●

●●
●
●
● ●

●

● ●
●●

●● ●
●●●

●
●

●

●
●

●●
●

●
●

●
● ●

●

●
●

●●● ●●
●

●●
●

●●●● ●● ● ●
●

●●
●

●

● ●●
●
●●

●●
●
●●

●

●● ●
●

●
● ●

●● ●
●

●
●

●●
●

●

●

●
● ●●● ●● ●●

●

●

●
●

●●

●

●
●● ●● ●

●

●
●● ●

●

●
●

●●
●

●
●

● ●●
●●

●
●

●●
●●

●

● ●●

●

●
● ●●● ●●

●●

●
●

●
● ●

●

●

●●
●

●
●

●● ●
● ● ●

●● ●
●
●

●
●

● ●
●

● ●●

●

● ●●
●● ●

●●

●

● ●
●

● ●●●
●

●

● ●
●

●●
● ●●

●

●

●
●

●
●

●
●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●●
●

●●
● ●

●
●
●

●
●

●● ● ●●
● ●

●
●● ●

●

●● ●●
●

●

● ●

●
●

●
● ●

● ●
●

●
● ●●

● ●

●

● ●
●
●

●

●
●

●●
●

●● ●●
●●

●

●

●
●

●

●
●

●

●

●● ●●

●
●

●

● ●●

●

●● ●●

●

●
●

●
●

●

●

●
●

●

●
●● ●

●
● ●

● ●
●

●●

●
●●

●

●●
●

●
●●

●●
●●

●
● ●

●

●● ●
●
●

●●
●

●●
●

●

●

●

●●
●

●
●●

●

●

●
●● ●

●
● ●

●
●

●

●●

●
●

●

●
●

●

●
●

●
●

●

● ●

●●

●

●

●

●
●

●●

●
● ●

●●
●

●
● ●●●

●

●
●
●

● ●●

●
● ●

●
●

●● ●●

●

●
●

●
● ●●●

●
●

●●
●●

●

●
●

●
●

●●
●
●

●●

● ●

●
●●●

●

●●●
●

●

●
● ●

●
●

●
●

●
●

●
●

●

●

●
●

●● ●
●

●●
●

●
●

●
●

●

●

●

●●●
●

●

●●●

●

● ●● ●● ●
●

●
●
● ●

●

●

●

●

● ●
●●●

●
●

●

●

●
● ●
●

●

●
●

●

●
● ●

●● ●●
● ●

●

●

●
●●
●

●
●
●

●

●
●

●
●●

●●●
●

●

●

●

●
●

●

●
●

●
● ●

●

●
●●

● ●

●

●●

●

●
●

●

●
●●

● ●
●

●
●

●

●● ●●
● ●

●
●

● ●

●

●

●

●● ●●

● ●

●

●

●
●
●

●
●

●●
●● ●

●

●
●●

● ●
●

●

●

●●
●

●●

●

● ●

● ● ●

●

●

●●
●

●
●

●
●

●

● ●
●

●

●

●
●

●●●

●

●

●●

●
●
●● ●
●

●

●

●● ●
●

●
●

● ●
●

●
● ●●

●

●● ●
●●●

● ●●

● ●
●

●
●●

●

●

●●
●

●
●
●

●

● ●
●

●
● ●
●

●●

●

●

●
●

●

●
●

●

●
●
●●●
●

●●●
● ●

●

●
●

●
● ●
●

●

●

●

●

●
●

●●
●

●
● ●●
●

●
●●

●●
●

●

●

●
● ●

●
● ● ●

●

● ●
●●

● ●●

●

●
●

●
●

●
●

●
● ●

●

●
●

●
●

●

●
●●

●
●

●

●●●
● ●

●
●

●

●●
●

●●

●
●

●
●●

●

●
●● ● ●● ●

−5 0 5 10

−5

0

5

10

Square4

V1

V
2

● ●●●
●

●●●●
● ● ●

●

●
●

●
●

●

●●
●

●● ●●
● ●●● ●●●●

●

●
●● ●●● ●
●● ●
● ● ●●● ●

●
●

●
●●● ●

● ●●

●
●

● ●●●●
●

●
● ●

●

●●●

●
● ●

● ● ●●●
●

●●
●

●
●●●

● ●
●●

● ●●

●●

●● ●
●

●
●

●
●●●

●
●●

● ●● ●● ●●
●●

●
●●●●

●
●

●
●●

● ●
●

●

●
●

● ●
●

●●●
●●

●●

●●
●● ●

●
● ●● ●●

●
● ● ●

●
● ●●

●
●● ● ●

●●
●●

●● ●
●

●
●●● ●

●●
●

●
● ●

●● ●
●

●

●●
●

●
●

●
●

●
●● ●

● ●
● ●

●● ●● ●
●

●●
●●

●
● ●

● ● ● ●● ●
●●

●
●●●● ●● ●●

●●
● ●

●● ●●●
●

●
● ● ●

●● ● ●● ●
●● ● ●

●● ●
●

● ●
●● ● ●●● ●

●● ●● ●● ●● ● ●●
●

●
●

● ●
●●

● ●
● ●● ●●

● ●●● ●
● ●

●●

●
●

●
●●

●
● ●

●
●

●●●●
●

●
● ●

●●
● ●●●

●
●

●●●
●

●● ● ●
●●●

●
●●

●
●

●
●

●●
●●● ●

●●● ●
●●●

● ●
●●

●
● ●● ●

●

●
● ●

● ●● ●
● ●●

●● ●
●●●●

● ●●
●
●●

●
●

●

●

● ● ● ●●●●
●●

●●● ●●
●●

●●
●● ●

●
●●

● ●●
● ●

● ●
● ●

●
●

● ●●●● ● ●
● ●●
●

●
● ●

● ●
●

●●
●

●
● ●

●
●
●

●
●

●
●

●
●

●
●

●
● ●●●●

● ●
●●●

●●
●

● ●
●●●

●
●●

●
●

●

●● ●
●

● ●
●

●
●●

●

●
●●

●●
●

●
●●

●
●

●
●

●●
●● ●●● ●

●●

● ●● ●●●●
●●

● ●
●

●
●

●
●

●●

●●●● ●● ●●
●

● ●● ●
●

●● ●
● ● ●●

●● ●
● ●●

●● ●●
●●●
●●
●

●●● ●
●

●
●●

●
● ●●●●
●

●● ●●
●

●●● ●●
●

●●● ●●●
●

● ●
●

●
●

●●
●●

●
● ●

● ●
●

●● ●● ●
●

● ●●●
●●●

●

●

●
●

●
●● ●●●● ●

●
● ●● ●● ●●

●
●

●
●

●
●●● ●● ●

●

●●
●

●
●●
● ●

● ●● ● ●
●

●
●

● ●
●●
●● ●● ●● ●●●● ●

● ●●
●

●
●

●●
●

●
● ●

●
●

●
●

●
●

●
●●

●
●●

●
●

●●●
●

●
●

●
●

●●
●

● ●
●● ●● ●

●●
●

●●
●
●

●
●●

●
●

●
●● ●

● ●
●

●
●

●● ●●
●

●
●

●● ●
●● ●● ●●●

●● ●●
●

●
●

●
●

●
●
●

●
● ●

●
● ●

● ●
●● ●●

●●●
●● ●●

●●● ●●
●

●
●
●
●

●
●
●

●● ●● ● ●
● ● ●●

●
●●● ●●●

●
●

●●
●

●
●

●●
●

●● ●● ● ●
●

●● ●
●●●●

●
● ●

● ●
●

●
● ●●

● ●●
●●

● ●● ● ●

●
● ●

●●
●

● ●● ●●●●● ●●● ●
●●●● ●●● ●●

●
● ●

●● ●

●
● ●
● ●

●
● ●

●
●
●●

● ●●● ●
●

●● ●●
● ●●●

●
● ●

●
●

● ●
●
● ● ●

● ●●●
●

●
●

●● ● ●
●●● ● ●●

● ●● ●●●
●●●●

●
●
●

−2 0 2 4

0.0

0.5

1.0

Long1

V1

●

●
●●

●

●
●●●

●● ● ●●
●

●
● ●
●

●
●●

●● ●● ●●
●●

●
●●● ● ●
●

●
●●

●

●
●

● ●●
●

●
● ● ●●

●
●

●
●

●

●
●

●

● ●●
●●

●
●
●
● ●● ●

●

●

●
●

●● ●●●
●

●●●● ●
●

●
●

●
● ●

●●

●●
●

●
● ●

●
●

●
● ●●●● ●●

●
●

●
●

● ●●●
●●●● ●

●●● ●
●●

●
●

●
●●● ●

●
●●●

●

●
●

● ●
●

●●

●

●
●

●
● ●

●●
●
●

●
●●

●
● ●

●●● ●●
●

● ●
●●

●

●●
●●

●●
●●●

● ●
●●●●

●
●●●●

●●
●

●
● ●

●

●

●● ●●●
● ●● ●

●●
● ●● ●

●
● ●●●

●

●

●●●●●
●

● ●●
●

●
●

●
●

●
●
●●

●
●

● ●● ●●
●

●●
●

●

●● ●
●

●●● ●●
●

●●
●

● ●

●
● ●

●
●

●●●●● ●
● ●

●●
● ●●

●

●
●

●

●
● ●●● ●

●

●
● ●

●

●
● ● ●●● ●●●

●
● ●●

●
● ●

●
●●●●●

●

●●

●
●

● ●● ●●
●

● ●●
●● ●

● ●●
●

●
●●

●●
●
●●●● ●

●

●●
●

●
●●●

●
● ●

●
●●● ●

●●●
● ●

●●
●

●
●

●
●● ●

●
●

● ●
●

●

●
●

●
● ●

● ●●
●● ●

●
●

● ●

●
●●

● ●● ●
● ●●●

●
●

●

●
●●

●
●● ●●

●

●

●
●●● ●
●

●●●
● ●●

●
●●

●
● ●

●
●

●
●

● ● ●●
●

●

●
●●●● ●

●
●●

●
●
●

●
●

●●
●

●● ●●

●

●
●

●

● ●●
●

● ● ●●●
● ●●●●●

●● ●
●

●●
●●●●

●●

●

●● ● ●
●●

●

●
●

●●
●●●●
●●

● ● ●

●
● ●
●

●
●●●

●
●●
●

●●●

●

● ●

●
●

●●
●

●
●

●

● ●
●

●● ●● ●
●

● ●●
●

●● ●● ●●
●
●●
●●

●
●

● ●
●

●● ●●
●

● ● ● ●●●

●
●

●
●● ●

●●
●

● ●
●

●●

●

●
●

●
●● ●

●
● ●
●● ●

●
●

●

●● ●●

●●● ●●●● ●
●● ●

●
●●

● ●

●

●
●

●●
●

●

●
●
●

●●● ●
●

● ● ●●●
●

●●

●
●

●●
●● ●

●● ● ●● ●●
●●

●

●

●●● ●
●

●
●
●

●
●

● ●
●

●
●

●

●
●

●
●

●● ●●●

●

●●
●

●
●

●●●

●●

●
● ● ●

●● ●●

●

●● ●
●

●

●
●●●

●●● ●

●
●●

● ●●
●

● ● ●●
●●●

● ●
●●

● ●

●
●

●

●
●●●● ●●

● ●

●
●●● ●

●●
●

●
●●

●
●

●

●●
●

●
●●● ●● ●

●
●●

●
●

●
●

●
●

●
●
●●

●
●

●●

● ●
●

●
●

●

●
●●

●

●●●
●●

●
● ●●●

● ●●
●

●

●
●●●

●●
● ●

●

● ●● ●●
●●●

●
●

●

●● ●
● ● ●●●●● ●

●
●

●●● ●●● ●
●

●
● ●
● ●

●
●

●

●●
● ●●

●
● ●● ●●

●
●●●

●
●●

● ●●
●● ●

●
●●

● ●
● ●●

●

●
●● ●●

●

●

●

● ●
●●

●
● ●●

●● ●

●
●● ●●●●

●
●

● ●● ● ●
●

●

●

●
● ●●● ●

●●

●
●

●
●

●●
● ●● ●●

●●
●

●
●

●● ●● ●
●

●● ●
●

●

−5 0 5 10 15

−5
0
5

10
15
20

Sizes5

V1

V
2

●●●●
● ●●● ●●● ●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●● ●●●●●
●● ●● ● ●●●● ●●●

● ●●●●●●●● ●●●● ●●●●
●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ● ●●

● ●
●●●●
●●●●●●

●
●●●

●●
●
●●●●●●●

● ●●●●
● ●●●●

●
●● ●●
●●● ●

●●
● ●

●
●●●●●●●●●●●●●●●●

●●●●●●●●
● ●●
●
●●●●
●●●●● ●●●●●●
●●●●● ●●●●

●
●

●●●●●●●●●
●●●● ●●
●● ●

●
● ●●●●●●●●●● ●●●●●●●●●●●●
●●

●●●●●
● ●● ●●●●●●●●●●●

● ●
●

●● ●●●●
●
●●●●
●●●●● ●●●

●● ●●●●●●● ●●●●● ●●●● ●●●●●●●
●
●

●●●● ●● ●●●●
● ●●●●●●●●●
●●●●●● ●●●●
●● ●●●●●●●●●●●●●●

●
●●●●●●●●● ●

●●●●
● ●●●●●●

●
●● ●●●●●●●●●●●

●●● ●●● ●
●●●●●●●●●●

●
●●●● ●
●●

●●●●
●
●
●● ●●
●●● ●● ●●●●●●

●
●●● ●●●

●●●●●● ●● ●● ●●● ●
●●● ●●●● ●

●● ●●●●●●●●●● ●
●●

●● ●●●●●●●●

●●●●●
●● ●●●●●●

●
●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●
●●●●●●●●

●●●● ●●●●
●●●
●● ●
●●●●●●●

●● ●●● ●●● ●●●● ●●●● ●● ●●●●●●●●●●●
●●●
●● ●

●
●●●●●● ●●●●●●●
●●● ●●●●●
●

● ●●
●●●●●● ●●●●●●

●● ●● ●●
●●●●●●●● ●● ●●●

●●●
●
●

●
●●● ●● ●●●●●●●●● ●●

●●
●

●●●●● ●●●●●●● ●●●●●● ●●●●●
● ●●● ●● ●●●●●●
●
●●● ●●●●● ●●●

●
●● ●●●● ●● ●●

●
●●
●

● ●● ●●●●●● ●●●●●●●●●● ●● ●
● ●●●● ●●●

●●●
●
●●●●●●●●●●●●●●●● ● ●●

●●●●●●●●●●●●●●● ●● ●●●
●●●● ●●●●●●●●●●●●●●●●●● ●●●● ● ●● ●

●
●●●●
●

●●●● ●●●●
●

●
●●● ●● ●●● ●●●● ●●●

● ●●
● ●●●●●●●●● ●

●● ●●●● ●●●●●● ●●●●●●●● ●●●
●
●●●●●●●●

●●
●●●● ●
●●●●●●●●
●● ●● ● ●●●● ●●●

●●● ●●●●● ●●●●●●●
●●
●

●●●●●●●●●●●●
● ●●●●●●●●●

●
●●

0 5 10 15

0

5

10

Twenty

V1

● ●●●●●●●●●● ●●●●●●●● ●●●● ●● ● ●●●●●●●●●●● ●●● ●●● ●●●●● ●● ●
●● ●●● ●●●●● ●●●●●●●● ●●●●●● ●●● ●●●●● ●●● ●●● ●●● ●● ●●●●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●

●●●● ●● ●●●●●●●●● ●●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●● ● ●●●●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●● ●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●● ●●●● ●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●● ●●●●

●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●● ●● ●●●● ●●● ●●●●●●●●
●●●●●●●●●● ●●●● ●●●●●● ●● ●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●

●●● ●●● ●●●●●●● ●●●● ● ●● ●● ●●●●● ●● ●●●●●●●●●●●● ● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●
●●●●● ●●● ●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●● ●●●●●●● ●●● ●●●●● ●●●●●● ●●●● ●●●● ●●●●●● ●●●●● ●● ●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●●● ●●● ●● ●●●●●

● ●●●●● ●●●●●●●●●● ●● ●●●●●
●● ●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●● ●●● ●●● ●●●●● ●●●● ●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●● ●●●
●●● ●●●●●●●● ●● ●●●●● ●●● ●●●● ●● ●●● ●●● ●●●●● ●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●●● ●●●●●● ●●●●●

●●●● ●●●●●● ● ●●●● ●●● ●●●●●●● ●●●● ● ●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ●●● ●●●●●●●● ●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●

0 5 10 15

0
5

10
15
20
25
30

Fourty

V1
V

2

●●

●

●
●●

● ●
●

● ●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

● ●● ●●
●●

●●

●

●

●

●

●

●
●

● ● ●
●

● ●

●●

●
●

●

●

●

● ●
●

●
●

●

● ●● ●

●

●●

●

● ●

●
●

●
●

● ●

●

●●
●

●

●
● ●

●

●●

●

●●

●

●

● ●●

●

●

●

●

●

●
●●

● ●

●

●

●

● ●

●
● ●

●

●
●

●●

●

●

●
● ● ●●

●

●

●●● ●
● ●● ●●

●

●
●
●

●

●

●

●

●
●

●
●

●
●

●

●● ●●

●●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●
●●

●● ●

●

● ●●

●

●
●

●●●
●
● ●

●

●●
●

●

●

●●
● ●

●
●

●●
●

●

● ●● ●
● ●

●

●
●

●
●

●

● ●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

● ●

●
●

●
●

●
●
● ●

●
● ●

●
●

●

●●

●●
●

●

●
●

●
●●

●

●

●

●●

●

●●

●

● ●

●
●

●●

●

●

●●
●

●●
●

●
●

●

●●
● ●

●

●
●

●● ●● ●

●

●
●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●●

●

●
●

●
●●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●

●●
●

●

● ●
●

●●

●

●

●

●

●

●

●

● ●
●●

●
●

●
●

●

●

●
●●● ●

●

●●
●

●
●

●
●

●
●

●

● ●
●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

● ●
●

●
●

●
●
●

●
●

●

●

● ●
●●

●
●●● ●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●●

●

●
●●

●
●

●
●

●
●

●

●●

●

●

●
●

● ●

●
● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●

●

● ●

●

●
●

●
●●

● ●●● ●●● ●●●
●

●●●●
● ●

●●● ●
●

●
●●

●●
●
●

●● ● ●●
●
●●
●●●
●

●
●

●
●● ● ●

●
● ●

●
● ●●

●

●● ●● ●
●

●●●●● ● ●●●
● ●
●

● ●● ● ●●●
● ●●● ●● ●●

●
●● ●● ●

●

●●●
●

●● ●●● ●●
● ●

●●●

●
● ●● ●● ●

●

●●
● ●

●
●●

●
●

● ●●
●

●
●

●
● ●●

●
●

● ● ●●●● ●● ●● ●
●● ●●● ●●

●
● ●●

●●● ●●
●
●●
●●

●● ●
●

●●● ●●●●●●●●
●

●
● ●●●● ●●

●
● ● ●●
● ●● ●● ●

●
●

●
●●

●
● ●●●●●

●
●

●
●

●
●

●●
●

●●●● ●●
●

●●● ●●●● ●●
● ●

●●
● ●● ●●

●●
●
●

●●
●● ●●

●

●
● ●●● ●● ●

●
●●●

●
● ●

● ●
● ●●

●● ●
●●●●

●
●● ● ●●

●

●●●

●
● ● ●
●● ●●● ●● ●●● ●
● ●

●
●

●
● ●●●● ● ●●●● ●●● ●● ● ●●

●
● ●

●
●●●●

●
●●●
●
●●
●
●●●
●

●
●

●●●
●
●●● ●

●
●

●
● ●●●

●
●
●●●●
●

● ●●
●

●●
●

●●●●
●

●●●●●●
●●●● ●●

●●●●●
●

●
●

●●●●● ●
●
●●
●
●

●
●
●

●●
● ●●
●

●
●

●●●
●●●●
●●●●
●●

●
●
●●●●●

●
●●●●●●

●●●●
●

●
●●

●
●

● ●
●

●
●●●●

●●●
●● ●

●
●

●
●

●
●●●

● ●●●● ●● ●
●
●● ●●●●●
●●●●●●●

●
●

●●●● ●
●●
●●

●●●●●
● ●

●
●

●●
●

●●●
●
●●●
●

●
●

●●●
●

●●●
●

●
●
●

●●●●●●●●● ●●
●

●●

●
●

● ●●
●

● ●●●● ●●●●●●

●
●

●
●●
●

●● ●● ●

●
●
●●
●

●
●
● ●

●

● ●●●●
●●

●
●● ●●

●
●●●●

●
●●

●
●

●
●●

●

●
●●

●●
●●

●
●

●
●●●

●●●●●●● ●
●

●
●●

●
●

●●
●●

●
●

●
●

●●● ●
●

●● ●●
●

●●● ●●●●●● ●●●●
● ●
●
●●

●●● ●●
●

●
●●● ●
● ●

●●
●

● ●
●

●●
●● ●●●●●

●
●

●●
●●

●●●●
●

●●●
●

● ●
●●●

●

●

●
●

●●
●●●●●●
●●

●●
●●●

●●
●

●●
●● ●●

●
● ●●●● ● ●●●●● ●

●
●

●
● ●
●

●
●

●●●
●

● ●●
●

●
●

●
●●

● ●● ●●●
● ●

●
●●

●
● ●● ●● ●●

●
● ●● ●● ●

●
●

●
● ●
●

●●●● ●
●
●●●

●●●
●

●

●● ●● ●●

●
● ●●● ●●●

●

●

●

●

●
●

●●
●●● ●

●
●

●
●

●
● ●●

●●●●

●
● ●

●
●● ●

●
●

●● ●● ●●● ●●
●●

●● ●●●●●
●

●
● ●●● ●●●

●

●
●

●●
●

●
●● ●●

●

●●
●

● ●●●●
●

●
●

●
●●

●● ●●●
●

●● ●●
●● ●●●
●● ● ●●
●

●
●●●

●
●

●
●
●

● ●
●● ●●● ●

●● ●●
●● ●●
●

●●
●●●

●● ●
●● ● ●● ●●●

●
●●● ●●

●
●● ●

●
●

●●
●

−15 −10 −5 0 5 10 15

−10

−5

0

5

2d−4c

V1

●●

●

●
●●● ●

●
● ●

●●
●

●

●

●

●

●

●
●

●●●
●

●
●

●
●

●

● ●● ●●
●●

●●

●
●

●

●

●

●
●

● ● ●
●

● ●

●●

●
●

●

●
●

● ●
●

●
●

●

● ●● ●

●

●●

●

● ●
●●

●●
● ●

●
●●

●

●

●
● ●

●

●●

●
●●

●

●

● ●●
●
●

●

●

●

●
●●

● ●

●
●

●
● ●

●
● ●

●
●
●

●●

●

●
●

● ● ●●

●

●

●●● ●
● ●● ●●
●

●
●
● ●

●

●

●

●
●

●
●

●
●

●

●● ●●
●●●

●
●

●

●

●●

●
●

●
●
●

●

●

●
●

●●● ●●
●● ●

●

● ●●

●

● ●

●●●
●
● ●

●

●●
●●

●

●●
● ●

●
●

●●
●

●

● ●● ●
● ●

●

● ●

●
●

●

● ●

●
●

●●●

●

●

●

●
●

●

●

●●
●

●

●●

●
●

● ●
● ●●

●
●

●
● ●

●
● ●

●
●

●

●●

●●
●

●

●
●

●
●●

●

●

●
●●

●

●●

●

● ●

●
●

●●

●

●

●● ●

●●
●

●
●

●

●●● ●
●

●
●

●● ●● ●

●
●

●
●

●
●

●
●

●

● ●
●

●

●
●

●

●●

●

●●
●

●

●

●

●●
●

●
●

●
●●

●
●

●

●

●
●

●●

●

●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●
●

●

● ●
●

●●
●

●

●

●

●

●

●

● ●
●●

●
●

●
●

●

●

●
●●● ●
●

●●
●

●
●

●
●
●

●

●

● ●
●

●
●

●
●

●
●●

●
● ●

●

●
●

●

●

●

●
●●

●
●●●

●

●

● ●●
●
●

●
●
●

●
●

●

●

● ●
●●

●
●●● ●●

●
●

●

●
●

●
●

●
●

●
● ●

●

●

●

●●
●

●●

●

●
●●

●
●

●
●
●●

●

●●

●

●

●
●

● ●
●
● ●

●

●
●●

●
●

●
●

●

●
● ●

●
●

●

●

●

●●
●

● ●
●

●
●

●●●
● ●●● ●●● ●●●

●
●●●●

● ●
●●● ●

●● ●●●●
●
●

●● ● ●●
●
●●
●●●
●

●●
●

●● ● ●●
● ●

●● ●●
●

●● ●● ●
●

●●●●● ● ●●●
● ●●

● ●● ● ●●●
● ●●● ●● ●●

●
●● ●● ●

●

●●●
●

●● ●●● ●●
● ● ●●●

●
● ●● ●● ●

●
●●

● ●
●
●●

●
●

● ●●
●

●
●

●
● ●●

●
●

● ● ●●●● ●● ●● ●●● ●●● ●●●
● ●●●●● ●●
●●●
●●

●● ●
● ●●● ●●●●●●●●

●
●

● ●●●● ●●●
● ● ●●
● ●● ●● ● ●

●

●
●●

●
● ●●●●●

●
●●●
●

●
●●

●
●●●● ●●

●
●●● ●●●● ●●● ●
●● ● ●● ●●●●
●
●

●●●● ●●
●
●

● ●●● ●● ●
●

●●●
●

● ●● ● ● ●●●● ●
●●●● ●

●● ● ●●
●

●●●
●
● ● ●
●● ●●● ●● ●●● ●
● ●

●
●

● ● ●●●● ● ●●●● ●●● ●● ● ●●
●

● ●

●
●●●●

●
●●●
●●●

●
●●●●

●
●

●●●●●●● ●
●

●
●

● ●●●●●●
●●●
●

● ●●
●

●●
●

●●●●
●

●●●●●●
●●●● ●●
●●●●●●●●

●●●●● ●
●
●●●
●

●
●●
●●

● ●●
●

●
●●●●
●●●●
●●●●
●●

●
●
●●●●●

●
●●●●●●

●●●●
●

●
●●●
●● ●●
●

●●●●
●●●●● ●

●●
●
●●●●●

● ●●●● ●● ●
●●● ●●●●●
●●●●●●●

●
●

●●●● ●
●●●

●
●●●●●
● ●

●
●

●●
● ●●●

●
●●●●
●

●
●●●
●

●●●
●

●
●
●

●●●●●●●●● ●●
●

●●

●
●● ●●

●
● ●●●● ●●●●●●

●
●

●
●●● ●● ●● ●

●
●●●
●

●
●● ●

●

● ●●●●●●
●

●● ●●
●●●●● ●

●●
●●

●
●●

●

●
●●●●

●●
●

●
●●●●●●●●●●● ●
●

●
●●
●
●

●● ●●
●
●

●
●

●●● ●●●● ●●
● ●●● ●●●●●● ●●●●

● ●
●●●

●●● ●●
● ●●●● ●

● ●●●●
● ●

●
●●

●● ●●●●●
●

● ●● ●●
●●●●●●●●

●
● ●

●●●
●

●
●

●
●●●●●●●●

●●

●●
●●●

●●
●●● ●● ●● ●

● ●●●● ● ●●●●● ●
●

●●
● ●
●

●
●

●●●
●

● ●●●
●

●
●

●●
● ●● ●●●

● ●
●●●
●

● ●● ●● ●●
●

● ●● ●● ●
●●

●
● ●●

●●●● ●
●
●●●

●●●
●
●

●● ●● ●●

●
● ●●● ●●●

●
●

●
●

●
●

●●
●●● ●

●
●
● ●
●
● ●● ●●●●

●
● ●

●●● ●
●

●●
● ●● ●●● ●●

●● ●● ●●●●●
●

●
● ●●● ●●●

●
●

●
●●

●
●

●● ●●
●
●●

●● ●●●●
●

●
●

●
●●

●● ●●●
●

●● ●●
●● ●●●●● ● ●●
●

●
●●●

●
●

●
●●

● ●●● ●●● ●
●● ●●●● ●●

● ●●
●●●

●● ●●● ● ●● ●●●
●

●●● ●● ●
●● ●

●
● ●●

●

●
●●● ●● ●● ●●●●● ●●●● ●

●
●●

●
●● ●●●●

●
● ●●●●●● ●

●
●

●
●● ●

●●●● ●●● ●
●● ●●●●●●●●●●● ●●●●●●● ●●●

●
● ●●●●

●● ●● ●●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●●●●● ●
●●● ●●●● ●●● ●●●

●●●
●●●● ●●●●●●●●● ●●●●● ●●●●●●●● ●● ●●●
●● ●●●●●● ●●

●
●●●●● ●●●●●● ●

●● ●● ●●●●
●
● ●●●
●●●

●●●●●●● ●●● ●●● ●●●
●●●●●●● ●●●●

●● ●● ●●●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●●●●
● ●●●●● ●● ●●●●● ●
●●●●●●● ●●● ●●●●●●●
●

● ●●●●●●●●●● ●
●

● ●●●●●●●●●●● ●●●
● ●●● ●●●●●
●●●●

●●● ●● ●●● ●●● ●●●● ●●
●

●●● ●●●● ●●● ●●●●●● ●●●●●● ●● ●●●●● ●●●●● ●●●●
●

●●●● ●●●● ●●
● ●● ●●●●● ●●●
●

●●●●●● ●
● ●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●

●●● ●●● ●●
●● ●●
●
●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●

●●●● ●●●●●●●● ●●●● ●●●● ●●● ●●●● ●● ●●● ●●●●●● ●●● ● ●● ●● ●●●●● ●●●●● ●●●● ●●●●●● ●
●●● ●●●●● ●● ●●●●● ●●●●●●● ●●●●●
●●●● ●● ●●● ● ●● ●●●

●● ●● ● ●●● ●●●●●●● ●●●● ●●
● ● ●●●● ●● ●●● ●●●●●●●● ●● ●●●●●●● ● ●●● ●●●●●●●●●● ●●●

●●●●●● ●
●●●●●●

●●● ●
●●●● ●●●●● ●●● ●●●

●●
●

●
●●●●●●●●●

●
●

●●●●●●●● ●●●●
●

●●●●
●

●●●●●●●●●●●●●● ●
●●●●

●●●●
●●●●● ●●

●
●●●●●●●●●●●●
●

●
●● ●●

●●
●●●●●●●●●● ●●●●

●●●●●●●
● ●●●●●●●● ●

●
●●●●●● ●●●

●●
●

●●●● ●● ●●●●
●

●●●●●●
●● ●●●●●●

●
● ●●●●
●●●●●●●●●

●
●

●●●●●●●●●●●
●

●●
●● ●

●●●
●

●● ●●
●

●●●
●● ●●

●
●

● ●● ●●●
●

●●●●●●●● ●●●●
●

●●
●●●●

●●●●
●●●●●●●●●●
●● ●

●●
●●●●●●

●●
●●●

●
● ●●●
●●

●●
● ●● ●●

●
●

●●●●●●●●●
●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●
●

●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●

●●
●●
●
●●●●●●

●●●●●
●●●●●●●●●●●●
●●●●●●●

●●●
●
●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●
● ●●●●●●●
●●●●●●●
●●●●●●● ●●
●●●●●●●●●●
●●●●

●
●●●●●
●●●●

●
●●
●●●●●●

●●●●●●●●
●●

●

● ●●●●●
●●

●
●
●●●

●●●
●●

●●
●

● ●● ●●●●●●●●
●●●

● ●●● ●
●●
●
●
●

●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●●
●●●

●
●●●●●

●
●●●●●●●●

●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−15 −10 −5 0 5 10 15

−10
−5

0
5

10
2d−10c

V1

V
2

●●
●

●●●● ●
●● ●●● ●

●●●
●

●
●

● ●●●
●

●●●
●

●
● ●●●●●●

●●
●●●●●●●● ● ●
● ●●●●

● ●●●●●
●●● ●●● ●●●

●
●● ●● ●●●●●● ●●●●●
●

●● ●
●
●●
●●●●

●
● ●●●
● ●●
●

●

●●
●●●

●●●●●●●●●●●●
●

●●●●●●
●●
●●●●●●●●●●●●●●●

●
●●

●●●●●● ●●●●●●●●●
●
●
●●

●●●●●●●●●
●●●●●●●●●
●●●

●
●●

●●●●●●
●●●●

●
● ●●● ●●

● ●● ● ●
●

●● ●
● ●●●

●●●●● ●●●●●● ●●
●

●●●
●
●●●●●

● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●
●●

●
●●●

●
●●●

●●
●●

●
●● ●

●
●●

●
●

●
●

●
● ●

●

● ●●●●
●

●
●

●
●● ●

●●●
●

●
●● ●●

●
●●

●● ●●
●●

●
●
●

●●
●● ●●●

● ●

●
●●
●●●●

●●● ●●
●

●

●●●●●●
●

●●● ●●● ●●●
●●●●●● ●●● ●●●●●

●●●● ● ●●● ●●● ●
●

●● ●●●●●

●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●

●● ●●●●● ●●
●● ●●●●●● ●● ●● ●●●●●● ●●●●● ●●●●● ●●

● ●●●●●●● ●●●●●●● ●●● ●
●● ●●●●●● ●● ●● ●● ●●●●● ●● ●● ●●
●● ●● ●●●● ●●●● ●●● ●●●●●● ●●● ●

●●●● ●●● ●● ●●●●
●●●

●●●●●
●●● ●●

●
● ●●●
● ●●●● ●

●●● ●●● ●●
●● ●●● ●●● ●
●●●

●
●●●●●●●

●
●

● ●●
●●●●●●●●●● ●●

●
●●● ●●

● ●●● ●●●
●

●●● ●●●●●
●

●●●●●●●●
●●

●● ●
●

●●
●●

●●● ●●● ●
●●●●● ●●●●●●●

●
● ●

●
●●● ●●●●●●●●●

● ●
●●● ●●

●●● ●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●● ●●●●● ●●●●●● ● ●●●●●●●●● ●●●●●● ●●●●●● ●● ●●●●●●● ●●●●● ●●●● ●●●● ●● ● ●●●● ●● ● ●●●●● ●●● ●●●●●●●●●●● ● ●●●● ●●

●
●●● ●●●
●●● ●

●
●

●
●●●

●●●
●●●

●●●
●●●●●●●
●●●●●●●●

●
●●●●●●●
●●●●●●●●●●
●●●
●
●
●●●●●●●●●●●●●
●●●
●●●●
●●●
●●●●●●
●

●●● ●●●●● ●●●●● ● ●●● ●● ●●●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●● ●●●● ●● ● ●●● ●●● ●●●●●
●●● ●●● ●●● ●● ●●● ●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●

●●●
●

●
● ●●●●●●●●●

●●
●●●●● ●●

●●● ●● ●● ●● ●●●● ● ●●●●● ●
●

●● ● ●●●
● ●●●

●
● ●●● ●●

●●●
● ●● ●●●● ●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●

●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●

●●●●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

−10 −5 0 5 10

−10
−5

0
5

10

2d−20c

V1

●●
●

●●●● ●
●● ●●● ●

●●●
●

●
●

● ●●●
●

●●●
●

●
● ●●●●●●

●●
●●●●●●●● ● ●
● ●●●●

● ●●●●●
●●● ●●● ●●●

●
●● ●● ●●●●●● ●●●●●
●

●● ●
●
●●
●●●●

●
● ●●●
● ●●
●

●

●●
●●●

●●●●●●●●●●●●
●

●●●●●●
●●
●●●●●●●●●●●●●●●

●
●●

●●●●●● ●●●●●●●●●
●
●
●●

●●●●●●●●●
●●●●●●●●●
●●●

●
●●

●●●●●●
●●●●

●
● ●●● ●●

● ●● ● ●
●

●● ●
● ●●●

●●●●● ●●●●●● ●●
●

●●●
●
●●●●●

● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●
●●

●
●●●

●
●●●

●●
●●

●
●● ●

●
●●

●
●

●
●

●
● ●

●

● ●●●●
●

●
●

●
●● ●

●●●
●

●
●● ●●

●
●●

●● ●●
●●

●
●
●

●●
●● ●●●

● ●

●
●●
●●●●

●●● ●●
●

●

●●●●●●
●

●●● ●●● ●●●
●●●●●● ●●● ●●●●●

●●●● ● ●●● ●●● ●
●

●● ●●●●●

●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●

●● ●●●●● ●●
●● ●●●●●● ●● ●● ●●●●●● ●●●●● ●●●●● ●●

● ●●●●●●● ●●●●●●● ●●● ●
●● ●●●●●● ●● ●● ●● ●●●●● ●● ●● ●●
●● ●● ●●●● ●●●● ●●● ●●●●●● ●●● ●

●●●● ●●● ●● ●●●●
●●●

●●●●●
●●● ●●

●
● ●●●
● ●●●● ●

●●● ●●● ●●
●● ●●● ●●● ●
●●●

●
●●●●●●●

●
●

● ●●
●●●●●●●●●● ●●

●
●●● ●●

● ●●● ●●●
●

●●● ●●●●●
●

●●●●●●●●
●●

●● ●
●

●●
●●

●●● ●●● ●
●●●●● ●●●●●●●

●
● ●

●
●●● ●●●●●●●●●

● ●
●●● ●●

●●● ●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●● ●●●●● ●●●●●● ● ●●●●●●●●● ●●●●●● ●●●●●● ●● ●●●●●●● ●●●●● ●●●● ●●●● ●● ● ●●●● ●● ● ●●●●● ●●● ●●●●●●●●●●● ● ●●●● ●●

●
●●● ●●●
●●● ●

●
●

●
●●●

●●●
●●●

●●●
●●●●●●●
●●●●●●●●

●
●●●●●●●
●●●●●●●●●●
●●●
●
●
●●●●●●●●●●●●●
●●●
●●●●
●●●
●●●●●●
●

●●● ●●●●● ●●●●● ● ●●● ●● ●●●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●● ●●●● ●● ● ●●● ●●● ●●●●●
●●● ●●● ●●● ●● ●●● ●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●

●●●
●

●
● ●●●●●●●●●

●●
●●●●● ●●

●●● ●● ●● ●● ●●●● ● ●●●●● ●
●

●● ● ●●●
● ●●●

●
● ●●● ●●

●●●
● ●● ●●●● ●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●

●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●

●●●●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●● ●●● ●● ●●● ●●●●●●●●● ●● ●●●●●●●● ●●● ●● ●●●●●●●●●●●●●● ●●●●●●●

●●
●●●●●● ●●●

●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●● ●●● ●●●●●●●●● ●●●●●●● ●● ●●● ●●● ●● ●●● ●●●●●● ●● ●● ● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●
●●●●●●●● ●●●●●●●●● ●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●● ●●●●●●●● ●●●
●

●●●●
●●● ●

●●● ●●●●●●●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●● ●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●●●
● ●●●●

●
●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●

−10 −5 0 5 10

−10
−5

0
5

10

2d−40c

V1

V
2

●● ●
●● ●● ●
● ●● ●●● ●

●●
●
●●● ●●

●
●

●
●

●● ●
●

●
● ●

●●● ●
●● ● ●●● ●●●●● ●●●● ●●
●●●● ●● ●●●●● ●● ● ●●● ●

●
● ●●
●

●
●● ●●

● ●
● ●●●●●

●● ●●● ●●●●
● ●
●
●

●●●● ●●

●
●

●

●
●● ●●●

● ●●
●● ●

●
●

●
●●

●
● ● ●●● ●●●● ●● ●●

●
● ●●●

●
●● ●● ●● ●●●●● ●

●
● ●

●●●
●

● ●●
● ● ●

● ●●●●
●● ●

● ●
●

●
●

●●●
● ●

● ●●●
●

●●● ●●● ●● ●
●

● ●●●●
● ●● ●●●

●
●

●

●
●
●

● ●●
● ●● ● ●●●●● ●●● ●● ●● ●
●●

●●●●●
●●

●
● ●
●●● ● ●●

●●● ●●
●●

●
●

●
● ●● ●

●●
●● ●●●

●●●
●

●●
●● ●●● ●●● ●●

●● ● ●●●
●● ●

●●
●
● ●●● ● ●● ●● ●●● ●● ● ●● ●●●●● ●● ●

●●● ●● ●
●●●● ●● ●●●●

●
●

●
●

●
●

●

● ●

●
●● ●●● ●●● ● ●●

● ●●
●

● ●
●●●●●●

● ●●
●● ●●
●●

●
●● ●●

● ●● ●●● ●●● ●● ● ●●●● ●● ●
● ●●

●
●●

●
●●

● ●●●
● ●

●●
●

● ● ●●●
●

● ●●
●

●
●

● ●
●

●
●●● ●● ●●● ●

●●● ●
● ●

●
●●● ●● ●●● ●

●● ●● ●●●
●

●
●

●●
●● ● ●●●●●

●
●

●
●

●●● ●●●● ●●●
● ●●● ●●● ●●●● ● ●

●●
●

●●
●

●
●

●

●
●

●●
●
●

●●
●

●
●

●●

●●
●●

●

● ●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●
●

●
●●●●

●

●

●

●
●

● ●
●

●
●●●

●●
●
●

●● ●
●

●
●●●

●

●

●

●●●
●

●

●
●

●

● ●

●

●
●●
●

●

● ●
●
●●● ●

●

●

●

●
● ●

●

●
●● ●

●●
● ●
●

●

●

●
● ●

●

●
●

●●●
●●

●

●● ●
●

●

●
●

●
●

●●

●
●
●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●
●●●

● ●

●

●● ●●
●●

● ●

●
●●

●
●

●
●● ●

●

●
●

●
●

●● ●
● ●

●

●

●●

●

●

●
●

●

●

●

●

● ●
●

●

●

●● ●
●● ●

● ●
●

●

●
●

●
●

●●
●●

●
●

●
●

●

●●●
● ●

●

●
●

●

●

●●●
●

● ●
●
●●

●

●●
● ●
●● ●

●

● ●
●

●●

●

●
●●

● ●
●

●
●●

●

●
●

●●●

●
● ●

●
● ● ●

●

●

●

●

●

● ●
● ●

●

●●●●
●●

●

●
● ●

●
●

●
●

●●

●
●

●

●●
●

●

●
●

●

●

● ●

●
● ●●●

●
● ●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
● ●

●
●

●

● ●
●

●

●
●●

●

●

●

●
●
●

●

●

●● ●●
●

●●

● ●
●

●
●

●

●

●
●
●

● ●
●●
●

●●
●

●

●●
●

●

●

●
●

●●
●

●

●
●
●

●

●

●

●●●

●●
●

● ●●
● ●●

●

●

●
●●

●
●

●

●

●●

● ●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●●
● ●

●
●

●
●●

●

●
● ●

●
●

●●

●
●●

●

●

●

●
●

●

●●●●
●

●●

●

●

●●

● ●●

● ●

●●

●

●

●
● ●

●

●
● ●●

●
●

●

●●
●

●

●

●

●●
●

●

●
● ●●
●

●

●

●
●●

●

●

●

●
●

●

●
● ●

● ●

●
●

●●
●

●
●

●
●

●● ●
●

●
●

●

●
●

●●●
● ● ●●

●
● ●
●

●
●●

●●●
●

●
●●

● ●●● ●

●

●
●● ●

●●●
● ● ●

●
●
●● ●●

●●
● ●

● ●●
●● ●●● ●

●
●

●● ●●●

●
●

●● ●

●

●● ● ●●
● ● ●
● ●

●

●

●●
●

●
●

● ●

●
●●

●

●

●●
●

●

●
● ●

●
●●

●

●

● ●
●

● ● ●●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

● ●

● ●
●

●

●

●

● ●●
●

● ●●
● ●

●
●

●
●

●●
●

●
●

●

●

●●
●

●

●●
●

●

●
●
●●

●

●● ●

●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●

−15 −10 −5 0 5 10 15

−20

−10

0

10

10d−4c

●● ●
●● ●● ●
● ●● ●●● ●●●

●
●●● ●●

●
● ●●●● ●

●
●

● ●
●●● ●

●● ● ●●● ●●●●● ●●●● ●●●●●● ●● ●●●●● ●● ● ●●● ●●
● ●●● ●
●● ●●

● ●● ●●●●●
●● ●●● ●●●●● ●●●

●●●● ●●
●

● ●
●●● ●●●● ●● ●● ●

●
●

●
●●●● ● ●●● ●●●● ●● ●●●

● ●●●
●●● ●● ●● ●●●●● ●

●● ● ●●● ●
● ●●● ● ●● ●●●●●● ●

● ●
●

●
● ●●●● ●● ●●●● ●●● ●●● ●● ●●● ●●●●● ●● ●●●●

●
●

●
●
●

● ●● ● ●● ● ●●●●● ●●● ●● ●● ●●●
●●●●● ●●

●● ●●●● ● ●●
●●● ●● ●●

●
●

● ● ●● ●●●●● ●●● ●●●
●

●●
●● ●●● ●●● ●● ●● ● ●●●●● ●●● ●

● ●●● ●●● ●● ●●● ●● ● ●●●●●●● ●● ●●●● ●● ●
●●●● ●● ●●●●

●
●

●
● ● ●

●
● ●

●
●● ●●● ●●● ● ●●● ●●

●
● ●

●●●●●●● ●●●● ●●●●
●●● ●● ● ●● ●●● ●●● ●● ● ●●●● ●● ●● ●●

●
●●●●●

● ●●●● ●●●●
● ● ●●●● ● ●●● ●●● ●

●
● ●●● ●● ●●● ●

●●● ●
● ●● ●●● ●● ●●● ●

●● ●● ●●●
●

●
●

●●●● ● ●●●●● ●●
●

●
●●● ●●●● ●●●● ●●● ●●● ●●●● ●●

●●●
●●

●
●

●
●

●
●

●●
●●

●●
●

●●
●●

●●
●●

●

● ●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●●● ●
● ●●●●

●
●

●

●
●

● ●
●

●
●●●

●●
●
●

●● ●
●
●

●●●

●

●
●
●●●
●

●

●
●

●

● ●

●
●

●●
●

●

● ●●
●●● ●

●
●
●

●
● ●

●
●●● ●●●● ●●

●

●
●● ●

●
●●
●●● ●●

●

●● ●
●

●

●
●

●●
●●

●
●
●

●
●

●●● ●●

●

●
●
●

●
●

●

●
●●●

● ●
●

●● ●●
●●

● ●
●
●●

●
●●

●● ●
●

● ●
●

●

●● ●
●●
●

●

●●

●

●

●
●

●
●

●

●

● ●
●

●

●

●● ●●● ●● ●
●
●
●

●

●
●

●● ●●
●

●
● ●

●
●●●

● ●
●

●
●

●

●
●●●
●

● ●
●●●
●

●●
● ●
●● ●

●
● ●

●
●●

●

●
●●

● ●
●

●
●●

●

●● ●●●
●

● ●●● ● ●
●

●
●

●

●

● ●● ●
●

●●●● ●●
●

●
● ●

●
●

●
●

●●

●
●

●
●●
●

●

●
●●

●

● ●
●● ●●●●● ●●●

●●
●

●

●
●

●
●
●

●
●

●
● ●

●●
●

● ●●
●

●
●●

●

●

●

●
●
●

●
●

●● ●●●
●●

● ●
● ●
●

●
●

●●
●

● ●
●●
●

●●
●

●
●●●

●

●

●
● ●●

●

●

●
●
●

●

●

●

●●●
●●

●
● ●●● ●●●

●
●
●●

●
●

●
●

●●

● ●
●●

●

●

●
●●

●

●

●
● ●

●

●
●

●●

●●

●

●
●

●
●

●●● ●
●

●

●
●●●

●● ●
●

●
●●

●
●●

●

●
●

●
●

●
●●●● ●
●●

●

●

●●

● ●●

● ●
●●

●

●
●● ●

●
●

●●●
●●

●

●●
●

●

●

●
●● ●

●
●

● ●●
●

●

●

●●●

●

●
●

●
●

●

●
●●● ●

●
●

●●
●

●
●● ●

●● ●
●

● ●
●

●●
●●●● ● ●●

●● ●●
●

●● ●●●
●

●
●● ● ●●● ●

●
● ●● ●

●●●● ● ●
●

●●● ●●
●●

● ●
● ●●

●● ●●● ●
●

●●● ●●●
●

●●● ●

●
●● ● ●●

● ● ●
● ●

●

●
●●

●
●

●
● ●

●
●●●

●

●●
●

●
●

● ●●
●●

●
●

● ●
●

● ● ●●
●

●

●
●

●
●

●
●
●

●

●

●●

●

●●

● ●

● ●
●

●

●

●
● ●●● ● ●●
● ●

●
● ●

●●●
●

●●

●

●

●●
●

●

●● ●

●

●●
●●

●

●● ●

●

●

●

●

●

●
●

●

●● ●●●
●

●
●
●

●

●●●
●

●● ● ●●
● ● ●

● ●
●

●●●● ●●
●

●
● ● ●● ●●

●● ●
●● ●●

●
●● ●

● ●● ●
● ●●●

● ●

●● ●
● ●●

●

●
● ●●

●●
●●● ●

● ●
●

● ● ●
●

● ●●●
●●● ●● ●● ●●●
●●

●●
●

●
●

●●
●

●●
● ●●

● ●
●

●●
●

●
●

● ●
● ●●

● ● ●●
●●● ●● ●●●

●● ●●●
●

●● ●● ● ●● ●
●

●
●

●
●● ● ●● ● ●●

●
● ●

●
● ● ●● ●●● ●

●
●

●
●

●
●● ●●

● ●● ●●● ●●
●● ●● ● ●

●

●● ●●●● ●● ● ●● ●●● ●● ●●● ●● ●●●● ● ●●● ●● ●●● ●●●●
●●● ●●● ● ●● ●● ●

●
●●●● ●●●● ●● ● ●● ● ●●●

●
●

●
●

●● ●
●

●
● ●●●● ●●●● ●●

●● ●
● ●●

● ●●
● ●●● ●

●
● ●●● ●●●● ●●● ●● ●

● ●●●●●
●

●
●

●●●● ●
●● ●●●●

● ●●●
●

●● ● ●
● ●●●●

● ●●● ●
● ● ●● ●●●●●● ●● ●● ●

●
●● ●●●● ●● ●●● ●● ●● ●

●●●● ●●● ●● ●●● ●
● ● ●●● ●● ●●●●●●● ●● ●●● ●●● ●●● ●●●●

●● ● ●● ● ●●
●
●●● ●●● ●● ●●

●
●●●● ●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●
●●● ●● ●● ● ●● ● ●● ● ●●
●

● ●
● ● ●●● ●● ●

●● ●●● ●● ●● ●● ●● ●● ●●
●● ●● ●● ●●● ● ●●● ● ●● ●● ●●

●●●●●● ●●●
●

●●●● ●●
●

● ●
●●● ●

●●●●
●

●●
●● ●●●●● ●

● ●● ●● ●
● ●●●●●●● ●●●●●

●
●● ●●

●●●● ●
●

●
● ●●●

●●●
●

● ●● ●

●

●

●

●

●
●
●●

●

●
●

●

●
●

● ● ●
●
●

●●●
●

●

●

●

●●●

●
●

●
●

● ●● ●

●

●● ●●

●
●

●●
●

●● ●
●

●●

●

●
●

● ●

●

●

●
●

●
●

●
●

●
● ●
●

●

●
●

●

●

●

●● ●●
●
●
● ●

●

●

●
●
●
●

●
●

●
●

●●●●
●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●
● ●

● ●●
●●

●●

●●●

●

●●

●

●●
●●

●

●
●

●
●●

●

●
●●

● ●

●
●

●●

●●
●

●

●

● ●

●
●

●

●
●

●
●●

●

●
●

●●

●
●

●

● ●

●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●●

●●

●

●

●

●

●●

●

●
●●●

●

●

●●

●

●

●●
●●

●
●●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●

●●● ●
●

●
●

●

● ●

●

●●
●

● ●
●

●

●

●

●

●

●
●

● ●
●

●

●
●

●
●● ● ●

●
●

●●
●●

●
●
● ●●

●
●

●

●

●

●

●

●
●

●

●

●● ●●
●
● ●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●●
●

●
●●

●

●

●

●
●
●

●

●●
●

●

●
●●●

● ●
● ●

●

● ●
●
●

●

● ●● ●

●

●
●

●

●

● ●
● ●

●

●

●●
●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●●
●●●

●●●

●

●
●

●

●●●

●

●●
●
●

●

●
●

●
●

●●●
●

●●●●

●
●

●
● ●

●
●

●

●

●

●

●

●●
●

●

● ●●

●

●

●
●●
●

● ●
●

●

●

●●●

●●
●

●●
●

●
●● ●●● ● ●

● ●
● ●●

●● ●
●●●

● ●●● ●●●●●●●
●

● ●●
●

●
●

● ● ●●● ●● ●
●●

●●● ●● ●
● ●

●

●●● ●●●
●

●
●

●● ●●
● ●

● ●●
●● ● ●● ●●● ● ●● ● ●●

●●● ●●
●

●
● ●● ●

●
● ●

●
●

●●●
●● ●●●

● ●●●
●●●
●●

●
●●●

●
●

●● ●●●
● ●●●

●

●

●●● ●
●

●●●●
●

● ● ●
●

●●● ●
●

●
● ●●

●
●●●

●

●
●

●
●● ● ●●

●
●

● ● ●
●

●
● ●

●●
●
● ●

●● ●
●

●
●●●

●
●●●● ●

●●

●
●●

●
●●●

● ●
●●●

●
●

●
●

● ●●
● ●●●●● ●● ●

●
●●●

●
●
●●●
●●

●● ●

●
● ●● ●

●● ●● ●
● ●●●●

●●
●●
●
●

● ●
●

●

●

● ●

●●

●
●●
●
●

●

●
●

● ●●●● ●●●
●●

●

●

●●
●

●
●

●● ●●
●● ●● ● ●●

●●

●

●
●●

●●
●

●
●

●
● ● ●●●●

●●

●
●

●

●

●

−20 −10 0 10

−20
−10

0
10
20
30

10d−10c

V
2

Fig. 1. The synthetic data clustering problem instances used in the experiments.

in each dimension. For example, Iris instance contains 3 equal-sized clusters of
50 data items each, and the data type of the values of each dimension is con-
tinuous, whereas Dermatology instance contains 6 clusters of different sizes of
(112, 61, 72, 49, 52, 20) data items, and the data type of each dimension is integer.

4.2 Trials and Parameters Settings and CPU Specifications

Based on initial experiments, the initial score value of all the LLHs in the RL
selection method were set to (upper score bound - 2 * number of heuristics).
The upper and lower score bounds of each one of the LLHs are set to 40 and 0
respectively, and the score increments and decrements values are both set to 1.
The GDEL parameters are set to the following values: T is set to the maximum
duration of a trial, ∆F is set to the minimum cost value in the initial non-
dominated set and f0 is set to 0 [29]. A LACC approach that uses k separate
lists of equal lengths, one for each value of k ∈ [LB,UB], is adopted based on



10 Anas Elhag and Ender Özcan

the results of some initial experiments. A separate list of 50 previous solutions
is maintained for each one of the solutions in the current set of non-dominated
solutions. The parameters of the ADHS and ILTA followed the same settings as
suggested in the literature [30].

30 initial solutions are created randomly for each one of the problem in-
stances. In order to avoid initialization bias, all hyper-heuristic approaches op-
erated on the same 30 initial solutions for each problem instance. Each experi-
ment was repeated 30 times, for 600 seconds each. Experiments were conducted
on 3.6GHz Intel Core i7 − 3820 machines with 16.0GB of memory, running on
“Windows 7 OS”.

4.3 Evaluation Criteria

In each experiment, each one of the 9 different hyper-heuristics used in this
study starts from an initial set of non-dominated solutions and tries to find the
best non-dominated set that can be found in the given period of time allowed
for each run. The overall success of a hyper-heuristic is evaluated using success
rate, denoted as (sRate%) which indicates the percentage of the runs in which
the expected (best) number of groups/corner points has been successfully found
by a given algorithm; and the average time (in seconds) taken to achieve those
success rates which is calculated using the duration of the successful runs only.

4.4 Experimental Results and Remarks

The actual values for the different dimensions within each one of the instances
described above were measured on different scales. Consequently, some data
processing was carried out before applying the grouping hyper-heuristics on these
clustering instances. In this pre-processing, the real data is normalized such that
the mean is equal to 0 and the standard deviation is equal to 1 in each dimension.

Initial experiments were conducted to observe the behavior of the grouping
hyper-heuristic framework considering different k values for each problem in-
stance, as specified in Table 1, while the heuristic selection is fixed from {SR,
RL, DH} and the heuristic acceptance is fixed from {ILTA, LACC, GDEL}. A
thorough performance analysis of the hyper-heuristics is performed. Then the
performance of the hyper-heuristic with the best mean corner point is compared
to the performance of some previously proposed approaches.

The results are summarised in Tables 2, 3 and 4, showing the average best
grouping, the standard deviation and the success rate for each of the grouping
hyper-heuristics for each of the instances over 30 runs. The bottom row of each
table, titled ‘wins’, shows the number of times each grouping selection hyper-
heuristic has achieved the best average grouping including the ties with the other
algorithms. A standard deviation of±0.0 for a particular algorithm indicates that
this algorithm succeeded to find the best grouping for the particular instance
over the 30 runs and achieved a 100% success rate. In general, hyper-heuristics
using the ILTA selection method performs better than the others. Grouping
hyper-heuristics which use LACC or GDEL as acceptance method achieved low



Data Clustering Using Grouping Hyper-heuristics 11

Table 2. The Performance of Reinforcement Learning Selection Hyper-heuristics: the
success rate (sRate%), the average best number of clusters (µ(kbest)) and the standard
deviation (σ(kbest)) of each hyper-heuristic approach on the data clustering problem
instances over the 30 runs.

RL-ILTA RL-LACC RL-GDEL

Instance k∗ sRate% µ(kbest) σ(kbest) sRate% µ(kbest) σ(kbest) sRate% µ(kbest) σ(kbest)

S
y
n
th

e
ti
c

Square1 4 100.00 4.0 ±0.0 86.67 4.13 ±0.35 93.33 4.07 ±0.25

Square4 4 96.67 4.03 ±0.18 93.33 4.07 ±0.25 86.67 4.13 ±0.35

Sizes5 4 83.33 3.9 ±0.40 70.00 4.03 ±0.56 73.33 4.03 ±0.61

Long1 4 13.33 5.53 ±2.19 3.33 6.07 ±2.07 3.33 5.83 ±1.98

Twenty 20 23.33 20.87 ±1.36 16.67 20.9 ±1.37 6.67 20.87 ±1.38

Fourty 40 20.00 41.07 ±1.72 16.67 41.43 ±1.73 10.00 41.33 ±2.04

G
a
u
ss
ia
n

2D-4c 4 16.67 3.83 ±0.59 6.67 3.90 ±0.96 10.00 3.83 ±0.83

2D-10c 10 13.33 8.83 ±1.21 3.33 8.97 ±1.27 10.00 9.17 ±1.46

2D-20c 20 63.33 18.0 ±2.30 40.00 18.23 ±2.33 50.00 18.73 ±2.35

2D-40c 40 20.00 32.6 ±3.24 10.00 32.4 ±3.41 13.33 32.77 ±3.21

10D-4c 4 13.33 3.63 ±1.07 6.67 3.77 ±1.43 3.33 4.13 ±1.72

10D-10c 10 0.00 8.57 ±1.74 0.00 8.5 ±1.59 0.00 8.9 ±1.86

R
e
a
l

Zoo 7 36.67 7.30 ±1.49 13.33 7.6 ±1.61 16.67 7.67 ±1.60

Iris 3 20.00 4.47 ±1.83 6.67 4.83 ±1.84 3.33 4.90 ±1.92

Dermatology 6 20.00 6.37 ±1.50 10.00 6.37 ±1.52 3.33 6.57 ±1.77

Breast-cancer 2 16.67 3.33 ±0.92 6.67 3.43 ±0.90 6.67 3.43 ±0.82

Wins 15 9 − 0 3 − 0 7 −

Table 3. The Performance of Adaptive Dynamic Heuristics Set (ADHS) Selection
Hyper-heuristics: the success rate (sRate%), the average best number of clusters
(µ(kbest)) and the standard deviation (σ(kbest)) of each hyper-heuristic approach on
the data clustering problem instances over the 30 runs.

ADHS-ILTA ADHS-LACC ADHS-GDEL

Instance k∗ sRate% µ(kbest) σ(kbest) sRate% µ(kbest) σ(kbest) sRate% µ(kbest) σ(kbest)

S
y
n
th

e
ti
c

Square1 4 100.00 4.0 ±0.0 83.33 4.23 ±0.57 100.00 4.0 ±0.0

Square4 4 100.00 4.0 ±0.0 76.67 4.33 ±0.66 93.33 4.07 ±0.25

Sizes5 4 80.00 3.87 ±0.43 70.00 4.0 ±0.64 73.33 4.13 ±0.68

Long1 4 16.67 5.60 ±2.22 3.33 6.0 ±2.05 3.33 6.27 ±2.24

Twenty 20 36.67 20.93 ±1.50 30.00 20.90 ±1.56 30.00 21.0 ±1.49

Fourty 40 23.33 41.03 ±1.69 6.67 41.6 ±1.90 3.33 41.6 ±2.08

G
a
u
ss
ia
n

2D-4c 4 23.33 3.87 ±0.51 13.33 4.07 ±0.94 6.67 4.3 ±1.39

2D-10c 10 20.00 8.97 ±1.22 3.33 8.77 ±1.43 10.00 8.9 ±1.35

2D-20c 20 73.33 18.23 ±2.24 43.33 18.57 ±2.21 23.33 18.63 ±2.58

2D-40c 40 26.67 33.6 ±3.80 10.00 32.57 ±3.33 6.67 32.63 ±3.37

10D-4c 4 20.00 3.8 ±0.961 6.67 4.03 ±1.35 6.67 4.17 ±1.84

10D-10c 10 10.00 8.83 ±1.62 0.00 8.93 ±1.87 0.00 9.1 ±1.90

R
e
a
l

Zoo 7 56.67 7.30 ±1.47 36.67 7.37 ±1.63 3.33 7.73 ±1.72

Iris 3 26.67 4.5 ±1.68 3.33 5.23 ±1.45 3.33 5.3 ±1.32

Dermatology 6 26.67 6.37 ±1.45 10.00 6.6 ±1.57 6.67 6.43 ±1.74

Breast-cancer 2 13.33 3.30 ±0.95 3.33 3.67 ±0.99 0.00 3.70 ±1.06

Wins 16 10 − 0 4 − 0 2 −



12 Anas Elhag and Ender Özcan

Table 4. The Performance of Simple Random (SR) Selection Hyper-heuristics: the
success rate (sRate%), the average best number of clusters (µ(kbest)) and the standard
deviation (σ(kbest)) of each hyper-heuristic approach on the data clustering problem
instances over the 30 runs.

SR-ILTA SR-LACC SR-GDEL

Instance k∗ sRate% µ(kbest) σ(kbest) sRate% µ(kbest) σ(kbest) sRate% µ(kbest) σ(kbest)

S
y
n
th

e
ti
c

Square1 4 100.00 4.0 ±0.0 80.00 4.27 ±0.58 86.66 4.17 ±0.46

Square4 4 86.67 4.13 ±0.35 83.33 4.3 ±.75 73.33 4.57 ±1.10

Sizes5 4 80.00 4.13 ±0.63 63.33 4.33 ±0.76 70.00 4.13 ±0.78

Long1 4 6.67 5.73 ±2.24 6.67 5.90 ±2.16 6.67 5.93 ±2.35

Twenty 20 26.67 20.93 ±1.39 10.00 21.37 ±1.69 16.67 21.27 ±1.62

Fourty 40 3.33 41.27 ±1.70 3.33 41.67 ±1.94 0.00 41.47 ±1.82

G
a
u
ss
ia
n

2D-4c 4 16.67 4.03 ±0.93 3.33 4.3 ±1.34 6.67 4.43 ±1.38

2D-10c 10 10.00 8.87 ±1.28 3.33 8.73 ±1.17 6.67 9.03 ±1.30

2D-20c 20 46.67 18.77 ±2.47 26.67 18.93 ±2.49 6.67 19.3 ±2.47

2D-40c 40 23.33 33.6 ±3.71 3.33 32.6 ±3.39 6.67 32.77 ±3.51

10D-4c 4 3.33 3.67 ±0.88 0.00 3.6 ±1.30 10.00 3.83 ±1.49

10D-10c 10 0.00 8.77 ±1.72 0.00 8.7 ±1.73 0.00 9.03 ±1.73

R
e
a
l

Zoo 7 36.67 7.33 ±1.56 10.00 7.53 ±1.55 6.67 7.90 ±1.67

Iris 3 20.00 5.23 ±1.41 6.67 5.4 ±1.28 10.00 5.47 ±1.25

Dermatology 6 13.33 6.60 ±1.61 3.33 6.73 ±1.78 3.33 6.73 ±1.76

Breast-cancer 2 6.67 4.03 ±1.45 0.00 4.3 ±1.62 0.00 4.27 ±1.60

Wins 14 12 − 2 0 − 2 5 −

success rates in most of the instances, scoring a success rate that is less than
40% in most of the real and Gaussian instances. ADHS-ILTA hyper-heuristic
receives the most number of wins across all the tested approaches, while RL-
ILTA and SR-ILTA follow it in that order, respectively, as could be seen in
the tables. ADHS-ILTA delivers the best success rate on all Gaussian instances,
and most of the remaining instances. On average, ADHS-ILTA performs better
than the other grouping hyper-heuristics on 50% of instances and the standard
deviation associated with the average values is the lowest in most of the cases.
The performance of ADHS-ILTA is, therefore, taken for further comparison with
other known clustering algorithms as shown in Table 5 including “k-means”
[20], “Mock” [8], “Ensemble” [26], “Av. Link” [22], and “S. Link” [22]. The
comparison results shown in Table 5 are based on the average number of clusters.
The ‘wins’ row at the bottom of the table indicates the number of winning
times each approach achieved over all the Gaussian and the Synthetic instances.
Given this table, it is observed that the performance of ADHS-ILTA lies on the
top of the other approaches equally with MOCK algorithm scoring five wins,
and outperforming the other competing algorithms. ADHS-ILTA scored the best
average distinctively in four instances including, Twenty, Forty, 2D-4c and 2D-
20c.



Data Clustering Using Grouping Hyper-heuristics 13

Table 5. Comparing the performances of different approaches on data clustering prob-
lem instances based on the average best number of clusters. The entries in bold indicate
the best result obtained by the associated algorithm for the given instance.

Instance k∗ ADHS-ILTA k-means MOCK Ensemble Av. link S. link

S
y
n
th

e
ti
c

Square1 4 4.00 4.00 4.00 4.00 4.00 2.72

Square4 4 4.00 4.00 4.00 4.04 4.26 2.00

Sizes5 4 3.87 3.74 3.87 3.70 3.76 2.44

Long1 4 5.60 8.32 8.34 4.92 7.78 2.02

Twenty 20 20.93 − − − − −
Fourty 40 41.03 − − − − −

G
a
u
ss
ia
n

2D-4c 4 3.87 3.69 3.70 2.23 4.50 4.40

2D-10c 10 8.97 10.66 9.65 4.50 15.20 8.00

2D-20c 20 18.23 21.87 17.31 1.24 16.30 16.3

2D-40c 40 33.60 30.63 35.26 2.27 30.90 27.7

10D-4c 4 3.80 3.59 3.60 5.37 4.00 2.00

10D-10c 10 8.83 9.02 8.88 3.86 5.30 2.00

Wins 5 3 5 2 2 0

5 Conclusion

In this study, the grouping hyper-heuristic framework, previously applied to
graph colouring, is extended to handle the data clustering problem. The perfor-
mances of various selection hyper-heuristics are compared using a set of bench-
mark instances which vary in terms of the number of items, groups as well as
number and nature of dimensions. This investigation is carried out using differ-
ent pairwise combinations of the ‘simple random’, the ‘reinforcement learning’
and the ‘adaptive dynamic heuristic set’ heuristic selection methods and the
‘late acceptance’, ‘great deluge’ and ‘iteration limited threshold accepting’ move
acceptance methods. The genetic grouping algorithm encoding is used as a so-
lution representation. The best heuristic selection and move acceptance turns
out to be the Adaptive Dynamic Heuristic Set and Iteration Limited Threshold
Accepting methods. This selection hyper-heuristic, winner of a hyper-heuristic
challenge performing well across six different problem domains, is sufficiently
general and very effective considering that it still ranks the best algorithm for
data clustering as well.

The empirical results show that the proposed framework is indeed sufficiently
general and reusable. Also, although the ultimate goal of the grouping framework
is not to beat the state of the art techniques that are designed and tuned for
specific problems, the results obtained by learning-based hyper-heuristics which
uses feedback during the search process turned out to be very competitive when
compared to previous approaches from the literature.

References

1. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley & Sons,
Inc., New York, NY, USA (1998)



14 Anas Elhag and Ender Özcan

2. Agustın-Blas, L.E., Salcedo-Sanz, S., Jiménez-Fernández, S., Carro-Calvo, L.,
Del Ser, J., Portilla-Figueras, J.A.: A new grouping genetic algorithm for clustering
problems. Expert Systems with Applications 39(10) (August 2012) 9695–9703

3. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression
data. Pattern Recognition 39(12) (2006) 2464–2477

4. Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In Koza,
J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H.,
Goldberg, D.E., Iba, H., Riolo, R., eds.: Genetic Programming 1998: Proceedings
of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin,
USA, Morgan Kaufmann (22-25 July 1998) 568–575

5. Burke, E.K., Gendreau, M., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. JORS 64(12) (2013) 1695–
1724

6. Elhag, A., Özcan, E.: A grouping hyper-heuristic framework: Application on graph
colouring. Expert Systems with Applications 42(13) (2015) 5491 – 5507

7. Talbi, E.G., Bessiere, P.: A parallel genetic algorithm for the graph partitioning
problem. In: Proceedings of the 5th international conference on Supercomputing,
ACM (1991) 312–320

8. Handl, J., Knowles, J.D.: An evolutionary approach to multiobjective clustering.
IEEE Trans. Evolutionary Computation 11(1) (2007) 56–76

9. Ülker, Ö., Özcan, E., Korkmaz, E.E.: Linear linkage encoding in grouping prob-
lems: Applications on graph coloring and timetabling. In Burke, E.K., Rudová,
H., eds.: PATAT. Volume 3867 of Lecture Notes in Computer Science., Springer
(2006) 347–363

10. Radcliffe, N.J.: Formal analysis and random respectful recombination. In: Pro-
ceedings of the 4th International Conference on Genetic Algorithm. (1991) 222–229

11. Radcliffe, N.J., Surry, P.D.: Fitness variance of formae and performance prediction.
In Whitley, L.D., Vose, M.D., eds.: FOGA, Morgan Kaufmann Publishers Inc.
(1994) 51–72

12. Falkenauer, E.: The grouping genetic algorithms: Widening the scope of the GAs.
Belgian Journal of Operations Research, Statistics and Computer Science (JOR-
BEL) 33(1-2) (1992) 79–102

13. Brown, C.E., Sumichrast, R.T.: Impact of the replacement heuristic in a grouping
genetic algorithm. Computers & OR 30(11) (2003) 1575–1593

14. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
Journal of Intelligent Information Systems 17 (2001) 107–145

15. Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math. 20(1) (November 1987) 53–65

16. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 1(2) (February 1979) 224–227

17. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66(336) (1971) 846–850

18. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1988)

19. Chang, D.X., Zhang, X.D., Zheng, C.W.: A genetic algorithm with gene rearrange-
ment for k-means clustering. Pattern Recognition 42(7) (2009) 1210 – 1222

20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Number 14 in 1, California, USA (1967) 281–297



Data Clustering Using Grouping Hyper-heuristics 15

21. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCI-
ETY, SERIES B 39(1) (1977) 1–38

22. Voorhees, E.M.: The effectiveness and efficiency of agglomerative hierarchical clus-
tering in document retrieval. PhD thesis (1985)

23. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9) (1990)
1464–1480

24. Ankerst, M., Breunig, M.M., peter Kriegel, H., Sander, J.: Optics: Ordering points
to identify the clustering structure. In Delis, A., Faloutsos, C., Ghandeharizadeh,
S., eds.: Proceedings of the 1999 ACM SIGMOD International Conference on Man-
agement of Data. SIGMOD ’99, ACM Press (1999) 49–60

25. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics
1 (2004) 24–45

26. Hong, Y., Kwong, S., Chang, Y., Ren, Q.: Unsupervised feature selection using
clustering ensembles and population based incremental learning algorithm. Pattern
Recognition 41(9) (September 2008) 2742–2756

27. Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning-great-
deluge hyper-heuristic for examination timetabling. Int. J. Appl. Metaheuristic
Comput. 1(1) (January 2010) 39–59

28. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. European
Journal of Operational Research 258(1) (2017) 70 – 78

29. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-
to-record travel. Journal of Computational Physics 104 (January 1993) 86–92

30. Misir, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V.: A new hyper-heuristic
as a general problem solver: an implementation in hyflex. J. Scheduling 16(3)
(2013) 291–311

31. Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.: Hyflex: A flexible framework for the design and analysis of hyper-
heuristics. In: Proceedings of the Multidisciplinary International Scheduling Con-
ference (MISTA09). (2009) 790–797

32. Bache, K., Lichman, M.: UCI Machine Learning Repository. University of Califor-
nia, Irvine, School of Information and Computer Science (2013)


