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Abstract— In this paper we investigate an unsupervised learn-
ing method applied to low level image features extracted from
a large collection of images using data mining strategies. The
mining process resulted in several interesting emergent semantic
patterns. Initially, local image features are extracted using image
processing techniques which are then clustered to generate a bag
of words (BoW) for each image. These bags of words are then
used for mining co-occurring patterns. The generated patterns
were either global in nature i.e showed a behavior spread across
many images or a local and more rare behavior found across few
images. These patterns are assigned semantic names to build a
semantic relationship among images containing them.

I. INTRODUCTION

There has recently been a strong interest in the learning of
low-level features from training data, with a focus on neurally
inspired architectures [1], [2], [3], [4]. At the same time, the
number of large image databases has increased [5], [6]. In
this paper we hypothesize that investigating very large image
databases will result in the emergence of interesting patterns
in a bottom-up sense. However, we do not start at the lowest
possible level (pixels), and instead start at an intermediate
level (SIFT features [7]), and investigate the co-occurrence of
such features to see if more semantic level features emerge.
We present an approach that explores emergent patterns in a
large image collection by using both frequent and rare itemset
mining strategies.

Related Work

Several significant works have looked at the application
of data-mining techniques for image retrieval and object
recognition applications. The most common method used is
association rule mining. Association rule mining is a technique
for discovering both global and local knowledge from large
collections of data [8]. Data mining strategies like Apriori
[9], Eclat [10] and Fp-Growth [11] have been used for find-
ing correlations among data elements and extracting hidden
relationships that are not so obvious. These techniques can
be applied to any field that produces or deals with a large
amount of data. Some of the applications of data mining
include market basket data analysis, patient disease symptoms
analysis, stock analysis and social network analysis. Similarly
image mining is no exception and deals with discovering
hidden relationships from image data elements that are pixels,
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shapes, textures or higher level features such as SIFT [7]. For
all the above mentioned mining techniques and many others
it is necessary for the data to be represented as market basket
transactions [12] in which each transaction can contain 1 or
multiple items.

Association mining among elements of data is a highly
researched area but rather less studied in the context of image
mining [13]. In [14] an attempt was made to mine relationships
among objects from different modalities of multimedia data.
These objects were called perceptual objects and were defined
in a spatio-temporal window and the generated rules were used
to define the relationships in a more compact and semantic
way. Another approach to mine frequently co-occurring ob-
jects/actors or scenes in video frames was performed in [15]. In
their approach they created a transaction for each visual word
and all its neighboring words were taken as its items. Once
these neighborhoods are defined they are used for mining co-
occurring objects or actors among many frames. Association
rule mining has also been used for clustering web images
[16]. The authors first generated rules using both visual and
text features obtained from web pages and then used them to
generate hyper-graphs. Then a hyper-graph partitioning algo-
rithm was used to get clusters. In [13] association rule mining
was performed on regions of interest (ROI) in CT images of
brains. The ROI were first extracted using a region extraction
and clustering algorithm which also used domain knowledge.
The rules were then generated on mined frequent itemsets
considering ROI of brain images as items. In another approach
[17], knowledge discovery from image contents without using
any domain knowledge was investigated. Their work was
based on finding relationships in basic geometric shapes but
was performed on a very limited number of images. They also
suggested the need for some reliable domain knowledge for
better object recognition. Object class recognition was also
done using association rule mining techniques in [18]. The
association rules were built on low level features occurring
within a bounding box containing either a background image
example or an object image from one of its classes. Visual
words inside this box were represented as transactions and
then association rules were mined. The transaction database
contained a combined set of transactions obtained from both
objects and background bounding boxes. The learned rules



were then used to tell the presence of a particular object class
or a background in the unseen images. A similar approach
was presented in [19] where they used it for detecting logos
of different categories in an image. They achieved this by
locating dense configurations of frequent local features related
to each logo class. They extracted association rules on a
spatial pyramid of each base feature where a base feature is
represented as a group of all neighboring features inside a
radius grid across it. Each base feature was then represented
as a transaction and all surrounding features as items of the
transaction. Human action classification by mining association
rules was performed in [20]. The key idea was in the concept
of compound features. Compound features were defined as
groups of corner descriptors used to encode local features in
space and time. These features were learned using data mining
techniques by looking at their co-occurrences. The classifier
was actually a group of these computed features and was
capable of both recognizing and localizing a real time activity.

In all previous work the focus of using data mining tech-
niques on images has been on a specific application. Those
applications include: object recognition; object classification;
clustering; scene recognition; or content-based image retrieval.
The purpose of the work presented here is quite different,
although the techniques used are similar. Our goal is to show
that semantic level features of images can emerge in a bottom-
up process from a suitably large collection of images, and
that these semantic features are interesting in themselves. Our
long term goal is to show that the notion of semantic-ness is
crucially dependent on the low-level processing of a particular
vision system (natural or artificial) and that different vision
systems will give rise to different notions of “semantic” and
will necessarily interpret the world in different, but equally
valid, ways.

II. FEATURE EXTRACTION AND CLUSTERING

The current generation of object recognition, object classi-
fication and image retrieval systems identify certain interest
points, called features using an image processing technique
such as SIFT [7] or SURF [21]. To extract these features, tech-
niques such as edge detection, corner detection [22], blob [23]
and ridge detection [24] etc. are used. In this paper SIFT [7]
is used to identify keypoints and the 128 dimensional SIFT
descriptor is used to represent the keypoint. This descriptor
contains orientation information obtained from a 4x4 grid
across each keypoint. SIFT features are highly distinctive and
provide invariance to different transformations e.g. rotation,
translation and scaling and partial invariance to illumination
and viewpoint change. SIFT has been extensively used in many
object recognition and image retrieval applications [7], [18],
[25], [26], [27], [28]. SIFT produces a large number of features
and may generate 1000 to 2000 features per image depending
on image content and size. SIFT features are clustered into a
finite set of visual words using approximate K-means cluster-
ing as done in [26], [27]. For fast lookup of nearest clusters
a Kd-Tree [29] is built on cluster centers. For clustering we
partitioned the data into chunks so that it can be loaded in

memory. Each image is represented using a visual bag of
words [26] representation and the co-occurrence relationships
between the words are mined to extract interesting features as
outlined in the following section.

III. FREQUENT ITEMSETS AND ASSOCIATION RULES
MINING

Association rule mining is a technique used for mining
interesting relationships in market basket transaction data. A
market basket is a list of items that were purchased together
by a customer. The association found is not influenced by the
inherent property of the data but rather the co-occurrences in
data items. Association rule mining was first suggested in [12].

Let I = {41/i2i3....in} be the set of all possible items in
the data collection (all possible visual words in our case). Let
T be a transaction containing a subset of these items such
that 7' C I. In our case, T contains all visual words from
a single image. D is the collection of all transactions. An
association rule is an implication, X = Y, where X C [
and Y C I but X NY = @ [12]. Association rules have two
parameters called support s and confidence c. Support is a
count of transactions in which a particular item is found. So
the support of an association rule X = Y which contains two
items would be the ratio of transactions that contains X UY
compared to the total number of transactions. Confidence is
the ratio of the number of transactions that contain X UY to
the total number of transactions that contain X. An association
rule only holds if it has a support s greater than minsup and
confidence c greater than minconf; values which are specified
by the user.

Apart from the minconf and minsup values a further mea-
sure called /ift can also be used to check the strength of a rule.
The lift value of a rule tells the degree to which Y is more
likely to occur when X occurs. A value of lift less than 1.0
means that Y is less likely to occur with X than Y’s total
support in the entire transaction dataset. A lift value higher
than 1.0 implies a positive association between X and Y. A
positive association means that X and Y co-occur together
more than expected.

The support of a rule can be defined as:

support(X =Y) =
#_transactions_containing_both_X_and_Y

(D

total_#_of_transactions

The confidence for the rule can be calculated as:

confidence(X =Y) =
#_transactions_containing_both_X_and_Y

)

#_of_transactions_containing_ X
And the Lift value of a rule can be defined as:

confidence (X =Y)
support (V)

lift(X =Y) = 3)

The process of association rule generation is a two stage
process. First frequently co-occurring items called itemsets



are mined using a minsup threshold. An itemset containing
1’ items is called an r-itemset. Now association rules are
generated from these itemsets and minconf and lift thresholds
are checked. The current BOW representation of all images
can be converted to market basket transactions by seeing each
image as a transaction and words in that image as items of
that transaction. Co-occurrence among these transactions can
be found using any such association rule mining algorithm. We
used the Eclat [10] algorithm for mining these co-occurring
itemsets or frequent itemsets from image transactions. Al-
though Fp-Growth [11] yielded much better results to Eclat as
described in [30], we used Eclat because in our case Fp-Tree
did not fit in memory. Once we have the generated itemsets
we then generated the association rules and only those rules
are considered which met the minconf and lift criteria.

IV. RARE ITEMSETS AND ASSOCIATION RULES MINING

Mining frequent patterns from the data is crucial and it gives
a global insight into the data. But in some cases that global
insight can be easily predicted by domain experts and hence
does not necessarily give useful knowledge. For example if
we look at the records of patient history for a fatal disease
then common symptoms can be easily mined and most of
them would likely be already known to domain experts. In
that case a more interesting finding would be to see which
symptoms occurred rarely or were infrequent but had very
high confidence. A frequent itemset miner completely ignores
such itemsets because they occur in very few transactions.

An obvious way to find such rare co-occurrences is to
reduce the minsup to a very low value and then a frequent
itemset miner will consider these rare occurrences as frequent.
This results in a very high running time of the algorithm
and too many itemsets fulfilling the minsup threshold, this
phenomena is known as the rare itemset problem [31]. The
algorithms that are designed to mine rare itemsets use different
notions of such thresholds.

For our problem we used the RP-Tree [31] algorithm that
extracts rare patterns by building a prefix tree only on those
transactions that contain a rare item. The algorithm is a
modification of the Fp-Growth [11] algorithm. Two thresholds
are used for mining rare itemsets, the first called minRareSup,
is a minimum support for an item to be a rare item and
works as a noise filter. All those items having support less
than this threshold are not considered further. The second
threshold minFreqSup is a maximum support for an itemset to
be considered as a rare itemset [31]. All items having support
greater than this threshold are considered frequent.

Itemsets are categorized into three different types [31]: the
first is rare itemset and it includes all those itemsets that have
support less than minFreqSup but greater than or equal to
minRareSup. The rare-item itemsets consists of those itemsets
that have both rare and frequent items but the itemset itself is
rare and therefore it also fulfills the criteria for a rare itemset.
The third type is non-rare-item itemset and consists of all the
items which are frequent but the itemset itself is rare. We are

mainly concerned with first two types of itemsets because non-
rare-item itemsets are very likely to occur by chance in large
datasets.

Consider the itemset X. It is called a rare itemset iff

support (X) < minFreqSup,
support (X) > minRareSup (4)

X is called rare-item itemset iff

Jx € X, support () < minFreqSup,
support (X) < minFreqSup (5)

X is called a non-rare-item itemset iff

Va € X, support () > minFreqSup,
support (X) < minFreqSup (6)

V. EXPERIMENTAL SETUP AND RESULTS

The focus of this research is to investigate emergent pat-
terns from a large image collection. The MIRFLICKR [32]
collection containing 1 million images was downloaded. We
used half of the images because we considered it to be suf-
ficient for our experiments. The dataset contains high quality
images of everyday scenes and is designed for image retrieval
applications. It has been used in ImageCLEF [6] evaluation
forum for the last 3 years. Some of the images from this
collection are shown in Figure 1. The dataset was suited to
our scenario because we are learning unsupervised, and do
not want to use a dataset containing many similar scenes. For
feature extraction, SIFT [7] was used and more then 10 billion
local features were extracted. Features from each image were
saved in separate files along with their X and Y coordinates.
All experiments were performed on 64-bit Intel Core 2 Duo
3.00 GHz CPU with internal memory of 4 GB.

Approximate k-means clustering was then performed on all
the features and an image chunk size of 10,000 images was
chosen because that was the largest chunk size that could
consistently fit all of the features in memory. For one iter-
ation of the clustering process features from 50 chunks were
processed i.e a total 500,000 images. The clustering process
was terminated after 10 such iterations and the clustering took
about 12 hours.

The selection of k (total cluster centers) was very important
and the most crucial in our case as a wrong value of k can
greatly effect the mining process by increasing or decreasing
the co-occurrences. A large value of k£ can increase false
negatives as most features will match to different clusters
even though there would be only slight differences. On the
other hand a small value of k& will increase false positives as
many features that are different from each other will match
the same cluster center. As we were unsure about the correct
number of clusters we decided to use five different values of
k. These values were set to 5,000, 15,000, 35,000, 50,000 and
75,000 respectively. Once these clusters were obtained from
the clustering process, all images were then represented in
their BoW form.



After applying frequent itemset mining we observed images
contained in these frequent itemsets. We found the value of
k to work well between 35,000 and 50,000 cluster centers
because most of the patterns that emerged, were observed with
these two clusters. The minsup threshold was set at 0.025%
and 0.05% for mining frequent itemsets for all cases because
a lower threshold generated too many itemsets while a higher
value resulted in very few itemsets as explained in the next
section. For rare itemset mining we only used the transaction
datasets generated from 35,000 and 50,000 cluster centers. The
minFreqSup was chosen to be 0.04%, 0.05% and 0.06% and
minRareSup was selected as 0.002%, 0.004% and 0.006%,
which appeared to be high enough to differentiate noise from a
real rare occurrence. The association rules were also generated
from these itemsets and only rules with confidence> 0.9 and
lift > 1.0 were considered interesting.

Here, it is worth noting that although we generate associa-
tion rules for both mining processes we did not use them for
defining relationships among items or image words. Rather
we used them for selecting interesting itemsets to test the
hypothesis that interesting semantic features will emerge from
a large collection of data.

A. Frequent Patterns and Generated Rules

The mining process generated a large number of itemsets
e.g in case of 35,000 clusters up to 1 million itemsets were
generated as shown in Table 1. Because of this large number
it was not possible for us to view images generated by all
these itemsets and then decide whether it results in interesting
information or not. Instead, we generated association rules
with a very high confidence value and used it to prune
uninteresting itemsets. Only those itemsets were chosen for
viewing their associated images for which there existed a
rule that satisfied this confidence criteria. Doing this greatly
reduced the total number of itemsets to be viewed. But still
in some cases the remaining number of itemsets was very
high leaving us with no other option than to randomly sample
itemsets for viewing. The sampling was done by keeping the
same proportion of itemsets to be examined from varying
itemset lengths. On observing images containing these itemsets
we found some interesting patterns showing global behavior
of these images. From the total itemsets resulted from each
mining process approximately 200 itemsets were viewed and
each of these were manually categorised into six semantic
categories.

The semantic categories were: stripes or parallel lines, dots
and checks, bright dots, single lines, intersections and frames
as shown in Figure 2. For example all images containing
a “dots and checks” pattern had the same semantic concept
identified by the itemset (a set of SIFT features in the image)
as shown in Figure 2(b). The red marks are the features
associated with items (words) in this itemset. Images in each
category of Figure 2 were chosen randomly from all the
images containing that itemset.

Apart from these patterns, we observed some other patterns
showing different behaviors e.g. there were some itemsets

Table 1
NUMBER OF FREQUENT ITEMSETS GENERATED AGAINST k CLUSTER
CENTERS USING TWO DIFFERENT MIN.SUPPORT THRESHOLDS. THE
MINING PROCESS WAS ABORTED WHEN THE GENERATED FILE SIZE
REACHED TO 10GB.

Total number of itemsets for different cluster centers
MinSup 5,000 15,000 35,000 50,000 75,000
0.025% aborted aborted 988,354 427,398 86,203
0.05% aborted 1,085,926 32,852 14,754 3,129
Table 11

ASSOCIATION RULES GENERATED FROM FREQUENT ITEMSETS FOR TWO
VALUE OF CLUSTER CENTERS AND TWO MIN.SUPPORT THRESHOLDS.

Total number of rules for different cluster centers
MinSup 35,000 50,000
0.025% 71,645 2,598
0.05% 752 556

behaving like an efficient text detector while others resulted in
images having either black frames, double frames or hollow
circles. But for these itemsets there was also an overlap of
images from one or more different semantic patterns e.g the
text generating pattern contained images of stripes as well.
So we did not categorize them as a separate class rather kept
them in one of these 6 categories. Figures 2(a) and 2(f) show
some images containing text and different types of framed
images. These images were classified into the main categories
of stripes and frames respectively. It is also interesting to
note that with a different number of clusters not all of these
patterns were identified which clearly demonstrates the effect
of number of clusters on co-occurrence among features. For
the case of 50,000 clusters with minSup threshold of 0.025%
we only observed patterns a,b,c and f as depicted in Figure 2.

From Table I we can also see the effect of number of clusters
on total number of itemsets. Fewer cluster centers generated
too many co-occurrences and hence too many itemsets. In
some cases we aborted the mining either because of too much
time spent by the mining process or the generated file size was
too large. A higher value of k on the other hand generated
fewer co-occurrences and hence considerably fewer itemsets.
As neither too many or too few co-occurrences were desirable,
the values of k£ of 35,000 and 50,000 appeared reasonable.

We observed that with minSup of 0.05% the number of
rules generated was much less with both number of clusters.
When viewing images generated by these itemsets we only
observed three categories. Patterns a, b and f from Figure 2
were detected for 35,000 clusters while for 50,000 clusters the
detected patterns were a, b and c. We found that because of a
higher confidence (i.e 90%) most of the itemsets belonging to
other categories were pruned. The other patterns were detected
when this threshold was reduced to 60%.

For the selection of interesting itemsets we extracted as-
sociation rules only from itemsets generated from 35,000 and
50,000 cluster centers. Table II depicts the total rules generated
against each number of cluster centers.



Figure 1.

B. Rare Patterns and Generated Rules

Similar to the case of frequent itemsets, rare itemset mining
also generated a large number of itemsets as shown in Ta-
ble III. Here we also chose 35,000 and 50,000 cluster centers
to mine rare items. Association rules were generated from
these rare itemsets using the same support, confidence and
lift thresholds as defined before. Unlike the frequent itemset
case where we observed global patterns, with rare itemsets we
hoped to get rare co-occurrences of features or rare patterns.
We were interested in co-occurrence that appeared rarely but
had a very high confidence. Discovering a rare pattern that
a frequent itemset miner might have skipped would be very
interesting. From Table IV we can see that for almost all the
thresholds the number of generated rules were very high so we
randomly sampled rules to select their itemsets. On viewing
images generated by these itemsets we discovered that unlike
the case of frequent itemsets, here we only found one pattern
i.e dots and checks as shown in Figure 3. To further see the
effect of number of rare items in the itemsets, the displayed
images are ranked by the number of rare items in them. An
image with ’4’ rare items being the top ranked and ’1° rare
item being the lowest ranked. We did not see any itemset

Some images from MIRFLICKR [32] 1 million images collection.

Table IIT
NUMBER OF RARE ITEMSETS GENERATED FOR 35,000 AND 50,000
CLUSTERS CENTERS AGAINST 3 DIFFERENT VALUES OF minRareSup AND
minFreqSup THRESHOLDS. THE MINING PROCESS WAS ABORTED WHEN
THE GENERATED FILE SIZE REACHED TO 10GB.

MinRareSup
Clusters | MinFreqSup 0.002% (10) | 0.004% (20) | 0.006% (30)
0.04% (200) 312 8 4
35,000 [70.05% (250) aborted 34212 1,358
0.06% (300) aborted 111,101,663 | 1,771,316
0.04% (200) aborted 25,503,958 395,675
50,000 [70.05% (250) aborted 95,198,773 1,315,304
0.06% (300) aborted aborted 3,416,042

containing more than 4 rare items in them. We do not have
a good explanation of why only one semantic category was
evident for rare itemsets.

VI. CONCLUSION

In this paper we discussed a method for mining interesting
patterns from a large collection of images in an unsuper-
vised scenario. Emerging from these images were 6 semantic
categories: stripes, dots, lines, bright dots, intersections and



Table IV

NUMBER OF ASSOCIATION RULES GENERATED FOR RARE ITEMSETS FOR
35,000 AND 50,000 CLUSTER CENTERS. TWO minRareSup THRESHOLDS
AND THREE DIFFERENT minFreqSup WERE USED. THE EMPTY CELL SHOWS
THAT NO RULES WERE FOUND BECAUSE OF VERY LESS NUMBER OF

ITEMSETS.
35,000 50,000
MinFreqSup | 0.004% 0.006% 0.004% | 0.006%
0.04% - - 49,515 52,243
0.05% 1,247 215 11,758 8,253
0.06% 9,616 14,120 26,121 78,417

frames. We had hoped that some notion of “object-ness”
might have emerged from the data, but without using spatial
information of the features, this hope was forlorn. Instead,
non-local semantic features emerged. An obvious extension is
to investigate the effect of also using spatial information when
generating interesting rules. Further work on determining
whether these bottom-up semantic elements are useful for any
of the typical image classification tasks is also warranted.
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(b) Dots and checks

(c) Single lines

(d) Bright dots

(e) Intersections

(f) Frames

Figure 2. Itemsets representing different patterns in the images. The elements of the itemset are SIFT keypoint identifiers whose location is specified by a
red dot placed on the image.
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(a) Images containing 4 rare items

(b) Images containing 3 rare items

(c) Images containing 2 rare items

(d) Images containing 1 rare item

Dots and checks: The only semantic pattern observed by rare itemsets mining

Figure 3.



