
PROG RAMMING

IS AN

ENGINEERING POOFESSION

C.A R Hoare

Technical Monograph PRG-27

May 1982

Oxford University ComputIng LaDoralory

Programming Research Group

45 Banbury Road

OxfOrd OX2 6PE.

© 1982 by CAR Hoare

Oxford University Computing Laboratory

Programming Research Group

~5 Banbury Road

Oxford QX2 6PE,

Summary.

The ideals 01 prolesslonal practice for programmers engaged In large scale

compuling projects are based on a sound understanding o! the underlyIng

mathematical theories. and Ihey should follow closely lhe traditions of engineers in

better established disciplines. But Ihere are a number 01 important differences which

must not be neglected II will not be easy \0 allain the Ideals described, bul the

key to success is found in an improvemenl in the education of programmers.

PROGRAMMING

IS AN

ENGINEERING PROFESSION

In earlier times and in less advanced societies. the weltare of a community

depended heavily on the skill and dedlcatJon 01 Its craftsmen -- the millers and

blaCksmiths. spinners and weavers. joiners and thalchers. cobblers and talJors. A

craHsman possesses special skills. not shared by his clients. which he has acquired

by long and lII-pald apprenlfceship to a master of his cratt. He learns eXClusively

by ImltalJon. by practice. by experience. by trial and error. He knows nothing Of

the scienUfic basis of his techniques. nOlhlng of geometry or even 01 drawing. no/hlng

of mathematics. or even 01 arithmelic. He cannot explain how or why he does what

he does: and yel he works effeCtIvely. by hJmself or In a small team. and can usually

complete Ihe lasks he underlakes in a predictable timescale and al a fixed cost

and with reSUlts Ihal are predictably satislactory to his clients.

The programmer of tOday shares many of the allrlbules of the craftsman.

He learns his craft by a shari buI highly paid apprenticeship in an existing

programming leam. engaged in some ongOing proJec!; and he develOps his skills by

experience rather Ihan Dy reading books or Journals. He knows nothing of Ihe logical

and malhemalJcal 10undatlons of his profession. He does not like to explain or

document his activities. Yet he works ellectively. by himself Or in small learns. and

he sometimes manages 10 complete Ihe tasks he underlakes al the predicted time

within the predicted casts. and to Ihe satisfacllon ot his client.

In pnmilive societies of long ago we hear of anOlher class 0' specialist on

whom the wel!are 01 the community depended. Like the craftsman. he is dedicated

10 hiS lask: like the craflsman he i::; regarded with respect. perhaps even tinged with

awe. by his many satls/led clleOls There are several names given to Such a man

-- a seer. a sooth~ayer. a sorCerOr or wizard. a witch doctor or high priest i shall

just call him a high prleSl

There are many differences between the crahsman and Ihe high priest. One

01 the most stnklng is lhat the high priesl is the custodian 01 a weighty set of sacred

bOOks. or magicIan's manuals. whiCh he alone is capable 01 reading. When he Is

consulted by his Client with some new problem. he relers 10 his sacred bOOks to

see whelher he can lInd some spell or Incantation which has proved efflcaclou$ In

the past: and having 10uOd It. he tells his client 10 copy !l carefully and use It In

aCCOrdance with a set of elaborate Instructions. If the slightest mIstake Is made

In copying or In fOIlOwJng the Instructions. the spell may turn to a curse. and Dring

misfortune to the client. The cllenl has no hope of understanding 1he nature of

2

(he errQr or why it has evoked the wrath of his deily -- the high priest himself has

no inner understanding of the ways 01 hIs god, The best the client can hope is

{a go right back 10 the beginning. and stan the spell again: and il this does not

work, he goes back to the high priest 10 get a new spell.

And thai is another feature of the priesthood -- when something gee!. wrong.

as it qUite often does. it somehow always turns Qui to be the ignorance or stupidity

or Impurity or wickedness of the client: It is never the faul! or the hIgh prIest or

hi~ gad II is notable that when the harvest fails. it is the high priesl who sacrifices

the king. never the other way round.

Programmers of the present day share many of the attributes of the hIgh

priest We have many names -- coder. systems analyst. computer scientist.

Inlormatlcian. chief programmer; I shall Just use the word 'programmer' 10 stand lor

them all. Our altars are hidden from the prolane. each In Its own superbly

air-Conditioned holy 01 holies. ministered 10 night and day by 8 devoted leam of

acolytes. and regarded Oy the general public with mixed feelings 01 fear and awe.

I appropriate lor their condition of powerless dependence.

An even more striking analogy is the Increasing dominance of our sacred

books. Ihe basic sollware manuals for our languages and operating systems whiCh

have bp.come essential to our every approach to the computer. Only thirty years

ago our computers' valves and lanks and wires lilled the walls and shelves of a

l.Jrge loom. which the programmer would enter. carrying In hIs pocket his

programming manual -- a piece of folded cardboard known as the FACTS CARD.

Now ttre situation is reversed: the programmer enters a large room whose walls and

shelves are filled wl1h software manuals: but in case he wants to carry out some

urgenl calculallons he carries In his pocket -- a computer.

The rise of Engineering.

In recent centuries With the advance of technOlogy. we have seen the

emergEnce of a nl~W class of specialist -- the profeSSional engineer. The mas!

striking charaClerlsllC of an engineer IS the manner in which he qualifies lor entry

Into il~s profeSSion. not only does he work OUI the long apprenticeship 01 the

Craftsman. nOt only does he undergo the brief graduation or initiation ceremonies

01 the high priest bul both 01 these are preceded by many years 01 formal study

In sctrools and in universities. His education covers a wide range 01 topics. including

the mathemallcal loundatlons 01 the differential calculus. the derivation and SOlutIon

of camp/ell equations, the physIcal prinCiples Underlying the science of materials. as

well as the speCifiC technicalities of a partlcular branch at his :l.ubJect. and a large

3

Step 7.2. Let. 9' be ~he <qerleration)o 1ll'.l!le<11ately contained 1n abut. If abut contains a
«eyl'. let k: be this <lteyl> and let csvtl be its immediate cOll'ponent;
othe11o'ise let II; and c5vb be <absentl'. Perf or", construct-reCOrd{!l.k) to
obuin kr. --­

Step 7.3. It t1 cont/l.l.ns <.keyed> then if k 1s equal to any <keyl> 1n the (rec:ord­
datasetl>. dEsiqnat.ed by the <dll.tll.set-desiqnator)o 1n fl. or 11 k 1s
unaccept",ble to the implementation. then perform raise-lo-conditionl<key_
condition>. tv, csv.bJ.

Step 7.~. Perrotlll insert-recordlkr,fv) to Obtain pos.

Step 7.5. Replace ~he !lNIIediate component of the o(cun:ent-position~ in fi with pos.

Step 7.6. Per!o~ free(9) an~ delete abuf from fi.

Step 8. Let l!d be the
<deel.ration>
allocationldd)

<dat.-descrlptlon> l~dlatelV contained 1'1 the <variable) of the
de!llynated by cdp. Perform eva1uate-data-descriptlon-for_
t.o obtain edd.

Step 9. Perfo~ e'l1a1uate-sh:eledd) to Obtain an o(integer-v"l~~.int. If int is
unacceptable to the iJlp1elDenu,tion then perform rai !le-io-condi tion(<record_
condition>, fv, chsl and optionally perform e:nt-from-io. --~-

Step 10. Perform a1locateleddl to obu,in 9'

St.ep 11. W~ desc be a <data-description> silllply c<ltlt.ainil19' <~> without. other
terlll1nal Itubno~es. Let epso9 be sn o(eQluated-tArget~ contain1l19' t.he
o(qenerat1on~ in the o(eVo!lluated-pointer-llet.-opt.io~ in els. Let I,gv be an
Q99re9ate-valueJo containin9' o(pointer-V'l,luel>; Perfotln
allsi9n(ePSOl) ,allv,descl.

Step 1:2. let d be the <decll,rat.1on> ~esi9Mt.ed by the <d.eclaration-des19nat.or> 1" e1s.

step 1:2.1.

Step 1:2.:2.

If ~he o(a99regate-typel> of 9' contains o(st.ructu.re-a99~t:"9ate-typel> then
pertor.. ini UI,!i1:e-refer-options (9)'

Perforlll initiali1e-generationI9.dJ.

Step 13. Let abut be an o(allocated-buffer~: o(generationJo.,9" If fi contains <~eyed> then
attach kk to abut. Attach abuf to the o(file-openin9Jo in fi.

Step 111. Perto~ nor=al-sequence.

8.6.' THE REWRITE STATEMENT

Purpose: The <rewrite-statewent> causes replace=ent of an existin9 o(recor~t or <keyed­
record~ in • o(record-dataset~.

8.6. 11.1 !:xecute- rewri te-sta telllent

o(evaluated-rewrit..-statement~:::o(file-value~
I (o(key~ l o(eval ua ted-frCCl-optionl> I

~er.tion: execute- re..-ri te- statelllent' rws l

wnere 1"0/5 is a <revrite-llt.telT\ent).

Step 1. Let erws be an o(evaluated-rewrite-state~ntl>without subnodes.

Step:2. ~r!o~ Steps :2.1 throUlJh 2.3 in any order.

Step :2.1. Let f be the i_ediate C'CllIlpOnent of tbe <file-option.> in rlf9. Perform
eVll1oate-file-opt.ioll.lfl to obtain a «flle-T1Lll1~,fv. Attach fv to erws.

Step :2 .2. If r- eonUr.iDB a <froll-optlon>, fr, U1ell. perform eV1I1uate-frOll"'option (f r) to
obtail1 .t1 o(eVll1Qate4-from-opt1~.efo aDd .ttadb efo to e~.

From

American N/Jriona/ Standsrd Programming Language PUt

American Natlonal Siandarlts Institute. Inc.• 1976.

4

catalogue 01 known design methods and speCific practical techniques.. But this is

only a start: during his professional career. Ihe engineer will expect [0 continue his

education. to expand his skills. and 10 keep pace wilh teChnological progress by

commued study of new books and learned Journals. und attendance al specialist

orientation courses. Many engIneers will even take a lull year elf work to bring

themscl~es up to date. or 10 reorient themselves to a newly developed branch of

teChnology The older craftsmen will complain thai the engineer already knows far

mOre [han he needs in the day-Ie-day practice of his profession; but hiS colleagues

and clients will realise ,hat the weight 01 baCkground learning develOps his gOOd

Judgement and Increases his competence and authority at all times; even If a recondile

scrap of knOWledge is used only once in his career, then the learning has paid lor

itsell many times over.

We would like 10 claim that computer programming has transcended lis origins

as a craft, has avoided the temptation to form Itself Into a priesthood, and can now

be regarded as a fUlly lledged engineering profession. Certainly. we have some right

'to this claim. Through our prolesslonal Societies we have formulated a code of

professional ethics and a strUCture and syllabus 01 professional examinations. We

disCharge our duty to the community by giving evidence to government commiSSions

on SOcial consequences of computing. on privacy. on employment. Because 01 the

great demand lor our services. our clients and employers are willing to oHer us

profeSSional salaries. and it is hardly likely we shall refuse them.

But more than thiS is needed for true professional status. What is the great

body of prOfesslona! knowledge common to all educated programmers? Where are

the reierence libraries of standard works on known general methods and specillc

techniques and algorithms oriented to parllcutar applications and requirements? What

arc the theoret\cal, mathematical or phySical prinCiples which undflrlle the dally

pra-ClICp. of tne programmer? Unlll recently. these questions had no answer Now

rll~ J~:;wcr:; are beginning \0 emerge We can pOint to the ACM curriculum for the

ztuay of Computer Science at Un',versity as a corpus of common knowledge for me

progrJrnm€r. 1I10Ugh lhe propOrllon ot Com pUler SCience graduates in the programming

profession is $till low. Don Knuth's books on the An at Computer Programming fOrm

a-n excellent encyclopaedia of known teChniques -- but only three volumes have so

far appeared. and how many programmers consult even those? And finally. we have

only recently come to a realisation 01 the mathematical and logIcal basis of com puler

proglammlng: we can now begm to construct program specillcallons with the same

aCCuracy as an engineer can survey a site for a bridge or road: and on this basis

we can now construcl programs proved to meet (heir speCIfication with as much

certainty as the engineer assures us his bridge wHI not lall down. Introduction of

5

these techniques promises 10 Iransform the arcane and error-prone craft Of computer

programmIng 10 meet the highest stanaards 01 a modern engineering profession,

The Art 01 Computer Programming

Vols 1. 2. 3.

D.E. Knuth. Addison-Wesley.

Srructured Programming

Dahl. Dijkstra. Hoare. Academic Press.1972.

Sysremelic Programming

N. Wirth. Prentlce-Halt. 1973.

Principles of Progrem Design

M.A. JaCkson, Academic Press. 1975.

A Discipline of Programming

f.W. Dijkstra, Prentice-Hall. 1976.

The Architecture of Concurrent Programs

Per Brinch Hansen. Prentice-Hall. 1977.

Some books you may find on the shel(at

the well-read compufer profeSSIonal.

Let me expand on the nature and consequences of this discovery II is like

the Greek discovery 0' axiomatic geometry as the basis of the measurement of land.

mapmaking, and its later use in plans and elevations lor the design and construction

01 buildings and bridges. It is like the discovery 01 the Newtonian laws 01 mOlion

and the di1lerential calculus as the basis 01 astronomy as welt as more mundane

tasks like the navigation of ships and lhe dlrectlon of artillery fire. It Is like the

discovery of stress analysIs as the basIs for the reliable and economic construcUon

01 sleel frame buildings. bridges. and 011 platforms.

6

Large Programming Projects.

In lulure we may hope to see a radical change in the development and lile

hislory of large programming projects. The chief programmer. like the architect. will

start by lliscussing requirements with his Clienl. From education and experience. the

programmer will be able 10 guide hIs Client to an understanding. of his true needs

and avoidance 01 expensive fealures at dubious or even negalive value. From respect

lor the professional status of the programmer, the client will accept and welcome

this gUidance. ThIs kind of mutua! Understanding and respect Is essential (0 any

relationship between a profess!Onal and his ctlent or employer.

The chiel programmer at this lime sketches out the overar! structure 01 lhe

specltica!lon of a product to meet his client's requirements. These sketches serve

the same role as an arChllect's preliminary sketches of a buIlding. GraClually. In

orderly lashIon. and In Close consultation with the client. details of the design will

be slotted into the appropriate place within the structure. This activity will culminate

In a complele. unambiguous and provably consistent specification for the entire end

product. It will serve the same role as blueprints in engineering or scaled plans

and elevations in architecture.

The sign N means number (positive integer).

The sign 1 means unity.

The sign • +1 means the successor of a

Or a plus 1.

The sign ... means Is equal to.

1. lEN

2. a€N .::J. a.-a

3. a,b€N .::J; a~b .~. b=a

4. a,b,c€N .::J;. a"'b . b .. c :::J. a=c

5. a-b. bEN :::J. aEN

6. a€N .::J. a+l€N

7. a,b€N .::J: a-b .-. atl - btl

8. a€N .::J. a+l~l

9.	 k€K:. l €k :.

:I €N. X€K :::J... x+l€k ;:~. N:::J);;

Extract from Peano.

Arfthmetlces PrincIpia 1889.

7

undoubtedly, the client will aSk to see and check the full speCification before

he gives permission to go ahead wilh implemenlaliOn I'm afraid he will !let a rude

shock Instead at pretly pictures and drawings. he will see a collecllon of definitions.

mathematical formulae and logical prOOfs which he may be III equipped to understand

One of the major prOblems of the programming prOfession is that our technical and

srructural decisions are almost invisible; there Is nothing that can be seen In !he

linlshed program which can be Illustrated beforehand by pictures. This sad tact

explains simultaneously the perSistent longevity as weI! as the basic futility of program

flow charts.

A proper solution '0 this communication gap between programmers and client

may be discovered by analogy from other professions. Before a building project goes

Into lmplemental1on. the architect produces Irom his specification a series of

perspective drawings or even mOdels which can be shown to the client. and careful'y

checkea by him. Before a consumer product goes Into mass production. an engineer

prOduces a series of working prototypes. which can be subjected to severe and

exhaustive test in a variety of simulated circumstances. In fulure. a chief programmer

will be able with the aid of his programming teams 10 pursue both 01 these solutions

a1 the same time.

Firstly. rhe formal specification is laken as the basis 01 a clear. complete

and consiSfent set of user manuals and operating instructions. explaining exactly how

to control the program and how it Will behave in all circumstances. including when

things go wrong 01 course, Ihese manuals are illustrated by compelling elamples.

dealing with the main common cases: but the examples will be backed up by well

slructured and well indel(ed descnptlons of the lull range of the .capabilities of the

program. explaining why and when they are needed. how they can be successfully

invoked In coniunctlon with other featt;res. what can go wrong. and how to recover

from failure. It is these manuals that give the customer a lull understanding 01 what

hiS program will look like a.nd what It will do tor him. long before a single word

01 code 15 wrillen They Will be much clearer. much more complete. and much shaner

than m,3rluals 01 me presenl day. because they are firmly based on the simple

m'-lthemallcal model. In the same way that Newlon's Laws of Motion are shorter and

more Illuminating th~n the planetary observations of Tycho de Brahe.

At the same lime. the ch,el programmer or his cOlleagues may construCI

a protolype of the program as a whOle. or of the more vllal parts 0' it. Such a

prototype may be cheaply programmed as a slmulatlon. perhaps running on a small

mOdel oj the data base herd in the main stOre of a computer much larger and taster

than the one on Which the eventual program will run. These slmulatlons are exact

scale models of the /ina I design. and can be used by the cllem to check the details

8

·computers are extremely ftexible and powerful lools. and many

leeI that Iheir application Is changing the lace of the earth ..

IBull their Influence as IDOls might lurn out to be but a ripple

on the sur/ace of our culture. whereas I expect them to have

a much more profound influence)n their capacity as intellectual

challenge."

E.W. Dijkstra. 1972.

of the design and suggesl alterations before the projecl goes into the more expensive

stage of design and Implementation.

The construction 01 models and prolotypes Is not Cheap: but in a large and

Important project is amply Justified by Ihe chance [t gives 10 mOdify me design In

the light 01 informed customer experience. Recovery from mistakes In design Is much

more expensive when they have been cast Into the concrete 01 a million-line program.

Another Important task can be completed at this stage. On the basis of

the original reqUirements and formal specifications. It is possible to devise a series

01 rigorous and searching acceptance lests. WhiCh can be Included in the COntract

between the Client and the implementors. Some of these tests can be kepI secret

tram the implementOrs. so that there is no temptation for them to orient their work

tOwards passing lhe tests. rather than meeting lhe speCification This rigorous t<.lnd

01 secret acceptance lest is made possible only by the corresponding mathematical

ngour 01 the original specification: if the product fails the test. and the implementors

Claim mat the lest is unfair. any compe!enl logiCian or mathematiCian would be able

to declCle who IS light.

1m pIementation.

ihe next stage is to start wort<. on the overall design of a program to meet

the agreed and tested specification. The major components 01 the design are

identified. and the interlaces between them are defined with mathematical preCision.

Some 01 the required components are selected or perhaps adapted Irom a library

01 eX',sling components described In the engineering tell:tbooks. The remaining

components are specified with the same techniques and with the same care as used

In Ihe earHer design of the complete program. But most ImpOrtant: the chief

programmer convinces himself and his COlleagues by mathematical proof that It each

at the components meets Its specilication. then when all the componenls are

9

assembled together, the overall proCluCt WI),' meet (he overall specification agreed by

the clien\. In future Ihis will be lak-en lor granted. JUSl as we now lake for granled

(he fact that components of a bridge ordered 10 given measurements will fit togelher

when they are assembled on site. So we hope to eliminate the so-called ·system

Integration" phase of many current projects. in which bugs are palnlully detected and

laboriously removed from the interfaces between the components. This Is the most

expensive and unpredictable at all !he phases of a large project; the fact that il is

the tina! phase only increases the misery.

·Program tesling can be used to show the presence of bugs

but ne...er to show their absence:

E.W. Dljkslra. 1972.

Why Is debugging so expensIve, particularly at the stage 01 system IntegratIon

and afterwards In program maintenance? The reason is clear: the bugs Involved

are so subtle Ihal they escaped the attention of the designer at a lime when the

deSign was s(ill simple. and he stili had all his opllons open. They escaped the

allention of the prOgrammer when he was devoting his best intellect to eaCh ljne

or code. Now they must be isolated in the context of a million-line program; and

they must be eliminated under the additional and even more onerous conslraint 01

changIng as lew 01 those million lines as possible! No wonder program maintenance

during Ihe whole life of a program is often many limes as expensive as the origInal

implementation. Using lhe new specifiCation and deSign techniques of mathematics

ana logiC. we hope to eliminate most of that cost. by never creating The bugs In

the {Ir:;\ place.

Wnen the ap'slgn has progressed sutllclently. it will be possible 10 build up

10arls. ma~e plans ana schedules 10 estimate size~ and per10rmance of (he code.

ana above all 10 check preliminary eSllmales by calculation of Ihe overall costs and

tlrnescales 01 implementation. This Corresponds to lhe activIty of quantity surveying

in archItecture, and requires experience and judgement at least as much as

mathematical technique. Nevertheless. the estimates will be more accurate than they

usually are nowadays. becaUSE! they are based on complele and consistent and stable

specifications and aeslgns.

AI last the project Is ready to go Into the construction phase. Now large

learns of programmers can be engaged. perhaps from Independent contractors or

soltware houses. and all of them can work concurrently on different parts of the

10

design. wIthout further consulting each other. Each programmer will use standard

lechnique~ of stepwise development to ensure that his code meets its specification.

with minimal risk of the intrUSion of error. When he has proved that his code is

correct bOlh the code anCl proo' will be signed off by a highly paid checker; and

the COde will then be typed into a computer.

Delivery.

When all the code Is complete and compiled trom Its high level language.

and loaded ;nlo the computer It will be subjected 10 the Implementor'S tests. whICh

It Will usually pass. II will then be delivered to the customer, and pass his secret

acceplance tests as well. Since all manuals have been available for training. 11 will

go into immediate service. Nothing can possibly ever go wrong. What never? Well

hardly ever! On the rare occasion 01 failure there will be a full and Independent

enquiry. and the cause 01 the fault will be traced 10 the persons responsible. An

tndependem assessment will be made to determine whether the fault is an Isolated

one. or whether It is a symptom 01 more serious and widespread Ilaws In the logic

01 the design or in 1M technique of implementat!on. In the latter case. large paris

of the documentalion and code and proOlS will be recheck:ed by experts before the

prOdUCI IS delivered again to the customer, and submlned to newly constructed secret

acceptance tests. The payment 01 appropriate penalties to the customer will ensure

that thiS k:lnd of cefault IS not too frequent.

In the years after the first delivery. It Is very lik:ery that the customer's

requirements Will Change. and the program must be changed with II. Because 01

the clJ(lly of program structure and the completeness 01 design documentation. it

'It IS reasonable to hope that the relationShip berween

computation and mathematical logiC will be as Iruittul In the

n8)(1 century as that belween analysIs and phySICS in the lasl.

The development 01 thiS relalionshlp demands a concern lor

both applications and for mathematical elegance."

John McCarthy. 1967.

will be quite easy to determine whIch parts 01 the design and codIng need to be

Changed in order 10 meet a new requirement. Because all the assumptions and

Obligations 01 each piece ot code have been made explicit. It Is relatively easy to

pro~e that a new piece 01 cOde which meets the same obllgaUons can be safely

Inserted; and If the ObligatiOns can no longer be mel. It Is possible to Identity all

11

other pieces of code which rely on these obligations. so thaI this code can be

changed too. When a suggested change violates the fundamental structure 01 a

program. the programmer will rack his brains to think of an alternative: and If he

can'l. he will know in advance that parlor all 0' the program must be rewrillen.

ana check thai the COSt Is acceptable. Thus It Is possible to escape the wild goose

chase aHer consequential eHeets of each change made 10 a large program. which

Is common loday.

That concludes my description 01 Ihe life cycle or the large sOftware project

of Ihe luture. The descrlpl/on hardly makes re/erence to Ihe most common reature

01 present programming practice. the program bug. I have left It out only because

/I won't exist. There will be no bugs. There will be no chance lOr a bug to germinate

or to propagate. Every stage 01 lhe specillcation and desJgn and cOding will have

been checked wllh mathematical rigour. II is an essential feature of the work 01­

a professional In any discipline that he organIses his working envirOnment and his

working methods to ensure that he does not make mistakes. Mosl pilots never crash

8 plane. Mosl surgeons never kill a patient. Most civil engineers never build a bridge

which collapses. Until each programmer displays this kind Of prOlessional accuracy

an" responsibility. all our claims to professional status are subject to doubt Every

time a member of the pUbliC blames "the computer" tor an error made by a

programmer. it demeans our profession. Every time Ihat a supplier of software writes

a disclaimer of direct and consequential damages arisIng from its errOrs, It demeans

our profession. We must always confess that it is the programmer Who bears the

re5ponsibitlty lOr mistakes not the dumb but accurate machine: we must always point

out that unfair "isclaimers of responsibility are (or should be) forbidden by law.

Of course. my remarks apply only to large and important projects. In Smaller

less Importan! projects many of the stages may be merged or omined: aM lor the

smallesl projects (eg a program wril1()n tor a single run by liS own author). none

of wl\at I have said IS relevant One does not use StruclUral engIneering analySis

to bUild a sanacaSllc cut n()J!her does one choose the prize-winning budder of

s<lndCaSlics a::. archltec! lur a tower block of offices In a city.

Comparison with olher engineering disciplines.

My description Of the planning of large-scale programming projects follows

closely the standard practices in more traditional t1ranches of engIneering. A

conventional engineering desIgn passes lhrough the established phases or

requirements analysis. speCification. design. costing, prOduction engineering. drawIng

oUice. proto typIng. testing. tOOlbulldlng, quality assurance etc.: II Is many years before

the design reaches the production 1100r. And Indeed. many dala processing

12

departments 01 the present day are organised on the Oasis 01 a similar division of

labour between systems analysts. programmers. technical authors. coders. testers.

and finally maintenance programmers.

But all too ollen this apparently logical divisIon or labour leads 10 an awkward

problem Gradually. the size of the maintenance programming department increases

until it outnumbers all the other groups put together. And It is Increasingly dll/leult

to recruit and retain COmputer programmers ror fhis boring. III-regarded and often

poorly paid occupalJon. One likely cause for lhls problem Is thai the Inferlaces

between the various groups 01 programmers have been less precisely delined than

in a traditional engineerIng workshop. and that there is no proper quality control on

lhe prOject documentation as It passes from one group to the next. As a result,

eaCh group does its best with what it gets. and It is the poor maintenance programmer

at the end of the chain who has to pick up the pieces.

In my "iew. the standards that must be met by project documentatlon as It

passes between groups are standards of logical accuracy and completeness WhiCh

are characterIstic 01 mathematics. A group whIch tak.es o"er suCh documentation

should have the intelleCtual tools required to check its validity: they also should have

the right. or rather Ihe responsibility. to reject a project Ihat lalls ta rlleet an adequate

stanoard. Cases 01 dispute would be resolved by appeal to the line technical manager.

whO should be experienced and capable 01 resolving the dispute in a technically sound

fashIOn. It IS very unfortunate that many heads of data processing departments are

pramCled for achievements in aCcountancy. sales. or electronic engineering. They

have lillie understanding of the nature of computer programming. and even less of

the Icgical lind mathematical techniques reqUired for its COnlral. It is the managers

wno could benetll mosl Irom the ne disCiplines: perhaps that is Why they are

SOr1lC!lrlles most resistant to Change.

Reliability.

In principle. we should lind 1\ mucn eaSter than other professional engineers

to achievE.> the highest standards of quality. accuracy and predictability 01 timescale

and cos!. Ceca use the raw materillis with WhiChe work are much sImpler and more

plelllilul. and much more reliable. Our raw materials are the binary digits In [he

stores and reg1slers. disks and tapes or our computers Our problem Is that we

have too many or them rather than too few These blls are manipulated exactly In

accordance with our Instructions. at a rate of millions 01 aperaUons per second lor

many weeks or months without mistake: when the hardware does go wrong. It Is the

engIneer. not the programmer. who Is called upon to mend il.

13

"In order to use machines either 10 aid researCh or to aid

leaching. the results. methods. and spiril of formalisation in

mathematical logiC are to play an essential role."

Hac Wang. 1967.

That is why computer programming should be Ihe mOSl reliable of all

prOfessionar disciplines. We do nol ha....e to worry aboul problems of faulty castings.

defective components. careless labourers. SlOrms. earthquakes or other nalural

hazards; we are nOI Concerned with triCllon or wear or metal fatigue. Our Only

problems are lhose we make tor ourselves and our cOlleagues by our averambil/on

or carelessness. by Our failure 10 recognise the mathematical and theoretical

fOundations of programming. and Our failure to base Our proressional practice UpOn

them.

Yet In some ways the engineers ha....e an ad....antage oer us. Because they

are dealing with continuouslyarylng Quantilles like distance. temperature. andoUage.

It is possible for !hem 10 increase confidence in the reliability Of an engineering

product by testing it at the extremes of its Intended operating range. for elCample.

by exposure 10 heal and cold. or byoltage margins. We do Ihe same in program

testing. but in our case it is fUll Ie. Firstly we hae to deal with impossibly many

moreariables: and secondly these "Variables take dlscrelealues. for which

interpolation and extrapolation are wholly in....alid. The fact thai a program works for

....alue zero andalue 65 535 gies no confidence Ihat it will work lor any of the

"Vallle:> In between. unless this fact is proved by logical reasoning based on theery

telCl of the program itself. BUI If this logical reasoning IS correc\. then there was

no need ~or thC leSI in the lIrs! place. That JS why il is an essential prereqUisile

to the rmpro ement Df our profesSiOnal pracllces lhal we learn 10 reason effectl ely

abol:t our program5. to prove their correctness before we write them. so that we

IoInow th3l lhey will nOl only pass all their tes1s. but will go on working correctly forever

after

Structure.

Other engineers have a further ad....antage over programmers. When they split

a complex design into a number 01 component parts. 10 be designed Independently

01 each Dlher. Ihey can lake ad.... antage 01 Ihe spalla I separation of 1he parts!o ensure

[hal there can be no unexpected Interaction effects. Jf the parts are WhOlly

11

unconnected. this is very easy to check by simple visual InspeCtion. Thus when we

turn our car 10 the left. we may be very confident thaI this will have no direct effect

on the cigarene-lighter. the rear mirror. or the cartlurcltOr. When such interactlon

elleels do occur. they are recognised as the most dlrflcult \0 trace and eliminate.

But In the programming 01 conventional computers. there Is no similar concept

01 spaltal separation. Any instruction in a binary computer program can mOdily any

location in the store 01 the computer. inCluding those that contain instructions. And

If this happens IncorreCtly only once In a thousand million inslructions executed. the

conseQilences for the whole program will be totally unpredictable and uncontrollable.

There IS no hope that a prior visual inspection of the binary content 01 store will

enable us to check Ihal such Interaction cannot occur. or to lind the cause of its

occurrence afterwards There is no structure or Isolallon of components in a binary

computer program. other than that which has been carefully designed Into Jr from

the start. and maintained by the most rigorous discipline throughout implementation.

'So then always that knowledge Is worthiest. which considereth

the simple lorms or dirterences of things. whiCh are lew In

number. and the degrees and coordinations whereof make all

this variety."

FrancIs Bacon.

In spile 01 Ihis. the programmer is ollen asked to Include some feature into

hIS program as an afterthought: and the only Quick way to dO this Is to insert new

instrlJClions which cross all Ihe boundaries between the carefully Isolated components,

and Violate all Ihe structural assumptions on which the original design was based.

It would be repugnant to an engineer to introduce direCI cross coupling ellects

bCI',o/een the steenng and carburellor 01 a motor car. Or the lapedecks and floating

pOint unl! of a computer A programmer IS all too Willing to do his best. and hiS

prolesslon gels a bad name when un predicted side etlects occur.

A partial solution 10 thiS problem [Ies In use of a high level language like

ALGOL 60 with secure rules governing the scope. locality. and types of variables.

In such a language the programmer Can declare the structure 01 his program and

data. staling which groups ot variables are 10 be accessed or Changed by which

parts of his program. An automallc compiler can Ihen check thai the appropriate

dIsciplines have been observed throughout Ihe whole 01 a large program. and can

therefore give Ihe same conlldence to the programmer as the engIneer gains by

spallal separation of his components. Further confidence can be gained by running

15

the program on a machine like the Burroughs 5500 which makes sImilar checks while

the program is running. In betler es!ablished engineering disCiplines. the observance

01 such elementary satety precautions has long been enlarced by legislation. 11 Is

the law thaI diclates the measures that prevent unwanted Interaction etlects between

an Industrial machine and Il1e bOdy 01 Its operator.

TOOls of the Trade.

This brings me to the Iinal disadvantage suffered' by the programmer, the

poor quality or the lools of his trade. j refer (0 his programming languages. operating

systems. utility programs. library subroutines, 811 of whiCh are supplJed In profUSion

by the manufaClurer of his computer. Many Of these are so complicated that mastery

of (hem absorbs all his intellectual ellorts, leaving him lillie energy to apply to hIs

Client's original problem. Some operating systems are so poorly designed thaI they

require twenty reissues (or ·releases·). spread over a decade, before the origInal

design fauns have been rendered tolerable And they are so unreliable that each

Issue has a thousand faults corrected by the nexl Issue. which Introduces a thousand

new faulls of its own. When finally the agony of reissues comes to an end. instead

Systems Programmer c.£10,OOO+car
We want to hear from you if you've at least 3 years' IBM programming
experience with MVS - background in the MSS area would be an
advantage. You'll also need in-depth maintenance and support
knowledge for large-scale MVS/SE or MVS/SP systems, running with
JES2 4.1 or JES2 NJE in a multi-access spool conflguration..

Aoverll~C'ment In Compullfly-

Otl December 3, 1ge1

01 reJOiCing. the poor programmer is ca;oled or forced \0 accept an early issue or

some ·new· product Such comp1e:(!fy. unreliability. and instability 01 basic tools were

doub!less endured by engIneers of each newly emergent discipline; but gradually the

engineers developed beller tool klls for their own use. That Is a task which still

faces the programming profession today -- the design or programming lools whIch

are reliable. slable. convenient. and above all simple to understand, 10 control. and

to use.

A crude measure of the simpliCity of an engIneerIng tool Is the lenglh 01

Ihe manual requirea to give a full and complete account of how to use It and avoid

16

misusing It. AI present our software manuals are bOth voluminous and inadequate.

I belie....e 1hal a solution to our prOblems can be sought in Ihe design of sollware

which can be completely described by shorter manuals. If an electronic engineer

finds a method 01 satisfYing with twenty components a need which has hitherto required

thirty. tile value of hiS discovery is Immediately recognised and is often highly

rewarded by fame or by money. When a soflware engineer designs a prOduct Ihat

can be fUlly delined In twenty pages of manual, when the rival prOQuct has been

Inadequately defined In a hundred. his achievement Is Just as great. and possibly

more beneficial; for he has aChieved an economy in our scarcest resource -- not

silicon or even golO. but our own precious human intellect.

How do we get (here (rom here?

My description 01 the professional achievement of programmers 01 Ihe luture

may seem to be nothing but an academic dream -- a pleasant one for our clients.

,but perhaps somethlnQ more like a niQhtmare lor us. However are we going to

make such a fantastic improvement In our working methods? We are like Iha

barber-surgeons of earlier ages. who pride Ihemselves on the snarpness of their

knives, and Ihe speed with which Ihey can dispatch Iheir duties. ellher of shaving

a beard or ampu!aliOn of a limb. Imagme the dismay with which tney greeted some

ivory-lowered academic who lold them thai Ihe pracllce of surgery should be based

on a long and detailed study 0' human anatomy. on familiarity with surgical procedures

pioneered by great doctors Of the past. and that it should be carried out only in

a s\[IC1ly controlled bug-tree environment. lar removed 'rom the hair and dust of

thc lIormal barber's shOp. Even if they accepted Ihe validity and necessity for these

Improvements. how are they ever to achieve them? How could they re-educate all

those hairdressers In the essenllal foundalions of surgery? Clearly. a tWO-week course

il\ S:rUCl~n;d Surgery is ail lhat we can readily Elftord. But more is needed. much

mQrr;

First we neco gOOd books. which can be studied by programmers and

programming teams to familiarise themselves With the concepl5 0' mathematical prOOf.

and show how prOOf methOds may be applied 10 lhe everyday praclice 01 program

speCification. deSign. and implementation. Such books are beginning to appear in

the pubfishers' lists. May r recommend the series edited by David Gries and published

by Springer? May \ eyen advertlse Ihe series edited by myself and published by

Prenlice Hall International?

Then we need a Journal In whiCh practising programmers can reed the results

01 ongoing research, 10 keep themselves up to date wlth the mosl elfectlve teChnology.

17

Dos;gn of Well-Srrucfured and Correct Programs1'he
Alagic and Arblb. Springer-Verlag 1978.

ProgrammIng Methodology

ed. D. Gries. Springer-Verlag. 1978.

Software Development: a Rigorous Approach

C.B. Jones. Prentice-Hall. 1980.

Structured Systems Programming

J. Welsh and A.M. McKeag. Prentice-Hall, 1980.

The Science 01 Compurer Programming

D. Gries. Springer-Verlag. 198L

Some recent books on professional aspects or programming.

A new Journal Of this kind has lust been rounded. It is called 'Science of Computer

Programming'. edlled by M,Chel Sinlzoff. and publiShed by North Holland. I have

high hopes lor il.

Most of Ihe books and articles on programming methods are of neceSsity

illustrateo only by small examples. Indeed. many of the programming methods

advocated by the authors have never yet been applied 10 large programs This is

not a defect Of thelf research. it is a necessity. All advances in engineering are

tested 'irst on ~mall-scale models. in wave lanks. or in WinO wonels Without models.

Ihe research would be prOhlblllvely expensIve. and progress would be correspondingly

slow.

Nevertheless.) beli~ve that the lime has come to atlempt to scale up the

use 01 formal mathematical methods to industrial application. This can besl be

achieved by collaborative development projeCls between a universily or pOlytechnic

and an Industrial company Or software house. Such a project might be an entirely

new program. Or iI might be a restructuring or rp.design 01 some existing sollware

produCt In current use. perhaps one WhiCh has lost its original structure as a result

01 constant amendment and enhancement. The greal advantage of these JOlnl prOjecls

Is that they bring home to academic researchers some 01 the exigencies of working

on much larger programs; and they give a practical training in fOrmal methods to

larger numbers 01 experienced programmers In Industry. This Is technology transfer

In Its best sense -- a transfer of benellts In both directions.

18

Education.

As I have emphasised already. the major lac tor in the wider propagation of

professional methods Is educallon. an education which conveys a broad and deep

underslanding 01 theoretical prinCiples as well as their practical application, an

education such as can be ollered by our universilies and pOlytechnics. lecturers

and prolessors regard il as theIr duty and privilege to keep abreast with the lalest

developments In their SUbJects. and to adapt. Improve and e)[pand their courses to

pass on their understanding to their students. Many entrants to Computer Science

Courses have acquired a familiarity with the basic mechanics of progammlng at theIr

schools: and at university they are ready to absorb the underlying mathematical

principles. which will help them 10 control the complexity of their designs and the

reliabilJtv 01 their implementations.

Over the next decades. while the graduates of Computer Science courses

are entering their profession. we will have an extremely awkward period. In which

almost none 01 the senior professionals and managers will have any knowledge or

understanding of the new methods. while those whom (hey recruit will seem to them

to be lalking academic gibberish. This could be a grave hindrance to the development

01 our pr01ession. Furthermore. It would be a terrible wasted opportunity. because

one of the major benefits of the technique 01 mathemalical abstraction is thai it

enables a chief programmer or manager to exert real technical control over his teams.

without delving into the morass 01 technical detail with which his programmers are

olten tempted to overwhelm him.

The solution 10 Ihls problem is for the ambitious senior programmers Of the

present doy to maKe Ihe ellort now to gain the necessary mastery 01 the subject.

and so ensure that tney Will become in future the eHective chief programmers.

technical managers. and technical direclors of their companies and institutions.

One way 01 acqUiring a jlfolesslonal reorientation of this kind is to take a

speCialist postgraduate posl-expeflence course In a new and Important sutqecl. Thus

an eleclronlc engineer might now be gOing back to university to study VlSi deSIgn:

or an industrial chemist might be taking a Master's course in polymer science or

genelic engineering. oUered by some rorward-Iooklng university or polylechnic.

believe that am bilious programmers shOuld not be reluctant to follow the example

oj Ihe well established engineering diSCiplines. That is why at Oxford university we

hal'S instituted a new MSc course in Computation. elevoted primarily to the objective

01 imprOVing programming methods and ensuring their wider application. A similar

course Is offered al the wang Institute In the U.S.A.

19

Conclusion.

In 1828. on Ihe occasion at the grant of Royal Charier to the Institution or

Civil Engineers. Thomas Tredgold defined civil engineering as "the art 01 directIng

lhe great sources at power in Nature lor the use and convenIence 01 man." Many

branches 01 engineering have been established sInce that date. They. haye all tleen

concerned with the capture, storage and transformation of energy, or Wllh the

processing. shaping and assembly of malerlals. Computer programmers work with

nelttler energy nor materials, but with a more Intangible concept. We are concerned

with the capture, storage. and processing of Information. When the nature of our

~ctlvities Is more widely understood. bolh within our professIon and outside. then we

shall be deservedly recognised and respected as a branch of engineering. And

believe that In our branch 01 engineering. above all others. the academic Ideals of

rigour and elegance wJll pay the highest dividends In praCtical terms 01 reducing

COsls. IncreasIng performance. and In directing the great sources of computallonal

'power on the surlace of a silicon chip 10 the use and convenience of man,

"It has long been my personal view that the separation of

praCtical and theoretical work Is arUliclal and inJurious. Much

01 the practical work done In computing. both In software and

In hardware design. Is unsound and Clumsy because the people

who do it do not have any clear understanding of the

fundamental principles underlying their work. Most of the

abstract mathematical and theoretical work Is sterile because

it has no pail'll of contact with real computing. One 01 the

centra! aims of [he Programming Research Group as a teaChing

and research group has been 10 set up an atmosphere in which

thiS separation cannol happen... •

Chnsl0pher Slrachey. 1974.

I

OXFORD UNIVERSITY COMPUTING LABORATORY

PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

MAY 1982

rhls is a series of technical monographs on topics in the field 01 computation.
Copies may be obtained from the Programming ResearCh Group, (Tcchnlcal
Monographs), 45 Banbury Road. Oxford. OX2 6PE, England. Prices Include 5ur1ace
postage.

PRG-2 Dana Sc Otl
Outline 01 a Mathematical Theory of Computation

PRG-3 Dana SCali
rhe Lartice of Flow Diagrams

PRG-5 Dana SCOIl
Dara Types as Lattices

PRG-6 Dana Scott and Christopher Strachey
Toward a Mathematical Semantics for Computer Lunguuges

PRG-7 Dana Scoll
Continuous LattIces

PRG-B Joseph Stoy and Christopher Strachey
OS6 - an Experimental Operating System
for a Sma/f Computer

PRG-9 Christopher Slrachey and Joseph Stoy
The Telr or OSPutJ

PRG-10 Christopher Strachey
rhe Varieties 01 Programming Languaga

PRG-ll Christopher StraChey and Christopher P. Wadsworth
Continuations. A Mathematical Semantics
lor Handling FufJ Jumps

PRG-12 Peter Mosses
The Marhemarlcal SemanriCS of Algol 60

PRG-] 3 Robert Milne
rhe Formal Semantics of Computer Languages
and rhelr Implemenlatlons

PRG~ 14 Shan S. Kuo. MIchael H. Linck and Sohrab Saadat
A GUide to Communicating Sequenrlal Processes

PRG-15 Joseph Stoy
The Congruence of Two Programming Language Definitions

PRG-16 C. A. R Hoare. S. D. BrOOkes and A. W. Roscoe
A Theory of Communica/fng Sequential Processes

PRG-17 Andrew P, Black
Report on rhe Programming Notation 3R

PRG-l8 EHzabelh Fielding
The SpecifIcation o(Absrract Mappings
and (heir implementatIon as at -trees

PRG-19 Dana Scoll
Lectures on a Mathematical Theory 01 Computation

PRG-:W Zhou Chao Chen and C, A. R. Hoare
Partial Correctness of Communlcarlng Processes
and Protocols

PRG-21 Bernard Sulrin
Formal Specification of 8 Displey EdUor

PRG-22 C. A. A. Hoare
A Model for Communicating Sequer1tial Processes

PRG-23 C. A. A, Hoare
A Calculus o(Total CorrectnesS
lor Communicaring Processes

PRG-24 Bernard Sufrin
Reading Formal SpecificiHions

PRG-25 C. B. Jones
Development Methods for Computer Programs
Including a Notion of Interference

PRG-26 Zhou Chao Chen
The Consistency of rhe Calculus of Torat Correctness
for Communicating Processes

PRG-27 C. A. A, Hoare
Programming is an Engineering Profession

