PROGRAMMING
iS5 AN
ENGINEERING PROFESSION

C AR Hoare

Techmcal Mcnograph PRG-27
May 1982

Oxford University Campuiing Laboratory
Programming Research Group

45 Banbury Road

Oxiord OX2 BPE.

© 1982 by C.A.R. Hoare
Oxtaord University Computing Laboratory
frogramming Research Group
45 Banbury Road
Oxford OX2 6PE.

Summary.

The ideals of professional practice for programmers engaged in large scale
compulng projects are based on a sound understanding a! the underlying
mathematical theories. and lhey should follow clgsely the traditions of engineers in
better established disciplines. But there are a number of impartant differences which
must ot be neglected. I will not be easy 10 atlain the (deals described. but the

key to success is found in an improvement in ihe edvcation of programmers.

PAOGRAMMING
1S AN
ENGINEERING PROFESSION

In earlier times and in less advanced socleties. the wellare of a communily
depended heavlly an the skl and dedicaton of Its crafismen -- the rmillers and
blacksmiths, spinners and weavers. joiners and thatchers, cobblers and tallors. A
cralisman possesses special skills, not shared by hls cllents. which he has acquired
by long and IN-pald apprenticeship to a master of his craft. Ha learns exclusively
by Imlitatian, by practice. by experience. by trial and error, He knows nothing of
the scienlfic basis of his techniques. nothing of geometry or even of drawing. nothing
of mathematics. or even of arithmelic. He cannot explain how gr why he does what
he does: and yet he works effectively. by himset or In a small team, and can usually
complete the tasks he undertakes in a predictable tmescale and at a lixed cost
and with results that are predictably satisfactory to his ¢llems.

The programmer of today shares many of the attributes of the craftsman,
He earns his cralt by a short bul highly paid apprenticeshlp in an existing
programming team, engaged in some ongoing project. and he develops hls sklis by
experience rather than by reading books or |ournals. He knows nothing of the logical
and mathematicat foundatlons of hls prolession. He does not like to explain or
document his activities. Yet he works elfectively. by himselt or in small teams. and
he sometimes manages 10 complete the tasks he underlakes at the predicled time
within the predicted cosis. and to the satisfaction of his client.

in prmitive societies of long ago we hear of another class of specialist on
whom the wellare of the community depended. Like the crafisman. he is dedicated
to his task; like the crafisman he is regarded with respect, perhaps even linged with
awe. by his many satished chents There areé several names given 10 such a rman
-- a seér. a sooOlhcayer. a sorceror or wlzard, a wiich doctor or high priest. & shall
just call hvm a high priest

There are many differences between the cralisman and the high priest. One
of the masl strilang is that the high priest is the custodian of a weighty set of sacred
books, or magic:an's manuals, which he alone is capable of reading. When he |is
consulted by his c¢llenl with some new problem. he relers to hls sacred boOks 1p
see whether he can find some spell or Incantation which has praved efficacious In
the past. and having found It. he tells his client 10 copy It carefully and use It In
accardance wiih a set ol elaborate Instructlons, |If the slightest mistake ls made
in copylng or In followlng the instructions. the spell may turn to a curse. and bring

misforiune to the client. The cllent has no hope of vnderstanding the nature of

Ihe errgr gr why it has evoked lhe wrath of his deily -- the high priest himseli has
no inner understanding of the ways of his god. The pest the client can hope is
lo go rignt back ta the beginning. and start the spell agaln: and i this doges not
work, he goes back to the high priest to get a new spell

Ang that is anplher feaiure of the priesthood -- when something goes wrang.
as it guie often does. it somehow always turns oul 10 be the igrmorance or stupidity
ar impurty or wickedness of lhe client: it is never the faull of the high priest or
hiz god It is notable that when the harvest fails. it is the high priesl who sacrifices
the king, never the other way round.

Programmers of the present day share many of the attributes of the high
priest. We have many names -- coder. syslems analyst, computer scientist,
Intormancian, chief programmer; | shail just use the word 'pragrammer’ to stand for
them all. Our aliars are hidden iroam the profane, each In s own superbly
air—conditioned holy at halies. ministered o night and day by a devoted team of
acolytes, and regarded Dy the general public with mixed feelings of fear and awe,
appropriate for their condition of powertess dependence.

An even more siriking analogy is the increasing dominance of our sacred
books, lhe basi¢ software manuals for our languages and operating systems which
have tecome essential to our every approach to the compuler. Only thirty years
4go our compulers’ valves and lanks and wires tilled the walls and shelves of a
large room. which the programmer would enter, carrying in his pocket his
programming manual -- a piece of folded cardboard known as the FACTS CARD.
Now the situaticn is reverseqd: the programmer enters a large room whose walis ang
shelves are fifled wrnh saftware manuals; bul in case he wanis 1o carry out some

urgenl calculalions he carries .n his pocket -- a camputer.

The rise ol Engineering.

in recenl centuries with the advance aof tlechnalogy, we have seen the
emeargence of a new class of speciahst -- the prolessional engineer. The mos!
striking charactérisic of an engineer is the manner in which he qualfies for eniry
into nis protessian. nol only does he work out the long apprenticeship of the
crafisman., not only does he undergo the brief graduation or iniiation ceremonies
ot the high priest., but both of these are preceded by many years 0! faormal study
in schools and in universities. His education covers a wide range of lopics. including
the mathematical foundations of the differential calculus, the derlvation and solullan
af complex equations, the physical principles underilylng lhe sclence of materials. as

well as the specHic technicalllles of a parilcular branch of hls subject, and a large

Step 7.2. Let g be the <generation? immedlately contained in abuf. JIf abuf contains a
<key¥, let k be this <key» and let csvb Dbe 1ts Iimmediate component;
atherwise let k and csvb be <absent». Perform construct-recordig,k? to
obtain kr-

Step 7.-3. If fi contalps <keyed> then Iif Kk is equal to any <key» in the <record-
datasety, designated by the «dataset-designator* in fi, or if k 1isg
unacceptable t0 the implementation, then perform raise-jo-coadition(<xey-
conditien>. fv, csvbl.

Step T.4. Perfotm insert-recordikr,fv) to obtain pos.

Step 7.5. Replace the immediate component of the «current-positiond in f£i with pos.

Step 7.6. Perform free(g) and delete abuf from fi.

Step 8. Let dd be the <data-description> immediately contained in the <variable¢> of the
<declaration> designated by cdp. Perform evaluyate-data-description-for-
allocationidd} to obtain edd.

Step 9. Perform evaluate-sire(edd) to obtain an «integer-valuer,int. If int isx
unacceptable tao the implementation then perform raise-io-conditioni<record-
condition>, fv,chs) and cptionally perform exit-froz-io.

Step 10. Perform allocateledd) to obtaln g.

Step 11. Let desc be & <data-description> simply comtaining <polnter> without other
terminal suvbnodes. Let epsog be En «emMaluated-target® containing the

dgeneration® 1in the «evaluated-pointer-set-option» in els. Let agv be an
<aggregate-valuep containing dpointer-value: g. Perform

assign{epsog,agv,.descl.
Step 12. Let d be the <declaration> deaignated by the «declaratlon-designator> in els.

Step 12.1. If the Jagyregate-type> of g contalns dstructure-agg-egate-typer then
perform initialize-refer-optionsi(g).

Step 12.2. Perform {nitialize-generationig,d).
Step 13. Let abuf be an <allocated-puffer»: <generation*,g. If fi contajins <keyed> then
attach kk to abuf. Attach abuf to the «file-gpening> in fi.
Step 18. Perform normal-sequence.

B.6.% THE REWRITE STATEMENT

Purpose: The <rewrite-statement> causes replacement of an existing «record) or «keyed-
record» in a «record-datasetd.

8.6.4.1 Fxecute-reurite-statement

devaluated-rewrite—statementy::= <file-valuer
({«<key>] <evaluated-froa-gption»]

Operation: execute-rewvrite-statementiyws)

where rws i§ a <rewrite-statement>.
Step 1. Let ervs be an <evaluated-rewrite-statementd without subnedes.
Step 2. Perform Steps 2.1 through 2.3 in any order.

Step 2-1. Let f be the ilumediate component of the <file-option> in rwa. Perform
evaloate-file-option{f) to obtain a «flle-value>,fv. Attach fr to efws.

Gtep 2.2. If zws contaipa & <from-option>,fr, then perform evaluvate-frew-option(frdto
obtaly an <evaluated-fromoption*,efa and attach efo to erwy.

From
Amaearican Nalional Standard Programming Language PL/I

American Natlonal Standards Institute. Ing., 1976.

catalogue of known design methods and specific praclica! techniques.. But this is
only a start: during his professional career. the engineer will expect 0 conlinue his
education. to expang his skills. and 1o keep pace wilth lechnolagical progress by
canunued study of new books and learned |ournals. and attendance at specialist
orienlation courses. Many engineers wil even take a fuill year off work to bring
themseves yp to date. or lo reprient themselves to a newly developed branch of
techmology. The older craftsmen will complain that the engineer already knaws far
more than he needs in the day-to-day practice of his profession: but his colleagues
and clients will realise that the weight of background learning develops his good
fudgement and Increases his competence and autharity at all times; even if a recondite
scrap ol knowledge is used only once in his career. then lhe learning has paid for
ilselt many times qver.

We would Ilke lo claim that computer programming has transcended Its orlgins
as a craflt, has avoided the temptation to form itself into a priesthood. and can now
be regarded as a fully fledged engineering profession. Cerialnly, we have some right
"o this claim. Through our professional Socleties we bhave formulaied a code of
professional ethics and a struciure and syllabus ©f professional! examinatiens. We
discharge our duly 10 the community by giving evidence to governmeni commissions
gn social consequences of computing. ©on privacy. on employment. Because of the
greal demand 1or our services. our clients and employers are willing 10 offer us
professionai salaries. and it is hardly tikely we shall refuse them.

8ut more than this is needed for true professiona! status. What is the great
body of professional knowledge common 10 all educated programmers? Where are
the reference libraries of standargd works on known general methods and specilic
1echnigues and algorithms oriented 10 parucular appiicalons and requirements? What
are e thecretcal, mathematical or physical principles which underlie the daily
pracuce of \ne programmer? Unul recently. these questons had no answer Now
tha arswers are beginning to emerge We can point to the ACM curriculum for the
stugy ol Compuler Science al Umversity as @ corpus ol comman knowledge for the
prograrnmer. thgugh the proporton pt Computer Science graduates in the programming
profession ig ¢lill law. Don Knulh's books on the Ar of Computer Programmung form
an excellenl encyciopaedia ol known techniques —- bul only three volumes have so
far appeared. and how many programmers consult even those? And finally. we have
anly recently come to a realisatlon ¢f the mathematlcal and logtcal basls of computer
prograrmming: we can now begin 1o construct pregram speciflcations with the same
accuracy as an engineer can survey a slte for a bridge or rpoad: and on this basis
we& tan now construct programs preoved 1o meet thelr specification with as much

certainly as the engineer assures us his bridge will not tall down. Introdtuction of

these lechnigues promises 10 (ransform the arcane and error-prone craft of computer

programming to meet the highest stanaards of a modern engineering profession.

The Art of Computer Programmng
Vols 1. 2. &
D.E. Knuth. Addison-Wesley.

Structured Programming

Dahl. Dijkstra. Hoare. Academic Press 1972,

Systematic Programming

N. Wirth. Prentice~Halt, 1973,

Principles of Progrem Design

M.A. Jackson, Academic Press, 1975,

A Disciplfine of Programming
E.W. Dijkstra. Prentice-Hall, 1976.

The Architecture of Concurremt Programs

Per Brinch Hansen. Prentice-Hall. 1977.

Some books you may hnd on the shell of

the weil-read computer professional.

Let me expand on the nature and consequences of this discovery It is like
the Greek discovery of axiomatic geometry as the basis ol the measuremen! of land.
mapmaking. and ils later use in plans and elevations for the design and censtruction
ot buildings and bridges. |t is like the discovery ol the Newtgnian laws of motion
and the ditferential calculus as the basis of astronomy as well as more mundane
tasks llke the navigation of ships and 1he direction of artillery flre. It Is like the
discovery of stress analysis &s the basis for the reliable ang economic construction

ol steel frame bulldings. bridges. and oil plaiforms.

Large Programming Projects.

In fulure we may hope to see a radicai change in the development and lile
history of large programming projects. The chiel programmer. like the archiect. will
start by discussing requirements with his client. From educatlon and experience. the
programmer will be able 1o gulde hls client to an understanding . of his true needs
and avoidance of expensive teatures of dublous or even negatlve value. From respect
tor the professional stalus of the programmer. the client will accept and welcome
thls guidance. This kind of mutual understanding and respect is essentlal o any
relationship between a professional and his citent or employer.

The chiet programmer at this !ime sketches out the overall structure of the
specification of a product to meet hls client’s requirements. Thease sketches serve
the same role as an archilect's preliminary sketches of a bullding. Gradually. in
orderly fashion. and In close consullatlon with the client. details of the design will
be sloted intp the appropriaté place within the struclure. This activity will culminate
In a complete. unambiguous and provably conslstent specitlcatlon for the entire end
product. It will serve the same role as blueprints in englneering or scaled plans

and alevatlons in architecture.

The sign N means number (pogsitive integer).

The sign L means wunity.

The sign a+1l means the successor of a
or a plus 1.

The sign = means [s equal lo.

leN
aeN .D. a=a
. a,beN .2: a=b .=. b=a

. a,b,ceN .2:_. a=b ., b=¢ :>. a=c

1

2

3

4

5. a=b . beN :2. aeN

6. aeN .2, a+leN

7. a,beN .2: a=b .=. a+l = b+l
8. aeN .D. atlwl

9., keK :. lek :.

AEN . xe€k 3. xtlek ::3. NIk

Extract trom Peano.
Arithmatices Principia 1889.

Undoubtedly. the ciient will ask 10 see and check the full specification beifore
he gives permission 10 Qo ahead wilh impiernentation I'm afraid he will get a rude
shock. Instead of pretly pictures and drawings. he wlll see a callecilon al definitions,
mathematical formulae and toglcal proofs which he may be Il equipped to understand.
One of the major problems of the programmng protession is that cur technical and
structural decisions are almos! invisible: there is nothing that can be seen in the
finished program which can be Illustrated beforehand by pictures. This sad fact
explains simultaneously the persistent longevity as well as the basic futitity of program
flow charts,

A proper solutlon 1o this communicatlon gap between programrners and client
may be discavered by analogy from gther professions. Before a building project goes
into implementation. 1he architect produces f{rom his specification a series of
perspective drawings Or even models which can be shown to the client, and carefully
checkea by him. Belore a consumer product goes Imo mass production. an engineer
produces a series of working protolypes. which can be subjected to severe and
exhaystive test in a variety of simuiated circumstances. tn future, a chief programmer
will be able with the aid of his programming teams tc pursue both of these solutions
al the same tlime.

Firstly, the formal specification is taken as the basis of a clear. complete
and consistenl set Of user manuals and operating instructions. explaining exaclly how
1o control the pregram and how it will bekave in all circumstances, including when
things go wrong Of course. lhese manuals are iflustrated by compelling e@amples,
dealing with the main common cases: bul the examples wlll be backed up by weli
struclured and well indexed descriptions of the full range of the capabilities of the
program. expiaining why and when they are needed. how they can be successfully
invoked 0 confunclicn with other fealurés. what can go wrong, and haw o recover
from favure. It is these manuals thal give 1he gusicmer a fuil understanding of what
his program will lcck like and what 1L will do tor him. long before a single word
ol cede 15 written They will be much clearer, much more compiele. and much sharler
than manuals of (he present gay. because ihey are hrmly based dn the simple
mathematical model, in the same way that Newion's Laws of Motion are shorter and
more dluminating than the planetary observauons of Tycho de Brahe.

At the same time. the chiel programmer or his colleagues may construct
a protolype of the program as a whole, or of the more vital parits of it. Such a
prolotype may be cheaply programmed as a simutation. perhaps running on a smakl
model 0! the data base held in the main store of a computer much larger and taster
than the one cn which the eventual program will run. These simuialions are exact

scale models ¢f the final design, and can be used by the cllient to check the details

‘Camputers are extremely flexible and powerlul tools, and many
feel that their applrcation 1s changing the tace ¢of the earth.
[But] their influence as tools might turn out o be but a ripple
on the surtace of our culture, whereas ' expect them to have
a much more profaund influence In thelr capacity as intellectual
challenge.”

E.W. Dijkstra, 1972.

of the design and suggest aierations before the project goes into the more expensive
stage of design and Impltementation.

The construction of models and pralatypes Is not cheap: but in a large ang
important project is ampty |ustified by the chance [t glves to modily the design In
the light of informed customer experlence. Recovery from misiakes In design I5 much
more expensive when they have been cast into the concrete ¢f a milhon=-hne pregram.

Anplher |mportant task can be completed at this stage. On the basis of
the original requirements and formal specifications, It Is possible to devise a serles
of rigorous and searching acceptance tesls. which can be Included in the contract
between the client and the implementors. Some of these lests can be kept secgret
trom the implemeniors, sa that there is no temptation for them to orient their work
lowards passing the tests, rather than meeting the specification. This rigorous king
ol secret acceplance test is made possible anly by the corresponding mathematical
rigour ol the ariginal specification: # the praduct fails the test. and the implementors
claim 1nat the test is unfair, any compelent lagician or mathematician would be able

o decide who /s night.

Im plementation.

The next stage is to slart work on the averall design of a program 1o meet
the agreed and lesled specificaton. The major components of the design are
idenuted. and the intertaces beiween them are defined with mathematical precision.
Some of the required componenis are selected or perhaps adapted from a hibrary
of existing components described in the englneering textbooks. The remaining
componenis are specified with the same techniques and wiih the same care as wsed
in the earlter design of the complete program. But most Imperiant: the chlef
programmer convinces himsell and his colleagues by mathematica! proof that If each

ot the components meels its specification, thén when all the components are

9

assembled tagether, the overall proouct wii meet the overall specification agreed by
the client. In [ulure this will be taken lar granted. fust as we now take for granted
the tact that components ©of @ bridge ordeéred to given measurements will fit together
when they are assembled gn site. 50 we hope to elimlnate the so-called “systemn
ntegration™ phase of many current projects. in which bugs are painfully detected and
laporiously remaved trom the inlerfaces belween the components. This Is the most
expensive ang unpredictable of all the phases of a large project: the fact that & is

the tinal phase only increases the misery.

"Program t&sling can be used t0 show the presence of bugs
but never to show their absence-”

E.W. Dijkstra. 1972,

Why Is debugqQing so expensive, particularly at the stage of system integration
and afterwards in program maintenance? The reason is clear. the bugs involved
are so0 subtle 1hal they escaped the atlention of the designer at a tlme when the
design was still simpie, and he sttl had all his optlons open. They escaped the
attention of the programmer when he was devoting his best intellect 10 eath line
of code. Now they must be isolated in the context of a milliopn—ling program: and
they must be eliminated under the adduiional and even more onercus constraint of
changsng as few of those million hnes as possible! No wonder program matntenance
during the whole life af a program is often many times as expensive as the original
implementation. Using the new speciicaton ang design techniques of mathematics
ang lpgic. we hope 1o eliminate most of that cosi. by never crealing the bugs in
the firat place.

Wren the design has pregressed suthciently. it will be possible to build up
tcams, make plans and schedutes. 10 estimale sizes and periormance of the code.
and above all 1o check preliminary esumales by caiculation of the overall costs and
tmescales of implementation. This corresponds [0 the aclivity of quanlity surveying
in archnecture. and requires expenence and judgement at least as much as
mathemaltical technique. Nevertheless. lthe estimates will be more accurate than they
usually are nowadays. because they are based on compleie and ccnsisient and stable
specifications and deslgns.

At last the project is ready 10 go Into the construction phase. Now large
leams of programmers can be engaged. perhaps from Independent contractors or

software houses. and all of them can work concurrently on difierent parts of the

10

design, wihout further cansulting each other. Each programmer will use standard
techniques of stepwise development 10 ensure thal his code meets its specification,
wilh minimal risk of the intrusion of error. When he has praved that his code is
correct. both the cede and prool will be signed off by a highly paid checker. and

the code will then be typed into a computer.

Delivery.

When all the code Is complele and compiled irom its high level language.
and loaded inlo the compuler it will be subjecied 1o the Iimplementor's tests. which
It will vsually pass. It wlil then be delivered 10 the customer, and pass his secret
acceplance tests as well, Since all manuals have been avallable for training, it will
go inlo Immediate service. Nothing can possibly ever go wrong. What never? Well
hardly ever! On the rare occastan of failure Lhere will be a full and independent
enquiry. and the cause af the fault will be traced 10 the persons responsible. An
Independen assessment will be made 10 determine whether the fault is an Isotated
one. or whether It is a symplam af more serious and widespread ftaws In the logic
of the design or in the iechnique of implementation. In the latter case, large paris
of ihe gocumeniation and code and prools will be rechecked by experts before the
preduct 15 delivered again 10 the custamer, and submilled 10 newly constructed secret
accepunce lesis. The paymen! of appropriate penalties to the customer will ensure
that this king of gelaull 15 nol too Irequent.

In the years after the first delivery, It Is very likely that the customer’s
requirements will change. and the program must be changed with . Because aof

the clrily of program structure and the completeness of design dacumentation, it

“it 15 reasonable 1o hope that the relatonship Dbetween
computauen and mathemancal togic will be as fruittul in the
next century as that belween analysis and physics in the last
The development af this relalionship demands a concern for
bath applications and for mathematical glegance.”

John McCanhy. 1967.

will be quite easy lo delermine which parts of the design and coding need to be
changed in order o meel & new requirement, Because all the assumptions and
obligatlons of each piece of code have been made expliclt, it s relatively easy to
prove that a new plece of code which meets the same obllgations can be safely
inserted: and It the obligatlons can no longer be met it Is possible 10 identify all

11

other pieces of code which rely con these obligations. so that this code can be
changed too. When a suggested change viglates the fundamental struclure o a
program, the pragrammer will rack his brains to think of an alternative: and i he
can’t, he will know in advance that part or all of the program must be rewrilten.
and check thal the cost is acceptable. Thus It s possible to escape the wild goose
chase after consequential eflects of each change made to a large program, which
Is common 1pday.

That concledes my description of the life cycte of the large software project
of the future. The descriptan hardly makes reference to the most common feature
of present programmling practice, the program bug. | have left it outl only because
it won't exisl. There will be no bugs. There wilt be no chance for a bug tc germinate
or to propagate. Every stage of the specification and deslgn and coding will have
been checked wlth mathematical rigour, It is an essental feature of the work of-
a professional in any discipline that he organises his working environment and his
working methogs t9 ensure that he does not make mistakes. Most pilots never crash
a plane. Mast surgeons never kill a patient. Most clvil engineers never build a bridge
which collapses. Until each pragrammer displays this kind of professional accuracy
and responsibility, all oyr claims 10 professional status are subject to doubt. Every
time a member of the public blames “the computer” for an error made by a
programmer. il demeans our profession. Every time that a suppiier of software writes
a disclaimer of direct and consequential damages arising from ils errors, it demeans
gur profession. We must always confess that il is the programmer who bears the
responsibitity for mistakes not the dumb but accurate machine: we must always point
out that unfair disclaimers of responsibility are (or should be) forbidden by law.

Ot course. my remarks apply only to large and impartant projects. In smaller
less (mporiant projects many of tne stages may be merged or omitled: ang for the
smallesi projects (€Q a program written for a single run by 115 Own autharl. none
oi whal | have said 1s relevamt One does Nol Jse struciural engineering analysis
fo bulld & sanacasie Bul neither does one choose the prize-winning bulder of

szngcasies as architect lor a (ower block of offices wn a cily.

Comparnison with other englneering disciplines.

My descriplion of the planning of large-scale programming projects follows
closely the standard practices in more traditional branches of englneering. A
conventlonal englneerlng design passes through 1the establishegd phases of
requirements analysls. specHicatlon. design, Costing, productlon englneering. drawling
oflice. prototyping. testing. toolbuliding, quallty assurance etc.; It Is many years before

the design reaches the production MHoor. And Indeed, many data processing

12

departmenis o the present day are organised on the pasis of a similar division of
labour between sysiems analysts. programmers. technical authors. coders. leslers,
and finally maintenance programme’s.

But all to¢ ohen this apparently logical division of labour leads 1o an awkward
prablem Gradually. the size of the maintenance pragramming department increases
until it gutnumbers all the other groups pul together. Ang It is increasingly ditficult
1o recruit and retain computer programmers [or this boring. lli-regarded and often
poorly paid occupation. One likely cause for this problem Is that the Interiaces
between the various groups ol programmers have been less precisely defined than
in a traditional engineering workshop, and thal there is no proper quality contral on
lhe project documentation as It passes from one group 1o the next. As a result,
each group does its best with what it gets. and L is the pogr mainienance programmer
at the end of the chain who has to pick up the pieces.

In my view, the standards that must be met by project documentation as It
passes between groups are slandards of leglcal accuracy and coempleteness which
are charactleristic of mathemalics. A group which takes over such documentation
should have the inlellectyal WQols required 1o check its validity; they also should have
the right. or rather (he responsibility. 1o reject a project that falls to meet an adequate
stangard. Cases of dispule would be resolved Dy appeal 1o the line {echnlcai manager.
who should be experienced and capable of resalving the dispute in & technically sound
fashion. It 1s very unforwnate that many heads of data processing departmenls are
pramgled lor achievements in accountancy, sales. or electronic englneering. They
have lLiltle understanding of the nature of ¢omputer programming. and even less of
the Icgical and mathematical techniques required for its control. It is the managers
wno could benefit most irom the new disciplines: perhaps that is why they are

somelumes most resisilant o change.

Reliability.

In principte. we should nnd 1 mucn easrer than other professional engineers
to achieve the highest standards of qualty, accyracy and predictability of timescale
ang cost. fecause the raw materials with which we work are much simpler and mgore
pleatiful. and much more reliable. Our raw materials are the binary diglts In the
slores and registers. disks and tapes ol our compuiers, Our problem s that we
have too many of them rather than too few These bits are manipulated exaclly in
ac¢ordance with gur Instructlons, at a rate of milllons of aperations per second for
many weeks or months without mistake: when the hardware does go wrong. It Is the

englneer. not the programmer. who Is called upon to mend it

13

“In order 10 use machines either to aid research or to aid
teaching. the results, methods. and spirit of formalisation in
mathematical logic are to play an essental role.”

Hao wang. 1967.

That is why computer programming shouid be the mos! reliable of ah
professional disclplines. We do noil have to worry aboutl probfems of faulty castings.
defective components. careless tabourers. storms, earthquakes or other natural
hazards; we are not concerned with fricton or wear or metal fatigue. Our anly
problems are those we make for ourselves and cur colleagues by our overambitfon
or carelessness, by our failure to recognise the mathematicai and theorelical
foundations of pregramming, and our failure to base our protessional practice upon
them.

Yel In some ways the éngineers have an advantage over us. Because they
are dealing with continuously varylng gquaniities like distance, temperature, and vollage,
It is possible for them 1o increase confidence in the reliability of an engineering
product by testing it at the exiremes ol its Intended operating range. for example,
by exposure 10 heat and cold. or by voltage margins. We do lthe same in program
testing. bul in our case it is fuule. Firstly we have lo deal with impossibly many
more variapbles; and secondly 1hese variables take discrete values., for which
interpolation and extrapolation are whaily invalid. The fact thal a program works for
value zero and value 65 535 gives no confidence Ihat it will work for any of the
values In between. unless this fact is proved by Iogicai reasoning based on the very
text of the program itself. Bui o this logrcal reasoning s correci. then there was
no need ‘or the tesl in the first place. Thal 1s why il is an essenual prereguisite
10 the mmprovement of our professional pracuces (hal we learn 10 reason effecuvely
abcut aur programs, to prove their correctness before we write them, so that we
know that they will not anly pass all their tests. but will go on working correctly forever

aler

Structure.

Other englneers have a further advaniage over programmers, When they spilit
a complex deslgn into a number of component parts. t0 be designed Independently
of each other. they can 1ake advantage ol the spatial separation of the parts 10 ensure

thal there c¢an be no wunexpecled Interaction effects. It the parts are whally

14

uvnconnected, this is very easy (0 check by simple wvisual inspection. Thus when we
turn aur car to the lefl. we may be very confident that this will have no direct effect
on the cigareite-lighter. the rear mirror. or the carburettor. When such interaction
effects do occur. they are recognised as ihe most difficult 1o trace and eliminate.

But In the programming of canvenlional computers. there Is no similar concept
ol spaval separation. Any instruction in a binary compuler program can modily any
location in the store of the computer. including those that contain instructions. And
If this happens incorrectly only once in a thousand mlllion insiructions executed. the
consequences far the whole program will be 1otally unpredictable and uncontrollable.
There 1s no hope that a prior visual inspection of the binary content of store will
enable us to check that such interaclion cannot occur, ar to find the cause of its
occurrence allerwards. There is no structdure or Isglalion of componenis in a binary
computer program. other than that which has been carefully designed Into It from

the starl. and maintained by the most rigorous dlscipline throughout implementation.

"50 then always that knowledge Is worthiest.. which considereth
the simpie jorms or dilterences of things. which are few In
number. and the degrees and coordinations whereof make all
this variety.”

Francis Bacon.

In spite of this. the programmer is oflen asked 0 Inclyde some feature into
s program as an afterthought: and the only quick way 1o do this is 0 insert new
insryctions which cross all 1he boundaries between the carefully isolated components,
and viclate all the structurat assumplions on which the original design was based.
It would be repugnant to an enpineer o introduce direct cross coupling elec!s
balween the steenng and carburettor of a motor car. or (he tapedecks and floating
poirt ymit of a computer A programmer 1s alt oo willing to do his best. and his
prolession gels a bad name when unpredicled side effects occur.

A partial soiulion to this problem Les 'n use of @ high level language like
ALGOL 60 with secure rules governing the scopé. locality. and types of variables.
In such a tanguage lhe programmer can deciare the structure of his program and
dala, statng which groups of variables are to be accessed or changed by which
parts of his program. An automatic compligr can then check that the appropriate
disciplines have been observed throughout tne whole of a large program, and can
therefore give Lhe same confldence to the programmer as the engineer gains by

spatlal separation of his components. Further coniidence can be galned by running

15

the program on a maching like the Burroughs 5500 which makes simllar checks white
the program is runmng. In better established engineering disciplings. the observance
aof such elememary safety precautions has long been enfarced by legistation. It ts
the law tha! gictates the measures that prevent unwanted interaction effects between

an Indystirial machine and the body of Its gperator.

Tools of the Trade.

Thls brings me to the final disadvantage suffered by the programmer, the
poar quality of the wals of his trade. | reler to his programming languages. operaling
systems. uthity programs. library subroutines, all of which are supplled In profusion
by the manufacwrer of hls computer. Many of these are 50 complicated that mastery
of them absorbs all his intellectual efforts, leaving him littte energy to apply to his
clignt’s orlginal prablem. Some operating syslems are sO poorly designed that they
require twenty reissues (or ‘releases”). spread over a decade. before the original
design faults have been rendered tolerable. And they are 50 unrellable that each
Issue has a thousand faults corrected by the next Issue. which Introduces & thousand

new faults of its awn. Whnen flinally the agony of reissues comes to an end. instead

Systems Programmer ¢.£10,000+car

We want to hear from you if you've at Jeast 3 years’ IBM programming
experience with MVS ~ background in the MSS area would be an
advantage. You'll also need in-depth maintenance and support
knowledge for large-scale MVS/SE or MVS/SP systems, running with
JES2 4.1 or JES2 NJE in a multi-access spool configuration.

Agversoment o Computing’

on December 3, 1981

of rejgicing. the poor pragrammer is cajoled or forced 1o accept an early issue of
some “new" product Such complexity. unreliability. and instability of basic tools were
doubtless endured by engineers aof each newly emergent disclpline; but gradually the
engineers developed betigr tool kiis for their gwn use. That is a task which athl
laces the programming profession today -- the design of programming tools which
are reliable, sitable, convenlent. and above all simple to understand, to control. and
to use.

A crude measure of the simpliclty of an engineering taol Is the length of

the manual requir@d 1o give a tull and complete account af how 10 use it and avolg

i6

misusing It. A1 presenl our software manuals are both voluminous and inadequate.
| believe that a solution o our problems can be sought in the design of scllware
which can be completely described by shorier manuals. If an electronic engineer
finds a method of satislying with twenly componenlis a need which has hitherto required
thirty. the value of his discavery is Immediately recognised and is ofien highty
rewarded by fame or by money. When a sofiware englneer designs a product thal
can be fully defined in iwenly pages of manual, when the rival praduct has been
Inadequately defined In a hundred. his achievement is just as great, and possibly
more benelicial: for he has achieved an economy in oyr scarces! resource —~ not

silicon or even gold. but our own precious human inteltect.

How do we get there [rom here?

My description of the professional achievement of programmers of the future
may ssem t0 be nothing but an academic dream -- a pieasani one for our clients,
but perhaps something mare fike a nighimare for us. How ever are we going to
make such a fantastic improvement In our working methods? We are llke the
barbgr-surgeosns of earher ages. who pride themselves on ihe sharpness of their
knives, and the speed with which they can dispatch 1heir duties. either of shaving
a beard or amputation of a mb, Imagme the dismay with which tney greeted some
ivory-lowered academic who told them thal the pracuce of surgery should be based
on along ang detailed siudy of human analomy. on familiarity with surgical procedures
pioneered by greal dactors of the past. and that it should be carried out only in
a8 sinclly controiled bug-tree environment, far removed lrom the hair and dust of
the normal barber's shop. Even if they accepted the valigity and necessity for these
improvements. haw are lhey ever to achieve them? Hpw could they re-educale all
thase hairdressers in the essenbial foundalions of surgery? Clearly. a wo-week course
in Sructured Surgory s all that we can readily altord. But more is needed. much
maoee

First we need good books. which can be siudied by programmers and
programming teams 10 famiharise themselves with the concepls ol mathematical proof.
ang show how prool methods may be apphed 10 the everyday practice of program
specification. design, and implementation. Such books aré beginning to appear in
thg pubfishers lists. May [recommend the seéries edited by Davle Gries and published
by Springer? May) even advertlse the series edited by myself and published by
Prentice Hall International?

Then we need a |ournal In which practlsing programmaers caa read the results

of ongolng research, 1o keep themselves up ta dale with the most effective tachnology.

17

The Design of Well-Struciured and Correct Programs

Alagic and Arbb. Springer-Verlag 1978.

Programming Methodology
ed. D. Gries. Springer-Verlag, 1978

Software Development. a Rigorous Approach
C.B. Jones. Prentice-Hall. 1980.

Structured Systems Programming

J. Welsh and R.M. McKeag. Prentice-Hall, 1980.

The Science of Camputer Programming

D. Gries. Springer-verlag, 1981.

Some receént bocks on professional aspects of programming.

A new Journal of this kind has {ust been founded. It is called "Science of Computer
Pragramming’, ecited by Michel Sinlzoff. and published by North Hollang. 1 have
high hopes for il

Most of the books and artlicles on programming metheds are of recessity
illustraled only by small examples. Indeed. many of the prggramming methods
advocaled by the authors have never yet been appied 0 large programs This is
not a defect of thewr research. it is a necessily. All advances in engineering are
tested first an amall-scale models, in wave 1anks. Or in wino unnels. Without models.
the research would be prohiitively expensive. and progress would be correspondingly
slow.

Nevertheless. | believe that the lime has come to atlemp! to scaie up the
use ol formal mathematical methods to industnial application. This can bes! bpe
achieved by collaborative development projects between a universily or pelylechnic
and an industrial company or software house. Such a project might be an entirely
new program, or it might be a restrucluring or redesign of some existing software
product In current use. perhaps one which has lost ils original structure as a resule
of constant amendment and enhancement. The greal advantage of these Jolnt projecits
Is that they bring home 10 academlc researchers some of the exigencies of working
on much larger programs; angd they give a practical tralning in formal methods 1o
larger numbers of experienced programmers In Industry. This is technology transfer

In 15 best sense -- a transier of benefits In both directions.

18

Education.

As | have emphasised already. the major factor in the wider propagation of
protessional methods is educabion, an education which conveys a broad and deep
understanding of thearetical principles as well as their practical applicatien, an
education such as can be offered by our universilles and polytechnics, teclurers
and prolessors regard il as thelr duty and privilege to keep abreast with the latest
developments In thelr sublecis., and to adapt. Improve and expand their courses to
pass on their understanding to their studenis. Many entrants to Campuler Science
courses have acquired a famlliarity with the basic mechanlcs of progamming at their
schools: and at university they are ready to absorb the underlying mathematical
principles. which will help them ¢ control the complexity of thelr designs and the
reliabillty ot their implementations.

Over the next decades. while the graduates of Computer Sclence courses
are enlering their prolession. we will have an exiremely awkward period. in which
almost none ol the senlor professlonals and managers wlll have any knowledge or
uvhderstanding of the new methods. while those whom they recruit will seem (o them
to be lalking academic gibberish. This could be a grave hindrance 10 the development
of our profession. Furthermore, it would be a terrible wasteg opportunity, because
one of the major benefitls of the lechnique of mathemalical abstraction is that it
enablgs a chief programmer or manager to exert real technical control over his teams,
withoul delving into the morass of technical detail with which his programmers are
often tempted 10 overwhelm him. .

The solution ‘o this prgblem is for the ambitious senior programmers of the
present day to make \pe eflgrt now to gain the necessary mastery of the subject,
and so ensurc that tney wili become in future the elfective chief programmers,
techmcal managers. and technical directors of ther companies and inshiulions.

One way of acquiring a prolessional reorienmation of this kind is to take a
speoalist postgraduate posl-experience course o a new and umportant subject. Thus
an eiectronic engineer might now be going back to university to study VLS des:ign:
or at industrial chemist might be taling a Masler's Course in polymer science or
genelic engineering, offered by some lorward-looking university or polylechnic. |
betieve thal ambitious programmers should not be reluctant to follow the example
ol the well gsiablished engineering cisciplines. That is why at Oxford University we
have inslitvied a new MSc course In Camputatign. devoted primarlly to the objective
of improving programming methods and ensuring thelr wider appilcation. A simltar

course iIs offered af the Wang Institute In the LLS.A,

19

Conclusion,

In 1828. on I1he occasion of the grant of Royal Charter to the Institution of
Civil Engineers. Thomas Tredgoid defined clvll engineering as “the art of directing
the greal sources of power in Nature for the use and conventence of man.” Many
branches of engineering have been established since that date. They. have all been
concerned with the capiure. storage and transformation of energy, or wihh the
processing. shaping and assembly of materials. Compuler programmers work with
neither energy nor materlals, but with a more Intanglble concept. We are concerned
with the capture, storage. and processing of Information. When the nature of our
actlvities Is more widely understood. boilh within our profession and cutside. then we
shall be deservedly recognised and respected as a branch of engineering. And |
believe that In our pranch ol engineering, above all others, the academic ldeals of
rigour and elegance wlll pay the highest dividends In practical lerms of reducing
cosls, Increasing performance. and tn direciing the greal sources of computational

'power on ihe surface of a silicen chip to the use and canvenience of man,

‘it has long been my personal view that the separation of
practical and theoretical work Is arifficlal and injurious. Much
ol the practical work done in computing. both In software and
In hardware design. ts unscund and ¢lurmsy because the people
wha do it do not have any clear understanding of the
fundamental principles underlying their work. Maost of the
abslract mathematical and theoretlical work Is sierile because
it has no poinl of contact with real computing. One of the
central aims of the Pregramming Research Group as a teaching
and research group has been o set up an atmosphare in which
this separauon cannol happen..”

Chrnstopher Sirachey, 1974.

OXFORD UNIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

MAY 1982

This is a series of technical monpgraphs an tapics in the field of computation.
Copies may be obtained f{rom the Programming Research Group. (Tcchnical
Monegraphs). 45 Banbury Road. Oxtord. OX2 6PE, England. Prices include surface
poslage.

PRG-2 Dana Scomn
Qutitne of a Mathematicai Theory of Compulation

FRG-3 Dana Scoll
The Lafttice of Floew Diagrams

PRG-5 Dana Scon
Data Types as laftices

PRG-6 Dana Scott and Christopher Strachey
Toward a Mathemalical Semantics for Computer Lenguages

PRAG-7 Dana Scott
Continuous Llathces

PRG-8 Joseph Stoy and Christopher Strachey
056 -~ an Experimental Operating System
tor & Small Computer

PRG-9 Christopher Strachey and Joseph Stoy
The Texr of OSFPub

PRG-10 Christopher Sirachey
The Vvarieties of Programming language

PRG-11 Christopher Strachey and Christepher P. Wadsworth
Continuations. A Mathematicel Semantics
for Hanaling Full Jumps

PRG-12 Peter Mosses
The Mathematical Semantics of Alget 60

PRG-13 Robert Milne
rhe Formal Semantics of Gomputer lLanguages
and thewr Implementations

PRG-14 Shan S. Kuo, Michael H. Linck and Sohrab Saadal
A Guide ro Communicating Sequentral Processes

PRG-135 Joseph Sloy
The Congruence of Two Programming Language Definitions

PAG-16 C. A. R Hoare. 5. D. Brookes and A. W. Roscoe
A Theory of Communicating Sequential Frocesses

PRG-17 Andrew P. Black
Report on the Progremmming Notation 3R

PRG-18

PRG-19

PRG~20

PRG-21

PRG-22

PRG~23

PRG~-24

PRG-25

PRG-28

PRG-27

Evzabeth Figiding
The Specitication ¢f Abstract Mappings
and (heir implementation as Bt-trees

Dana Scott
Lectures on a Mathematical Theory o! Computation

Zhou Chao Chen and C, A R. Hoare
Partial Correctness of Commumcaling Processes
and Prorocols

Bernard Sulrin
Formal Specilication of a Displey Edilor

C. A A. Hoare
A Mcael tor Communicating Sequential Processes

C. A. A Heare
A Calculus of Total Correctness
for Commuhicating Processes

Bernard Suirin
Reading Farmal Specilications

C. B. Jones
Developmen! Methods for Computer Programs
ncluding & Notion of Interference

Zhou Chag Chen
The Consistency of the Calcuwlus of Toral Correctness
for Communicating Processes

C. A. A Hcare
Programming is an Engineering Profession

