
How	to	Win	a	Hot	Dog	Eating	Contest:	
Incremental	View	Maintenance	with	

Batch	Updates

Milos	Nikolic,	Mohammad	Dashti,	Christoph	Koch
DATA	lab,	EPFL

SIGMOD,	28th June	2016



REALTIME APPLICATIONS

2

Web	Analytics Sensor	Networks Cloud	Monitoring

DECISION	
SUPPORT

RUNTIME
ENGINE

Continuously	
arriving	data

Continuously	
evaluated	views

EVENTS ACTIONS



REALTIME SYSTEMS:
REQUIREMENTS

3

LOW	LATENCY	PROCESSING
Incremental view maintenance
Q(D + ∆D) = Q(D) + ∆Q(D, ∆D)

SCALABLE	PROCESSING
Synchronous	 execution	model

COMPLEX	CONTINUOUS	QUERIES
SQL	queries	(w/	nested	aggregates)
No	window	semantics



IN THIS TALK

4

Q1:	How	does	the	size	of	update	affect	the	
performance	of	incremental	computation?	

Q2:	(Idea)	How	to	achieve	efficient	
distributed	 incremental	computation?



PROBLEM: DBMS	&	stream	engines	with	classical	IVM	
can	have	poor	performance	on	fast,	long-lived	data

OUR	APPROACH:	Compilation	of	SQL	queries	into	
incremental	engines

PERF:Million	view	refreshes/sec	for	single-tuple	updates
5

Recursive	
IVM

Code	Generation
(C++,	Scala,	Spark)

= +

HIGH-PERFORMANCE 
INCREMENTAL COMPUTATION



6

Delta	for	ΔR

Optimize
SUM(A)

GROUP BY B

S

SUM(C)
GROUP BY B

⋈ B

SUM(L*R)

⋈
SUM(A*C)

B

SΔR

Relations: R(A,B), S(B,C)
Q := SELECT SUM(R.A * S.C)

FROM R, S 
WHERE R.B = S.B

⋈
SUM(A*C)

B

SR

Delta	ΔRQ

Optimized	Delta	ΔRQ

ΔR

Update	Q



7

ΔR

SUM(A)
GROUP BY B

ΔS

SUM(C)
GROUP BY B

⋈ B

SUM(L*R)

mR

ΔS

SUM(A)
GROUP BY B

S

SUM(C)
GROUP BY B

⋈ B

SUM(L*R)

ΔR
mS

Optimized	Delta	ΔRQ

Relations: R(A,B), S(B,C)
Q := SELECT SUM(R.A * S.C)

FROM R, S 
WHERE R.B = S.B

⋈
SUM(A*C)

B

SR

Optimized	Delta	ΔSQ

Update	Q

R

Pre-compute Pre-compute

Update	Q



9

ON UPDATE R BY ΔR:

// Pre-aggregate batch
tmp[B] := SELECT B, SUM(A)

FROM ΔR 
GROUP BY B

// Update Q
Q  += SELECTSUM(tmp.V*mS.V)

FROM tmp, mS
WHERE tmp.B = mS.B

// Update mR
mR[B] += SELECT * FROM tmp

⋈
SUM(A*C)

B
SR

SUM(A)
GROUP BY B

⋈ B

SUM(L*R)

ΔR

SUM(A)
GROUP BY B

RmR

SUM(C)
GROUP BY B

SmS

Update	Q

Q

SUM(A)
GROUP BY B

ΔR

Update	mR

Common	delta	
expressions

tmp

tmp



10

ON UPDATE R BY ΔR:

// Pre-aggregate batch
tmp[B] := SELECT B, SUM(A)

FROM ΔR 
GROUP BY B

// Update Q
Q  += SELECTSUM(tmp.V*mS.V)

FROM tmp, mS
WHERE tmp.B = mS.B

// Update mR
mR[B] += SELECT * FROM tmp

void onUpdateR(List<T> dR) {
// Pre-aggregate batch
HashMap<int,int> tmp;
foreach (dA,dB) in dR
tmp[dB] += dA;

// Update Q (of type int)
foreach (k,v) in tmp
Q += v * mS[k];

// Update mR
foreach (k,v) in tmp
mR[k] += v;

}



11

CODE	SPECIALIZATION
Primitive-type	parameters
No	intermediate	maps
Loop	elimination
Partial	evaluation,	inlining

void onUpdateR(intdA,int dB) {
Q += dA * mS[dB]; 
mR[dB] += dA;

}
BASELINE

void onUpdateR(List<T> dR) {
// Pre-aggregate batch
HashMap<int,int> tmp;
foreach (dA,dB) in dR
tmp[dB] += dA;

// Update Q (of type int)
foreach (k,v) in tmp
Q += v * mS[k];

// Update mR
foreach (k,v) in tmp
mR[k] += v;

}



SINGLE-TUPLE VS. BATCH IVM

12

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Q3 Q9

TPC-H, 10GB stream, batch size = 1…100,000, C++

NORMALIZED THROUGHPUT

Single-tuple

BS=1 BS=10 BS=100

BS=1K BS=10K BS=100K
MAIN	RESULTS

1)	Best	performance	w/	medium	
batch	sizes	(=	bite	sizes)

2)	Single-tuple	processing	faster
for	5	queries;	7	queries	within	
20%	of	best-batch	performance

3)	Batch	pre-aggregation can	
enable	cheaper	maintenance

4)	OOM	faster	than	DBMS



DISTRIBUTED IVM

13

STATEMENT 1

STATEMENT 2

STATEMENT 3

ON	UPDATE	R

STATEMENT 4
STATEMENT 5
STATEMENT 6

LOCAL	IVM	PROGRAM

STATEMENT 7

ON	UPDATE	S

DESIGN	CHOICE	1:
Local	➞ Distributed	programs

CHALLENGE:	
Dependencies	among	statements	
prevent	arbitrary	re-orderings

DESIGN	CHOICE	2:
Synchronous	execution	model
(on	top	of	Spark)



OUR APPROACH
LOCATION	TAGS: LOCAL,	PARTITIONED BY KEY,	RANDOM
Annotate	each	node	in	query	plan	with	location	info

LOCATION	TRANSFORMERS:	Insert	communication	
operations	 into	query	plan	to	preserve	query	semantics

HOLISTIC	OPTIMIZATION: Minimize	network	cost
14

REPARTITION GATHER SCATTER



CONCLUSION

Much	more	in	the	paper:
• Single-tuple	 vs.	batch	incremental	 processing	
(single-tuple	 can	be	better!)	+	more	experiments

• Distributed	IVM	(+	optimization	framework)

• IVM	of	queries	with	nested	aggregates	

• Code	and	data-structure	specialization

15

Download:		http://www.dbtoaster.org


