
Enabling	Signal	Processing	over	
Stream	Data
Milos	Nikolic*,	University	of	Oxford
Badrish Chandramouli,	Microsoft	Research
Jonathan	Goldstein,	Microsoft	Research

*Work	performed	during	internship	at	MSR

Signals	in	Streams

• Lots	of	“signals”	in	stream	data
• Internet-of-things	devices,	app	telemetry	(e.g.,	ad	clicks)

• IoT workflows	combine	relational	&	signal	logic
• Ex:	Real-time	app

M

Group-by	ID

U

Union
ID Time Value
0 0:42:19 67
1 0:42:22 80
2 0:42:22 85
0 0:42:23 69
2 0:42:24 85

Remove	noise
Interpolate	missing	data
Find	periodicity

Discard	invalid	data
Correlate	live	data	w/	history

σ ⋈ DSP

DSPσ ⋈
2

Which	tools	to	use	
to	build	such	apps?

Data	processing	
expert

Digital	signal	processing
expert

Engines:	stream	engines,	DBMS,	MPP	systems

Data	model:	(tempo)-relational

Language:	declarative	(SQL,	LINQ,	functional)

Scenarios: real-time,	offline,	progressive

Engines:	MATLAB,	R

Data	model:	array

Language:	imperative	(array	languages,	C)

Scenarios:mostly	offline,	real-time

3

How to reconcile
two worlds?

Our solution:
• high-performance (2 OOM faster)
• one query language
• familiar abstractions to both worlds

Typical	DSP	Workflow

Equally-spaced	samples	stored	in	array

1. Window	
• window	size	&	hop	size

2. Per	window:	pipeline	DSP	ops
• array	to	array
• Example:	spectral	analysis

FFT	➞ user-defined	function	➞ IFFT

3. Unwindow
• sum	overlapping	segments

x[n]

x2

y[n]

x0
x1

y0

y1

y2

Per	device
+

+

4

Loose	Systems	Integration
Stream	Processing	Engine	+	R

• Stream	engine	for	relational	queries
• Per-group	computation,	windowing,	joins,	etc.

• R	for	highly-optimized	DSP	operations

• Problem: impedance	mismatch
• High	communication	overhead	(up	to	95%)
• Impractical	for	real-time	analysis
• Disparate	query	languages

x2

+
+

x0
x1

y0

y1

y2

R

STREAM	PROCESSING	SYSTEM

5

• Performance
• 2-4	OOM	faster	than	today’s	SPE

• Query	model
• Based	on	temporal	query	model	
(relational	with	time)

• Real-time,	offline,	progressive	queries

• Language	integration
• Built	as	.NET	library
• Works	with	arbitrary	C#	data-types

• Unified	query	model
• Non-uniform	&	uniform	signals
• Type-safe	mix	of	stream	&	signal	operators

• Array-based	extensibility	framework
• DSP	operator	writer	sees	arrays
• Supports	incremental	computation

• “Walled	garden”	on	top	of	Trill
• No	changes	in	data	model
• Inherits	Trill’s	efficient	processing	capability	
(e.g.,	grouped	computation)

TRILL DSP

Trill:	Fast	Streaming	Analytics	Engine	 DSP	Library

[VLDB	2014	paper]

7

Tempo-Relational	Model

• Uniformly	represents	offline	and	online	datasets	as	stream	data

Logical	time

e1
e2

e3

e4

e5

Tempo-Relational	ModelRelational	Model
t1
t2
t3
t4

snapshots
INPUT

Q	=	COUNT(*)

4

Logical	time

1 1 1 1212

OUTPUT

Q Q

8

Trill	Example	(Simplified)
• Define	event	data-type	in	C#

struct SensorReading { long SensorId; long Time; double Value; }

• Define	ingress
var str = Network.ToStream(e => e.Time);

• Write	query	(in	C#	app)
var query = str.Where(e => e.Value < 100)

.Select(e => e.Value)

• Subscribe	to	result
query.Subscribe(e => Console.Write(e)); // write results to console

9

Signal	=	stream	w/o	overlapping	events

Time

Input
events e1

e2

e3

e4

e5 Time

Aggregated
events

1 1 1 1212

STREAMABLE SIGNALSTREAMABLE

var signal = stream.Where(e => e.Value < 100).Count()
STREAMS

SIGNALS

• Transition	to	signal	domain
• E.g.,	result	of	an	aggregate	query

• Using	stream	operators	to	build	signal	operators
• E.g.,		adding	two	signals	as	a	temporal	join	of	two	streams
left.Join(right, (l, r) => l + r)

Type-safe	operations

10

Uniformly-sampled	signals

• Sampling	with	interpolation

Time
Input
events

misaligned																			missing

30 60 90 120 150 180 210

Time
Output
events

30 60 90 120 150 180 210

interpolated

var uniformSignal = signal.Sample(30, 0, ip => ip.Linear(60));

Interpolation	window

STREAMS

SIGNALS

UNIFORM

11

Bringing	Array	Abstractions	to	DSP	Users

• Initial	idea:	Window	&	Unwindow sample	operators
• Window() creates	a	stream	of	arrays	

• Unwindow() projects	arrays	back	in	time

• Performance	problems
• Creates	dependencies	between	window	semantics	and	system	performance
• No	data	sharing	across	overlapping	arrays

• Unclear	language	semantics
• e.g.,	stream	of	arrays:	is	it	a	signal	or	not?	

Time

var s = uniformSignal.Window(5,3).FFT()…

Window	=	5	samples
Hop	=	3	samples

12

• Expose	arrays	only inside the	windowing	operator

Windowing	Operator	for	DSP	Users

var query = uniformSignal
.Window(512, 256,

w => w.FFT().Select(a => f(a)).IFFT(),
a => a.Sum())

)

Uniform	signal Uniform	signal
UNWIN
AGGFFT f IFFTWIN

• DSP	pipeline	&	arrays	instantiated	only	once	➞ better	data	management
13

User-Defined	Operator	Framework

• DSP	experts	write	array-array	operators
• Matches	their	expectations
• Allows	optimized	array-based	logic	(e.g.,	SIMD)

• Incremental	DSP	operators
• Framework	uses	circular	arrays	to	avoid	data	
copying	with	hopping	windows

• New	&	old	data	available	for	incremental	
computation

OLD NEW

WindowHop

FFT f IFFT

14

Grouped	Computation

• Group-aware	operators
• Online	processing	of	intertwined	signals
• One	state	per	each	group

• E.g.,	interpolator	keeps	a	history	of	samples	for	each	group

• Streaming	MapReduce	in	Trill
• Parallel	execution	on	each	sub-stream	
corresponding	to	a	distinct	grouping	key

var q = signal
.Map(s => s.Select(e => e.Value), e => e.SensorId)
.Reduce(s => s.Window(512, 256,

w => w.FFT().Select(a => f(a)).IFFT(),
a => a.Sum()))

15

Performance:	FFT	with	tumbling	window

0

2

4

6

8

10

12

128 256 512 1024 2048
WINDOW	SIZE

TrillDSP WaveScope MATLAB R

Window	➞ FFT	➞ Unwindow

RUNNING	TIME	(secs)

Pre-loaded	datasets	in	memory

Pure	DSP	task
• TrillDSP uses	FFTW	library

Comparable	to	best	DSP	tools	

16

4

8

16

32

64

128

256 230 179 128 76 25

HOP	SIZE

TrillDSP	(1	core) MATLAB
SparkR	(16	cores) SciDB-R	(16	cores)

Performance:	Grouping	+	DSP
Per	sensor:	Windowed	FFT	➞ Function	➞ Inverse	FFT	➞ Unwindow

NORMALIZED	TIME	TO	TRILLDSP	ON	16	CORES
Pre-loaded	datasets	in	memory
• 100	groups	in	stream

Up	to	2	OOM	faster	than	others
Performance	benefits	from:
• Efficient	group	processing,		
group-aware	DSP	windowing	

• Using	circular	arrays	to	manage
overlapping	windows		

• TrillDSP uses	FFTW	library

17

Conclusion

• Apps	mix	relational	&	signal	logic
• Per	device:	find	periodicity	in	signals,	interpolate	missing	data,	recover	noisy	data

• Different	data	models:	relational	vs.	array

• Existing	query	processors	integrated	with	R	
• Impedance	mismatch	➞ high	performance	overhead	➞ not	suitable	for	real-time

• TrillDSP =	Relational	processing	+	Signal	processing
• Unified	query	model	for	relational	and	signal	data,	for	both	real-time	and	offline

• Gives	users	the	view	they	are	comfortable	with
• Avoids	impedance	mismatch	between	components

18

Up	to	2	OOM faster	than	
systems	integrated	w/	R	

