
The VLDB Journal manuscript No.
(will be inserted by the editor)

DBToaster: Higher-order Delta Processing for
Dynamic, Frequently Fresh Views

Christoph Koch · Yanif Ahmad · Oliver Kennedy · Milos Nikolic · Andres Nötzli ·
Daniel Lupei · Amir Shaikhha

Received: date / Accepted: date

Abstract Applications ranging from algorithmic trading to
scientific data analysis require realtime analytics based on
views over databases receiving thousands of updates each
second. Such views have to be kept fresh at millisecond la-
tencies. At the same time, these views have to support clas-
sical SQL, rather than window semantics, to enable applica-
tions that combine current with aged or historical data.

In this article, we present the DBToaster system, which
keeps materialized views of standard SQL queries continu-
ously fresh as data changes very rapidly. This is achieved
by a combination of aggressive compilation techniques and
DBToaster’s original recursive finite differencing technique
which materializes a query and a set of its higher-order del-
tas as views. These views support each other’s incremen-
tal maintenance, leading to a reduced overall view mainte-
nance cost. DBToaster supports tens of thousands of com-
plete view refreshes per second for a wide range of queries.

Keywords incremental view maintenance, compilation

1 Introduction

Data analytics has been dominated by after-the-fact explo-
ration in classical data warehouses for decades. This is now

Yanif Ahmad
The Johns Hopkins University, 3400 North Charles Street, Baltimore,
MD 21218, USA. Tel.: (410) 516-6781 E-mail: yanif@jhu.edu

Oliver Kennedy
SUNY Buffalo, 338 Davis Hall, Buffalo, NY 14260, USA. Tel.: (716)
645-1597 E-mail: okennedy@buffalo.edu

Christoph Koch, Milos Nikolic, Andres Nötzli, Daniel Lupei, Amir
Shaikhha
École Polytechnique Fédérale de Lausanne; EPFL IC DATA, Station
14, CH-1015 Lausanne, Switzerland. Tel.: (021) 693-7547 E-mail:
christoph.koch@epfl.ch

beginning to change: Today, businesses, engineers and sci-
entists are increasingly placing data analytics engines earlier
in their workflows to react to signals in fresh data. These
dynamic datasets exhibit a wide range of update rates, vol-
umes, anomalies and trends. Responsive analytics is an es-
sential component of computing in finance, telecommunica-
tions, intelligence, and critical infrastructure management,
and is gaining adoption in operations, logistics, scientific
computing, and web and social media analysis.

Developing suitable responsive analytics engines is chal-
lenging. The combination of frequent updates, long-running
queries and a large stateful working set precludes the ex-
clusive use of OLAP, OLTP, or stream processors. Further-
more, query requirements on updates cannot be serviced by
the functionality and semantics of any one single system,
from Complex Event Processing (CEP) engines to active da-
tabases, and database views.

Consider the example of algorithmic trading (see [20]
for an application overview). Here, strategy designers want
to use analytics — expressible in a declarative language like
SQL — on order book data in their algorithms. Order books
consist of the orders waiting to be executed at a stock ex-
change. These order books change very frequently. How-
ever, some orders may stay in the order book relatively long
before they are executed or revoked, precluding the use of
stream engines with window semantics. Applications such
as scientific simulations and intelligence analysis also in-
volve tracking entities of interest over widely ranging time
periods, resulting in large stateful and dynamic computation.

The DBToaster project [4,22,21] builds and studies data
management systems designed for large datasets that evolve
rapidly through high-rate update streams. We aim to com-
bine the advantages of DBMSes (rich queries over recent
and historical data, without restrictive window semantics)
and CEP engines (low latency and high view refresh rates).

2 Christoph Koch et al.

The technical focus of this article is on an extreme form
of incremental view maintenance (IVM) that we call higher-
order1 IVM. We make use of discrete forward differences
(delta queries) recursively, on multiple levels of derivation.
That is, we use delta queries (“first-order deltas”) to incre-
mentally maintain the view of the input query, then materi-
alize the delta queries as views too. We maintain these views
using delta queries to the delta queries (“second-order del-
tas”), use third-order delta queries to incrementally main-
tain the second-order views, and so on. Our use of higher-
order deltas is quite different from earlier work on choosing
which query subexpressions to materialize and incremen-
tally maintain for best performance [36]. Our technique for
constructing higher-order deltas is closer in spirit to discrete
wavelet and numerical differentiation methods, and we use a
superficial analogy to the Haar wavelet transform as the mo-
tivation for calling the base technique a viewlet transform.

Example 1 Consider a query Q that counts the number of
tuples in the product of relations R and S. For now, we only
want to maintain the view of Q under insertions. Denote by
∆R (resp. ∆S) the change to a view as one tuple is inserted
into R (resp. S). Suppose we materialize the four views:

– Q (0-th order),
– ∆RQ = count(S) and ∆SQ = count(R) (first order), and
– ∆R∆SQ = ∆S∆RQ = 1 (second order, a “delta of a delta

query”).

We can simultaneously maintain all these views based on
each other using exclusively summation and avoiding the
computation of any products. The fourth view is constant
and independent of the database. Each of the other views is
refreshed when a tuple is inserted by adding the appropri-
ate delta view. For instance, as a tuple is inserted into R, we
add ∆RQ to Q and ∆R∆SQ to ∆SQ. (No change is required
to ∆RQ, since ∆R∆RQ = 0.) Suppose R contains 2 tuples and
S contains 3 tuples. The table below presents the sequence
of states of the materialized views when performing several
insertions into R and S. When we add a tuple to S, we incre-
ment Q by 2 (∆SQ) to obtain 8 and ∆RQ by 1 (∆S∆RQ) to
get 4. If we subsequently insert a tuple into R, we increment
Q by 4 (∆RQ) to 12 and ∆SQ by 1 to 3. A similar process
applies for the next two insertions of S tuples.

time insert ∆R∆SQ,
point into ||R|| ||S|| Q ∆RQ ∆SQ ∆S∆RQ

0 — 2 3 6 3 2 1
1 S 2 4 8 4 2 1
2 R 3 4 12 4 3 1
3 S 3 5 15 5 3 1
4 S 3 6 18 6 3 1

Again, the main benefit of using the auxiliary views is
that we can avoid computing the product R×S (or in general,

1 In the sense of higher-order derivative, not higher-order function.

joins) by simply summing up views. In this example, the
view values of the (k+ 1)-th row can be computed by just
three pairwise additions of the values from the k-th row. �

The above example shows the simplest query for which
the viewlet transform includes a second-order delta query,
omitting any complex query features (e.g., predicates, self-
joins, nested queries). Viewlet transforms can handle gen-
eral update workloads including deletions and updates, as
well as queries with multi-row results.

For a large fragment of SQL, higher-order IVM avoids
join processing, reducing all the view refreshment work to
summation. Joins are only needed for view definitions that
include inequality joins or nested aggregates. The viewlet
transform repeatedly (recursively) performs delta rewrites.
In the absence of nested aggregates, each k-th order delta is
structurally simpler than the (k−1)-th order delta query. The
viewlet transform terminates, as for some n, the n-th order
delta is always constant, depending only on the update but
not on the database. In the above example, the second-order
delta is constant, independent of any database relation.

Our higher-order IVM framework, DBToaster, realizes
as-incremental-as-possible query evaluation over SQL with
a query language extending the bag relational algebra, query
compilation, and a variety of novel materialization and opti-
mization strategies. DBToaster bears the promise of provid-
ing materialized views of long-running SQL queries, with-
out window semantics or other restrictions, at very high view
refresh rates. The data may change rapidly, and still part of
it may be long-lived. DBToaster can use this functionality
as the basis for richer query constructs than those supported
by stream engines. DBToaster takes SQL view queries as
input and automatically incrementalizes them into C++ or
Scala trigger code where all work reduces to fine-grained,
low-cost updates of materialized views.

We have developed and released DBToaster as a query
compiler [1]. The compiler produces dedicated binaries (or
source code) that implement long-running query engines for
SQL views. The resulting source code or binary can be em-
bedded in client applications, or can operate as a standalone
system that consumes data from files or sockets. We present
a system and architecture overview in [21].

Example 2 Consider the query

Q = SELECT SUM(LI.PRICE * O.XCH)

FROM Orders O, Lineitem LI

WHERE O.ORDK = LI.ORDK;

on a TPC-H like schema of Orders and Lineitem where line
items have prices and orders have currency exchange rates.
The query asks for total sales across all orders weighted by
exchange rates. We materialize the views for query Q as well
as the first-order views QLI , representing ∆LIQ, and QO, rep-
resenting ∆OQ. The second-order deltas are constant with

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 3

respect to the database and are inlined in the following in-
sert trigger programs for query Q.

on insert into O values (ordk,custk,xch):
Q += xch∗QO[ordk]
QLI [ordk] += xch

on insert into LI values (ordk, ptk, price):
Q += price∗QLI [ordk]
QO[ordk] += price

The query result is again scalar, but the auxiliary views are
not. Our language generalizes these views from SQL’s
multi-sets to maps that associate multiplicities with tuples.
This is again a very simple example (more involved ones are
presented throughout the article), but it illustrates something
notable: while classical incremental view maintenance has
to evaluate the first-order deltas, which takes linear time in
this example (e.g., ∆OQ[ordk] is SELECT SUM(LI.PRICE)

FROM Lineitem LI WHERE LI.ORDK=ordk), we sidestep
this by performing IVM on the deltas. This way our triggers
can be evaluated in constant time for single-tuple inserts in
this example. The delete triggers for Q are the same as the
insert triggers with += replaced by -= everywhere. �

This example presents single-tuple update triggers. The
viewlet transform is not limited to this and supports bulk up-
dates. However, delta queries for single-tuple updates have
further optimization potential, which the DBToaster com-
piler leverages to create very efficient code that refreshes
views whenever a new update arrives. By not queuing up-
dates for bulk processing, DBToaster maximizes view avail-
ability and minimizes view refresh latency, enabling ultra-
low latency monitoring applications.

On paper, higher-order IVM clearly dominates classical
IVM. If classical IVM is a good idea, then doing it recur-
sively is an even better idea. The same efficiency improve-
ment argument in favor of IVM of the base query also holds
for IVM of the delta query. Considering that joins are expen-
sive and this approach eliminates them, higher-order IVM
has the potential for excellent query performance.

In practice, how well do our expectations of higher-order
IVM translate into real performance gains? A priori, the
costs associated with storing and managing auxiliary mate-
rialized views for higher-order delta queries might be more
considerable than expected. This article presents the lessons
learned in an effort to realize higher-order IVM and to un-
derstand its strengths and drawbacks. Our contributions are:

1. We present the concept of higher-order IVM and de-
scribe the viewlet transform. This part of the article gen-
eralizes and consolidates our earlier work [4,22].

2. There are cases (inequality joins and certain nesting pat-
terns) when a naive viewlet transform is too aggressive,
and certain parts of queries are better re-evaluated than
incrementally maintained. We develop heuristic rules for

trading off between materialization and lazy evaluation
for the best performance.

3. We have built the DBToaster system, which implements
higher-order IVM. It combines an optimizing compiler
that creates efficient update triggers, based on the tech-
niques discussed above, with a runtime system to keep
views continuously fresh as updates stream in at high
rates. (The runtime system is currently single-core and
main-memory based, but this is not an intrinsic limita-
tion of our method. In fact, our trigger programs are par-
ticularly parallel-friendly [22]. See [21] for a more de-
tailed system description.) We have also made our sys-
tem implementation publicly available [1].

4. We present the first set of extensive experimental results
on higher-order IVM obtained using DBToaster. Our ex-
periments indicate that our compilation approach dom-
inates the state of the art, often by multiple orders of
magnitude. This is particularly the case for queries con-
sisting of many joins or nested aggregations. On a work-
load of automated trading, scientific, and ETL queries,
we show that current systems cannot sustain fresh views
at the rates required in algorithmic trading and real-time
analytics, while higher-order IVM takes a big step to-
wards making these applications viable.

Most of our benchmark queries contain features like nested
subqueries that no commercial IVM implementation sup-
ports, while our approach handles them all.

2 Related Work

2.1 A Brief Survey of IVM Techniques

Database view management is a well-studied area with over
three decades of supporting literature. A recent survey of the
topic can be found in [11]. We focus on the aspects of view
materialization most pertinent to the DBToaster project. Our
work innovates on the high-order aspect to IVM, which is
orthogonal to all previous work.
Incremental View Maintenance Algorithms and Formal
Semantics. Maintaining query answers has been considered
under both the set [7,8] and bag [10,16] relational alge-
bra. Generally, given a query on N relations Q(R1, . . . ,RN),
classical IVM uses a first-order delta query ∆R1Q = Q(R1∪
∆R1,R2, . . .RN)−Q(R1, . . . ,RN) for each input relation Ri in
turn. The creation of delta queries has been studied for query
languages with aggregation [34] and bag semantics [16], but
we know of no work to formally examine delta queries of
nested and correlated subqueries. [19] has considered view
maintenance in the nested relational algebra (NRA), how-
ever this has not been widely adopted in any commercial
DBMS. Finally, [44] considered temporal views, and [28]
outer joins and nulls, all for flat SPJAG queries without gen-

4 Christoph Koch et al.

eralizing to subqueries, the full compositionality of SQL, or
the range of standard aggregates.
Materialization and Query Optimization Strategies. Se-
lecting queries to materialize and reuse during processing
has spanned fine-grained approaches from subqueries [36]
and partial materialization [25,37], to coarse-grained meth-
ods as part of multiquery optimization and common subex-
pressions [18,46]. Picking views from a workload of queries
typically uses the AND-OR graph representation from mul-
tiquery optimization [18,36], or adopts signature and sub-
sumption methods for common subexpressions [46]. [36]
selects sets of subqueries of view definitions for material-
ization. The outcome is related to higher-order IVM, as the
delta of a simple query is frequently a subquery. Naturally,
for such queries, both approaches select the same (optimal)
materialization strategy. However, our delta operation also
captures nonlinearities in the deltas of more complex que-
ries (e.g., self-joins), and produces different materialization
strategies. We also use query rewriting strategies that deal
with correlated subqueries, inspired by work on query decor-
relation such as [39]. Our experiments include results for a
DBMS that uses a similar nested subquery materialization
strategy. Additionally, our work builds on higher-order IVM,
extending it into a complete query compilation system.

Physical DB designers [3,47] often use the query op-
timizer as a subcomponent to manage the search space of
equivalent views, reusing its rewriting and pruning mecha-
nisms. For partial materialization methods, ViewCache [37]
and DynaMat [25] use materialized view fragments, the for-
mer materializing join results by storing pointers back to in-
put tuples, the latter subject to a caching policy based on
refresh time and cache space overhead constraints.
Evaluation Strategies. For efficient maintenance with first-
order delta queries, [12,45] study eager and lazy evalua-
tion to balance query and update workloads, [38] argues for
asynchronous view maintenance, and [13] investigates the
interaction of different view freshness models. In addition,
evaluating maintenance queries has been studied extensively
in Datalog with semi-naive evaluation (which also uses first-
order deltas) and DRed (delete-rederive) [17]. Finally, [15]
argues for view maintenance in stream processing, which
reinforces our position of using IVM as a general-purpose
change propagation mechanism for collections, on top of
which window and pattern constructs can be defined.

2.2 Update Processing Mechanisms

Triggers and Active Databases. Triggers, active databases
and event-condition-action (ECA) mechanisms [5] provide
general purpose reactive behavior in a DBMS. The litera-
ture considers recursive and cascading trigger firings, and
restrictions to ensure restricted propagation. Trigger-based

approaches require developers to manually convert queries
to delta form, a painful and error-prone process especially
in the higher-order setting. Without manual incrementaliza-
tion, triggers suffer from poor performance and cannot be
optimized by a DBMS when written in C or Java.
Data Stream Processing. Data stream processing [2,31]
and streaming algorithms combine two aspects of handling
updates: (1) shared, incremental processing (e.g. paired vs
paned windows, sliding windows) and (2) sublinear algo-
rithms (with polylogarithmic space bounds). The latter are
approximate processing techniques that are difficult to com-
pose, and have had limited adoption in commercial DBMS.
Advanced processing techniques in the streaming commu-
nity also focus mostly on approximate techniques when pro-
cessing cannot keep up with stream rates (e.g. load shedding,
prioritization [41]), on shared processing (e.g. on-the-fly ag-
gregation [27]), or specialized algorithms and data struc-
tures [14]. Our approach to streaming is about generaliz-
ing incremental processing to (non-windowed) SQL seman-
tics (including nested subqueries and aggregates). Of course,
windows can be expressed in this semantics if desired. Sim-
ilar principles are discussed in [15].
Automatic Differentiation and Incrementalization,
and Applications. Beyond the database literature, the pro-
gramming language literature has studied automatic incre-
mentalization [29] and automatic differentiation. Automatic
incrementalization is by no means a solved challenge, es-
pecially when considering general recursion and unbounded
iteration. Automatic differentiation considers deltas of func-
tions applied over scalars rather than sets or collections, and
lately in higher-order fashion [35]. Bridging these two areas
of research would be fruitful for supporting UDFs and gen-
eral computation on scalars and collections in DBToaster.

3 Queries and Deltas

In this section, we present the internal data model, gener-
alized multiset relations (GMRs), and the query language,
AGgregate CAlculus (AGCA), of DBToaster and show how
to compute delta queries. The design of the data model and
query language avoids complex case distinctions when pro-
cessing different forms of updates (specifically, deletions)
during incremental view maintenance. The language is al-
gebraic in flavor, expressive (it captures most of SQL), and
has few syntactic cases, which facilitates the construction of
powerful optimizers and compilers.

GMRs generalize multiset relations (as in SQL) to col-
lections of tuples, each annotated with tuples of rational mul-
tiplicities (i.e., from Q). This allows us to treat databases and
updates uniformly; for instance, a deletion is a relation with
negative multiplicities, and applying an update to a data-
base means unioning/adding it to the database. It also allows
us to use multiplicities to represent aggregate query results

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 5

(which do not need to be integers). As a consequence, when
performing delta processing on aggregate queries, growing
an aggregate means to add to the aggregate value rather than
to delete the tuple with the old aggregate value and insert a
tuple with the new aggregate value. Maintaining aggregates
in the multiplicities allows for simpler and cleaner book-
keeping, and having multiple “multiplicities” for a tuple al-
lows for multiple aggregates and bookkeeping attributes to
be maintained together in a single GMR.

AGCA is a very simple language, essentially constructed
from GMRs and infinite interpreted relations (which cap-
ture conditions) using just four operations — addition, its
inverse, multiplication, and sum-aggregation. This syntac-
tic simplicity facilitates rich optimizations in the DBToaster
compiler. For the purpose of understanding the delta pro-
cessing framework (and proving it correct), one can view
the query language as a polynomial ring over GMRs with
an addition operation that at once generalizes multiset union
(as known from SQL) and updating, and a multiplication op-
eration that generalizes the natural join operation. This ring-
theoretic framework was initially developed in [22] and has
been refined in [23].

The multiplication operation also implements sideways
binding passing and enforces range restriction as known in
the context of relational calculus. This allows the language
to be algebraic without a need for an explicit selection opera-
tion. AGCA encodes selection as a multiplication of a query
with a condition just like relational calculus does. Multipli-
cation is defined in such a way that query results are guar-
anteed to be always finite.

3.1 Data Model

It is convenient to model tuples as having their own schema;
this way we can use the same definition for varying envi-
ronments. Formally, we define a relation tuple~t as a partial
function from a vocabulary of column names to data values.
We write~t as 〈A : v | A ∈ dom(~t)〉, where v is a value from
the codomain which we may also identify as~t(A); 〈〉 signi-
fies the empty tuple. The set of all tuples is denoted by T.

A generalized multiset relation (GMR) R : T→ Qk is a
function from relation tuples to tuples of rational numbers
such that R(~t) 6= 〈0〉k for at most a finite number of tuples~t.
A GMR succinctly encodes k relations, indicating the mul-
tiplicity with which each tuple of T occurs in each relation.
The set of all such functions is denoted by Qk

Rel. We write
sch(R) to denote a common schema of GMR R, which sub-
sumes the tuple schemas. Below, we also use classical sin-
gleton relations (without multiplicities) and the natural join
operator ./. We write {~t} to construct a singleton relation
from tuple~t with the schema sch({~t}) = dom(~t). For tuples
~s,~t that are consistent ({~s} ./ {~t} 6= /0), we can write ~s~t for
the consistent concatenation ({~s~t}= {~s} ./ {~t}).

3.2 Query Language

We now formally define AGCA over Q2
Rel. In the following

semantics, the first field of the multiplicity tuple is used for
bookkeeping purposes to track the bag multiplicity of the
tuple, while the second field stores the aggregate value being
computed. AGCA may be generalized from Q2

Rel to Qk
Rel for

any k > 2 by cloning its behavior with respect to the “value”
field. This generalization is omitted to avoid notation clutter.
Syntax. AGCA expressions are built from constants, vari-
ables, relational atoms, conditions, and variable assignments
(:=), using operations bag union +, natural join ∗, and ag-
gregate sum Sum~A. The abstract syntax is:

q ::- q∗q | q+q | −q | c | x | R(~t) | Sum~A(q) | x θ 0 | x :=q

Here x denotes variables (which we also call columns),~t tu-
ples of variables, ~A tuples of group-by variables, R relation
names, c constants from Q, and θ denotes comparison oper-
ators (=, 6=, >, ≥, <, and ≤). We also use xθ y as syntactic
sugar for (x− y)θ 0.

Note that x :=q is a special condition essentially equiv-
alent to x = q, with one catch. In relational calculus, both
variables x and y are safe in φ ∧ x = y if at least one of them
is safe in φ (the other variable can be assigned the value
of the safe variable from φ). To make this information flow
explicit, we create a syntactic distinction between the case
where only one of the variables is safe from the left (:=)
and the case where both are safe (=).
Informal Semantics. Intuitively, the following steps lead to
the definition of AGCA:

1. Take the fragment of relational algebra on multiset rela-
tions with just the operations of selection σ , natural join
./, union +, and (multiplicity-preserving) projection π .
Allow queries of this algebra to be nested into selection
conditions; projections to nullary relations yield a nu-
merical multiplicity — a tuple count — that can be com-
pared with numerical database fields (e.g., we can write
σA<π〈〉(R)(S), when S has a numerical column A). Allow
deletions to be expressed using a negative multiplicity
(necessitating an additive inverse operation).

2. Promote selection conditions to interpreted relations and
enforce a range restriction policy to ensure that all que-
ries define finite relations, both as in relational calculus.
That is, we may write R ./ (A < B) for σA<B(R), and
have no further need for an explicit selection operation.
However, (A < B) by itself is not a valid query because
an unbounded number of tuples satisfy the condition.
This simplifies the algebra: of the four remaining oper-
ations, we will see that we can treat union, the additive
inverse, and projection alike in delta processing, reduc-
ing the number of operations to two: union and join.

3. Generalize this language to GMRs while preserving dis-
tributivity of + and ./. This turns GMRs with these two

6 Christoph Koch et al.

operations and the explicit additive inverse into a ring.
There is essentially only one way to do this, as shown in
[23], and this solution is the semantics of AGCA. This
ring structure makes delta processing extremely simple.

4. Implement an operation x := Q to lift multiplicities to tu-
ple values. This is a powerful and subtle operation which
requires GMRs of type Q2

Rel to maintain, separately, ag-
gregates and true multiplicities.

With the above intuition in mind, the reader should be able
to validate that the formal semantics presented in Figure 1 is
a solution to the specification just given. Note that in these
semantics, the generalized union, join, and projection oper-
ations are denoted by +, ∗, and Sum~A.
Semantics. The formal semantics of AGCA is given by an
evaluation function [[·]] that, for a query Q, a database D, and
a context — a tuple~b of “bound variables” — evaluates to
an element [[Q]](D,~b) of Q2

Rel constructed as follows. Note
that in several the recursive cases, arithmetic on the multi-
plicity/value tuples is performed vector-wise.
AGCA admits sideways information passing. That is, query
expressions are evaluated relative to a given context~b — an
association of variables and their values — which is pro-
vided from the outside. The language, specifically the mul-
tiplication operation, dictates how such bindings are to be
passed to the right during query evaluation.

The definition of [[R(~x)]] allows column renaming. The
evaluation of variables x (e.g., [[x]]) fails if they are unbound
at evaluation time. We consider a query in which this may
happen illegal, and exclude such queries from AGCA. Ob-
serve that R−S = R+(−S) does not refer to the difference
operation of relational algebra, but to the additive inverse for
GMRs: for instance, /0−R = −R in AGCA (/0 can be writ-
ten in AGCA as the constant 0), while the syntactically same
expression in relational algebra results in /0. It is more appro-
priate to think of a GMR −R as a deletion, where deleting
“too much” results in a database with negative tuples.

Example 3 Let R be a GMR of Q2
Rel

RD A B
1 2 7→ 〈m1,q1〉
3 5 7→ 〈m2,q2〉
4 2 7→ 〈m3,q3〉

where mi,qi denote rational multiplicities. Then

[[R(x,y)]](D,〈x : 3〉) x y
3 5 7→ 〈m2,q2〉

The query renames the columns (A,B) to (x,y) and selects
on x since it is a bound variable.

The AGCA version of the query σA<B(R) evaluates to

[[R(x,y)∗ (x < y)]](D,〈〉) x y
1 2 7→ 〈m1,q1〉
3 5 7→ 〈m1,q2〉

Base cases
Constant Value

[[c]](· , ·) :=~t 7→
{
〈1,c〉 ..~t = 〈〉
〈0,0〉 .. otherwise

Variable Value

[[x]](· ,~b) :=~t 7→

 fail .. x 6∈ dom(~b)
〈1,~b(x)〉 .. otherwise, if~t = 〈〉
〈0,0〉 .. otherwise

Relation
[[R(~x)]](D,~b) :=

~t 7→


〈m,m〉 .. m = RD(〈Ai :~t(xi) | Ai ∈ sch(R)〉),

{~b} ./ {~t} 6= /0, |dom(~t)|= |sch(R)|
〈0,0〉 .. otherwise

Comparison

[[xθ 0]](D,~b) :=~t 7→

 fail .. x 6∈ dom(~b)
〈1,1〉 ..~b(x)θ 0, ~t = 〈〉
〈0,0〉 .. otherwise

Recursive cases
Bag Union
[[Q1 +Q2]](D,~b) :=~t 7→ [[Q1]](D,~b)(~t)+Q2

[[Q2]](D,~b)(~t)

Additive Inverse
[[−Q]](D,~b) :=~t 7→ [[Q]](D,~b)(~t)∗Q2 〈−1,−1〉

Natural Join
[[Q1 ∗ Q2]](D,~b) :=

~t 7→
Q2

∑
{~t}={~r}./{~s}
{~b}./{~r}6= /0

[[Q1]](D,~b)(~r)∗Q2
[[Q2]](D,~b~r)(~s)

Summation with Group-by
[[Sum~A Q]](D,~b) :=

~t 7→


Q2

∑
{~t}./{~s}={~s}

[[Q]](D,~b)(~s) .. dom(~t) = ~A,
{~b} ./ {~t} 6= /0

〈0,0〉 .. otherwise

Variable Assignment

[[x :=Q]](D,~b) :=~t 7→


〈1,1〉 ..~t2 = 〈xi : t(xi) | xi 6= x〉,∃m. m 6= 0,

〈m,~t(x)〉= [[Q]](D,~b)(~t2)
〈0,0〉 .. otherwise

Fig. 1 The formal evaluation semantics of AGCA ([[·]]). The operators
+Q2

,∗Q2
and ∑

Q2
are vector-wise instances of +,∗ and ∑ respectively.

For instance,

[[R(x,y)∗ (x < y)]](D,〈〉)(〈x : 1,y : 2〉)

=
Q2

∑
{〈x:1,y:2〉}={~r}./{~s}

[[R(x,y)]](D,〈〉)(~r)∗ [[x < y]](D,~r)(~s)

= [[R(x,y)]](D,〈〉)(〈x : 1,y : 2〉)

∗Q2
[[x < y]](D,〈x : 1,y : 2〉)(〈〉) = 〈m1,q1〉 �

Sum-aggregates serve as multiplicity-preserving projec-
tions: The result of Sum~AQ is the tuples of the projection of
Q on ~A, and each tuple’s multiplicity is the sum of the multi-
plicities of the tuples that were projected down to it. An ag-

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 7

gregation Sum~AR almost works like the SQL query SELECT

~A, SUM(1) FROM R GROUP BY ~A. The only difference is
that SQL puts the aggregate values into a new column, while
Sum~AR puts them into the multiplicity of the group-by tu-
ples. We can express more general aggregate summations
using clever arithmetics on multiplicities.

Example 4 The sum-aggregate query Sum[y](R(x,y)∗2∗x)
generalizes the SQL query SELECT B, SUM(2 * A) FROM

R GROUP BY B to GMRs. Applied to the GMR of Exam-
ple 3, it yields

[[Sum[y](R(x,y)∗2∗ x)]](D,〈〉) y
2 7→ 〈m1 +m3,2q1 +8q3〉
5 7→ 〈m2,6q2〉

For instance,

[[Sum[y](R(x,y)∗2∗ x)]](D,〈〉)(〈y : 2〉)

=
Q2

∑
~r,~s,~t

[[R(x,y)]](D,〈〉)(~r) ∗Q2
[[2]](D,~r)(~s)

∗Q2
[[x]](D,~r~s)(~t)

= 〈m1 ∗1,q1 ∗2〉 ∗Q2
[[x]](D,〈x : 1,y : 2〉)(〈〉)

+Q2 〈m3 ∗1,q3 ∗2〉 ∗Q2
[[x]](D,〈x : 4,y : 2〉)(〈〉)

= 〈m1 +m3,2∗q1 +8∗q3〉 �

Using the assignment operator, variables can also take
on values of non-grouping aggregates, or those that evaluate
to a single value for a given set of bindings. That way we can
express queries with nested aggregates. Nested aggregates
may be correlated with the outside as usual in SQL.

Example 5 Assume relation R has columns (A,B) and rela-
tion S has columns (C,D). The SQL query

SELECT * FROM R

WHERE B < (SELECT SUM(D) FROM S WHERE A > C)

is equivalent to Sum[A,B]
(
R(A,B)∗ (z :=Qn)∗ (B < z)

)
with

Qn = Sum[] (S(C,D)∗ (A >C)∗D). �

AGCA has no explicit syntax for universal quantifica-
tion or aggregates other than Sum, but these features can
be expressed using (nested) sum-aggregate queries. Special
handling of these features in delta processing and query op-
timization could yield performance better than what we re-
port in our experiments. However, granting these definable
features specialized treatment is beyond the scope of this ar-
ticle. As a consequence, our implementation provides native
support for only the fragment presented above, and the ex-
periments use only techniques described in the article. This
language specification covers all of the core features of SQL
with the exception of null values and outer joins.

3.3 Computing the Delta of a Query

Next, we show how to construct delta queries. AGCA has
the nice property of being closed under taking deltas: For
each query expression Q, there is an expression ∆Q of the
same language that captures how the result of Q changes as
the database D is changed by update workload ∆D,

∆Q(D,∆D) := Q(D+∆D)−Q(D).

Due to the strong compositionality of the language, we can
turn any AGCA expression into its delta by repeatedly ap-
plying the following rules syntactically to expressions until
we obtain an AGCA expression over GMRs and delta GMRs
(updates). We write u to denote an update, and ∆uQ for the
delta of expression Q with respect to that update. Thus for a
GMR R, ∆uR is the change to R made in update u.

∆u(Q1 +Q2) := (∆uQ1)+(∆uQ2)

∆u(Q1 ∗ Q2) := ((∆uQ1)∗Q2)+(Q1 ∗ (∆uQ2))

+ ((∆uQ1)∗ (∆uQ2))

∆u−Q := −∆uQ

∆uc := 0

∆ux := 0

∆u(xθ 0) := 0

∆u(x :=Q) := (x :=(Q+∆uQ))− (x :=Q)

∆u(Sum~AQ) := Sum~A(∆uQ)

The correctness of the rules follows from the fact that the
GMRs with + and ∗ form a ring (for example, the delta rule
for ∗ is a direct consequence of distributivity) and that Sum~A
can be thought of as the repeated application of + [23].

The special case of single-tuple updates is interesting
since it allows us to simplify delta queries further and to
generate particularly efficient view refresh code. We write
±R(~t) to denote the insertion/deletion of a tuple~t into/from
relation R of the database.

∆±R(~t)
(
R(x1, . . . ,x|sch(R)|)

)
:=±

|sch(R)|

∏
i=1

(xi := ti)

∆±R(~t)
(
S(x1, . . . ,x|sch(S)|)

)
:= 0 (R 6= S)

Example 6 Consider the AGCA query

Q = Sum[]

(
R(A,B)∗S(C,D)∗ (B =C)∗A∗D

)
which is equivalent to the query of Example 2. We abbre-
viate the Sum subexpression as Q1. Let us study the inser-
tion/deletion of a single tuple 〈A : x,B : y〉 to/from R. Since

∆±R(x,y)R(A,B) =±(A :=x)∗ (B :=y)

by the delta rule for ∗,

∆±R(x,y)Q1 =±(A :=x)∗ (B :=y)∗S(C,D)∗ (B=C)∗A∗D

=±S(C,D)∗ (y=C)∗ x∗D

8 Christoph Koch et al.

For the main query, we get ∆±R(x,y)Q = Sum[](∆±R(x,y)Q1).
�

Example 7 Consider the overall query with a nested aggre-
gate from Example 5. The delta for insertion/deletion of a
tuple 〈C : x,D : y〉 to/from relation S is:

Sum[A,B]
(
R(A,B)∗∆±S(x,y)(z :=Qn)∗ (B < z)

)
Following the delta rule for := ,

∆±S(x,y)(z :=Qn) =
(
z :=(Qn±∆±S(x,y)Qn)

)
− (z :=Qn)

where

∆±S(x,y)Qn =Sum[] ((C :=x)∗ (D :=y)∗ (A >C)∗D)

=(A > x)∗ y

which is a way of writing “if (A > x) then y else 0”. �

3.4 Binding Patterns

AGCA queries have binding patterns which represent infor-
mation flow. In general, this flow is not exclusively bottom-
up. Input variables are parameters whose values cannot be
computed from the database and without which we cannot
evaluate the query. Output variables represent columns of
the query result schema.

The most interesting case of input variables occurs in
a correlated nested subquery, viewed in isolation. In such
a subquery, a correlation variable from the outside is such
an input variable. The subquery can only be computed if a
value for the input variable is given.

Example 8 In Example 5, all columns of R’s schema are
output variables. In the subexpression Qn, A is an input vari-
able and there are no output variables since the aggregate is
non-grouping.

Taking a delta adds input variables, parameterizing the
query with the update. In Example 6, the delta query uses
input variables x and y to pass the update.

In ∆±S(x,y)Qn = (A > x)∗y of Example 7, A, x, and y are
input variables. �

4 The Viewlet Transform

We are now ready for the viewlet transform. In this section,
we exclude variable assignments x := Q from the query lan-
guage where Q contains a sum-aggregate. This restriction is
eliminated in the next section. This query language fragment
has the following nice property: ∆Q is structurally strictly
simpler than Q when query complexity is measured as fol-
lows. For union-free queries, the degree deg(Q) of query Q

is the number of relations joined together. Distributivity al-
lows pushing unions above joins and thus gives a degree to
queries with unions: the maximum degree of the union-free
subqueries. Queries are strongly analogous to polynomials,
and the degree of queries is defined precisely as it is defined
for polynomials (where the relation atoms of the query cor-
respond to the variables of the polynomial).

Theorem 1 ([23])
If deg(Q)> 0 then deg(∆Q) = deg(Q)−1.

The viewlet transform uses the simple fact that a delta
query is a query too. Thus it can be incrementally main-
tained using the delta query of the delta query, which again
can be materialized and incrementally maintained, and so
on, recursively. By the above theorem, this recursive query
transformation terminates at the deg(Q)-th recursion level,
when the obtained delta query is a “constant” (degree 0) in-
dependent of the database, and dependent only on updates.

In the following, we write ∆ lQ[u1, . . . ,ul] (l ≥ 0) to de-
note a view representing the query ∆ul · · ·∆u1Q parameter-
ized by updates u1, . . . ,ul . In general, this is a higher-order
delta query, but the case l = 0 is simply the query Q. Just
like in Section 3.3, an update is a database of GMRs, po-
tentially holding inserts and deletes (represented by positive
and negative tuple multiplicities) for any relation of the da-
tabase being updated.

Definition 1 Given a query Q, the viewlet transform turns Q
into the following update trigger, which maintains the view
of Q plus a set of auxiliary views.

on update u do {
for k = 0 to deg(Q)−1 do

foreach u1, . . . ,uk do ∆ kQ[u1, . . . ,uk] +={
∆u∆uk · · ·∆u1Q . . . k = deg(Q)−1
∆ k+1Q[u1, . . . ,uk,u] . . . otherwise

} �

The viewlet transform owes its name to a superficial
analogy with the Haar wavelet transform, which also ma-
terializes a hierarchy of differences.

At runtime, each trigger statement loops over the do-
mains of the variables u1, . . . ,uk (in each case, the domain
of databases). This is of course not practical.

One way to turn the viewlet transform into a practical
scheme is to restrict the updates to be constant-size batches.
Without true loss of generality, we will look at single-tuple
updates. These offer particular optimization potential, and
we focus on these in the remainder of this article. This re-
quires, however, to create multiple triggers to handle the dif-
ferent update events (inserts and deletes for multiple rela-
tions).

+R(~t) denotes the insertion of a single tuple~t into re-
lation R, while −R(~t) denotes the corresponding deletion.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 9

We create insert and delete triggers in which the argument is
the tuple, rather than a GMR, and thus avoid looping over
relation-typed variables. Using only field variables is one
key to efficient triggers; the other is the potential to rewrite
and simplify queries. We give an example and study this in
detail in the next section.

Example 9 Consider query Q from Example 6, with single-
tuple updates. This query has degree two. Let sgnR,sgnS ∈
{+,−}. Then one of the second-order deltas is

(∆sgnRR(x,y)∆sgnSS(z,u)Q)[x,y,z,u] = sgnRsgnS (y = z)∗ x∗u

A trigger for events ±R(x,y) can be obtained as follows.
Variables x and y are arguments of the trigger and are bound
at runtime, but variables z and u need to be looped over. On
the other hand, the right-hand side of the trigger is only non-
zero in case that y = z. So we can substitute z by y every-
where and eliminate z. Using this simplification, the viewlet
transform produces the following trigger for +R(x,y):
Q += (∆+R(x,y)Q)[x,y];
foreach u do ∆+S(y,u)Q[y,u] += x∗u;
foreach u do ∆−S(y,u)Q[y,u] -= x∗u;
The construction of the remaining triggers happens analo-
gously. The trigger contains an update rule for the (in this
case, scalar) view Q for the overall query result. The rule
uses the auxiliary view ∆±R(x,y)Q, which is maintained in
the update triggers for S. The trigger also contains update
rules for the auxiliary views ∆±S(y,u)Q that are used to up-
date Q in the update triggers for S.

The reason why we omitted deltas ∆±R(...)∆±R(...)Q and
∆±S(...)∆±S(...)Q is that these are guaranteed to be 0, as the
query does not have a self-join.

An additional optimization presented in the next section
eliminates the loops on u using distributivity and associativ-
ity, leading to the triggers of Example 2. �

We observe that the structure of the work that needs to be
done is extremely regular and (conceptually) simple. More-
over, there are no classical coarse-grained query operators
left, so it makes no sense to give this workload to a classical
query optimizer. There are for-loops over many variables,
which have the potential to be very expensive. But the work
is also perfectly data-parallel, and there are no data depen-
dencies comparable to those present in joins. All this pro-
vides justification for making heavy use of compilation.

We refer to the viewlet transform as presented in this
section as the naive viewlet transform. The following section
presents improvements and optimizations.

5 Higher-Order IVM

The DBToaster compilation algorithm is a practical imple-
mentation of the viewlet transform, which we call Higher-
Order IVM. Like the viewlet transform, Higher-Order IVM

transforms a query Q into a trigger program — a set of trig-
gers that maintain the materialized view (as a map or dictio-
nary) MQ on query Q, and a set of supplemental materialized
views. As before, each trigger consists of update statements,
each of the form foreach ~x do MQ[~x] += Q′[~x];

The key observation behind Higher-Order IVM is that
full delta queries materialized by the naive viewlet transform
may be very expensive, or simply impossible to maintain.

An example of the former situation is a delta query in-
cluding a Cartesian product (i.e., a product of two subqueries
Q1 ∗Q2 with no output variables in common). As we will
soon see, such queries arise quite frequently in the viewlet
transform and are expensive to maintain.

Full delta queries that are impossible to maintain include
(1) Delta queries that contain input variables, and therefore
lack finite support, and (2) Deltas of queries with nested sub-
queries, to which Theorem 1 does not apply.

The key insight behind DBToaster, which makes Higher-
Order IVM possible, is that it is unnecessary to material-
ize the full delta query. When generating update statements
for a materialized view Q, DBToaster materializes the delta
terms ∆uQ as one or more subqueries of each delta query.
When the corresponding update statement is executed, ∆uQ
is computed from the materialized subqueries.

Materializing subqueries of the delta query instead of
the full delta query increases the cost of evaluating trigger
statements. By carefully selecting an appropriate set of sub-
queries, however, the increased execution cost is offset by a
substantial reduction in view maintenance costs.

We now formally define Higher-Order IVM (HO-IVM).
Recall that the viewlet transform produces a sequence of
statements, each of the form: Q[~x] += ∆uQ[~x]. Unlike the
viewlet transform, HO-IVM does not materialize ∆uQ as a
single materialized view. Instead, HO-IVM identifies a set
of subqueries ~M∆uQ to materialize and rewrites the statement
into an equivalent statement Q[~x] += ∆uQ′[~x], evaluated over
these materialized views. Then, instead of recurring on ∆uQ
as in the viewlet transform, HO-IVM recurs individually on
each Mi ∈ ~M∆uQ. We refer to the rewritten query and the set
of materialized subqueries as a materialization decision for
∆uQ, denoted 〈∆uQ′, ~M∆uQ〉.

Example 10 Consider the following query

Q[] = Sum[](R(A,B)∗S(B,C)∗T (C,D))

The insertion trigger for +S(b,c) includes the statement

Q[] += Sum[](R(A,b)∗T (c,D));

Under the viewlet transform, we materialize and maintain
the expression Sum[b,c](R(A,b)∗T (c,D)). DBToaster mate-
rializes that expression in terms of two sub-expressions:

M1[b] := Sum[b](R(A,b)) M2[c] := Sum[c](T (c,D))

The insertion trigger then includes the statement:

10 Christoph Koch et al.

Q[] += Sum[](M1[b]∗M2[c]); �

Algorithm 1 summarizes HO-IVM and Sections 5.1–5.3
discuss heuristics for obtaining a materialization decision
(which define the materialize() procedure).

Algorithm 1 HO-IVM(Q, MQ)
Require: A query Q to be maintained as MQ.
Ensure: A list of update statements Tu for each update event u.

for all Relation Name R used in Q do
for all u ∈ {+R,−R} do

let~x = the input/output variables of ∆uQ
let 〈Q′,{Mi := Qi}〉= materialize(∆uQ)
update Tu = Tu :: (foreach~x do MQ[~x] += Q′[~x])
for all i do HO-IVM(Qi, Mi)

Algorithm 2 Generalized HO-IVM(Q)
Require: A query Q to be maintained.
Ensure: A query Q′, equivalent to Q.
Ensure: A list of update statements Tu for each update event u.

let 〈Q′,{Mi := Qi}〉= materialize(Q)
for all i do HO-IVM(Qi, Mi)

Note that the use of materialization decisions need not be
limited to delta queries. At the user’s request, DBToaster can
materialize the user-provided (i.e., top-level) query piece-
wise as opposed to maintaining a single view with the full
result that the user is interested in. Although doing so creates
a computational overhead when the view contents are ac-
cessed, it can substantially reduce maintenance costs. Com-
puting averages is a common example where piecewise ma-
terialization is beneficial, as it involves maintaining two sep-
arate, simpler aggregates: the count and sum of the input.
The average value can be easily reconstituted from the sum
and count when it is necessary. This generalized form of
Higher-Order IVM is made explicit in Algorithm 2.

5.1 Heuristic Optimization

We present our approach to selecting a materialization de-
cision as a set of independent heuristic rewrite rules that
are repeatedly applied to the naive materialization decision
〈(MQ,1),{MQ,1 := Q}〉, up to a fixed point.

For clarity, we present these rules in terms of a material-
ization operator M . For example, one possible materializa-
tion decision for the query Q := Q1 ∗Q2 is

M (Q1)∗M (Q2)≡ 〈(MQ,1 ∗MQ,2),{MQ,i := Qi}〉.

All but the trivial rewrite rules are presented in Figure 2. The
full array of heuristic optimizations is discussed in depth be-
low. Figure 3 shows how these rules apply to the experimen-
tal workload discussed in Section 9.

Query Decomposition

M (Sum~A~B(Q1 ∗Q2))⇒M (Sum~A(Q1))∗M (Sum~B(Q2)) (1)
~A and ~B are any disjoint sets of variables.

Factorization and Polynomial Expansion

M (Sum~A(QL ∗ (Q1 +Q2 + . . .)∗QR))⇔
M (Sum~A(QL ∗Q1 ∗QR))+M (Sum~A(QL ∗Q2 ∗QR))+ . . . (2)

Input Variables

M (Sum~A(Q∗ f (~B~C)))⇒ Sum~A(M (Sum~A~B Q)∗ f (~B~C)) (3)

Q is the maximal subquery that contains no input variables.
f is a subquery that contains no relation terms
~A is any set of variables
~B is the set of output variables of Q referenced by f
~C is the set of input variables referenced by f

Nested Aggregates and Decorrelation

M (Sum~A(QO ∗ (x :=QN)∗ f (x,~B)))⇒

Sum~A(M (Sum~A~B(QO))∗ (x :=M (QN))∗ f (x,~B)) (4)

QO is the maximal subquery for which x is not an input variable.
QN is a subquery containing at least one relation term.
f is a subquery containing no relation terms.
~A is any set of variables
~B is the set of output variables of QO referenced by f or QN

Fig. 2 Rewrite rules for partial materialization. Bidirectional arrows
indicate rules that are applied heuristically from left to right while
materializing an expression, but applied in reverse to some expres-
sions. Note that for any query Q with output variables ~A, the property
Q = Sum~A(Q) holds.

Duplicate View Elimination. As the simplest optimization,
we observe that the viewlet transform produces many du-
plicate views. This is primarily because the delta operation
typically commutes with itself; ∆R∆SQ = ∆S∆RQ for any Q
without nested aggregates over R or S. Structural equiva-
lence on the materialized view queries is typically sufficient
to identify this type of view duplication. View deduplication
substantially reduces the number of views created.

Query Decomposition. In most relational optimizers, the
generalized distributive law[6] plays an important role in
widening the search space for optimal materialization de-
cisions. It is also significant in DBToaster’s heuristic opti-
mization strategy. Queries with disconnected join graphs are
particularly expensive to materialize. The query decomposi-
tion rewrite rule presented in Figure 2.1 exploits the gener-
alized distributive law to break up such queries into smaller
components for materialization.

If the join graph of Q includes multiple disconnected
components Q1, Q2, . . . (i.e., Q is the Cartesian product Q1×
Q2× . . .), it is better to materialize each component indepen-
dently as M (Q1)∗M (Q2)∗

The cost of selecting from (iterating over) M (Q) is sim-
ilar to the cost of selecting from M (Q1) ∗M (Q2) ∗ . . ., as
both require an iteration over |Q1|×|Q2|× . . . elements. Fur-
thermore, maintaining each individual Qi is less computa-
tionally expensive: the decomposed materialization stores

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 11

Query Features Rules
T, J Wc Gb Nst. D P I N

S/C R/I

T
PC

-H

Q1 1 < 3 - - 3 S I
Q2 5,= ∧,= - 1 3 3 S I
Q3 3,= ∧,< 3 - 3 3 - -
Q4 1 ∧,< 3 1 - 3 S I
Q5 6,= ∧,< 3 - 3 3 - -
Q6 1 ∧,< - - - - - -
Q7 6,= ∧,∨,< 3 1 3 3 - -
Q8 7,= ∧,=,< 3 1 3 3 S R
Q9 6,= ∧,= 3 1 3 3 - -
Q10 4,= ∧,=,< 3 - 3 3 - -
Q11 2,= - 3 - 3 3 S I
Q11a 2,= - 3 - - - - -
Q12 2,= ∧,=,< 3 - - 3 - -
Q13 2,= 6= 3 1 - 3 S I
Q14 2,= ∧,< - - - 3 S R
Q15 2,= ∧,< 3 2 - 3 S I
Q16 2,= ∨,=, 6= 3 1 3 3 S R
Q17 2,= < - 1 3 3 S I
Q17a 2,= < - 1 3 3 S I
Q18 3,= < 3 2 3 - S R,I
Q18a 3,= < 3 2 3 3 S I
Q19 2,= ∨,=,< - - - 3 - -
Q20 2,= ∧,=,< - 2 - 3 S I
Q21 4,= ∧,=,< 3 1 3 3 S I
Q22 1 =,< 3 1 - 3 S R,I
Q22a 1 =,< 3 1 - 3 S R,I
SSB4 7,= < 3 - 3 - - -

Fi
na

nc
e

AXF 2,= ∨,< 3 - - 3 S -
BSP 2,= ∧,< 3 - - 3 - -
BSV 2,= - - - - 3 - -
MST 2,x ∧,< 3 1 - 3 S R,I
PSP 2,x ∧,< - 1 - 3 S R,I
VWAP 1 < - 1 - 3 C R

Sc
i. MDDB1 4,= ∧,= 3 - 3 3 - -

MDDB2 10,= ∧,∨,< - - 3 3 - -

Fig. 3 Workload features and rewrite rules applied to each query. Fea-
tures notation: T, J = Number of tables, Join type (=: equi, x: cross);
Wc = Where-clause (∧: conjunction, ∨: disjunction, =: equality, 6=:
inequality, <: range inequality); Gb = GroupBy-clause; Nst. = Nest-
ing depth. Rules notation: D = query decomposition; P = factorization
and polynomial expansion; I = input variables, with a subquery, S, or a
view cache, C; N = nested aggregates and decorrelation, with complete
re-evaluation of the nested query, R, or incremental evaluation, I.

(and maintains) only |Q1|+ |Q2|+ . . . values, while the com-
bined materialization handles |Q1| ∗ |Q2| ∗ . . . values.

Taking a delta of a query with respect to a single-tuple
update replaces a relation in the query by a singleton con-
stant tuple, effectively eliminating one hyperedge from the
join graph and creating new disconnected components that
can be further decomposed. Consequently, this optimization
plays a major role in the efficiency of DBToaster, and for en-
suring that the number of maps created for any acyclic query
is polynomial. Example 10 shows this optimization.
Polynomial Expansion and Factorization. As described,
the query decomposition optimization operates exclusively
over conjunctive queries (i.e., AGCA expressions without
addition). To support decomposition across unions, we ob-
serve that addition and aggregate summations commute:

Sum~A(Q1 +Q2) = Sum~A(Q1)+Sum~A(Q2)

and that the generalized distributive law[6] applies:

Q1 ∗ (Q2 +Q3) = (Q1 ∗Q2)+(Q1 ∗Q3)

Consequently, any query can be expanded into a sum of mul-
tiplicative clauses, where each clause is a conjunctive query
(analogous to a query in disjunctive normal form).

As part of the heuristic-based materialization strategy,
queries are fully expanded so that each multiplicative clause
may be materialized independently. This in turn makes it
possible to effectively perform query decomposition. The
rewrite rule for this process, which we refer to as polyno-
mial expansion, is presented in Figure 2.2.

Note that this rule can also be applied in reverse. If a
common term (QL and QR in the rewrite rule) appears in
several multiplicative clauses, the term can be factored out
of the sum of these multiplicative clauses for an equivalent,
smaller and cheaper query expression. It is often possible
(and beneficial) to factorize the rewritten query Q′ after ob-
taining a final materialization decision 〈Q′,{. . .}〉, and the
expression is no longer required to be in factored form.
Input Variables. The delta operation introduces input vari-
ables, which in turn makes it possible to create delta queries
without finite support. For example, consider the query

Q[A,B,C] = R(A,B)∗S(C)∗ (B <C)∗A

The delta ∆+R(x,y)Q[x,y,C] = S(C)∗(y<C)∗x has two input
variables (x,y), making it impossible to fully materialize it.

A trivial solution to this problem is to simply avoid mate-
rializing terms that contain input variables. The rewrite rule
shown in Figure 2.3 uses the generalized distributive law[6]
to do precisely this, by pulling terminals that contain input
variables out of the materialization operator. Note that as
with the query decomposition operator, this rewrite rule re-
lies on polynomial expansion to simplify the expression into
a sum of multiplicative clauses.

In addition to extracting input variables from the mate-
rialized query, this rewrite rule also pushes summation into
the materialized expression2. This is analogous to a com-
mon optimization in view maintenance and query process-
ing, where aggregation and projection operators are pushed
down as far as possible into the evaluation pipeline.

In addition to the trivial solution, several other strate-
gies for dealing with input variables are possible. For que-
ries where the input variables appear in comparison pred-
icates (e.g., S(C) ∗ (y < C)), data structure-based solutions
like range indices are possible, but beyond the scope of this
work. A third strategy based on caching is discussed below.
Deltas of Nested Aggregates. AGCA encodes nested sub-
queries using the assignment operator (:=). Recall that the
delta rule for this operator is

∆u(x :=Q) := (x :=Q+∆uQ)− (x :=Q)

2 Note that the operation need not actually have a sum aggregate.
An expression Q with output variables ~A is equivalent to the expression
Sum~A(Q).

12 Christoph Koch et al.

The delta query references the original query (twice), and
is clearly not simpler than the original query (as per Theo-
rem 1). On such expressions, the (naive) viewlet transform
fails to terminate.

Of course, queries with assignment are not always catas-
trophic. If ∆uQ = 0, then

(x :=Q+∆uQ)− (x :=Q) = (x :=Q)− (x :=Q) = 0

For assignments where the query Q being assigned to x cor-
responds to a simple arithmetic expression, the delta is al-
ways empty. However, if Q contains a relation term R(~A)
(i.e., Q represents a nested subquery), then the deltas ∆±R
must be handled as a special case.

The rewrite rule presented in Figure 2. 4 identifies nested
subqueries, and uses the generalized distributive law [6] to
extract them for independent materialization. Thus, only ex-
pressions without nested subqueries are materialized, and
Higher-Order IVM terminates.

As with rules 1 and 3, this rule relies on polynomial ex-
pansion to simplify the expression into a sum of multiplica-
tive clauses. Furthermore, just like the input-variable rewrite
rule, this rule aggressively pushes aggregates down into the
newly created expressions.

Although this rule is necessary to guarantee compiler
termination, it can introduce unnecessary overheads into the
evaluation of delta queries. When naively used, this rule
might separately materialize a nested subquery that does not
reference the delta relation. A refinement of this optimiza-
tion analyzes a given delta query before applying the rewrite
rule: Considering the expression from Figure 2.4 and update
u to relation R, it is only necessary to apply the rewrite rule
to QN when QN includes a reference to R. If it does not, then
∆uQN = 0, and the rewrite is unnecessary to ensure termina-
tion of Higher-Order IVM.

Example 11 Recall the delta query ∆±S(x,y)Q of Example 7.

Sum[A,B](R(A,B)∗ (z :=(Qn± (A > x)∗ y))∗ (B < z)−
R(A,B)∗ (z :=Qn)∗ (B < z))

where Qn = Sum[] (S(C,D)∗ (A >C)∗D). The materializa-
tion decision for this delta query materializes two subque-
ries: MQ,1 := R(A,B) and MQ,2 := Sum[C](S(C,D) ∗D). On
every update of relation S, the delta evaluation effectively
evaluates the outer query twice: once using the new value
Qn±∆Qn, and once using the old value of Qn. Conversely,
the delta for updates to R, ∆±RQ always has a lower de-
gree than Q, and is materialized as a single map (the nested-
aggregates rewrite rule is ignored). �

In this example, we see one additional possibility for op-
timization of nested aggregates. The delta for insertions into

S is actually more expensive than re-evaluating the entire up-
date (The outer query is evaluated twice in the delta, but just
once in the original).

Thus, in some situations DBToaster produces an update
statement that replaces the map being maintained, instead of
updating it. As a general rule, the incremental approach pays
off when the inner query is correlated on an equality, and the
delta’s arguments bind at least one of these variables; then
the delta query only aggregates over a subset of the tuples in
the outer query. For instance, if the nested query from Ex-
ample 7 were to have (A =C) instead of (A >C), then only
a subset of the aggregated tuples would have been affected
by the delta, leading to the incremental approach as a better
choice. Based on this analysis, the heuristic optimizer de-
cides whether to re-evaluate or incrementally maintain any
given delta query.

Note that although Q is being recomputed, we can still
accelerate the computation by materializing Q piecewise.
Although the expression being materialized is not a delta,
we still compute a materialization decision (as in General-
ized Higher-Order IVM).

Because we are already materializing the expression Q,
care must be taken to avoid creating a self-referential loop
in this materialization decision. The default materialization
decision M (Q) is meaningless, as Q defines the view be-
ing maintained. We avoid this by first applying the nested-
query rewrite heuristic as aggressively as possible to elim-
inate all nested subqueries in the expressions being materi-
alized. Because recomputation is only appropriate for que-
ries with nested subqueries (otherwise it is better to perform
IVM), the resulting expression is guaranteed to be simpler
than Q.

5.2 Specialized Data Structures

Thus far we have considered only straightforward view ma-
terialization, where views are stored in map-like data struc-
tures. But for some queries, advanced data storage prim-
itives can provide opportunities to materialize more com-
plex expressions — particularly those involving input vari-
ables. As many of these opportunities are data-dependent,
DBToaster’s heuristic optimizations rely on user-input to di-
rect selection of an appropriate data structure. In practice, a
cost-based tuning advisor could also be used to automate the
selection process with minimal user involvement.

As one example of a specialized data structure, we dis-
cuss a data structure capable of materializing expressions
with arbitrary input variables: view caches. This data struc-
ture is analogous to partially materialized views [25,37].

A view cache materializes AGCA expressions with in-
put variables. The cache stores multiple full copies of the
materialized view, each for a different valuation of the input
variable(s) that appear in the cache’s defining expression.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 13

When a lookup is performed on the cache, these input
variables must be bound to specific values. If the cache con-
tains a materialized view for that particular valuation, the
materialized view is returned as a normal map. Otherwise,
the cache’s defining query is evaluated as normal, and the
result is stored in the cache.

Unlike a traditional cache, the contents of a view cache
are not invalidated when the underlying data changes. In-
stead, whenever the data is updated, each materialized view
stored in the view cache is updated as normal.

View caches are only beneficial when a small working
set for the domain of an input variable can be expected. Oth-
erwise the heuristic optimizer refrains from creating them.

5.3 Simplifying Delta Expressions

Although the delta operation reduces the expression degree,
it tends to make the expression itself longer and more com-
plicated. It introduces input variables into the expression.
For products and some conditions, it creates additional ad-
ditive terms.

Example 12 Consider the following expression:

Q[A,B] = R(A)∗R(A)∗S(B)

Applying the delta rules leaves us with the expression

∆+R(x)Q[A,B] =
(
(A :=x)∗R(A)+

R(A)∗ (A :=x)+(A :=x)∗ (A :=x)
)
∗S(B)+

R(A)∗R(A)∗0+
(
(A :=x)∗R(A)+

R(A)∗ (A :=x)+(A :=x)∗ (A :=x)
)
∗0

This expression is quite complex, but can be simplified to
∆+R(x)Q[x,B] = (2∗R(x)+1)∗S(B) �

This added complexity increases both compilation and
evaluation costs. Therefore, as part of Higher-Order IVM,
we regularly apply several simplifying transformations to
AGCA expressions; some of these correspond to common
relational algebra transformations. Like with the heuristic
rules, these simplifications are applied repeatedly, up to a
fixed point.
Unification. We propagate range restrictions through AGCA
expressions by a two-step process. First, we transform equal-
ity predicates into equivalent assignment expressions. Sec-
ond, we propagate assignments through the expression, elim-
inating them if appropriate.

In the first stage, we identify equality comparison terms
that can be rewritten into an assignment-compatible form,
where a single variable appears on the left-hand side of the
expression. Each such equality comparison is commuted left
through product terms and out of Sum operators until either
(1) the left-hand variable falls out of scope, (2) commuting

it further would cause a variable appearing on the right-hand
side to fall out of scope. If condition 1 is satisfied, we convert
the equality into an assignment.

An equality comparison may have multiple assignment-
compatible rewritings. At most one of these rewritings can
possibly satisfy condition 1, as a second variable falling out
of scope would violate condition 2. When multiple rewrit-
ings are available, we continue commuting until condition 1
is satisfied for precisely 1 rewriting, or until condition 2 is
violated for all rewritings.

Once all equality comparisons have been converted into
assignments, we propagate assignments throughout the ex-
pression. This is analogous to beta reduction in lambda cal-
culus, although there are semantic restrictions on AGCA
expressions that can prevent us from fully reducing the as-
signment. There are three such limitations: (1) AGCA for-
bids range restrictions to be incorporated directly into rela-
tion terms, (2) AGCA disallows computationally intensive
(i.e. nested aggregate) expressions to be incorporated di-
rectly into comparison operations, and (3) If the assignment
creates a range restriction on the domain of the query output,
the assignment must remain in the expression.

The assignment is propagated as aggressively as possi-
ble. If none of the above limitations are violated and the vari-
able is not in the schema of the query, then the variable is no
longer used and the assignment can be safely removed.
Partial Evaluation and Algebraic Identities. Delta deri-
vation frequently produces expressions containing sums of
terms that differ only by a constant multiplier. The polyno-
mial factorization heuristic presented in Section 5.1 is ap-
plied (ignoring the materialization operator) to group and
and sum up the constant multipliers.

During this optimization stage, AGCA expressions are
partially evaluated by merging constant values that appear
in a sum or product together, and by applying the standard
algebraic identities Q+ 0 = Q, Q ∗ 1 = Q, and Q ∗ 0 = 0.
This last identity is especially useful during delta computa-
tion, as the delta operation produces many zeroes, as well as
expressions of the form Q−Q.
Extracting Range Restrictions. Assignments that create a
range restriction on the output of a query can sometimes be
pulled out of the query. The primary application of this tech-
nique is for update trigger statements, where a range restric-
tion on the statement’s loop variables can be applied directly
to the map being updated.

The procedure is as follows. After the query has been
fully simplified, we identify all assignments where the right-
hand value is a single trigger variable that can be commuted
up to the left-most position of a product term at the root of
the query. These assignments are extracted from the query
and used to create a mapping from loop variables to trigger
variables, which is applied to both the query and the vari-
ables of the map being updated.

14 Christoph Koch et al.

For instance, consider the delta query from Example 12.
Its simplified version contains terms of the form: (A :=x) ∗
R(A)∗S(B). Here, we can extract the assignment, and use it
to eliminate the loop over variable A in the update statement;
the final statement is foreach B do Q[x,B] += ∆RQ[x,B].
Note that one of the variables appearing on the left-hand side
of the update statement has been bound to a corresponding
trigger variable (x).

A similar technique is crucial for efficiently maintaining
nested aggregate deltas, as seen in the following example.

Example 13 Consider the query Q[A,B] = (B :=R(A)). If
R contains 2 tuples as follows, then Q[A,B] is:

[[R(A)]](D,〈〉) A
1 7→ 〈1,1〉
2 7→ 〈3,3〉

[[Q]](D,〈〉) A B
1 1 7→ 〈1,1〉
2 3 7→ 〈1,1〉

The delta of Q with respect to the update +R(a) is

∆+R(a)Q[A,B] = (B :=R(A)+(A :=a))− (B :=R(A))

The GMR for the delta with respect to the insertion of 〈A : 1〉
into R includes two tuples with nonzero multiplicities:

[[∆+R(1)Q]](D,〈〉) A B
1 1 7→ 〈−1,−1〉
1 2 7→ 〈1,1〉

However, while evaluating the delta, two intermediate GMRs
are instantiated with |R| tuples each: A B

1 2 7→ 〈1,1〉
2 3 7→ 〈1,1〉

−
 A B

1 1 7→ 〈1,1〉
2 3 7→ 〈1,1〉


Tuples in these GMRs corresponding to tuples with zero
multiplicities in ∆+R(1)R(A) (i.e. 〈A : 2,B : 3〉) cancel out.
A simpler, equivalent query would be:

∆+R(x)Q[A,B] = (A :=x)∗ ((B :=R(A)+1)− (B :=R(A)))
�

Recall the delta rule for nested queries

∆u(x :=Q) = (x :=Q+∆uQ)− (x :=Q).

After computing the nested delta ∆uQ = (∆uQ)rr ∗ (∆uQ)e,
we extract all range restrictions (∆uQ)rr and prepend them
to the delta of the full expression. The revised delta rule is:

∆u(x :=Q) = (∆uQ)rr ∗ ((x :=Q+(∆uQ)e)− (x :=Q)).

6 Examples

In this section, we provide several examples of Higher-Order
IVM. Our goal is to illustrate how the heuristic optimiza-
tions interact to produce an efficient view maintenance pro-
gram, and to highlight interesting behaviors of DBToaster.

The examples are rather involved. To promote clarity, we
explicitly give output variables with maps. We write Q[~xout]
to denote a map Q with output variables ~xout , which form the
schema of the query result.

on insert into C values (ck):

01 Q[ck] += QC[ck]

02 foreach OK do QLI [ck,OK] += QLI,C[ck,OK]

03 QO1[ck] += 1

on insert into O values (ck,ok):

04 Q[ck] += QO1[ck]∗QO2[ok]∗ (x :=QO2[ok])∗ (100 < x)

05 QLI [ck,ok] += QO1[ck]

06 QLI,C[ck,ok] += 1
07 QC[ck] += QO2[ok]∗ (x :=QO2[ok])∗ (100 < x)

on insert into LI values (ok,qty):
08 foreach CK do

Q[CK] += QLI [CK,ok]∗
((

(QO2[ok]+qty)∗ (x :=QO2[ok]+qty)
)
−(

QO2[ok]∗ (x :=QO2[ok])
))
∗ (100 < x)

09 foreach CK do
QC[CK] += QLI,C[CK,ok]∗

((
(QO2[ok]+qty)∗ (x :=QO2[ok]+qty)

)
−(

QO2[ok]∗ (x :=QO2[ok])
))
∗ (100 < x)

10 QO2[ok] += qty
Fig. 4 DBToaster insert trigger program for Q18a.

6.1 Simplified TPC-H Query 18

We explain the DBToaster compilation process on a query
that contains an equality-correlated nested aggregate:

SELECT C.CK, SUM(LI.QTY) FROM C, O, LI

WHERE C.CK = O.CK AND O.OK = LI.OK AND

100 < (SELECT SUM(LI1.OK) FROM LI AS LI1

WHERE LI.OK = LI1.OK)

GROUP BY C.CK

The query is a simplified version of Q18a from our test
workload (see the appendix in our technical report [24]). For
simplicity, we use the condensed schema C(CK), O(CK,OK),
and LI(OK,QTY). Figure 4 shows the generated trigger pro-
gram. The AGCA expression Q for the query is:

Sum[CK]

(
C(CK)∗O(CK,OK)∗LI(OK,QTY)∗QTY∗
(x :=Qn)∗ (100 < x)

)
where Qn = Sum[]

(
LI(OK1,QTY1)∗ (OK = OK1)∗QTY1

)
.

First, we simplify the subquery Qn. Unification eliminates
the equality predicate to yield an expression with no input
variables: Q′n = Sum[OK]

(
LI(OK,QTY1)∗QTY1

)
.

Due to space limitations we only show the derivation
of insertions into Orders O and Lineitem LI. Insertions into
Customer C are a simple extension, while deletions for all
relations are duals of insertions and are omitted entirely.
Insertions into Orders. The first-order delta of Q for the
insertion of a single tuple 〈CK : ck,OK : ok〉 is

∆+O(ck,ok)Q := Sum[CK]

(
C(CK)∗LI(OK,QTY)∗

(OK :=ok)∗ (CK :=ck)∗QTY ∗ (x :=Q′n)∗ (100 < x)
)

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 15

The delta expression gets simplified after propagating the
assignments: every occurrence of OK and CK is replaced
with ok and ck, respectively; these assignments are also safe
to remove. The delta expression is the following:

Sum[ck](C(ck)∗LI(ok,QTY)∗QTY ∗ (x :=Q′n)∗ (100 < x))

with OK replaced by ok inside Q′n.
Query decomposition splits the delta into three parts:

C(ck) has no common columns with the rest of the expres-
sion and is materialized as a separate map. The remaining
expression can also be divided into two subexpressions that
share only the trigger variable ok. Then, since the selection
predicate is being applied to a singleton, we can safely mate-
rialize only the aggregate in the assignment. Applying these
optimizations yields the following materialization decision:

M
(
Sum[ck](C(ck))

)
∗M

(
Sum[ok](LI(ok,QTY)∗QTY)

)
∗

Sum[]

(
(x :=M (Q′n))∗ (100 < x)

)
The trigger statement uses the following set of views (Fig-
ure 4, line 04, note that QO2 is used twice):

QO1[CK] := Sum[CK]

(
C(CK)

)
QO2[OK] := Sum[OK]

(
LI(OK,QTY)∗QTY

)
The delta query for QO1[CK] and insertions into C is:

∆+C(ck)QO1 := {〈CK : ck〉 7→ 〈1,1〉}

which corresponds to trigger statement 03. QO2[OK] is main-
tained similarly with trigger statement 10.
Insertions into Lineitem. With the nested subquery cor-
related on an equality, DBToaster chooses to compute the
first-order delta of Q for the insertion of a single tuple 〈OK :
ok,QTY : qty〉. The revised rule for nested subqueries yields:

∆+LI(ok,qty)(x :=Q′n) :=

(OK :=ok)∗
(
(x :=Q′n +qty)− (x :=Q′n)

)
Following the delta rule for products

∆+LI(ok,qty)Q := Sum[CK]

(
C(CK)∗O(CK,OK)∗

∆QLI ∗QTY ∗ (100 < x)
)

where

∆QLI := (OK :=ok)∗
(
(QTY :=qty)∗ (x :=Q′n)+

LI(OK,QTY)∗
(
(x :=Q′n +qty)− (x :=Q′n)

)
+

(QTY :=qty)∗
(
(x :=Q′n +qty)− (x :=Q′n)

))
Polynomial expansion, partial evaluation, and unification re-
sult in:

∆+LI(ok,qty)Q := Sum[CK]

(
C(CK)∗O(CK,ok)∗ (

LI(ok,QTY)∗QTY ∗ (x :=Q′n +qty)−
LI(ok,QTY)∗QTY ∗ (x :=Q′n)+

qty∗ (x :=Q′n +qty))∗ (100 < x)
)

on insert into B values (bv,bp):
01 QB1[bv] += bp

02 QB2[] += bv

03 QB3[bv] += 1
04 Q[] :=(

Sum[]((v1:=QB2[]∗0.0001)∗QB3[BV ′]∗ (BV ′ > v1))∗

Sum[]((v2:=QA2[]∗0.0001)∗QA1[AV ′]∗ (AV ′ > v2))
)
−(

Sum[]((v1:=QB2[]∗0.0001)∗QB1[BV ′]∗ (BV ′ > v1))∗

Sum[]((v2:=QA2[]∗0.0001)∗QA3[AV ′]∗ (AV ′ > v2))
)

Fig. 5 The DBToaster trigger program for PSP insertions into B. The
deletion trigger for B and the triggers for A are symmetric

Decomposition and polynomial expansion let us extract the
terms Sum[CK,ok](C∗O) and Sum[ok](LI(ok,QTY)∗QTY) as
separate maps. The rewrite rules for nested aggregates and
input variables materialize Q′n. The final materialization is:

M
(
Sum[CK,ok](C(CK)∗O(CK,ok))

)
∗
(

M (Q2)∗ (x :=M (Q′n)+qty)−
M (Q2)∗ (x :=M (Q′n))+

qty∗ (x :=M (Q′n)+qty)
)
∗ (100 < x)

where Q2 = Sum[ok]
(
LI(ok,QTY)∗QTY

)
Apart from the outermost materialization (of C ./ O), the re-
maining five materialized maps are identical to QO2, which
is already being maintained. Thus, only one additional view,
QLI [CK,OK] := Sum[CK,OK](C(CK) ∗O(CK,OK)), has to
be maintained. Rewriting the materialization decision pro-
duces trigger statement 08.

Note that statement 08, which updates Q, does include
a loop. However, even though DBToaster is not explicitly
aware of TPC-H’s foreign key dependencies, in this exam-
ple, only one customer (CK) will be updated.

QLI is maintained in a manner analogous to that of Ex-
ample 6, resulting in trigger statements 02, 03, 05, and 06.

6.2 The Pricespread Query (PSP)

Next, we look at the query PSP from our test workload,
which has two nested aggregates:

SELECT SUM(A.P - B.P) FROM A, B WHERE B.V >

(SELECT SUM(B’.P * 0.0001) FROM B AS B’) AND

A.V>(SELECT SUM(A’.P * 0.0001) FROM A AS A’)

Again, for simplicity, we use the condensed schema B(P,V)
and A(P,V). The AGCA expression Q for the query is:

Sum[]

(
B(BP,BV)∗A(AP,AV)∗ (AP−BP)∗

(v1:=Sum[](B(BP′,BV ′)∗BV ′ ∗0.0001))∗ (BV > v1)∗
(v2:=Sum[](A(AP′,AV ′)∗AV ′ ∗0.0001))∗ (AV > v2)

)
Figure 5 shows the trigger program. Since the aggregates
have no correlated variables, they can be decorrelated. Sub-
sequently, there is no benefit to using deltas to update the

16 Christoph Koch et al.

final query result and our compilation heuristics decide on
full recomputation for updates to both A and B. Hence, rather
than describing the full compilation process for this exam-
ple, we focus on the process of materializing the full query.

The join graph of this expression is intriguing. It consists
of two mostly disconnected, symmetric components, one for
B(BP,BV) and one for A(AP,AV). In fact, the only edge be-
tween these two is the term (AP−BP). Our materialization
strategy exploits both this, and the fact that integer addition
and bag union are identical in AGCA.

Starting with the default materialization strategy M (Q),
we perform polynomial expansion (Rule 2). Because AGCA
does not separate integer addition from bag union, this dis-
tributes the rest of the expression over the term (AP−BP).

M
(

Sum[]

(
B(BP,BV)∗A(AP,AV)∗AP∗

(v1:=Sum[](B(BP′,BV ′)∗BV ′ ∗0.0001))∗
(v2:=Sum[](A(AP′,AV ′)∗AV ′ ∗0.0001))∗
(BV > v1)∗ (AV > v2)

))
−

M
(

Sum[]

(
B(BP,BV)∗A(AP,AV)∗BP∗

(v1:=Sum[](B(AP′,BV ′)∗BV ′ ∗0.0001))∗
(v2:=Sum[](A(AP′,AV ′)∗AV ′ ∗0.0001))∗
(BV > v1)∗ (AV > v2)

))
We can now decorrelate the nested aggregates (Rule 4). This
expression contains two identical aggregates, each comput-
ing the total volume of B or A. We we call these QB2 and
QA2. As only one relation appears in each aggregate, main-
tenance requires only a single statement each, shown in the
trigger program for B as statement 02.

Sum[]

(
M
(
Sum[BV,AV](B(BP,BV)∗A(AP,AV)∗AP)

)
∗

(v1:=QB2[]∗0.0001)∗ (BV > v1)∗
(v2:=QA2[]∗0.0001)∗ (AV > v2)

)
−

Sum[]

(
M
(
Sum[BV,AV](B(BP,BV)∗A(AP,AV)∗BP)

)
∗

(v1:=QB2[]∗0.0001)∗ (BV > v1)

(v2:=QA2[]∗0.0001)∗ (AV > v2)
)

After polynomial expansion the expression computes two
joins instead of one. The hypergraphs of the simpler joins,
however, contain disconnected components. We can apply
decomposition (Rule 1) to each.

Sum[]

(
M
(
Sum[BV](B(BP,BV))

)
∗

M
(
Sum[AV](A(AP,AV)∗AP)

)
∗

(v1:=QB2[]∗0.0001)∗ (BV > v1)∗
(v2:=QA2[]∗0.0001)∗ (AV > v2)

)
−

Sum[]

(
M
(
Sum[BV](B(BP,BV)∗BP)

)
∗

M
(
Sum[AV](A(AP,AV))

)
∗

(v1:=QB2[]∗0.0001)∗ (BV > v1)∗
(v2:=QA2[]∗0.0001)∗ (AV > v2)

)

Now, no further rules are applicable. We materialize four ad-
ditional maps: for each volume we maintain both the count
and sum of prices of both relations. In the trigger program,
maps QB3 and QA3 maintain the counts using statement 03
and its dual in A; maps QB1 and QA1 maintain the price sums
using statements 01 and its dual in A.

Because the total volume of each relation changes with
every insertion, we must recompute the price and count to-
tals for the relation that changes. Specialized data structures
such as range trees could further reduce the cost of doing
so by allowing us to efficiently maintain expressions of the
form M

(
Sum[BV]

(
B(BP,BV)∗ (BV > v1)

))
.

Nevertheless, by exploiting the connection between ad-
dition and bag union, DBToaster evaluates this expression
using exclusively scans (in contrast to first computing a
Cartesian product as a traditional database system would).

7 Query Engine Compilation and System Overview

DBToaster is a compiler implemented in OCaml. It consists
of several compilation stages, their intermediate representa-
tions that transform AGCA into an efficient imperative im-
plementation, and a runtime library to provide basic data
loading and instrumentation of our generated query engines.
This article has primarily focused on frontend compilation,
which implements AGCA and its generalized multiset rela-
tions from Section 3. In this section, we briefly outline the
intermediate representations used in our compiler’s back-
end, including a simple trigger language based on AGCA,
as well as a functional language and an imperative language.
Compilation applies optimizations in all of these stages prior
to code generation.

7.1 Backend Compilation

We have implemented our AGCA queries and the GMR data
model as a trigger program language that combines pure
AGCA expressions with view maintenance as side effects.
We parse AGCA expressions directly from SQL, and pro-
duce trigger programs from Higher-Order IVM.

While we can directly interpret trigger programs, for ef-
ficient execution, we translate them to a lower-level pro-
gram. The next step is a functional language, K3 [40], which
is inspired by the Collection Programming Language in the
Kleisli functional query system [9,43]. Its main features are
its use of a nested collections data model, the incorporation
of group-by aggregation to the query language, and a rich set
of optimizing program rewrites on collection transformers.
Examples of our collection transformers include map, fold,
groupby, and flatten, as frequently found in functional
programming languages such as Scala, Haskell and OCaml.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 17

Our program transformations rely on the definitions of
collection transformers through structural recursion, and the
subsequent axiomatization of the monad construct realized
by structural recursion. By bringing programming language
inspired (compile-time) optimizations to query processing,
we are able to perform holistic query optimization, which is
frequently limited by operator abstractions in query plans.
Other recent works have observed a variety of benefits from
holistic optimization [26,32]. In the rest of this section, we
highlight K3’s compile-time optimizations, relating them to
common methods used in database query optimizers. A full
coverage of this topic is outside the scope of this work.

Our transformations start by normalizing program ex-
pressions into a lambda-conditional form, where if-state-
ments are lifted to the minimal lambda expressions bind-
ing any variables present in the conditional. With condi-
tionals often determining the use of delta queries or initial
value queries, this ensures maximal applicability of opti-
mizations inside the two different forms of queries. Next,
DBToaster applies constant simplification as well as a con-
servative form of beta reduction to inline repeated occur-
rences of scalar values and collection arguments that are
used at most once during function application.

Subsequently, we aggressively apply code inlining and
simplification through a series of function composition and
fusion operations. Along with our collection transformer op-
timizations, this helps to eliminate large intermediate col-
lections in delta processing and initial value computations,
in a similar way to deforestation algorithms [30]. Other no-
table optimizations include common subexpression elimina-
tion to factor repeated expressions into function application,
as well as delayed tuple construction to minimize the flow of
packed values throughout expressions. These optimizations
are summarized in Table 6. DBToaster’s Scala code genera-
tor emits source code directly from our functional represen-
tation, making extensive use of Scala’s standard libraries.

Our intermediate imperative language defines a mini-
mal set of imperative control constructs (conditionals, loops,
and sequential evaluation), and is designed to facilitate code
generation in imperative target languages such as C++. Cur-
rently, we perform a limited set of optimizations on our im-
perative language. As ongoing work, we are working on op-
timizations that are not captured in our functional layer. This
includes low-level loop and peephole optimizations, for ex-
ample loop unrolling and tiling, and the improved data local-
ity and vector operations exposed therein. Many structural
loop optimizations, such as loop fusion and ordering, are al-
ready captured by our collection transformer optimizations.

From an imperative representation, the DBToaster code
generator supplements source code synthesis with the ability
to select and adapt specialized data structures to the query
being maintained. We implement our generalized multiset
relations as a map data structure (e.g., an STL map) that as-

sociates tuples to their multiplicities. View caches are im-
plemented as two-level nested maps, with the outer-tier cor-
responding to input variables in our binding patterns, and
the inner tier mapping output variables to multiplicities as
above. This two-level mapping forms the primary index of
our data structure, and is accompanied by a range of sec-
ondary indexes based on access patterns in delta queries.

Specifically, we maintain secondary indexes for all bind-
ing patterns present in triggers produced by Higher-Order
IVM. While our index selection could be refined by physi-
cal database design techniques, we found the number of ex-
tra indexes to be relatively small throughout our workloads.

DBToaster currently uses the Boost Multi-Index (BMI)
library for its C++ data structures. BMI provide in-memory
data structures that implement a generic container over com-
posite types (e.g., tuples or C structs), with an ability to com-
pose multiple types of indexes into a single data structure.
Thus we can specify secondary indexes over different at-
tributes, for in-memory implementations of hash, tree and
sequential data structures. We have developed an equivalent
library collection for Scala, and have included it as part of
our query runtime library.

7.2 System Overview and Application Usage

The DBToaster compiler produces query processors that are
aggressively specialized to a specific query workload, rather
than ad-hoc queries. End-users interact with a DBToaster-
generated query processor in one of three ways:
1. Standalone binaries, where users may run the binary on a

file, or specify a listening socket through which data can
be sent to the engine. The engine can output a stream of
view query results to a file or a network connection.

2. Shared libraries, where application developers may link
against our library and directly access the data structures
representing our views while they are concurrently main-
tained. We are exploring asynchronous notification meth-
ods to support push-based application logic, including ca-
llback functions and futures registered with our views.

3. Source code, where application developers may adapt and
extend our query processing engine as desired, for exam-
ple to use custom data structures to implement views.
DBToaster produces extensible query engines capable of

custom stream pre-processing and workload generation, as
well as on-demand querying of views. Our object-oriented
design enables users to inherit our engine in their applica-
tions, where they may override a pre-processing method in-
voked on each arriving event. This allows users to perform
basic data extraction, transformation, cleaning and logging
functionality prior to delta processing.

Users may also direct our compiler to use the general-
ized form of Higher-Order IVM. The result is a query en-
gine that mixes pull- and push-based processing, providing

18 Christoph Koch et al.

Optimization Description
Condition normalization Yields a normalized program where if-expressions appear only as the first expression in a function body.
Beta reduction Inlines function arguments, with a compile-time cost analysis to avoid expensive argument re-evaluation.
Fusion and deforestation Removes intermediate collection construction by fusing multiple collection transformations.
Partial aggregation Reduces intermediate collection sizes, especially for nested collections undergoing flattening.
Common subexpressions Extracts repeated expressions as function application, with consideration of inlining applied by beta reductions.
Effect normalization Lifts effects to their earliest feasible application to reduce the memory footprint of large values.
Index construction Rewrites collection transformers applying equality predicates to build and probe index data structures.

Fig. 6 A summary of program transformations and optimizations applied in the K3 language.

users with a rich API to retrieve query results. Our API
methods pull and compute query results from a set of ma-
terialized views that are maintained with higher-order delta
queries. This mode of operation produces results at a lower
frequency than the application’s update rates. The set of ma-
terialized views are those considered by Higher-Order IVM
when starting delta rewrites one level down in the query.

Our compiled binaries implement a single-core, single-
threaded query executor. Our implementation strategy has
focused on novel view maintenance rather than the full range
of state-of-the-art query execution mechanisms. Thus, our
results represent a lower limit on performance and scalabil-
ity, both of which could be substantially improved with a
parallel engine. As ongoing work [21], we are developing
a distributed main-memory runtime that exploits aggregate
memory and network bandwidth available in large clusters
and datacenters. Furthermore, we plan to use K3 for mul-
tithreaded and vectorized engines that utilize flexible view
data structures as inspired by database cracking.

8 Experiment Setup and Methodology

For the experiments in this paper, we used the DBToaster
Public Beta, rev. 2827, released on February 11th, 2013 [1].
We evaluated the experimental performance of DBToaster
on Redhat Enterprise Linux on an Intel Xeon E5620 2.4
GHz processor with 16 GB of RAM (on a single core). The
C++ code generated was compiled using g++ 4.4.6 and
linked against the Boost library v1.50; generated Scala code
was compiled with version 2.10.0 of the Scala compiler and
run on the Java HotSpot VM (build 23.6-b04). Gperftools
v2.0 was used to estimate the memory consumption of our
query binaries.

We compare our compilation algorithm with a commer-
cial DBMS with incremental view maintenance capabilities
(DBX) and a stream processing system (SPY). Since these
systems are not optimized for our workload, we also pro-
vide a shared-infrastructure comparison by emulating their
functionalities — query re-evaluation and IVM — within
DBToaster-generated binaries.
Data and Query Workload. Our workload covers algorith-
mic order book trading (financial), online business decision
support scenarios (TPC-H) and scientific queries (MDDB,

[33]), which involve computing a variety of statistics. Fig-
ure 3 lists the query and evaluation properties of our work-
load.3 Due to limitations of DBToaster, we made several
changes to the TPC-H queries: (1) We ignored ORDER BY
clauses and, to make the results comparable, also dropped
the LIMIT clause; (2) We rewrote MIN, MAX aggregates
using equivalent nested subqueries; (3) We replaced Q13’s
LEFT OUTER join with a natural join; (4) Finally, for con-
venience we rewrote HAVING clauses into subqueries and
inlined INTERVAL expressions into constants.

The financial queries VWAP, MST, AXF, BSP, PSP, and
BSV were run on a 2.63 million tuple trace of an order
book update stream, representing one day of stock market
activity for MSFT. These are updates to a Bids and Asks ta-
ble with the schema (timestamp, order id, broker id,

price, volume). The TPC-H benchmark queries Q1-Q22,
and SSB4 were run on a stream of updates adapted from a
database generated by DBGEN[42]. We simulate a system
that monitors a set of “active” orders by randomly interleav-
ing insertions on all relations and injecting random deletions
of Orders and Lineitem rows to keep the Orders and Line-
item tables at around 30000 tuples and 120000 tuples, re-
spectively. All updates preserve the foreign key constraints
that exist between the TPC-H tables. Most experiments use
a stream synthesized from a scaling factor 0.1 database (100
MB), while our scaling experiments extend these results up
to a scaling factor of 10 (10 GB). Finally, the scientific work-
load was run on a 3.6 million tuple trace (128 MB) of in-
sertions into a table of atom positions during a molecular
dynamics simulation.

DBToaster Setup. The DBToaster compiler produces incre-
mental view maintenance code for both C++ and Scala. The
compilers for these languages produce binaries with distinct
(and surprising) performance characteristics. Our evaluation
includes the results for both languages.

DBToaster emulates the behavior of a traditional view
maintenance system by terminating recursive delta material-
ization early. The remaining compiler stages (functional op-
timization and target-language generation) operate as usual.
Our evaluation includes: (1) The HO-IVM algorithm as pre-
sented in this paper (DBToaster), (2) A full re-evaluation of

3 The detailed queries can be found in our technical report [24] or
on our website http://www.dbtoaster.org.

http://www.dbtoaster.org

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 19

the query on every change (REP), (3) The HO-IVM algo-
rithm used without recursion (first-order deltas are materi-
alized) to emulate traditional IVM (IVM), and (4) A naive
application of the viewlet transform that aggressively ma-
terializes as much of each query as possible, creating view
caches and employing partial materialization to decorrelate
nested subqueries, but ignoring the rules for join graph de-
composition and delta expression simplification.

For each compilation method, we measured the memory
consumption of the C++ programs. To this end, we produced
instrumented binaries for each experiment and processed the
same fraction of the stream as without profiling.

DBMS Setup. We compare DBToaster against a commer-
cial DBMS. Due to licensing restrictions, we refer to it us-
ing the anonymized name DBX. In order to measure the rate
at which DBX is able to refresh the query results as con-
sistently as possible with other systems, we preload all up-
dates to be performed on all base tables into a single table
called Agenda. The Agenda table’s schema is the union of
all of the input table schemas, and includes columns iden-
tifying the type of update (insert or delete), the table being
updated, and the update’s sequence number. Each trial iter-
ates over the updates in Agenda in order, inserting or delet-
ing one tuple and then refreshing the query results, either
by re-evaluating the query (DBX-REP), or by using the sys-
tem’s built-in capability to incrementally maintain material-
ized views (DBX-IVM). In order to minimize the overheads
of the system, we disable log collection as much as possible.

For re-evaluation, we completely re-evaluate the query
after each update and store its results in a separate table that
gets truncated before each re-evaluation. Because generating
materialized views that can be incrementally maintained is
non-trivial, has many restrictions, and requires extra update
logs, for IVM we use the provided tuning advisor in order to
derive the proper view setup for each of the queries.

In many cases, the tuning advisor suggested views that
were not precisely identical to the input queries. We en-
countered situations in which the advisor added group-by
columns or relaxed WHERE clauses by dropping conditions
or replacing disjunctions with single expressions, covering
a superset of the original condition. We can only speculate
that these transformations were meant to allow the generated
view to support answering a larger class of queries. For com-
plex queries that could not be maintained as a single view,
the advisor generated nested subviews to be incrementally
maintained and a top-level view to be re-evaluated on every
commit. Out of 36 queries that we experimented with, 20
required up to 5 nested subviews.

SPY Setup. As a second comparison point, we use a com-
mercial stream processor. We refer to the stream proces-
sor using the anonymized name SPY, again due to licens-
ing restrictions. One major semantic difference between tra-
ditional stream processing engines and DBToaster is that

stream processing engines are optimized to operate on win-
dows of input streams, while DBToaster is designed to han-
dle the whole history of a stream. We benchmark SPY by
reading the same Agenda table used for DBX directly into a
stream to minimize event dispatch overheads.

We implemented the queries using the dialect of SQL
supported by SPY. Since the queries in our benchmark can-
not be efficiently expressed using window semantics, we
used auxiliary in-memory tables for all relations. Our imple-
mentation of the queries assigns a monotonically increasing
number to each event and dispatches it to a stream corre-
sponding to the affected relation. This stream updates the in-
memory relation by inserting or removing the affected tuple.
Then, the query result is re-evaluated and recorded together
with the event number and a timestamp. Full recomputation
is necessary as SPY does not support IVM.

Although we attempted to maintain the original query
semantics, the SQL dialect employed by SPY imposes some
limitations. A severe limitation is that in-memory tables may
not be joined together; each in-memory table may only be
joined with a stream, requiring manual selection of a join
order. Our heuristic for this order was to minimize the size
of intermediate streams.

9 Experimental Results

Our results show view refresh rates on stream traces, re-
played with a timeout of two hours. Details of the traces
are provided in Section 8. These results show that:

– DBToaster consistently outperforms the two commercial
systems we tested against, often by multiple orders of
magnitude (Figures 7 and 8).

– The performance gap between Higher-Order IVM and
Traditional IVM is even greater within the DBToaster
runtime. Through aggressive optimization, we believe
that DBToaster’s performance can be improved by at
least another order of magnitude.

– DBToaster exhibits consistent performance and memory
usage over time (Figures 9, 10, and 11).

– These results scale to longer streams (Figure 12).

In all figures, we use the following notation:

– DBToaster is the full HO-IVM algorithm.
– REP and IVM are DBToaster repeatedly re-evaluating

queries, and emulating non-recursive IVM, respectively.
– Naive is a simplified form of the viewlet transform that

aggressively materializes entire delta queries.
– DBX-REP and DBX-IVM are a commercial database

system performing view maintenance by re-evaluation
and non-recursive IVM, respectively.

– SPY is a commercial stream processing engine.

DBToaster results are presented with both C++ and Scala as
target languages.

20 Christoph Koch et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q13

Q14
Q15

Q16
Q17

Q18
Q19

Q20
Q21

Q22

A
v
e
ra

g
e
 R

e
fr

e
sh

 R
a
te

 (
1

/s
)

 0.1

 1

 10

 100

 1000

 10000

 100000

Q11a
Q17a

Q18a
Q22a

SSB4
AXF

BSP
BSV

MST
PSP

VWAP (*)

MDDB1

MDDB2

A
v
e
ra

g
e
 R

e
fr

e
sh

 R
a
te

 (
1

/s
) REP

DBX
SPY

DBToaster C++
DBToaster Scala

IVM

Fig. 7 DBToaster performance overview. Note the log scale on the y-axis. (*) For VWAP, where DBToaster uses view caching, we compare against
a strategy that avoids input variables.

9.1 Higher-Order IVM Performance

We now compare the performance of DBToaster with a com-
mercial DBMS (DBX) and a stream processor (SPY).

Comparison with Commercial Systems. Figure 8 shows
the performance of DBToaster’s Higher-Order IVM along-
side all comparison systems. We summarize our findings,
because an in-depth itemized breakdown of overheads is
outside the scope of this article.

When recomputing the query results after each update
(DBX-REP), DBX experienced view refresh rates between
0.08 and 972.22 refreshes per second, with average and me-
dian values of 37.03 and 6. When using DBX’s support for
IVM, however, view refresh rates dropped to between 0.14
and 2.94. This drop in performance when using IVM is
counter-intuitive and prompted us to trace the execution of
our program. DBX’s tracing utility revealed that most of the
execution time was spent parsing several parametrized sys-
tem queries used in the bookkeeping. As the amount of use-
ful work to be performed after a single update is quite small,
the time spent parsing those system queries ends up domi-
nating the overall running time. Maintaining catalog infor-
mation across many tables for high rate updates also sub-
stantially impacts latencies and throughput.

The performance gap between SPY and DBToaster is
a result of the lack of support for IVM in SPY, and syn-
chronization used to prevent the asynchronous system from
producing inconsistent results. Due to the nature of the test

queries, we are unable to make use of SPY’s window seman-
tics and are forced to use in-memory tables instead. Even
though we use indexes on the in-memory tables wherever it
makes sense, SPY seems to be unable to take full advantage
of them in queries with complex predicates, contributing to
poor performance, as exemplified in Q19.

Join-free Queries. The simplest queries in our workload,
Q1 (Figure 9a) and Q6, aggregate TPC-H’s Lineitem rela-
tion. As these queries involve only one relation, the first-
order delta depends solely on the values inserted or deleted.

The materialized view of Q6 stores a single aggregate
value and has a constant update cost. Thus, the view refresh
rates of the DBToaster, Naive, and IVM methods are almost
identical. In all these cases, the generated Scala programs
outperform the C++ programs. The REP compilation ex-
hibits low refresh rates as it performs a complete scan over
Lineitem upon every update. Unlike the other methods for
which the memory overhead is negligible, REP requires a
bounded amount of memory to store the set of active tuples.

Q1 evaluates multiple group-by aggregates over Linei-
tem. DBToaster treats these aggregates as separate AGCA
expressions and maintains each individually. Since many of
these share common subexpressions, duplicate view elimi-
nation and polynomial expansion are essential for achieving
high view refresh rates. Consequently, although Q1 has sub-
stantially more aggregates than Q6 (8 vs. 1), the view refresh
rate of the C++ code is only 30% lower. Because the result
set contains a fixed number of tuples (based on the limited

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 21

Query REP REP DBX DBX SPY DBToaster DBToaster Naive Naive IVM IVM
C++ Scala Rep IVM C++ Scala C++ Scala C++ Scala

Q1 5.39 6.41 17.74 1.58 29.46 14,109.08 11,214.98 5,378.30 1,500.17 9.83 11.16
Q2 1.76 0.75 10.74 1.24 1.01 12,742.67 3,239.07 0.03 0.03 659.94 60.33
Q3 8.19 3.58 18.22 0.7 22.55 15,045.62 8,021.88 3.54 2.02 121.10 14.03
Q4 24.99 8.42 32.3 2.06 252.04 17,604.34 16,911.45 63.26 51.65 11,614.26 7,678.18
Q5 5.46 1.10 9.67 0.32 19.05 34.18 131.68 0.15 0.19 25.22 4.14
Q6 27.76 28.29 44.24 0.43 361.97 20,021.32 25,509.86 19,025.53 26,485.42 21,030.09 26,910.07
Q7 1.70 0.17 3.84 1.35 14.1 2.76 261.01 0.03 0.03 10.49 10.17
Q8 0.39 0.23 34.83 2.45 23.88 19.42 1,122.93 0.09 0.07 0.34 0.25
Q9 0.29 0.07 6.75 1.76 23.74 3,778.52 578.81 0.03 0.03 1.15 0.80
Q10 5.57 1.34 4.6 0.47 38.23 13,697.35 7,317.77 0.12 0.19 79.45 4.92
Q11 0.63 0.23 3.74 2.84 12.32 45.12 149.39 0.26 0.16 0.41 0.12
Q11a 6.77 1.60 1.57 0.86 5.28 28,060.43 17,315.17 15,164.32 3,506.81 29,152.02 8,808.10
Q12 2.77 2.06 24.71 1.62 74.47 17,440.02 9,353.63 20.68 23.17 14,900.63 7,576.58
Q13 0.19 0.12 9.64 2.94 10.9 3.69 22.37 1.26 0.95 0.16 0.10
Q14 3.47 0.99 39.6 1.56 464.88 15,953.58 28,047.48 199.45 152.52 3.60 1.01
Q15 0.13 0.12 2.49 1.93 6.14 2.07 3.10 – – 0.12 0.08
Q16 3.25 2.01 2.94 1.87 8.82 713.07 843.56 0.20 0.37 3.28 2.00
Q17 8.07 3.40 11.77 2.1 19.64 16,456.54 25,408.05 0.76 0.66 14,918.33 1,373.52
Q17a 6.22 1.99 1.51 1.34 13.06 15,617.53 8,285.00 1.18 0.99 6,190.91 2,060.98
Q18 1.44 2.45 0.08 1.2 11.16 33.51 24.86 0.34 0.27 1.75 2.95
Q18a 3.91 2.09 0.6 1.31 7.42 18,725.53 10,085.95 0.11 0.09 107.89 7.38
Q19 0.20 0.06 23.84 1.42 0.57 83.98 236.54 28.44 81.93 69.82 187.78
Q20 48.28 13.91 7.16 1.19 33.63 1,586.76 5,427.83 0.85 0.91 3,553.37 502.33
Q21 5.17 1.65 8.72 1.33 14.72 3,703.25 3,782.58 0.29 0.55 189.88 8.50
Q22 0.27 0.39 36.05 1.6 58.22 201.72 742.50 6.76 0.47 0.33 0.47
Q22a 0.94 1.08 1.4 1.98 41.68 7,868.03 3,687.80 176.88 68.31 1.19 1.31
SSB4 2.42 1.13 3.43 0.51 16.92 2,877.63 1,039.36 0.03 0.02 64.10 4.15
AXF 3.63 3.66 5.62 1.32 6.91 23,817.13 5,764.69 2,168.17 779.99 15,808.05 5,677.57
BSP 3.31 2.99 6 1.61 5.18 23,040.81 3,673.54 192.16 191.56 1,261.01 703.86
BSV 3.28 2.87 5.23 1.55 10.63 90,116.98 77,797.66 54,810.63 6,921.83 1,284.29 702.49
MST 3.59 2.07 4.37 1.26 3.73 5.81 3.81 5.90 5.88 1.52 2.06
PSP 2.90 2.68 5.93 1.96 5.38 7,319.93 2,658.12 362.82 365.24 2.87 2.67
VWAP 4.42 3.08 7.93 2.12 4.81 2,649.42 2,087.87 2,436.26 2,692.96 4.36 2.75
MDDB1 5.62 1.54 972.22 1.02 5.96 29,842.28 48,784.54 – – 9,163.44 230.31
MDDB2 3.42 1.14 0.31 0.26 2.11 6,093.05 189.56 0.02 0.03 3,656.16 131.68

Fig. 8 Comparison between DBToaster and two commercial query engines (in view refreshes per second). Both the DBMS (DBX) and stream
system (SPY) columns show the cost of full refresh on each update. Higher numbers are better.

domain of the group-by columns), DBToaster uses only a
fixed amount of memory to store the additional maps.

DBToaster inlines the computation of algebraic aggre-
gates. For instance, DBToaster computes averages from sep-
arate sum and count aggregates: Because the current incar-
nation of AGCA supports only one “multiplicity” per tuple,
average is expressed as the product of the sum and inverse
count. HO-IVM requires two recursive steps to separate out
the (linear) count from the (non-linear) inverse count. This
accounts for IVM’s poor performance on Q1, as it must
fully recompute the inverse count on every change. As fu-
ture work, we plan to extend AGCA to generalize GMRs to
have multiple “multiplicities”. This will allow DBToaster to
store multiple aggregate values per tuple, and improve the
efficiency of this class of queries.

Equijoins. Q11a, Q12, Q14, and Q19 (Figure 10c) contain
two-way joins without nested aggregates. The first level del-
tas correspond nearly to the base relations. For Q11a and
Q12, the DBToaster and IVM methods produce virtually
identical results. Because IVM materializes entire base re-

lations, it has a slightly lower refresh rate for Q19 than DB-
Toaster, which materializes only relevant columns. As in Q1,
Q14 has to maintain an inverse count, resulting in poor per-
formance for IVM. In Naive, range restrictions are not ex-
tracted from deltas of nested aggregate expressions (Section
5.3), necessitating a full scan of each materialized nested ag-
gregate whenever it changes. The effect of this optimization
is most evident in these four queries.

Query decomposition also plays an important role in ef-
ficiency of DBToaster for queries containing linear joins of 3
or more relations. Decomposition avoids materialization of
cross products, improving performance and reducing mem-
ory consumption. For instance, the delta of Q10 (a 4-way
equijoin) with respect to the Orders relation creates a cross
product between Customer and Lineitem (which are only
connected through Orders in the original query). In Naive,
the entire cross product is materialized, resulting in perfor-
mance five orders of magnitude worse.

Due to foreign key constraints in the TPC-H schema (of
which DBToaster is not made aware) most loops in Q3’s
trigger program have only one iteration, and the cost of up-

22 Christoph Koch et al.

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 5

 10

 15

 20

R
ef

re
sh

es
 (

10
00

/s
)

 0
 5

 10
 15
 20

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 6

 12

 18

 24

R
ef

re
sh

es
 (

10
00

/s
)

 0
 10
 20
 30
 40

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 250

 500

 750

 1000

R
ef

re
sh

es
 (

1/
s)

 0
 1.75

 3.5
 5.25

 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 6

 12

 18

 24

R
ef

re
sh

es
 (

1/
s)

 0
 0.25

 0.5
 0.75

 1

0 0.005
0.01

0.015
0.02

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q1 (b) Q3 (c) Q11 (d) Q15

Fig. 9 (a) A join-free query. (b) A 3-way linear join. (c) A 2-way join with an aggregate subquery in the FROM clause and an uncorrelated nested
aggregate. (d) A 2-way join with an aggregate subquery in the FROM clause and an inequality-correlated nested aggregate in the EXIST clause.
DBToaster completes only a small fraction of the trace since the update cost grows quadratically with the number of distinct suppliers.

 0

 4

 8

 12

 16

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 8

 16

 24

 32

R
ef

re
sh

es
 (

10
/s

)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120
T

im
e

(m
in

)
DBToaster Scala

DBToaster C++
IVM Scala

IVM C++

 0

 3

 6

 9

 12

R
ef

re
sh

es
 (

10
00

/s
)

 0
 15
 30
 45
 60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 7

 14

 21

 28

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.5

 1
 1.5

 2

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q17 (b) Q19 (c) Q21 (d) Q22a

Fig. 10 (a) A 2-way join with an equality-correlated nested aggregate. (b) A 2-way join with three disjunctive clauses. (c) A 4-way join with an
equality- and an inequality-correlated subqueries. (d) A single relation with an equality- and an inequality-correlated nested aggregates. Insertions
into the Customer relation complete within the first 10% of the stream.

 0

 20

 40

 60

 80

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

Input Vars (Scala)
Input Vars (C++)

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.5

 1
 1.5

 2

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 8

 16

 24

 32

R
ef

re
sh

es
 (

10
0/

s)

 0
 7.5
 15

 22.5
 30

0 0.002
0.004

0.006
0.008

0.01
0.012

0.014
0.016

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 3

 6

 9

 12

R
ef

re
sh

es
 (

10
00

/s
)

 0
 10
 20
 30
 40

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

No Input Vars Scala
No Input Vars C++

 0

 1

 2

 3

 4

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.1
 0.2
 0.3
 0.4

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) AXF (b) MST (c) PSP (d) VWAP

Fig. 11 (a) A 2-way inequality join. DBToaster outperforms view caching due to the large domain of the input variables. (b) A 2-way join with two
uncorrelated, and two inequality-correlated nested aggregates. None of the tested engines completed the trace within the 2-hour limit. (c) A 2-way
join with two uncorrelated nested aggregates. (d) A single relation with an inequality-correlated and an uncorrelated nested aggregate. DBToaster
chooses the view cache method, so we compare against an approach that aggressively avoids input variables.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 23

dating either the Orders or Lineitem relation is constant. For
queries with multi-way joins and selection predicates (Q3,
Q5, Q10, SSB4, MDDB1, and MDDB2), DBToaster further
outperforms IVM by pushing predicates into the material-
ized views and projecting away unused columns.

DBToaster considers the contents of Nation, Region, and
all the scientific relations except AtomPositions as static.
It loads static relations into memory before processing the
streams. It avoids materialization of deltas needed to support
updates to these relations, effectively reducing the join width
of certain queries (Q5, Q10, SSB4, MDDB1, and MDDB2)
and eliminating several potentially high maintenance maps.

Nested Aggregates. Q17 (Figure 10a), Q17a, and Q18a4 are
multi-way join queries with nested aggregates that are cor-
related on an equality with the outer query. In these cases,
DBToaster’s strong performance comes from decorrelating
the nested subquery and range-restricting the domain of the
generated delta expressions for updates to the Lineitem re-
lation (on which all nested subqueries are based).

Q22a (Figure 10d) includes two nested aggregates, an
uncorrelated aggregate on Customer and an equality-correlated
aggregate on Orders. The first subquery causes DBToaster to
re-evaluate the top-level query (as per Section 5.1) since the
delta with respect to updates to Customer is not simpler than
the whole query. This re-evaluation strategy iterates over the
whole Customer relation (materialized with only necessary
columns) to compute the top-level aggregate for the cus-
tomers with no orders. In contrast, DBToaster uses an incre-
mental strategy for updates into Orders, since the equality-
based correlation between the second subquery and the outer
query restricts the domain of the corresponding delta expres-
sion, making the update cost constant. Therefore, Q22a has
two different maintenance costs for updates into the base re-
lations. This is seen in the performance graph as the query’s
slow startup ends once the last customer has been inserted.

VWAP (Figure 11d) has a nested aggregate correlated on
an inequality. The small domain of the correlation variable
(price) makes this an ideal candidate for view caching. The
performance graph shows the benefit of view caching over
avoiding the materialization of maps with input variables.

PSP (Figure 11c) includes two uncorrelated nested ag-
gregates. It benefits from top-level query re-evaluation on
each update. As in Section 6.2, polynomial expansion and
graph decomposition are essential to avoid computation of
a cross product between the base relations. DBToaster eval-
uates the query using six auxiliary materialized views with
constant time updates: Two views maintain single aggregate
values, while the others are linear in the number of distinct
values of the column being compared to the nested aggre-
gate (volume). The finite domain of these values results in a
nearly constant view refresh rate and memory consumption.

4 Q17, Q17a produce incorrect results due to floating point errors.

MST (Figure 11b) is fundamentally similar to PSP, but
rather than comparing its uncorrelated aggregates against
columns from the base relations, they are each compared
against another nested aggregate correlated on an inequal-
ity. This is a worst case scenario for DBToaster, as it cannot
incrementally process this query in better than O(n2) time
without specialized indexes (e.g., aggregate range trees).
Inequijoins. AXF (Figure 11a) and BSP are 2-way joins
with inequality join-predicates. The performance graph of
AXF shows the inefficiency of view caching in this case. The
view caching approach treats both the join variable (price)
and one of the aggregate variables (volume) as input vari-
ables; together, these input variables have an extremely large
domain. In BSP, the join variable (timestamp) also has an
unbounded domain. In both cases, DBToaster outperforms
view caching by precluding materialized views with input
variables. DBToaster also achieves a small speed boost com-
pared to IVM by not materializing the entire base relation.
Queries with EXIST or IN Clauses. Q2, Q4, Q16, and Q21
(Figure 10c) contain clauses that check for the existence of
the nested subquery results. DBToaster transforms each sub-
query into a count aggregate, assigns this value to a fresh
variable, and adds an additional constraint over that vari-
able according to the semantics of the clause (e.g., x = 0 for
the NOT EXIST clause). As all the subqueries of the above
queries are correlated on an equality, DBToaster decides to
incrementally maintain the top-level views for updates to
the subquery relations. For queries that are also correlated
on an inequality (Q2 and Q21), DBToaster avoids materi-
alizing maps with input variables due to the large domain
of the correlation variables (supplycost and suppkey, re-
spectively). Q21 has constant time updates to Lineitem and
Orders, and a linear time update in the number of orders for
one supplier. The higher update cost results in a lower view
refresh rate within the first 20% of the stream, until inser-
tions into the Supplier relation complete.
Subqueries in FROM Clauses. DBToaster maintains sep-
arate materialized views for subqueries that appear in the
FROM clause (Q7, Q8, and Q9). For Q7 and Q8, we observe
that the C++ backend fails to transform DBToaster’s func-
tional representation into efficient imperative code, causing
huge memory overheads and poor performance. In contrast,
DBToaster derives Scala code directly from its internal rep-
resentation. The Scala compiler further optimizes the code,
resulting in performance better by two orders of magnitude.
Complex Queries. The remaining TPC-H queries Q11,
Q13, Q15, Q18, Q20, and Q22 combine the above character-
istics. Our experiments show that the update costs for these
queries coincide with their structural complexity.

Q11 (Figure 9c) has a group-by aggregate in its FROM
clause and an uncorrelated nested aggregate that appears in
an inequality at the top level. DBToaster exploits the fact
that both subqueries share the same structure to reduce the

24 Christoph Koch et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Q1 Q2 Q3 Q4 Q6 Q9 Q10 Q11a Q12 Q14 Q16 Q17 Q17a Q18a Q21 Q22a SSB4

V
ie

w
 R

e
fr

e
sh

 R
a
te

 R
e
la

ti
v
e
 t

o
 1

0
0

 M
B

100 MB 500 MB 1 GB 5 GB 10 GB

Fig. 12 Performance scaling on a subset of TPC-H queries.

number of generated maps. Since the update stream contains
only insertions to the base relations, the amount of memory
used to store additional views grows continuously. The costs
of updating Supplier and Partsupp are linear in the num-
ber of distinct partkey values. Thus, the view refresh rate
levels off as the number of tuples in the materialized views
reaches the maximum number of distinct group-by values.

Q15 (Figure 9d) is a variation of the original TPC-H
query where a nested subquery and an EXIST clause re-
place the max aggregate. Since both subqueries are identi-
cal, duplicate view elimination reduces the number of aux-
iliary views. However, the update cost for this query grows
quadratically with the number of distinct suppkey values in
Lineitem, as shown on the graph. To improve performance
of MIN, MAX, and theta-joins in general, we plan to extend
DBToaster with specialized tree-based data structures.

9.2 Stream Scalability

This section analyzes the scaling behavior of DBToaster for
a subset of the TPC-H queries over a larger stream of up-
dates. Our focus is on measuring view refresh rates in terms
of the stream length and query complexity, rather than the
working set size.

The workload for this experiment was synthesized from
databases created by DBGEN at scaling factors 0.5, 1, 5, and
10 (500MB, 1GB, 5GB, and 10GB, respectively). An up-
date stream was built by randomly interleaving tuples from
the base relations, while preserving the reference integrity.
As before, after inserting 30000 Orders tuples and 120000
Lineitem tuples, we randomly inject deletions into these two
relations in order to keep their sizes roughly constant. Tuples
in other TPC-H relations are never deleted.

The length of the update stream increases with larger
scaling factors. However, the size of the working set de-
pends on the query structure. Materialized views that refer-
ence Customer, Part, Supplier, or Partsupp might grow with
larger scaling factors, while views defined solely over Or-
ders or Lineitem have a bounded working set size.

Figure 12 presents the results of our scaling experiments.
For most queries performance stays roughly constant as the
stream length grows. Q2 and Q16 select over insert-only
relations (Part, Supplier, and Partsupp); thus, the memory
overhead of DBToaster grows with the scaling factors. The
view refresh rates drop as the maintenance cost for these
queries is linear in the size of in-memory data structures. In
contrast, Q11a also queries insert-only relations, but exhibits
good scaling behavior due to the cardinality constraints be-
tween its base relations and use of index data structures. The
running time of Q22a is dominated by the first 10% of the
stream in all cases, before the Customer relation has been
fully inserted. The cost of inserting a new customer is lin-
ear in the size of the Customer relation. After all customer
tuples have been processed, the refresh rate increases to a
constant 8000 tuples per second, regardless of scale.

Q9 and Q21 demonstrate an increase of the view refresh
rates for larger stream lengths. The reason for this behavior
is as follows. In our workload, the working set sizes of Or-
ders and Lineitem are constant, regardless of the scaling fac-
tor. With larger scaling factors the base relations get larger;
thus, we have to place more deletions to maintain the size
invariant (As an extreme case, imagine that the working set
size of Orders is 1; then we have to double the number of
Orders tuples in the stream as every insertion is followed by
a deletion). Placing more deletions increases the fraction of
Orders and Lineitem tuples in the stream. This in turn affects
the view refresh rates of these queries, as both have constant
costs with respect to updates to the Lineitem relation.

10 Conclusion

We presented DBToaster, a compiler and optimizer frame-
work for higher-order IVM that uses aggressive simplifica-
tion of recursive delta queries and a plethora of materializa-
tion strategies to make recursive IVM viable. Our compila-
tion method is effective on a wide range of select-project-
join-aggregate queries, including those with nested subque-
ries, which are unsupported by current IVM mechanisms.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 25

Our methods provide view refresh rates that often improve
on today’s tools by several orders of magnitude.

Acknowledgements This work was supported by ERC Grant 279804.

References

1. DBToaster Public Beta revision 2827, Feb. 11, 2013.
http://www.dbtoaster.org/index.php?page=download

2. Abadi, D., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack,
M., Hwang, J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E.,
et al.: The design of the Borealis stream processing engine. In:
CIDR, pp. 277–289 (2005)

3. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection
of materialized views and indexes in SQL databases. In: VLDB,
pp. 496–505 (2000)

4. Ahmad, Y., Koch, C.: DBToaster: A SQL compiler for high-
performance delta processing in main-memory databases. PVLDB
2(2), 1566–1569 (2009)

5. Aiken, A., Hellerstein, J.M., Widom, J.: Static analysis techniques
for predicting the behavior of active database rules. ACM TODS
20(1), 3–41 (1995)

6. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE
Trans. Inf. Theory 46(2), 325–343 (2000)

7. Blakeley, J.A., Larson, P.Å., Tompa, F.W.: Efficiently updating
materialized views. In: SIGMOD, pp. 61–71 (1986)

8. Buneman, P., Clemons, E.K.: Efficiently monitoring relational da-
tabases. ACM TODS 4(3), 368–382 (1979)

9. Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of
programming with complex objects and collection types. Theor.
Comput. Sci. 149(1), 3–48 (1995)

10. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Op-
timizing queries with materialized views. In: ICDE, pp. 190–200
(1995)

11. Chirkova, R., Yang, J.: Materialized views. Foundations and
Trends in Databases 4(4), 295–405 (2012)

12. Colby, L.S., Griffin, T., Libkin, L., Mumick, I.S., Trickey, H.: Al-
gorithms for deferred view maintenance. In: SIGMOD, pp. 469–
480 (1996)

13. Colby, L.S., Kawaguchi, A., Lieuwen, D.F., Mumick, I.S., Ross,
K.A.: Supporting multiple view maintenance policies. In: SIG-
MOD, pp. 405–416 (1997)

14. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not:
Tracking most frequent items dynamically. ACM TODS 30(1),
249–278 (2005)

15. Ghanem, T.M., Elmagarmid, A.K., Larson, P.Å., Aref, W.G.: Sup-
porting views in data stream management systems. ACM TODS
35(1), 1–47 (2010)

16. Griffin, T., Libkin, L.: Incremental maintenance of views with du-
plicates. In: SIGMOD, pp. 328–339 (1995)

17. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views
incrementally. In: SIGMOD, pp. 157–166 (1993)

18. Gupta, H., Mumick, I.S.: Selection of views to materialize in a
data warehouse. IEEE TKDE 17(1), 24–43 (2005)

19. Kawaguchi, A., Lieuwen, D.F., Mumick, I.S., Ross, K.A.: Imple-
menting incremental view maintenance in nested data models. In:
DBPL, pp. 202–221 (1997)

20. Kearns, M., Ortiz, L.: The Penn-Lehman automated trading
project. IEEE Intelligent Systems 18(6), 22–31 (2003)

21. Kennedy, O., Ahmad, Y., Koch, C.: DBToaster: Agile views for a
dynamic data management system. In: CIDR, pp. 284–295 (2011)

22. Koch, C.: Incremental query evaluation in a ring of databases. In:
PODS, pp. 87–98 (2010)

23. Koch, C.: Incremental query evaluation in a ring of da-
tabases (2013). Technical Report EPFL-REPORT-183766,
https://infoscience.epfl.ch/record/183766

24. Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lu-
pei, D., Shaikhha, A.: Dbtoaster: Higher-order delta process-
ing for dynamic, frequently fresh views (2013). Technical re-
port EPFL-REPORT-183767, extends this article by an appendix
that lists the full query workload as well as experimental pa-
rameters and trace figures that did not find space in this article;
http://infoscience.epfl.ch/record/183767

25. Kotidis, Y., Roussopoulos, N.: A case for dynamic view manage-
ment. ACM TODS 26(4), 388–423 (2001)

26. Krikellas, K., Viglas, S., Cintra, M.: Generating code for holistic
query evaluation. In: ICDE (2010)

27. Krishnamurthy, S., Wu, C., Franklin, M.J.: On-the-fly sharing for
streamed aggregation. In: SIGMOD, pp. 623–634 (2006)

28. Larson, P.Å., Zhou, J.: Efficient maintenance of materialized
outer-join views. In: ICDE, pp. 56–65 (2007)

29. Liu, Y.A., Stoller, S.D., Teitelbaum, T.: Static caching for incre-
mental computation. ACM TOPLAS 20(3), 546–585 (1998)

30. Marlow, S., Wadler, P.: Deforestation for higher-order functions.
In: Functional Programming, pp. 154–165 (1992)

31. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar,
M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query
processing, approximation, and resource management in a data
stream management system. In: CIDR (2003)

32. Neumann, T.: Efficiently compiling efficient query plans for mod-
ern hardware. PVLDB 4(9), 539–550 (2011)

33. Nutanong, S., Carey, N., Ahmad, Y., Szalay, A.S., Woolf, T.B.:
Adaptive exploration for large-scale protein analysis in the molec-
ular dynamics database. In: SSDBM, p. 45 (2013)

34. Palpanas, T., Sidle, R., Cochrane, R., Pirahesh, H.: Incremental
maintenance for non-distributive aggregate functions. In: VLDB,
pp. 802–813 (2002)

35. Pearlmutter, B.A., Siskind, J.M.: Lazy multivariate higher-order
forward-mode AD. In: POPL, pp. 155–160 (2007)

36. Ross, K.A., Srivastava, D., Sudarshan, S.: Materialized view main-
tenance and integrity constraint checking: Trading space for time.
In: SIGMOD, pp. 447–458 (1996)

37. Roussopoulos, N.: An incremental access method for ViewCache:
Concept, algorithms, and cost analysis. ACM TODS 16(3), 535–
563 (1991)

38. Salem, K., Beyer, K.S., Cochrane, R., Lindsay, B.G.: How to roll a
join: Asynchronous incremental view maintenance. In: SIGMOD,
pp. 129–140 (2000)

39. Seshadri, P., Pirahesh, H., Leung, T.C.: Complex query decorrela-
tion. In: ICDE, pp. 450–458. IEEE (1996)

40. Shyamshankar, P., Palmer, Z., Ahmad, Y.: K3: Language design
for building multi-platform, domain-specific runtimes. In: Intl.
Workshop on Cross-model Language Design and Implementation
(XLDI) (2012)

41. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stone-
braker, M.: Load shedding in a data stream manager. In: VLDB,
pp. 309–320 (2003)

42. Transaction Processing Performance Council: TPC-H benchmark
specification. http://www.tpc.org/hspec.html (2011)

43. Wong, L.: Kleisli, a functional query system. J. Funct. Program.
10(1), 19–56 (2000)

44. Yang, J., Widom, J.: Incremental computation and maintenance of
temporal aggregates. VLDB J. 12(3), 262–283 (2003)

45. Zhou, J., Larson, P.Å., Elmongui, H.G.: Lazy maintenance of ma-
terialized views. In: VLDB, pp. 231–242 (2007)

46. Zhou, J., Larson, P.Å., Freytag, J.C., Lehner, W.: Efficient ex-
ploitation of similar subexpressions for query processing. In: SIG-
MOD, pp. 533–544 (2007)

47. Zilio, D.C., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G.M.,
Cochrane, R., Pirahesh, H., Colby, L.S., Gryz, J., Alton, E., Liang,
D., Valentin, G.: Recommending materialized views and indexes
with IBM DB2 design advisor. In: ICAC, pp. 180–188 (2004)

26 Christoph Koch et al.

Appendix A Workload Queries

In the following we list our workload queries, excluding the
standard TPC-H queries that we ran with only shallow mod-
ifications, as detailed in Section 8.

Appendix A.1 TPC-H schema based queries

Q
11

a SELECT ps.partkey,
SUM(ps.supplycost * ps.availqty) AS query11a

FROM Partsupp ps, Supplier s
WHERE ps.suppkey = s.suppkey
GROUP BY ps.partkey;

Q
17

a

SELECT SUM(l.extendedprice) AS query17a
FROM Lineitem l, Part p
WHERE p.partkey = l.partkey
AND l.quantity < 0.005 *

(SELECT SUM(l2.quantity)
FROM Lineitem l2 WHERE l2.partkey = p.partkey);

Q
18

a

SELECT c.custkey, SUM(l1.quantity) AS query18a
FROM Customer c, Orders o, Lineitem l1
WHERE 1 <=

(SELECT SUM(1) FROM Lineitem l2
WHERE l1.orderkey = l2.orderkey
AND 100 < (SELECT SUM(l3.quantity) FROM Lineitem l3

WHERE l2.orderkey = l3.orderkey))
AND c.custkey = o.custkey
AND o.orderkey = l1.orderkey
GROUP BY c.custkey;

Q
22

a

SELECT c1.nationkey, SUM(c1.acctbal) AS query22a
FROM Customer c1
WHERE c1.acctbal < (SELECT SUM(c2.acctbal)

FROM Customer c2
WHERE c2.acctbal > 0)

AND 0 = (SELECT SUM(1)
FROM Orders o
WHERE o.custkey = c1.custkey)

GROUP BY c1.nationkey;

SS
B

4 SELECT sn.regionkey, cn.regionkey, p.type,
SUM(li.quantity)

FROM Customer c, Orders o, Lineitem li,
Part p, Supplier s, Nation cn, Nation sn

WHERE c.custkey = o.custkey
AND o.orderkey = li.orderkey
AND p.partkey = li.partkey
AND s.suppkey = li.suppkey
AND o.orderdate >= DATE(’1997-01-01’)
AND o.orderdate < DATE(’1998-01-01’)
AND cn.nationkey = c.nationkey
AND sn.nationkey = s.nationkey
GROUP BY sn.regionkey, cn.regionkey, p.type;

Appendix A.2 Financial workload

A
X

F SELECT b.broker_id, SUM(a.volume-b.volume)
FROM Bids b, Asks a
WHERE b.broker_id = a.broker_id
AND (a.price-b.price > 1000 OR b.price-a.price > 1000)
GROUP BY b.broker_id;

B
SP

SELECT x.broker_id, SUM(x.volume*x.price - y.volume*y.price)
FROM Bids x, Bids y
WHERE x.broker_id=y.broker_id AND x.t>y.t
GROUP BY x.broker_id;

B
SV

SELECT x.broker_id, SUM(x.volume*x.price*y.volume*y.price*0.5)
FROM Bids x, Bids y
WHERE x.broker_id = y.broker_id
GROUP BY x.broker_id;

M
ST

SELECT b.broker_id, SUM(a.price*a.volume - b.price*b.volume)
FROM Bids b, Asks a
WHERE 0.25*(SELECT SUM(a1.volume) FROM Asks a1) >

(SELECT SUM(a2.volume) FROM Asks a2 WHERE a2.price>a.price)
AND 0.25*(SELECT SUM(b1.volume) FROM Bids b1) >

(SELECT SUM(b2.volume) FROM Bids b2 WHERE b2.price>b.price)
GROUP BY b.broker_id;

PS
P SELECT SUM(a.price - b.price)

FROM Bids b, Asks a
WHERE b.volume>0.0001*(SELECT SUM(b1.volume) FROM Bids b1)
AND a.volume>0.0001*(SELECT SUM(a1.volume) FROM Asks a1);

V
W

A
P SELECT SUM(b1.price * b1.volume)

FROM Bids b1
WHERE 0.25 * (SELECT SUM(b3.volume) FROM Bids b3) >

(SELECT SUM(b2.volume) FROM Bids b2
WHERE b2.price>b1.price);

Appendix A.3 Scientific workload

M
D

D
B

1 SELECT p.trj_id, p.t,
AVG(vec_length(p.x-p2.x, p.y-p2.y, p.z-p2.z)) AS rdf

FROM AtomPositions p, AtomMeta m,
AtomPositions p2, AtomMeta m2

WHERE p.trj_id = p2.trj_id
AND p.t = p2.t
AND p.atom_id = m.atom_id
AND p2.atom_id = m2.atom_id
AND m.residue_name = ’LYS’
AND m.atom_name = ’NZ’
AND m2.residue_name = ’TIP3’
AND m2.atom_name = ’OH2’
GROUP BY p.trj_id, p.t;

M
D

D
B

2 SELECT p1.trj_id, p1.t,
dihedral_angle(p1.x,p1.y,p1.z,

p2.x,p2.y,p2.z,
p3.x,p3.y,p3.z,
p4.x,p4.y,p4.z)

AS phi_psi,
dm.dim_id

FROM Dihedrals d, Dimensions dm,
AtomPositions p1, AtomPositions p2,
AtomPositions p3, AtomPositions p4,
AtomMeta m1, AtomMeta m2,
AtomMeta m3, AtomMeta m4

WHERE p1.t = p2.t
AND p1.t = p3.t
AND p1.t = p4.t
AND p1.trj_id = p2.trj_id
AND p1.trj_id = p3.trj_id
AND p1.trj_id = p4.trj_id
AND d.atom_id1 = m1.atom_id AND m1.atom_id = p1.atom_id
AND d.atom_id2 = m2.atom_id AND m2.atom_id = p2.atom_id
AND d.atom_id3 = m3.atom_id AND m3.atom_id = p3.atom_id
AND d.atom_id4 = m4.atom_id AND m4.atom_id = p4.atom_id
AND d.atom_id1 = dm.atom_id1 AND d.atom_id2 = dm.atom_id2
AND d.atom_id3 = dm.atom_id3 AND d.atom_id4 = dm.atom_id4
AND ((m1.atom_name = ’N’ AND m2.atom_name = ’CA’ AND

m3.atom_name = ’C’)
OR (m2.atom_name = ’N’ AND m3.atom_name = ’CA’ AND

m4.atom_name = ’C’));

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 27

Appendix B TPC-H Queries

In the following we list the TPC-H queries, as we ran them,
with the small changes summarized in Section 8.

Q
1 SELECT returnflag, linestatus,

SUM(quantity) AS sum_qty,
SUM(extendedprice) AS sum_base_price,
SUM(extendedprice * (1-discount)) AS sum_disc_price,
SUM(extendedprice * (1-discount)*(1+tax)) AS sum_charge,
AVG(quantity) AS avg_qty,
AVG(extendedprice) AS avg_price,
AVG(discount) AS avg_disc,
COUNT(*) AS count_order

FROM Lineitem
WHERE shipdate <= DATE(’1997-09-01’)
GROUP BY returnflag, linestatus;

Q
2 SELECT s.acctbal, s.name, n.name, p.partkey, p.mfgr,

s.address, s.phone, s.comment
FROM Part p, Supplier s, Partsupp ps,

Nation n, Region r
WHERE p.partkey = ps.partkey
AND s.suppkey = ps.suppkey
AND p.size = 15
AND (p.type LIKE ’%BRASS’)
AND s.nationkey = n.nationkey
AND n.regionkey = r.regionkey
AND r.name = ’EUROPE’
AND (NOT EXISTS

(SELECT 1
FROM Partsupp ps2, Supplier s2,

Nation n2, Region r2
WHERE p.partkey = ps2.partkey
AND s2.suppkey = ps2.suppkey
AND s2.nationkey = n2.nationkey
AND n2.regionkey = r2.regionkey
AND r2.name = ’EUROPE’
AND ps2.supplycost < ps.supplycost));

Q
3 SELECT o.orderkey,

o.orderdate,
o.shippriority,
SUM(extendedprice * (1 - discount)) AS query3

FROM Customer c, Orders o, Lineitem l
WHERE c.mktsegment = ’BUILDING’
AND o.custkey = c.custkey
AND l.orderkey = o.orderkey
AND o.orderdate < DATE(’1995-03-15’)
AND l.shipdate > DATE(’1995-03-15’)
GROUP BY o.orderkey, o.orderdate, o.shippriority;

Q
4 SELECT o.orderpriority, COUNT(*) AS order_count

FROM Orders o
WHERE o.orderdate >= DATE(’1993-07-01’)
AND o.orderdate < DATE(’1993-10-01’)
AND (EXISTS (

SELECT * FROM Lineitem l
WHERE l.orderkey = o.orderkey
AND l.commitdate < l.receiptdate

))
GROUP BY o.orderpriority;

Q
5 SELECT n.name,

SUM(l.extendedprice * (1 - l.discount)) AS revenue
FROM Customer c, Orders o, Lineitem l, Supplier s,

Nation n, Region r
WHERE c.custkey = o.custkey
AND l.orderkey = o.orderkey
AND l.suppkey = s.suppkey
AND c.nationkey = s.nationkey
AND s.nationkey = n.nationkey
AND n.regionkey = r.regionkey
AND r.name = ’ASIA’
AND o.orderdate >= DATE(’1994-01-01’)
AND o.orderdate < DATE(’1995-01-01’)
GROUP BY n.name;

Q
6 SELECT SUM(l.extendedprice*l.discount) AS revenue

FROM Lineitem l
WHERE l.shipdate >= DATE(’1994-01-01’)
AND l.shipdate < DATE(’1995-01-01’)
AND (l.discount BETWEEN (0.06 - 0.01) AND (0.06 + 0.01))
AND l.quantity < 24;

Q
7 SELECT supp_nation, cust_nation, l_year,

SUM(volume) AS revenue
FROM (

SELECT n1.name AS supp_nation,
n2.name AS cust_nation,
EXTRACT(year from l.shipdate) AS l_year,
l.extendedprice * (1 - l.discount) AS volume

FROM Supplier s, Lineitem l, Orders o, Customer c,
Nation n1, Nation n2

WHERE s.suppkey = l.suppkey
AND o.orderkey = l.orderkey
AND c.custkey = o.custkey
AND s.nationkey = n1.nationkey
AND c.nationkey = n2.nationkey
AND ((n1.name = ’FRANCE’ AND n2.name = ’GERMANY’)

OR
(n1.name = ’GERMANY’ AND n2.name = ’FRANCE’))

AND (l.shipdate BETWEEN DATE(’1995-01-01’)
AND DATE(’1996-12-31’))

) AS shipping
GROUP BY supp_nation, cust_nation, l_year;

Q
8 SELECT total.o_year,

(SUM(CASE total.name WHEN ’BRAZIL’
THEN total.volume
ELSE 0 END) /

LISTMAX(1, SUM(total.volume))) AS mkt_share
FROM (

SELECT n2.name,
EXTRACT(year from o.orderdate) AS o_year,
l.extendedprice * (1-l.discount) AS volume

FROM Part p, Supplier s, Lineitem l, Orders o,
Customer c, Nation n1, Nation n2, Region r

WHERE p.partkey = l.partkey
AND s.suppkey = l.suppkey
AND l.orderkey = o.orderkey
AND o.custkey = c.custkey
AND c.nationkey = n1.nationkey
AND n1.regionkey = r.regionkey
AND r.name = ’AMERICA’
AND s.nationkey = n2.nationkey
AND (o.orderdate BETWEEN DATE(’1995-01-01’)

AND DATE(’1996-12-31’))
AND p.type = ’ECONOMY ANODIZED STEEL’

) total
GROUP BY total.o_year;

Q
9 SELECT nation, o_year, SUM(amount) AS sum_profit

FROM (
SELECT n.name AS nation,

EXTRACT(year from o.orderdate) AS o_year,
((l.extendedprice * (1 - l.discount)) -
(ps.supplycost * l.quantity)) AS amount

FROM Part p, Supplier s, Lineitem l, Partsupp ps,
Orders o, Nation n

WHERE s.suppkey = l.suppkey
AND ps.suppkey = l.suppkey
AND ps.partkey = l.partkey
AND p.partkey = l.partkey
AND o.orderkey = l.orderkey
AND s.nationkey = n.nationkey
AND (p.name LIKE ’%green%’)
) AS profit

GROUP BY nation, o_year;

28 Christoph Koch et al.

Q
10 SELECT c.custkey, c.name,

c.acctbal,
n.name,
c.address,
c.phone,
c.comment,
SUM(l.extendedprice * (1 - l.discount)) AS revenue

FROM Customer c, Orders o, Lineitem l, Nation n
WHERE c.custkey = o.custkey
AND l.orderkey = o.orderkey
AND o.orderdate >= DATE(’1993-10-01’)
AND o.orderdate < DATE(’1994-01-01’)
AND l.returnflag = ’R’
AND c.nationkey = n.nationkey
GROUP BY c.custkey, c.name, c.acctbal, c.phone,

n.name, c.address, c.comment;

Q
11 SELECT p.partkey, SUM(p.value) AS QUERY11

FROM
(

SELECT ps.partkey,
SUM(ps.supplycost * ps.availqty) AS value

FROM Partsupp ps, Supplier s, Nation n
WHERE ps.suppkey = s.suppkey
AND s.nationkey = n.nationkey
AND n.name = ’GERMANY’
GROUP BY ps.partkey

) p
WHERE p.value > (

SELECT SUM(ps.supplycost * ps.availqty) * 0.001
FROM Partsupp ps, Supplier s, Nation n
WHERE ps.suppkey = s.suppkey
AND s.nationkey = n.nationkey
AND n.name = ’GERMANY’

)
GROUP BY p.partkey;

Q
12 SELECT l.shipmode,

SUM(CASE WHEN o.orderpriority IN (’1-URGENT’,
’2-HIGH’)

THEN 1 ELSE 0 END) AS high_line_count,
SUM(CASE WHEN o.orderpriority NOT IN (’1-URGENT’,

’2-HIGH’)
THEN 1 ELSE 0 END) AS low_line_count

FROM Orders o, Lineitem l
WHERE o.orderkey = l.orderkey
AND (l.shipmode IN (’MAIL’, ’SHIP’))
AND l.commitdate < l.receiptdate
AND l.shipdate < l.commitdate
AND l.receiptdate >= DATE(’1994-01-01’)
AND l.receiptdate < DATE(’1995-01-01’)
GROUP BY l.shipmode;

Q
13 SELECT c_count, COUNT(*) AS custdist

FROM (
SELECT c.custkey AS c_custkey,

COUNT(o.orderkey) AS c_count
FROM Customer c, Orders o
WHERE c.custkey = o.custkey
AND (o.comment NOT LIKE ’%special%requests%’)
GROUP BY c.custkey

) c_orders
GROUP BY c_count;

Q
14 SELECT (100.00 *

SUM(CASE WHEN (p.type LIKE ’PROMO%’)
THEN l.extendedprice * (1 - l.discount)
ELSE 0 END) /

LISTMAX(1,
SUM(l.extendedprice * (1 - l.discount)))

) AS promo_revenue
FROM Lineitem l, Part p
WHERE l.partkey = p.partkey
AND l.shipdate >= DATE(’1995-09-01’)
AND l.shipdate < DATE(’1995-10-01’);

Q
15 SELECT s.suppkey, s.name, s.address, s.phone,

r1.total_revenue as total_revenue
FROM Supplier s,

(SELECT l.suppkey AS supplier_no,
SUM(l.extendedprice * (1 - l.discount))
AS total_revenue

FROM Lineitem l
WHERE l.shipdate >= DATE(’1996-01-01’)

AND l.shipdate < DATE(’1996-04-01’)
GROUP BY l.suppkey) r1

WHERE s.suppkey = r1.supplier_no
AND (NOT EXISTS

(SELECT 1
FROM (SELECT l.suppkey,

SUM(l.extendedprice *
(1 - l.discount))

AS total_revenue
FROM Lineitem l
WHERE l.shipdate >= DATE(’1996-01-01’)
AND l.shipdate < DATE(’1996-04-01’)
GROUP BY l.suppkey) AS r2

WHERE r2.total_revenue > r1.total_revenue));

Q
16 SELECT p.brand,

p.type,
p.size,
COUNT(DISTINCT ps.suppkey) AS supplier_cnt

FROM Partsupp ps, Part p
WHERE p.partkey = ps.partkey
AND p.brand <> ’Brand#45’
AND (p.type NOT LIKE ’MEDIUM POLISHED%’)
AND (p.size IN (49, 14, 23, 45, 19, 3, 36, 9))
AND (ps.suppkey NOT IN (

SELECT s.suppkey
FROM Supplier s
WHERE s.comment LIKE ’%Customer%Complaints%’

))
GROUP BY p.brand, p.type, p.size;

Q
17 SELECT SUM(l.extendedprice) / 7.0 AS avg_yearly

FROM Lineitem l, Part p
WHERE p.partkey = l.partkey
AND p.brand = ’Brand#23’
AND p.container = ’MED BOX’
AND l.quantity < (

SELECT 0.2 * AVG(l2.quantity)
FROM Lineitem l2
WHERE l2.partkey = p.partkey

);

Q
18 SELECT c.name, c.custkey, o.orderkey, o.orderdate,

o.totalprice,
SUM(l.quantity) AS query18

FROM Customer c, Orders o, Lineitem l
WHERE o.orderkey IN

(SELECT l3.orderkey FROM (
SELECT l2.orderkey, SUM(l2.quantity) AS QTY
FROM Lineitem l2 GROUP BY l2.orderkey) l3

WHERE QTY > 100
)

AND c.custkey = o.custkey
AND o.orderkey = l.orderkey
GROUP BY c.name, c.custkey, o.orderkey, o.orderdate,

o.totalprice;

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 29

Q
19 SELECT SUM(l.extendedprice * (1 - l.discount)) AS revenue

FROM Lineitem l, Part p
WHERE

(
p.partkey = l.partkey
AND p.brand = ’Brand#12’
AND (p.container IN (’SM CASE’, ’SM BOX’,

’SM PACK’, ’SM PKG’))
AND l.quantity >= 1 AND l.quantity <= 1 + 10
AND (p.size BETWEEN 1 AND 5)
AND (l.shipmode IN (’AIR’, ’AIR REG’))
AND l.shipinstruct = ’DELIVER IN PERSON’

)
OR
(

p.partkey = l.partkey
AND p.brand = ’Brand#23’
AND (p.container IN (’MED BAG’, ’MED BOX’,

’MED PKG’, ’MED PACK’))
AND l.quantity >= 10 AND l.quantity <= 10 + 10
AND (p.size BETWEEN 1 AND 10)
AND (l.shipmode IN (’AIR’, ’AIR REG’))
AND l.shipinstruct = ’DELIVER IN PERSON’

)
OR
(

p.partkey = l.partkey
AND p.brand = ’Brand#34’
AND (p.container IN (’LG CASE’, ’LG BOX’,

’LG PACK’, ’LG PKG’))
AND l.quantity >= 20 AND l.quantity <= 20 + 10
AND (p.size BETWEEN 1 AND 15)
AND (l.shipmode IN (’AIR’, ’AIR REG’))
AND l.shipinstruct = ’DELIVER IN PERSON’

);

Q
20 SELECT s.name, s.address

FROM Supplier s, Nation n
WHERE s.suppkey IN

(SELECT ps.suppkey
FROM Partsupp ps
WHERE ps.partkey IN

(SELECT p.partkey
FROM Part p
WHERE p.name like ’forest%’)

AND ps.availqty >
(SELECT 0.5 * SUM(l.quantity)

FROM Lineitem l
WHERE l.partkey = ps.partkey
AND l.suppkey = ps.suppkey
AND l.shipdate >= DATE(’1994-01-01’)
AND l.shipdate < DATE(’1995-01-01’)))

AND s.nationkey = n.nationkey
AND n.name = ’CANADA’;

Q
21 SELECT s.name, COUNT(*) AS numwait

FROM Supplier s, Lineitem l1, Orders o, Nation n
WHERE s.suppkey = l1.suppkey
AND o.orderkey = l1.orderkey
AND o.orderstatus = ’F’
AND l1.receiptdate > l1.commitdate
AND (EXISTS (SELECT * FROM Lineitem l2

WHERE l2.orderkey = l1.orderkey
AND l2.suppkey <> l1.suppkey))

AND (NOT EXISTS
(SELECT * FROM Lineitem l3
WHERE l3.orderkey = l1.orderkey
AND l3.suppkey <> l1.suppkey
AND l3.receiptdate > l3.commitdate))

AND s.nationkey = n.nationkey
AND n.name = ’SAUDI ARABIA’
GROUP BY s.name;

Q
22 SELECT cntrycode,

COUNT(*) AS numcust,
SUM(custsale.acctbal) AS totalacctbal

FROM (
SELECT SUBSTRING(c.phone, 0, 2) AS cntrycode,

c.acctbal
FROM Customer c
WHERE (SUBSTRING(c.phone, 0, 2) IN

(’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’))
AND c.acctbal > (

SELECT AVG(c2.acctbal)
FROM Customer c2
WHERE c2.acctbal > 0.00
AND (SUBSTRING(c2.phone, 0, 2) IN

(’13’, ’31’, ’23’, ’29’,
’30’, ’18’, ’17’)))

AND (NOT EXISTS (SELECT * FROM Orders o
WHERE o.custkey = c.custkey))

) custsale
GROUP BY cntrycode;

Appendix C Compilation flags

DBToaster used the highest optimization level to compile all
the queries from our workload, except TPC-H Q11. For que-
ries where we wanted to analyze the effect of view caching,
like VWAP and AXF, we used flags to enable materializa-
tion of maps with input variables, and also to predefine their
sizes (only for the C++ backend). For Q16, we suggested
to DBToaster to incrementally maintain the query; this is
an exception where DBToaster fails to choose the correct
maintenance strategy; we plan to fix this issue in our future
release.

The naive recursive compilation materialized the whole
delta expressions with input variables, without simplifying
them or applying join graph decomposition. Under the naive
method, Q15, MDDB1, and MDDB2 were unable to com-
pile within a 4-hour time limit. The C++ backend failed to
produce compilable code for Q2, Q4, Q18a and Q20; we
fixed these errors by hand.

Depth-1 and Depth-0 used a command line option to
limit the compiler’s maximum recursive depth. For the C++
backend and queries Q8, SSB4, MDDB1, and MDDB2, we
used the WIDE-TUPLE flag to overcome the Boost’s limi-
tation that tuples may contain at most 50 attributes.

Appendix D Traces

Figures 14-19 present full traces of view refresh rates and
memory footprint for every query in our workload, except-
ing those previously discussed in Section 9.

30 Christoph Koch et al.

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 9

 18

 27

 36

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 3

 6

 9

 12

R
ef

re
sh

es
 (

10
0/

s)

 0
 922.5
 1845

 2767.5
 3690

0 0.1 0.2 0.3 0.4 0.5 0.6

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.25

 0.5
 0.75

 1

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q2 (b) Q4 (c) Q5 (d) Q6

Fig. 14 (a) A 5-way linear join with an equality/inequality correlated nested aggregate in the EXISTS clause. (b) A join-free query with an
equality/inequality correlated nested aggregate in the EXISTS clause. (c) A 6-way linear join. (d) A join-free query.

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 1.5

 3

 4.5

 6

R
ef

re
sh

es
 (

10
0/

s)

 0
 4492.5

 8985
 13477.5

 17970

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala

 0

 0.5

 1

 1.5

 2

R
ef

re
sh

es
 (

10
00

/s
)

 0
 72.5
 145

 217.5
 290

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 1.5

 3

 4.5

 6

R
ef

re
sh

es
 (

10
00

/s
)

 0
 100
 200
 300
 400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 5

 10

 15

 20

R
ef

re
sh

es
 (

10
00

/s
)

 0
 10
 20
 30
 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q7 (b) Q8 (c) Q9 (d) Q10

Fig. 15 (a) A 6-way linear join. (b) A 8-way linear join. (c) A 6-way star join. (d) A 4-way linear join.

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 7

 14

 21

 28

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 15

 30

 45

 60

R
ef

re
sh

es
 (

1/
s)

 0
 0.5

 1
 1.5

 2

0 0.1 0.2 0.3 0.4 0.5

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 12

 24

 36

 48

R
ef

re
sh

es
 (

10
00

/s
)

 0
 2.25

 4.5
 6.75

 9

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 30

 60

 90

 120

R
ef

re
sh

es
 (

10
/s

)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q12 (b) Q13 (c) Q14 (d) Q16

Fig. 16 (a) A 2-way join. (b) A 2-way join with an aggregate subquery in the FROM clause. (c) A 2-way join. (d) A 2-way join with a nested
inequality correlated query.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views 31

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (

10
/s

)

 0
 7.5
 15

 22.5
 30

0 0.02
0.04

0.06
0.08

0.1 0.12
0.14

0.16

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 6

 12

 18

 24

R
ef

re
sh

es
 (

10
00

/s
)

 0
 10
 20
 30
 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 5

 10

 15

 20

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 15

 30

 45

 60

R
ef

re
sh

es
 (

10
00

/s
)

 0
 2
 4
 6
 8

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q18 (b) Q20 (c) Q22 (d) Q11a

Fig. 17 (a) A 3-way linear join with an equality correlated nested query and an uncorrelated aggregate in the FROM clause. (b) A 2-way join with
3 equality-correlated nested queries. (c) Join-free query with an uncorrelated nested aggregate and a correlated nested aggregate in the EXISTS
clause. (d) A 2-way join.

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 5

 10

 15

 20

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 6

 12

 18

 24

R
ef

re
sh

es
 (

10
00

/s
)

 0
 7.5
 15

 22.5
 30

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.25

 0.5
 0.75

 1

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 50

 100

 150

 200

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.25

 0.5
 0.75

 1

0 0.2 0.4 0.6 0.8 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) Q17a (b) Q18a (c) BSP (d) BSV

Fig. 18 (a) A 2-way join with an equality correlated nested aggregate. (b) A 3-way linear join with two equality-correlated nested aggregates. (c)
A self join with both equality and inequality join conditions. (d) A self join.

Queries Opt Level DBT Flags

D
B

To
as

te
r

Q11 -O2 -d DELETE-ON-ZERO
Q16 -O3 -d HEURISTICS-ALWAYS-UPDATE

VWAP -O3 -d HEURISTICS-ENABLE-INPUTVARS
w/ ivars
AXF

-O3
-d HEURISTICS-ENABLE-INPUTVARS

w/ ivars -d HEURISTICS-AGGRESSIVE-INPUTVARS
-g -DDEFAULT MAP SIZE=10000 (C++)

others -O3 -

N
ai

ve

all -O2

-d CALC-NO-OPTIMIZE
-d CALC-NO-DECOMPOSITION

-d HEURISTICS-ENABLE-INPUTVARS
-g -DDEFAULT MAP SIZE=10000 (C++)

D
ep

th
-0

or
1 Q8

-O3SSB4 -d WIDE-TUPLE (C++)
MDDB1 --depth [0|1]
MDDB2

others -O3 --depth [0|1]

Fig. 13 Compilation flags used by DBToaster to compile queries
from our workload. Description of the flags can be found at www.

dbtoaster.org.

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 50

 100

 150

 200

R
ef

re
sh

es
 (

10
00

/s
)

 0
 0.25

 0.5
 0.75

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

 0

 30

 60

 90

 120

T
im

e
(m

in
)

DBToaster Scala
DBToaster C++

IVM Scala
IVM C++

 0

 25

 50

 75

 100

R
ef

re
sh

es
 (

10
0/

s)

 0
 0.25

 0.5
 0.75

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
em

 (
M

B
)

Fraction of Stream Trace Processed

(a) MDDB1 (b) MDDB2

Fig. 19 (a) A 4-way join. (b) A 10-way join.

www.dbtoaster.org
www.dbtoaster.org

	Introduction
	Related Work
	Queries and Deltas
	The Viewlet Transform
	Higher-Order IVM
	Examples
	Query Engine Compilation and System Overview
	Experiment Setup and Methodology
	Experimental Results
	Conclusion
	Workload Queries
	TPC-H Queries
	Compilation flags
	Traces

