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Abstract. Real-time applications often analyze data coming from sensor net-
works using relational and domain-specific operations such as signal processing
and machine learning algorithms. To support such increasingly important scenar-
ios, many data management systems integrate with numerical frameworks like
R. Such solutions, however, incur significant performance penalties as relational
engines and numerical tools operate on fundamentally different data models with
expensive inter-communication mechanisms. In addition, none of these solutions
supports efficient real-time and incremental analysis. In this work, we advocate
a deep integration of domain-specific operations into general-purpose query pro-
cessors with the goal of providing unified query and data models for both online
and offline processing. Our proof-of-concept system tightly integrates relational
and digital signal processing operations and achieves orders of magnitude better
performance than existing loosely-coupled data management systems.

1 Introduction

Increasingly many applications analyze data that comes from large networks of sen-
sor devices, commonly known as the Internet of Things (IoT). Typical IoT applications
combine relational and domain-specific operations in processing sensor signals: for ex-
ample, the former group signals by different sources or join signals with historical data;
the latter use Fast Fourier Transform (FFT) to do spectral analysis, digital filters to re-
cover noisy signals, or online machine learning to classify signal values. Reconciling
these two seemingly disparate worlds, especially for real-time analysis, is challenging.

The database community has recognized the need for a tighter integration of data
management systems and domain-specific algorithms. Numerical computing environ-
ments such as MATLAB and R provide efficient domain-specific algorithms but remain
unsuitable for general-purpose data processing. In order to enable specialized routines
in complex workflows, many data management systems nowadays integrate with nu-
merical frameworks, R in particular: Spark [4] and SciDB [1] provide R packages;
SQL Server, MonetDB, and StreamBase support queries that can invoke R code.

However, the existing integration mechanisms between database systems and nu-
merical frameworks are suboptimal performance-wise as they treat both sides as inde-
pendent systems. Such loose system coupling comes with significant processing over-
heads – for instance, executing R programs requires exporting data from the database,
converting into R format, running R scripts, converting back into a relational format,
and importing into the database. Sending data back and forth between the systems of-
ten dominates the execution time and increases latency, which makes this approach
particularly unsuitable for real-time processing.



2 Domain-specific Computation in Stream Processing Engines

We advocate a deep integration of domain-specific operations with general-purpose
stream processors. This approach aims to bring specialized operations closer to data
and eliminate the need for expensive communication with external numerical tools.
Enabling in-situ domain-specific computation in stream engines empowers users to ex-
press end-to-end workflows more succinctly, inside one system and using one language.

This tight integration poses several requirements and challenges:

1. Query and data model reconciliation. General-purpose stream processing en-
gines and numerical tools use different query and data models. The former support
relational and streaming queries over relational or tempo-relational data; the latter sup-
port domain-specific, mostly offline, computations on arrays. The key challenge is how
to seamlessly unify these disparate models instead of simulating them on top of each
other, and yet provide data practitioners and domain experts with familiar abstractions.

2. Extensibility. A query processor supporting deep analytics should allow domain
experts to implement custom operators in a way that feels natural to them – by writing
algorithms against arrays without worrying about the format of the underlying data.
Exposing arrays to operator writers would enable easy integration of existing highly
optimized algorithms, for instance, implementations using SIMD instructions.

3. Online and incremental computation. Stream processors loosely coupled with
MATLAB or R cannot incrementalize domain-specific tasks that operate over hopping
(overlapping) windows of data. The stateless nature of routines in MATLAB and R
forces stream engines to redundantly recompute over overlapping subsets of data. On
the other hand, deep integration admits more efficient data management (e.g., via fixed-
size circular arrays) and incremental computation in user-defined stateful operators.

4. Performance. High performance is always a critical requirement for analytics.
The deep integration approach can bring more expressiveness to the query language but
carries a risk of completely giving up on performance. In order to be welcomed by data
scientists and domain experts, a deeply integrated system should preserve the perfor-
mance of existing relational operators while being competitive with best-of-breed sys-
tems for domain-specific tasks. For mixed workflows, a tightly-coupled system should
exhibit better performance than existing loosely-coupled alternatives.

3 Proof of Concept: Signal Processing over Data Streams

Our recent work presents a system that deeply integrates relational and digital sig-
nal processing (DSP) while satisfying the above requirements [3]. The system, called
TRILLDSP, is built on top of Trill [2], a high-performance incremental analytics engine
that supports processing of streaming and relational queries.

Trill uses a tempo-relational data model to uniformly represent offline and online
datasets as stream data. Each stream event is associated with a time window that de-
notes its period of validity. Such stream events form snapshots of valid data versions
across time. The user query is executed against these snapshots in an incremental man-
ner. Trill’s query language provides standard relational operators (e.g., selection, pro-
jection, join, etc.) with temporal interpretation. Each operator is a function from stream
to stream, which allows for elegant functional composition of queries.



TRILLDSP provides a unified query language for processing tempo-relational and
signal data. We next show a query that combines these seemingly disparate worlds.

Example 1. An IoT application receives a stream of temperature readings from differ-
ent sensors in time order. Each reading has the same format <SensorId,Time,Value>.
The application runs the same query on every signal coming from a different source.

var q = stream.Map(s => s.Select(e => e.Value), e => e.SensorId)
.Reduce(s => s.Window(512, 256,

w => w.FFT().Select(a => f(a)).InverseFFT(), a => a.Sum()));

The query combines relational and DSP operators to express several processing phases:
1) Grouping: Map specifies a sub-query (projection with Select) to be performed in
parallel on the stream and a grouping key (SensorId) to be used for shuffling the re-
sult streams; Reduce specifies the query to be executed per each group; 2) Windowing:
Most DSP algorithms operate over windows of data defined by window size and hop
size. The Window operator allows users to express such algorithms as a series of trans-
formations of fixed-size arrays (w); 3) Spectral Analysis: The processing pipeline starts
with a Fast Fourier Transform (FFT) that computes the frequency representation of
a 512-sample window at each hopping point. A user-defined function f modifies the
computed spectrum (e.g., retains top-k spectrum values and zeros out others) before
invoking an inverse FFT; 4) Unwindowing: To restore the signal form, the final phase
projects output arrays back to the time axis and sums up the overlapping values.

This query captures the fundamental technique of windowing in DSP and serves as a
blueprint for a large class of IoT workflows. The declarative query model of TRILLDSP
offers high-level operators capable of expressing such deep analytics succinctly. �

We design and implement the DSP functionality in TRILLDSP as a layer running
on top of the unmodified Trill relational engine. The layer enriches the query model
with a ”walled garden” that provides signal abstractions and clear transitions between
stream and signal operations. TRILLDSP makes no changes in the underlying tempo-
relation data model (i.e., has no arrays as first-class citizens). Instead, it exposes arrays
only through designated DSP operators and abstracts away the complexity of on-the-
fly transformations between the relational and array models. In that way, the existing
relational API and the performance of non-DSP queries remain unaffected.

For DSP experts, TRILLDSP provides an extensible framework for defining new
user-defined window operations (e.g., variants of FFT, windowing functions, correla-
tion functions, element-wise product, etc.), which can be seamlessly interleaved with
relational operators. The framework internally exposes array abstractions to ease the
integration of new black-box DSP operators. It also allows users to implement incre-
mental versions of operators to be used in computation with hopping windows.

The unified query model of TRILLDSP supports both online and offline analysis.
As offline datasets are streams consisting of events with an infinite lifetime, each tempo-
relational operator is transferable between real-time and offline by construction. Thus,
users can build queries from offline data and then put them unmodified in production.

Deep integration of signal and relational processing is key to achieving high per-
formance. In pure DSP tasks, TRILLDSP is competitive or even faster than state-of-
the-art numerical frameworks like MATLAB and R. This comes at no surprise as this



framework exposes array abstractions to operator writers for easy adoption of highly-
optimized black-box implementations of DSP operations (e.g., those exploiting SIMD
instructions). TRILLDSP shows its full potential when processing data coming from a
large number of sensor devices using the query logic that combines relational and signal
operation. All signal operations natively support grouped processing, that is, one opera-
tor can simultaneously process multiple groups by maintaining the state of each group.
Coupling these operators with Trill’s streaming temporal MapReduce operator enables
efficient grouped signal processing. TRILLDSP’s in-situ execution model achieves up
to two orders of magnitude better performance than modern relational and array data
management systems with loose R integration, such as SPARKR [4] and SCIDB-R [1].

4 Future Work

This proof-of-concept system [3] demonstrates that one can extend general-purpose
query processors with domain-specific functionality and get the best of both worlds:
a more powerful, declarative query language and high performance of both general-
purpose and domain-specific operations. This result opens up the question whether the
“one-size-doesn’t-fit-all” paradigm from database systems also holds for streaming sys-
tems because of their dynamic nature that allows them to adapt data on-the-fly to meet
different processing requirements.

The ”walled garden” approach to enabling deep analytics over data streams can
also be applied in domains other than signal processing, such as machine learning,
scientific computing, computer vision, physical modeling, computational finance, etc.
The window-based query template shown in the above example can support arbitrary
computations over arrays: for instance, applications analyzing accelerometer data from
wearable devices can build pipelines of machine learning operators to classify sequences
of signal samples into classes of physical activities (e.g., walking, running, sitting,
standing, etc.); algorithmic trading applications can implement trading strategies us-
ing pipeline operators over windows of stock prices, which can be possibly correlated
with historical data. In general, enhancing relational engines with powerful capabilities
from various domains enables data processing to be placed closer to data sources (i.e.,
towards network edges), which soon will be essential in order to cope with growing
amounts of sensor data and ensure scalability of IoT applications.
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