
Summer School on Generic and Effectful Programming

Applying Type-Level and
Generic Programming in Haskell

Andres Löh, Well-Typed LLP

July 4, 2015

Contents

1 Introduction and type-level programming 5
1.1 Motivation . 5

1.1.1 What is datatype-generic programming? 5
1.1.2 Applications of generic programming 6
1.1.3 A uniform view on data . 6

1.2 Kinds and data kinds . 7
1.2.1 Stars and functions . 8
1.2.2 Promoted data kinds . 8

1.3 Generalized algebraic data types (GADTs) 9
1.3.1 Vectors . 9
1.3.2 Functions on vectors . 10

1.4 Singleton types . 11
1.4.1 Singleton natural numbers . 11
1.4.2 Evaluation . 12
1.4.3 Applicative vectors . 13

1.5 Heterogeneous lists . 13
1.5.1 Promoted lists and kind polymorphism 13
1.5.2 Environment or n-ary products . 14

1.6 Higher-rank types . 15
1.6.1 Mapping over n-ary products . 15
1.6.2 Applicative n-ary products . 17
1.6.3 Lifted functions . 18
1.6.4 Another look at hmap . 19

1.7 Abstracting from classes and type functions 19
1.7.1 The kind Constraint . 20
1.7.2 Type functions . 20
1.7.3 Composing constraints . 21
1.7.4 Proxies . 22
1.7.5 A variant of hpure for constrained functions 23

2 Generic programming with n-ary sums of products 25
2.1 Recap: n-ary products NP . 25
2.2 Generalizing choice . 25

2.2.1 Choosing from a list . 26
2.2.2 Choosing from a vector . 26
2.2.3 Choosing from a heterogeneous list 26
2.2.4 Choosing from an environment . 27

2.3 Sums of products . 27

3

2.3.1 Representing expressions . 27
2.3.2 The Generic class . 29
2.3.3 Other Generic instances . 29
2.3.4 Support for Generic in the compiler 30

2.4 Defining generic equality . 31
2.4.1 A bottom-up approach . 31
2.4.2 The All2 constraint . 32
2.4.3 Completing the definition . 32
2.4.4 Improving the product case . 33

4

1 Introduction and type-level programming

Please note that this is a preliminary version of the lecture notes, which does not contain
the material corresponding to the final parts of the lecture series, and may contain various
glitches and holes. You will get an updated and completed version during the summer school.
Feedback and suggestions for improvement are nevertheless welcome for any version.

1.1 Motivation

1.1.1 What is datatype-generic programming?

The idea of datatype-generic programming is as follows. Assume you have a datatype A and
consider a function on that datatype such as structural equality:

eqA :: A -> A -> Bool

Given the definition of A, it’s very easy and straight-forward to give the definition of eqA.
That’s because there is an algorithm that we can describe informally: if the datatype admits
different choices (i.e., constructors), then check that the two arguments are of the same con-
structor. If they are, then check the arguments of the constructor for equality pointwise.

If we can phrase the algorithm informally, we’d like to also be able to write it down formally.
(Haskell allows to say deriving Eq on a datatype declaration, invoking compiler magic that
conjures up a suitable definition of equality for that datatype, but that isn’t a formally defined
algorithm and only works for a handful of functions.)

So here is the general idea, expressed in terms of Haskell: assume there is a type class

class Generic a where
type Rep a
from :: a -> Rep a
to :: Rep a -> a

that associates with a type a an isomorphic representation type Rep a, witnessed by the con-
version functions from and to. Now if all Rep a types have a common structure, we can define
a generic function

geq :: Generic a => Rep a -> Rep a -> Bool

that works for all representation types by induction over this common structure.
Then we can use the isomorphism and geq to get an equality function that works on any

representable type:

eq :: Generic a => a -> a -> Bool
eq x y = geq (from x) (from y)

5

We can then build a limited amount of compiler magic into the language to derive the Generic
instance for each representable type automatically, i.e., to automatically come up with a struc-
tural representation type the conversion functions, and we have reduced the need for having an
arbitrary amount of magically derivable type classes to the need to have just a single magically
derivable type class, called Generic.

There is still a lot of flexibility in the details of how exactly the class Generic is defined,
and even more importantly, what kind of representation we choose for Rep. This choice is
often called the generic view or universe, and it is the main way in which the countless generic
programming approaches that exist for Haskell (SYB, RepLib, instant-generics, regular, mul-
tirec, generic-deriving, generic-sop) are different from one another. This choice can have a
significant effect:

• Depending on the choice of universe, some datatypes may be representable and others
may not.

• Depending on the choice of universe, some generic functions may be definable and
others may not definable (or more difficult to define, or less efficient).

In the context of this lecture series, we are going to look at one such universe, which is
relatively recent, called generics-sop. I think it is quite elegant and easy to use, while still
being expressive. We will also briefly look at the relation to other universes, and I will take
that opportunity to argue that despite the arguments I just made, the choice of universe is less
important than one might think.

In order to work with generics-sop, one has to use quite a few type system extensions offered
by GHC, and it helps to understand the concepts involved. One may see this as a disadvantage,
but here, we’re going to see it as a welcome challenge: being able to program on the type level
in GHC, while not a silver bullet, is an exciting area in itself, and useful for many purposes
beyond datatype-generic programming, so we’ll see it as a useful opportunity to familiarize
ourselves with the necessary concepts.

Apart from the knowledge barrier, generics-sop is ready for use. It is released, available on
Hackage, and is being used.

1.1.2 Applications of generic programming

There are many ways in which datatype-generic programs can be usefully implied. Next to
equality and comparison functions, there are a large class of translation functions that translate
between values of datatypes and other formats, such as human-readable text, binary encodings
or data description languages such as JSON, XML or similar. Typical generic functions in-
clude also all sorts of navigation or traversal functions that access certain parts of values while
leaving others alone, such as lenses.

In the latter part of this lecture series, we will discuss a number of applications of generics-
sop.

1.1.3 A uniform view on data

We are now going to explain the main motivation behind the structural representation of
Haskell datatypes that is chosen by generics-sop.

6

Let us start by looking at a few datatypes in Haskell:

data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
data Group = Group Char Bool Int
data Expr = NumLit Int | BoolLit Bool | Add Expr Expr | If Expr Expr Expr

We observe: Haskell datatypes offer a choice between different constructors. Depending on
the constructor chosen, we have to provide an appropriate sequence of arguments. In other
words, each value of such a datatype is a constructor applied to a number of arguments. This
is going to be our common structure:

Ci x0...xni-1

If we know the type of the value, the names of its constructors do not really matter. We can
simply number the constructors from 0 to c - 1 where c is the total number of constructors
for that datatype. Depending on the chosen number n, we know how many arguments ni we
expect and what their types are.

Interestingly, this representation is quite close to the run-time representation of Haskell
values. GHC stores each value starting with a pointer to some information that, among other
things, contains a tag indicating the number of the constructor. Following this info pointer
there is the “payload”, which is just a sequence of pointers to the constructor arguments.

So it is plausible that something similar might work for us. But we need to assign types to
this representation if we want to work with it on the Haskell surface level. Which means that
we have to formalize concepts such as “the number of the constructor determines the number
of arguments and their types”.

Haskell does not have “full-spectrum” dependent types, but it is well-known that we can get
very close with various GHC extensions. We will model the sequence of arguments of a con-
structor as a typed heterogeneous list. Then we will model the choice between the constructors
as something like a pointer into a heterogeneous list. In the following, we will introduce the
GHC concepts that we will rely on, such as GADTs, data kinds and constraint kinds.

Since type-level programming is a bit peculiar in Haskell, we’ll move step by step: from
normal list over length-indexed vectors to heterogeneous lists and ultimately the sligthly more
generalized n-ary products that we are planning to use. Several concepts will be introduced
in the slightly simpler setting of length-indexed vectors before we try to apply them to n-ary
products.

1.2 Kinds and data kinds

Haskell has a layered type system. Types are defined using a much more limited language
than terms. Perhaps the most obvious omission is the lack of a plain lambda abstraction on the
type level. Nevertheless, types are structured, and there is the possibility to apply types to one
another, and to parameterize named types. Therefore, types need their own, non-trivial, types,
which are called kinds.

7

1.2.1 Stars and functions

For a long time, the kind system of Haskell was quite uninteresting:

• The kind * is for types that classify terms (even though not every type of kind * need
be inhabited). In particular, whenever we define a new datatype using data, its fully
applied form is of kind *. This also implies that kind * is open. New members of kind
* can be added via data at any time.

• If k and l are kinds, we can form the function kind k -> l to indicate types of kind l
that are parameterized over types of kind k.

Examples:

• The types Int, Double, Bool, and Char are all of kind *.

• The types Maybe, [], and IO are of kind * -> *, but e.g. Maybe Int, [Double] or
IO Bool are of kind * again.

• The types Either or (,) are of kind * -> * -> *. They can be partially applied, so
e.g. Either Int is of kind * -> *. And Either Int Char or (Bool, Double) are of
kind * again.

• We can use the kind system to tell that Either (Maybe [Int]) (Char, Bool) is well-
formed, but (Maybe, IO) is not.

1.2.2 Promoted data kinds

Nowadays, Haskell has many more kinds than just the above. In fact, we can define new kinds
ourselves, via datatype promotion. Whenever we define a new datatype, we can also use it as
a kind.

Example:

data Bool = False | True

This defines the datatype Bool with (data) constructors

False :: Bool
True :: Bool

But promotion allows us to use everything also one level up, so Bool is a new kind with type
constructors

’False :: Bool
’True :: Bool

Just like there are only two values of type Bool (ignoring undefined or “bottom”), there
are only two types of kind Bool. The quotes can be used to emphasize the promotion and
are required where the code would otherwise be syntactically ambiguous, but are often just
dropped.

8

So if ’False is a type, are there any terms or values of type ’False? The answer is no! The
kind * remains the kind of types that classify values. All the other new kinds we now gain by
promoting datatypes are uninhabited.

They are, however, still useful, as we shall see, because they can appear as the arguments
and results of type-level functions, and they can appear as parameters of datatypes and classes.
It’s the latter use that we are for now most interested in.

1.3 Generalized algebraic data types (GADTs)

We’d like to model heterogeneous lists so that we can represent sequences of arguments of a
data constructor as such lists. We’ll do so by generalizing normal Haskell lists in several steps.

1.3.1 Vectors

The first step is to go to length-indexed lists, also known as vectors. For these, let’s first define
the natural numbers as a datatype as follows:

data Nat = Zero | Suc Nat

We are going to use this datatype in promoted form, so are going to see Nat as a kind, and

’Zero :: Nat
’Suc :: Nat -> Nat

(again, the quotes are generally optional) as types. The definition of vectors is then as follows:

data Vec (a :: *) (n :: Nat) where
VNil :: Vec a Zero
VCons :: a -> Vec a n -> Vec a (Suc n)

infixr 5 ‘VCons‘

This definition uses a different, more flexible syntax for datatype definitions: we define Vec ::
* -> Nat -> * with two constructors, by listing their types. This syntax gives us the option
to restrict the result type. For example, Nil does not construct an arbitrary vector Vec a n,
but only a Vec a Zero. Similarly, Cons cannot be used to construct a Vec a Zero, but only a
Vec a (Suc n) for some n.

Note the role of Nat here, as just an index. As we have observed above, there are no inhab-
itants of type Nat, nor is there any need. We just use Nat to grant us more information about
vectors. In a full-spectrum dependently typed language, we could use the actual natural num-
bers for this. In Haskell, we have to lift them to the type level, but apart from that technicality,
the effect is very similar.

Let us look at an example:

type Three = Suc (Suc (Suc Zero))

vabc :: Vec Char Three
vabc = ’a’ ‘VCons‘ ’b’ ‘VCons‘ ’c’ ‘VCons‘ VNil

9

The type of vabc can also be inferred. The type system keeps track of the length of our vectors,
as desired.

It’s a bit annoying if we cannot show vectors in GHCi, so let’s add a deriving declaration
that magically gives us a Show instance for vectors:

deriving instance Show a => Show (Vec a n)

The true power of GADTs becomes visible if we consider pattern matching, such as in

vtail :: Vec a (Suc n) -> Vec a n
vtail (VCons x xs) = xs

or

vmap :: (a -> b) -> Vec a n -> Vec b n
vmap f VNil = VNil
vmap f (VCons x xs) = f x ‘VCons‘ vmap f xs

In vtail, the type signature indicates that we receive a non-empty vector. This means we do
not have to match on Nil – in fact, doing so would not be type-correct. We can write a safe
and total vtail function.

In vmap, matching on Nil tells GHC that for this case n must be equal to Zero. GHC has its
own syntax for type equality: it will learn that n ~ Zero holds for this case, and therefore, it
will happily accept that we return Nil again. Trying to use Cons on the right hand side of the
Nil case would cause a type error.

Similarly, in the Cons-case, GHC learns n ~ Suc n’ for some n’. Then, because vmap
preserves the length, vmap f xs :: Vec a n’ and Cons-ing one element on that will yield a
vector of length n again.

The type signatures for vtail and vmap are required. In general, pattern matching on a
GADT requires an explicit type annotation.

1.3.2 Functions on vectors

Before we move on to heterogeneous lists, let’s spend a bit more time trying to reimplement
some functions we know from normal lists on vectors. Ultimately, our goal is to do the same
for heterogeneous lists, but we’ll need a couple of new concepts along the way.

Some of these concepts are needed just generally because we move more information to the
type level. Others result from the further generalization from vectors to heterogeneous lists.
Looking at vectors in more detail now allows us to separate these issues, rather than having to
discuss and understand them all at the same time.

Consider replicate:

replicate :: Int -> a -> [a]
replicate n x

| n <= 0 = []
| otherwise = x : replicate (n - 1) x

A call to replicate n x creates a list with n copies of x. How would we do something similar
for vectors?

10

The size of a vector is statically known, so we’ll have to assume that the number of copies
we want is also known to us at the type level. But how do we pass it? We certainly cannot use
an Int, because that would live at the term level. Do we need an argument at all? Might we
be able to write:

vreplicate :: a -> Vec a n

Unfortunately, no. This type suggests that the function is parametric in n, i.e., that we do not
need to look at n at all. But we have to make a compile-time distinction based on the type n.
One option is to use a type class:

class VReplicate (n :: Nat) where
vreplicate :: a -> Vec a n

Haskell type classes naturally extend to the presence of data kinds.
Now it’s easy to complete the definition of VReplicate:

instance VReplicate Zero where
vreplicate _ = VNil

instance VReplicate n => VReplicate (Suc n) where
vreplicate x = x ‘VCons‘ vreplicate x

This works. For example

GHCi> vreplicate ’x’ :: Vec Char Three
VCons ’x’ (VCons ’x’ (VCons ’x’ VNil))

While using type classes like this is a possibility, there also is a significant disadvantage: when
following this pattern, we have to define new type classes for a lot of different functions, and
the class constraints will appear in the types of all the functions that use them. In other words,
we will leak information that should be internal to the implementation of a function in the
types. Once we start optimizing a function or changing the algorithm or reimplementing it in
terms of other, more general functions, we might have to adapt its type and therefore lots of
other types in our program.

It’s therefore worth to consider another option.

1.4 Singleton types

1.4.1 Singleton natural numbers

We can try to mirror the type of replicate more closely by creating a value that does nothing
more than to help GHC to know what value of n we want. The idea is that we create a GADT
SNat n such that SNat n has exactly one value for each n. Then we can use pattern matching
on the SNat n to learn at run-time what n is, and branch on that.

One common approach to achieve this goal is to define:

data SNat (n :: Nat) where -- preliminary
SZero :: SNat Zero
SSuc :: SNat n -> SNat (Suc n)

11

For example,

sThree :: SNat Three
sThree = SSuc (SSuc (SSuc SZero))

However, we’re going to take a slightly different approach here by defining SNat and a class
that are mutually recursive:

data SNat (n :: Nat) where
SZero :: SNat Zero
SSuc :: SNatI n => SNat (Suc n)

class SNatI (n :: Nat) where
sNat :: SNat n

instance SNatI Zero where
sNat = SZero

instance SNatI n => SNatI (Suc n) where
sNat = SSuc

Using SNat and SNatI, we can define vreplicate also as follows:

vreplicate :: forall a n . SNatI n => a -> Vec a n
vreplicate x = go sNat

where
go :: forall n . SNat n -> Vec a n
go SZero = VNil
go SSuc = x ‘VCons‘ go sNat

1.4.2 Evaluation

Comparing to the original solution of defining one class per function, the singletons approach
has the advantage that we need only one class per type that we pattern match on – and we do
not even necessarily need the class, if we’re willing to pass the singleton explicitly instead. So
this gives us rather more interface stability and exposes less of the implementation. There’s
also a disadvantage though: type class resolution happens at compile time. However, the value
of type SNat is an actual run-time value, and pattern matching on it happens at run-time. So
the singleton-based version of replicateS does unnecessary work at run-time by perming
case distinctions for which the outcome was already known at compile time.

A sufficiently optimizing compiler could in principle resolve all this and compile both ver-
sions to the same code. In practice, GHC does not, and while this is somewhat annoying, it
can in some circumstances also be beneficial, because it actually provides the programmer
with a (albeit rather subtle) choice: use type classes and get compile-time resolution (which is
usually more efficient, but can actually in extreme cases produce lots of code), or use single-
ton and get run-time resolution (which usually does unnecessary work at run-time, but can be
more compact).

12

1.4.3 Applicative vectors

Using vreplicate, vectors in principle admit the interface of an applicative functor:

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

It is well known that one possible instance for lists is that where pure produces an infinite list
of copies, and (<*>) zips together the list, applying the list of functions pointwise to the list
of arguments.

For vectors, we can implement the same idea, only that of course, the length of all the lists
involved is statically fixed. The function vreplicate plays the role of pure, and

vapply :: Vec (a -> b) n -> Vec a n -> Vec b n
vapply VNil VNil = VNil
vapply (f ‘VCons‘ fs) (x ‘VCons‘ xs) = f x ‘VCons‘ vapply fs xs

is like (<*>).
There’s a relatively technical reason why we cannot make Vec an actual instance of Applicative:

The parameters of Vec are in the wrong order for that.

1.5 Heterogeneous lists

A heterogeneous list is like a vector: a list-like strucuture with a statically known length. But
in addition, we also know the type of each element! So indexing by a natural number is not
enough. We have to know all the types of all the elements. So we index by a normal list of
types.

1.5.1 Promoted lists and kind polymorphism

Normal term-level Haskell lists define a type constructor [] of kind * -> *, with constructors

[] :: [a]
(:) :: a -> [a] -> [a]

Just like we can promote types like Bool and Nat, we can also promote lists and treat [] as a
kind constructor, and [] and (:) as types.

Note that even if seen as a type constructor, (:) has kind

(:) :: a -> [a] -> [a]

This means it is kind-polymorphic. We can build a type-level list of promoted Booleans as
well as a type-level list of promoted natural numbers:

GHCi> :kind [True, False]
[True, False] :: [Bool]
GHCi> :kind [Zero, Three]
[Zero, Three] :: [Nat]

13

For a heterogeneous list, we want a type-level list of types, which has kind [*]:

GHCi> :kind [Char, Bool, Int]
[Char, Bool, Int] :: [*]

The definition is as follows:

data HList (xs :: [*]) where
HNil :: HList ’[]
HCons :: x -> HList xs -> HList (x ’: xs)

infixr 5 ‘HCons‘

In this case, the quotes in ’[] and ’: are actually required by GHC, because we e.g. need
to disambiguate between the list type constructor [] :: * -> * and the empty type-level list
’[] :: [*].

Let’s consider our example datatype Group again:

data Group = Group Char Bool Int

Using HList, we can produce a sequence of a character, a Boolean, and an integer, as follows:

group :: HList ’[Char, Bool, Int]
group = ’x’ ‘HCons‘ False ‘HCons‘ 3 ‘HCons‘ HNil

Once again, we include the type signature for reference, but it could have been inferred.

1.5.2 Environment or n-ary products

It turns out that we will often need heterogeneous lists where each element is given by applying
a particular type constructor to one of the types in the index list. Consider for example a
heterogeneous list where all values are optional (Maybe), or all values are IO actions.

We therefore are going to define the following variant of HList, which is additional ab-
stracted over a type constructor f, and has elements of the type f x where x is a member of
the index list:

data NP (f :: k -> *) (xs :: [k]) where
Nil :: NP f ’[]
(:*) :: f x -> NP f xs -> NP f (x ’: xs)

infixr 5 :*

Here, NP is for n-ary product, but I sometimes also call this type an environment, and the index
list xs its signature.

Note that we’ve made NP kind-polymorphic. We do not require the signature to be of kind
[*], but allow it to be an arbitrary type-level list of kind [k], as long as the “interpretation
function” f maps k back to *. This is possible, because elements of the signature do not
directly appear in an environment, but only as arguments to f. It also will turn out to be useful
for us in a little while, but let’s first consider scenarios where k is *.

The datatype NP is really a generalization of HList:

14

newtype I a = I {unI :: a}

implements an identity function on types. For any choice of a the type I a is isomorphic to
type a.

And the type NP I is isomorphic to HList, as is witnessed by the following conversion
functions:

fromHList :: HList xs -> NP I xs
fromHList HNil = Nil
fromHList (x ‘HCons‘ xs) = I x :* fromHList xs

toHList :: NP I xs -> HList xs
toHList Nil = HNil
toHList (I x :* xs) = x ‘HCons‘ toHList xs

Interestingly, there is no need to put these conversion functions into type classes (such as
hshow), because there are no constraints on the type-level list xs.

Perhaps surprisingly, NP is also a rather direct generalization of (homogeneous) vectors:

newtype K a b = K {unK :: a}

implements a constant function on types. For any choice of a and b, the type K a b is isomor-
phic to type a.

An environment of type

NP (K Double) ’[Char, Bool, Int]

is a list of three elements of type Double. The length of the type-level list determines the
number of elements, however the types in the index list are irrelevant, as they’re all ignored
by K.

In practice, the function that turns out to be useful often is one that collapses an NP of Ks
into a normal list:

hcollapse :: NP (K a) xs -> [a]
hcollapse Nil = []
hcollapse (K x :* xs) = x : hcollapse xs

1.6 Higher-rank types

Let’s try to define a number of functions on environments. For vectors, we had implemented
vmap, vreplicate and vapply, which together gave us (morally speaking) an instance of
Applicative for vectors. Our aim is to provide a similar interface for environments.

1.6.1 Mapping over n-ary products

Let’s start by looking at a generalization of vmap.

vmap :: (a -> b) -> Vec a n -> Vec b n

15

Note that vmap preserves the length index, but changes the type of elements.
For NP, we have no single type of elements, but different types. While we might want

to change the type of elements, we better not change it in completely unpredictable ways,
otherwise we cannot do anything useful with the list anymore. Here, it turns out to be useful
that we’ve made the step from HList to NP, because we already have a type constructor f that
tells us how to interpret each element in the signature. So let us generalize vmap to hmap in the
following way: the function hmap will also preserve the index, but change the type constructor.

This turns out to be very flexible in practice. For example, with just the two instantiations
of f we have considered so far, K and I, we can model a type-preserving map as a function

NP I xs -> NP I xs

and a type-unifying map as a function

NP I xs -> NP (K a) xs

and a map that actually produces values of different types out of a homogeneous list as a
function

NP (K a) xs -> NP I xs

But note that we can also plug other type constructors into an NP, including GADTs, so in
principle we can express rather strange maps, as long as we are willing to explain them to the
type system.

So let’s look at the code we would expect hmap to have, and think about the type signature
afterwards:

hmap m Nil = Nil
hmap m (x :* xs) = m x :* hmap m xs

Ok, so hmap clearly takes an environment and produces one again, with equally many ele-
ments, as was the plan:

hmap :: ... -> NP f xs -> NP g xs

Now it seems that we need a function of type f x -> g x as an argument. But for what x? If
you look at the second case, then m will be applied to all elements of the list xs. So it’s not
enough if m works for one particular x – it has to work for at least all the xs that appear in xs!
If m even happens to be polymorphic in x, then that is clearly good enough:

hmap :: (forall x . f x -> g x) -> NP f xs -> NP g xs

This is an example of a rank-2-polymorphic type. The argument function to hmap must itself
be polymorphic.

If a Haskell function is polymorphic, the caller of the function has the freedom to choose the
type on which to use the function, whereas the callee must make no assumptions whatsoever
about the type. If an argument function is polymorphic, the situation is reversed: now the
caller has the obligation to pass in a polymorphic function, and the callee may flexibly use it
on any type desired.

16

Let us look at an example (using a Show instance for NP that we’ll only define later):

group’ :: NP I ’[Char, Bool, Int]
group’ = I ’x’ :* I False :* I 3 :* Nil

example :: NP Maybe ’[Char, Bool, Int]
example = hmap (Just . unI) group’

GHCi> example
Just ’x’ :* (Just False :* (Just 3 :* Nil))

While we cannot map plain Just over group’, we can still get quite close. We have to unwrap
the elements from the I constructor before we can re-wrap them in Just.

1.6.2 Applicative n-ary products

Now that we’ve seen hmap, let’s see if we can come up with functions corresponding to pure
and <*> as well.

Let’s recall vreplicate:

vreplicate :: forall a n . SNatI n => a -> Vec a n
vreplicate x = go sNat

where
go :: forall n . SNat n -> Vec a n
go SZero = VNil
go SSuc = x ‘VCons‘ go sNat

The role of n is now played by the signature xs, and the role of a by the type constructor f.
So we need two ingredients to make this work:

• A sufficiently polymorphic value of type f x so that it can be used for any x in the
signature of xs. We’ll use the type forall a . f a here.

• A singleton for lists.

Following the same principles we used for SNat, we try to define:

data SList (xs :: [k]) where
SNil :: SList ’[]
SCons :: SListI xs => SList (x ’: xs)

class SListI (xs :: [k]) where
sList :: SList xs

instance SListI ’[] where
sList = SNil

instance SListI xs => SListI (x ’: xs) where
sList = SCons

This isn’t quite ideal, because we say nothing about the elements of the list. In principle, we’d
want SCons to include both a singleton for the head and a singleton for the tail.

17

For now, we can actually define:

hpure :: forall f xs . SListI xs => (forall a . f a) -> NP f xs
hpure x = go sList

where
go :: forall xs . SList xs -> NP f xs
go SNil = Nil
go SCons = x :* go sList

It is reassuring to see that the code is essentially the same as for vreplicate.
Here are two examples:

GHCi> hpure Nothing :: NP Maybe ’[Char, Bool, Int]
Nothing :* (Nothing :* (Nothing :* Nil))
GHCi> hpure (K 0) :: NP (K Int) ’[Char, Bool, Int]
K {unK = 0} :* (K {unK = 0} :* (K {unK = 0} :* Nil))

1.6.3 Lifted functions

As a final step, let us tackle hap, the function corresponding to vapply:

vapply :: Vec (a -> b) n -> Vec a n -> Vec b n
vapply VNil VNil = VNil
vapply (f ‘VCons‘ fs) (x ‘VCons‘ xs) = f x ‘VCons‘ vapply fs xs

It is relatively obvious that we’ll have to turn this into

hap :: NP...xs -> NP f xs -> NP g xs

But what goes into the place of ...? We need the first vector to contain at the position
indexed by x a function of type f x -> g x. So the interpretation function we’re looking for
is something like \x -> (f x -> g x), only that we do not have type-level lambda available
in Haskell.

The standard trick is to define a newtype, which will go along with some manual wrapping
and unwrapping, but is isomorphic to the desired type:

newtype (f -.-> g) a = Fn {apFn :: f a -> g a}

infixr 1 -.->

We can then define

hap :: NP (f -.-> g) xs -> NP f xs -> NP g xs
hap Nil Nil = Nil
hap (f :* fs) (x :* xs) = apFn f x :* hap fs xs

Let’s look at an example:

lists :: NP [] ’[String, Int]
lists = ["foo", "bar", "baz"] :* [1 . . 10] :* Nil

18

numbers :: NP (K Int) ’[String, Int]
numbers = K 2 :* K 5 :* Nil

fn_2 :: (f a -> f’ a -> f’’ a)
-> (f -.-> f’ -.-> f’’) a

fn_2 f = Fn (\x -> Fn (\y -> f x y))

take’ :: (K Int -.-> [] -.-> []) a
take’ = fn_2 (\(K n) xs -> take n xs)

GHCi> hpure take’ ‘hap‘ numbers ‘hap‘ lists
["foo", "bar"] :* ([1, 2, 3, 4, 5] :* Nil)

1.6.4 Another look at hmap

For normal lists, we have the identity

map f = pure f <*> xs

And indeed, the corresponding identity does also hold for environments:

hmap’ :: SListI xs => (forall a . f a -> g a) -> NP f xs -> NP g xs
hmap’ f xs = hpure (Fn f) ‘hap‘ xs

is the same as hmap. The only difference is an additional (and rather harmless) constraint on
SListI.

1.7 Abstracting from classes and type functions

Can we also apply hmap or hmap’ to show, thereby turning an NP I into an NP (K String)?
Unfortunately not: for example, the call

hmap (K . show . unI) group’

results in a type error, because we have

K . show . unI :: forall x . Show x => I x -> K String x

which does not match

forall x . f x -> g x

due to the class constraint on Show. But it would be useful to allow this, and in fact, there are
other functions with other class constraints that we might also want to map over an environ-
ment, provided that all elements in the environment are actually instances of the class.

19

1.7.1 The kind Constraint

Fortunately, GHC these days also allows us to abstract over classes in this way. It turns out
that classes can be seen as types with yet again a different kind. Where data introduces types
of kind *, classes introduce types of kind Constraint. So like *, the kind Constraint is open.

Examples:

• Classes such as Show or Eq or Ord all have kind * -> Constraint. They are parameter-
ized by a type of kind *, and if applied, form a class constraint.

• Classes such as Functor or Monad are of kind (* -> *) -> Constraint. They are
parameterized by type constructors of kind * -> *.

• A multi-parameter type class such as MonadReader has kind * -> (* -> *) -> Constraint.
It needs two parameters, one of kind * and one of kind * -> *.

In addition, we can use tuple syntax to create empty constraints and combine constraints in
a syntactically somewhat ad-hoc fashion:

type NoConstraint = (() :: Constraint)
type SomeConstraints a = (Eq a, Show a)
type MoreConstraints f a = (Monad f, SomeConstraints a)

Note that there are no such things as “nested” constraint sets – collections of constraints are
automatically flattened, (,) acts like a union operation here.

1.7.2 Type functions

One thing we would like to express is that a constraint holds for all elements of a type-level
list. It is a part of what we need in order to write a variant of hmap that is compatible with
constrained functions.

To do this, we are going to define a type family – essentially a function on types, combining
a parameterized constraint and a list of parameters into a single constraint:

type family All (c :: k -> Constraint) (xs :: [k]) :: Constraint where
All c ’[] = ()
All c (x ’: xs) = (c x, All c xs)

We can use a rather cryptic command in GHCi to expand type families for us and see All in
action:

GHCi> :kind! All Eq ’[Int, Bool]
All Eq ’[Int, Bool] :: Constraint
= (Eq Int, (Eq Bool, ()))

Once again, note that while GHCi shows this as a nested tuple, it is actually flattened into a
single set of constraints.

We can use All to write a function that turns all elements in a heterogeneous list (a HList,
not an NP) to strings via show and concatenates them:

20

hToString :: All Show xs => HList xs -> String
hToString HNil = ""
hToString (HCons x xs) = show x ++ hToString xs

Let’s see why this works: When pattern matching on HCons, GHC learns that xs ~ y ’: ys.
Therefore, we have by applying the definition of All:

All Show xs ~ All Show (y ’: ys) ~ (Show y, All Show ys)

The call show x requires Show y, and the recursive call to hToString xs requires Show ys, so
everything is fine.

1.7.3 Composing constraints

In order to do the same for NP, we need one extra ingredient. If we have e.g. an NP f ’[Int, Bool],
we do not actually need

(Show Int, Show Bool)

but rather

(Show (f Int), Show (f Bool))

If we had function composition on the type level, we could also write

((Show ‘Compose‘ f) Int, (Show ‘Compose‘ f) Bool)

and express this as All (Show ‘Compose‘ f) Bool.
In general, function composition on the type level is difficult to define in Haskell – once

again because of the lack of a type-level lambda. And newtype-wrapping isn’t helpful here,
because we need to produce a Constraint, and a newtype – just like data – always produces
something of kind *.

However, it turns out that for the special case of composition where the result is a Constraint,
we can use class to define it:

class (f (g x)) => (f ‘Compose‘ g) x
instance (f (g x)) => (f ‘Compose‘ g) x

Note that the inferred kind for Compose is

Compose :: (b -> Constraint) -> (a -> b) -> a -> Constraint

Constraints defined via class can – unlike type synonyms and type families – be partially
applied, so we can actually apply Compose as desired in connection with All:

GHCi> :kind! All (Show ‘Compose‘ I) ’[Int, Bool]
All (Show ‘Compose‘ I) ’[Int, Bool] :: Constraint
= (Compose Show I Int, (Compose Show I Bool, ()))

With this, we can define hToString for NP

21

hToString’ :: All (Show ‘Compose‘ f) xs => NP f xs -> String
hToString’ Nil = ""
hToString’ (x :* xs) = show x ++ hToString’ xs

and try it:

GHCi> hToString’ group’
"I {unI = ’x’}I {unI = False}I {unI = 3}"

This means we now also have the necessary ingredient to have GHC derive a proper Show in-
stance for NP for us, because show is nothing but a more sophisticated version of our hToString’
function with the same type requirements:

deriving instance (All (Compose Show f) xs) => Show (NP f xs)

1.7.4 Proxies

We’ll now use abstraction over constraints to define a very useful variant of hpure that instead
of taking an argument of type

forall a . f a

takes an argument of type

forall a . c a => f a

for some parameterized constraint c. So we’re aiming for hcpure with a type as follows (I’m
putting the type of hpure next to it for comparison):

hpure :: SListI xs => (forall a . f a) -> NP f xs
hcpure :: (SListI xs, All c xs) => (forall a . c a => f a) -> NP f xs

However, there is one more problem that we can observe without actually defining the func-
tion. Let’s just say

hcpure :: (SListI xs, All c xs) => (forall a . c a => f a) -> NP f xs
hcpure = undefined

and try to call e.g.

GHCi> hcpure (I minBound) :: NP I ’[Char, Bool]

Note that

I minBound :: Bounded a => I a

so it seems to have the correct type. Nevertheless, we get a type error from GHC complaining
that it cannot properly match up Bounded with c. In fact, GHC generally refuses to infer
contraint variables from matching available constraints, because there are situations where
this can be ambiguous.

22

We can help GHC by providing a dummy parameter to the function – a so-called proxy –
that has a trivial run-time representation and does nothing else but to fix the value of a type
variable.

data Proxy (a :: k) = Proxy

A proxy works for arguments of any kind, so in particular for kind * -> Constraint at which
we need it here. Because data-defined type are by construction injective, for GHC, knowing
Proxy a is always sufficient to infer a.

1.7.5 A variant of hpure for constrained functions

So we’ll actually define

hcpure :: forall c f xs . (SListI xs, All c xs)
=> Proxy c -> (forall a . c a => f a) -> NP f xs

hcpure p x = go sList
where

go :: forall xs . All c xs => SList xs -> NP f xs
go SNil = Nil
go SCons = x :* go sList

This works, as we can test:

GHCi> hcpure (Proxy :: Proxy Bounded) (I minBound) :: NP I ’[Char, Bool]
I {unI = ’\NUL’} :* (I {unI = False} :* Nil)
GHCi> hcpure (Proxy :: Proxy Show) (Fn (K . show . unI)) ‘hap‘ group’
K {unK = "’x’"} :* (K {unK = "False"} :* (K {unK = "3"} :* Nil))

The second example shows that the composition of hcpure with the old hap also gives us the
desired mapping of constrained functions over environments:

hcmap :: (SListI xs, All c xs)
=> Proxy c -> (forall a . c a => f a -> g a) -> NP f xs -> NP g xs

hcmap p f xs = hcpure p (Fn f) ‘hap‘ xs

23

24

2 Generic programming with n-ary sums of products

In the first part, we’ve taken a tour through Haskell’s type-level programming extensions,
driven mostly by the desire to cover all the concepts that we need in order to understand the
generics-sop library.

It is no surprise that we’ve spent a lot of time on the type NP of n-ary products, because we
use this type to represent the fields of a constructor.

In this chapter, we’ll also introduce n-ary sums, which we’ll use to represent the choice
between constructors. We can then explain how most Haskell datatypes can easily be trans-
formed into sums of products.

2.1 Recap: n-ary products NP

Let’s repeat the definition of n-ary products:

data NP (f :: k -> *) (xs :: [k]) where
Nil :: NP f ’[]
(:*) :: f x -> NP f xs -> NP f (x ’: xs)

infixr 5 :*

The most important functions that we’ve considered were:

hpure :: SListI xs => (forall a . f a) -> NP f xs
hcpure :: (SListI xs, All c xs) => Proxy c -> (forall a . c a => f a) -> NP f xs
hap :: NP (f -.-> g) xs -> NP f xs -> NP g xs

These give us a generalization of the applicative functor interface, and allow us to define other
functions such as hmap and hcmap easily:

hmap :: (SListI xs)
=> (forall x . f x -> g x) -> NP f xs -> NP g xs

hcmap :: (SListI xs, All c xs)
=> Proxy c -> (forall a . c a => f a -> g a) -> NP f xs -> NP g xs

We had also considered

hcollapse :: NP (K a) xs -> [a]

that can collapse a homogeneous product into a normal list.

2.2 Generalizing choice

We moved from homogeneous lists to homogeneous length-indexed vectors, then to heteroge-
neous lists and ultimately to NP.

25

2.2.1 Choosing from a list

We’ll try to go through a similar progression for choices or sums. A Haskell list is a sequence
of arbitrarily many elements of type a. Let’s also define a type that is a choice between
arbitrarily many elements of type a:

data LChoice a = LCZero a | LCSuc (LChoice a)

If we imagine arbitrarily elements of type a being represented by a list of as, then LChoice a
gives us the index of a particular element in that list paired with the element being chosen.
The constructors are named LCZero and LCSuc so that we can view an easily view values of
type LChoice a as a zero-based index, where LCZero contains the payload.

Just to make the relation to the following datatypes more obvious, let’s rewrite LChoice
equivalently in GADT syntax:

data LChoice (a :: *) where
LCZero :: a -> LChoice a
LCSuc :: LChoice a -> LChoice a

2.2.2 Choosing from a vector

If we now generalize from lists to vectors, we’ll get a choice that is additionally indexed by
the number of elements that we can choose from

data VChoice (a :: *) (n :: Nat) where
VCZero :: a -> VChoice a (Suc n)
VCSuc :: VChoice a n -> VChoice a (Suc n)

We can choose the first element (via VCZero) from any non-empty vector – so VCZero forces
the length index to be of form Suc n.

If we have an index into an n-element vector, we can also produce an index into an Suc n-
element vector by skipping the first element. This is what VCSuc does. Once again, we pair
the choice with the actual element of type a being chosen.

Note that there are no possible choices of an a from an empty vector, which is reflected by
the fact that there are no constructors of VChoice targeting the index Zero.

2.2.3 Choosing from a heterogeneous list

The next step is to generalize from vectors to HList, so we’ll have an index that is a list of
types:

data HChoice (xs :: [*]) where
HCZero :: x -> HChoice (x ’: xs)
HCSuc :: HChoice xs -> HChoice (x ’: xs)

Now the element chosen, which is still stored in HCZero, is taken from the index list. In
analogy with VChoice, we have no constructors targeting the empty index list.

26

2.2.4 Choosing from an environment

For n-ary products, we decided that it’s additionally helpful to build type constructor applica-
tion into the type. We’ll perform the same generalization for our choice, and arrive at our type
of n-ary sums:

data NS (f :: k -> *) (xs :: [k]) where
Z :: f x -> NS f (x ’: xs)
S :: NS f xs -> NS f (x ’: xs)

The payload is now of type f x, where x is from the index list. Just as for NP, we can actually
be kind-polymorphic in the index list, because only elements of type f x directly appear as
data in the structure.

Once again, if we choose f = I, the type is equivalent to HChoice, and if we choose f =
K a, we get something that is much like VChoice, where the elements in the index list are
ignored, and just the length of it determines the number of as we can choose from.

Let’s look at an example. Let’s consider the type

type ExampleChoice = NS I ’[Char, Bool, Int]

So we can choose a character with index 0, a Boolean with index 1, or an integer with index 2:

c0, c1, c2 :: ExampleChoice
c0 = Z (I ’x’)
c1 = S (Z (I True))
c2 = S (S (Z (I 3)))

It’s useful for experimenting if we have a Show instance for NS available. We can let GHC
derive one in much the same way as we have for NP – we require that all elements that can
appear in the NS have show instances themselves:

deriving instance All (Show ‘Compose‘ f) xs => Show (NS f xs)

2.3 Sums of products

Having defined both NS and NP, we are now at a point where we can define the uniform generic
representation that we are going to use for datatypes.

2.3.1 Representing expressions

Let’s recap from the very beginning. If we have a datatype such as e.g.

data Expr = NumLit Int | BoolLit Bool | Add Expr Expr | If Expr Expr Expr

then each value of that type is of form

Ci x0...xni-1

27

where Ci is one of the constructors, in this case either NumLit, BoolLit, Add or If. And the
xs are the arguments of the chosen constructor.

We use NS to represent the choice between the constructors, and we have four things to
choose from. We use NP to represent the sequence of arguments. The products contain actual
elements of the argument types. So the representation type corresponding to Expr is

type RepExpr = NS (NP I) (’ [’[Int]
, ’[Bool]
, ’[Expr, Expr]
, ’[Expr, Expr, Expr]
])

The index is now a list of list of types – a table that, except for the names of the datatype and
the constructors, completely specifies the structure of the datatype. The outer list reflects the
sum structure. Each list element corresponds to one constructor. The inner lists reflect the
product structures, and each element corresponds to one argument.

Note that we only represent the top-level structure of an expression. A RepExpr contains
values of the original type Expr. We never look at the arguments of a constructor further. Con-
version between a datatype and its structural representation will always be shallow and non-
recursive. If needed, we can and will apply such conversions multiple times while traversing
a recursive strucure.

Let’s consider an example value of type Expr:

exampleExpr :: Expr
exampleExpr = If (BoolLit True) (NumLit 1) (NumLit 0)

The corresponding RepExpr is:

exampleRepExpr :: RepExpr
exampleRepExpr = S (S (S (Z (I (BoolLit True) :* I (NumLit 1) :* I (NumLit 0) :* Nil))))

In the following, we’re sometimes going to use a more concise syntax in order to represent
values of types NS and NP:

exampleRepExpr :: RepExpr
exampleRepExpr = C3 [I (BoolLit True), I (NumLit 1), I (NumLit 0)]

I.e., we’ll collapse the sequence of constructor applications S (S (Z...)) into C2 and use
ordinary list syntax for the n-ary product.

It is easy to see that RepExpr is isomorphic to Expr:

fromExpr :: Expr -> RepExpr
fromExpr (NumLit n) = Z (I n :* Nil)
fromExpr (BoolLit b) = S (Z (I b :* Nil))
fromExpr (Add e1 e2) = S (S (Z (I e1 :* I e2 :* Nil)))
fromExpr (If e1 e2 e3) = S (S (S (Z (I e1 :* I e2 :* I e3 :* Nil))))

toExpr :: RepExpr -> Expr
toExpr (Z (I n :* Nil)) = NumLit n
toExpr (S (Z (I b :* Nil))) = BoolLit b
toExpr (S (S (Z (I e1 :* I e2 :* Nil)))) = Add e1 e2
toExpr (S (S (S (Z (I e1 :* I e2 :* I e3 :* Nil))))) = If e1 e2 e3

28

2.3.2 The Generic class

In the beginning, we presented the following class Generic to capture the idea of datatype-
generic programming:

class Generic a where
type Rep a
from :: a -> Rep a
to :: Rep a -> a

We’re now at a point where we can define the actual class Generic that is used in generics-sop.
Because all representations will be of the form

NS (NP I) c

for some code c :: [[*]], we decide to define a newtype and a type synonym:

newtype SOP f a = SOP (NS (NP f) a)
type Rep a = SOP I (Code a)

and include Code in the class rather than Rep. Additionally, we’re going to demand that both
the outer list and all inner lists of the code have implicit singletons available. This isn’t strictly
speaking necessary, but it’s harmless and will reduce the number of constraints we need to put
on function definitions later:

class (SListI (Code a), All SListI (Code a)) => Generic (a :: *) where
type Code a :: [[*]]
from :: a -> Rep a
to :: Rep a -> a

The instantiation of Generic to e.g. Expr is straight-forward and mechanical:

instance Generic Expr where
type Code Expr = ’ [’[Int]

, ’[Bool]
, ’[Expr, Expr]
, ’[Expr, Expr, Expr]
]

from x = SOP (fromExpr x)
to (SOP x) = toExpr x

2.3.3 Other Generic instances

The presence of datatype parameters does not make the definition of a Generic instance
harder, and we can easily provide Generic instances even for built-in types such as Haskell
lists:

instance Generic [a] where
type Code [a] = ’[’[], ’[a, [a]]]

29

from [] = SOP (Z Nil)
from (x : xs) = SOP (S (Z (I x :* I xs :* Nil)))

to (SOP (Z Nil)) = []
to (SOP (S (Z (I x :* I xs :* Nil)))) = x : xs

The Generic instances are the boilerplate we still have to write in order to be able to benefit
from the generics-sop approach. We’ll see that once we have a Generic instance, we get all
generic functions we write for free for all these types.

But the Generic instances themselves are easy to automate. In practice, we have a number
of options:

• The first and generally worst option is to write Generic instances by hand. This is
quickly getting tedious, but in principle gives us more flexibility, because we could
decide to define non-standard Generic instances.

• The second is to use Template Haskell to derive Generic instances for us. This is easy
to do, and provided by the generics-sop library. We can just put

deriveGeneric ’’Expr

after the data declaration of Expr and get the Generic instance derived for us automat-
ically.

• The third option is to extend the compiler with support to derive instances of Generic,
just like it can derive instances of Eq and Show. Then we could simply write

data Expr = ...
deriving (..., Generic)

and would also get the instance for us automatically. This option deserves a bit more
discussion.

2.3.4 Support for Generic in the compiler

As discussed in the beginning, there are many – somewhat competing – approaches to generic
programming in Haskell, which use slightly different views on the datatypes. While it is
conceivable that GHC supports one or even two of these directly, it’s not feasible to support
all of them directly. Each new class that has built-in deriving requires a compiler change and
subsequent maintenance of the feature.

In fact, GHC has first-class support for two generic programming approaches already. For
SYB, it allows deriving Data, and for generic-deriving, it allows deriving Generic – but
for a different class also named Generic.

Now, an interesting realization is that with all the type-level programming features that GHC
offers and we have discussed, we actually have sufficient machinery to turn the representations
GHC has built-in support for into other generic representations programmatically! This makes
extensive use of type classes and typ families that turn one structural representation into an-
other, and at the same time provide functions that convert values from one representation into
values in another (and back).

30

It is e.g. possible to convert from GHC’s own Generic class into the generics-sop-provided
Generic class using this technique. This is also implemented in the generics-sop library. To
use this approach, we have to first import GHC’s Generic class in qualified form:

import qualified GHC.Generics as GHC

Then, when defining a datatype such as Expr, we tell GHC to derive its own Generic class for
this type:

data Expr = ...
deriving (..., GHC.Generic)

Finally, we can just provide an empty instance for generics-sop’s Generic class:

instance Generic Expr

The implementation of generics-sop has default definitions for Generic that will use and trans-
late from GHC.Generic.

This technique of translating different generic programming representaions into each other
that we have dubbed “Generic Generic Programming” has a significant impact: GHC should
no longer strive to provide built-in support for the “one true” or “best” approach to generic
programming, nor do we need a “one size fits all” approach to generic programming. GHC
instead should provide support for a representation that captures as much information as pos-
sible, even if that means that the representation is difficult to use. But it means we can translate
easily from that representation to various others, forgetting unnecessary things along the way.
Generic programming libraries also no longer have to compete for the one or two spots of
first-class support, but can all co-exist with each other and be used together by users in one
and the same program.

2.4 Defining generic equality

Let us now look at defining one standard example of datatype-generic programming in our
approach – generic equality.

2.4.1 A bottom-up approach

Let’s start bottom-up, by comparing two n-ary products:

geqNP :: All Eq xs => NP I xs -> NP I xs -> Bool
geqNP Nil Nil = True
geqNP (I x1 :* xs1) (I x2 :* xs2) = x1 == x2 && geqNP xs1 xs2

This is rather straight-forward. We traverse both producs in parallel, and compare all the
contained elements for equality pointwise. We fall back to the Eq class for the elements,
which means we have to require an Eq instance for all types that occur in the signature, using
All.

(In fact, we can do this in a slightly more high-level way, and will return to this point in a
moment.)

31

Next, lets’ try to compare to n-ary sums of n-ary products:

geqNS :: ... => NS (NP I) xss -> NS (NP I) xss -> Bool
geqNS (Z np1) (Z np2) = geqNP np1 np2
geqNS (S ns1) (S ns2) = geqNS ns1 ns2
geqNS _ _ = False

The idea is also clear. We traverse the two sums and check whether both are mapping to the
same choice. If it’s obvious that they don’t, we return False. Otherwise, we call geqNP on the
products contained within.

2.4.2 The All2 constraint

The problem here is that due to geqNP, we need a constraint that all elements of all the inner
lists in the list of lists xss are instances of Eq. If we had partial parameterization of type
families available, this would be easy to do:

All (All Eq) xss

However, GHC does not admit that. Instead, we simply define a separate type family All2 that
works on lists of lists. This is not nice, but neither is it tragic, because due to the two-layer
structure of our datatypes All and All2 are the only cases we’ll ever need.

type family All2 (f :: k -> Constraint) (xss :: [[k]]) :: Constraint where
All2 f ’[] = ()
All2 f (xs ’: xss) = (All f xs, All2 f xss)

With All2, we can now complete geqNS:

geqNS :: All2 Eq xss => NS (NP I) xss -> NS (NP I) xss -> Bool
geqNS (Z np1) (Z np2) = geqNP np1 np2
geqNS (S ns1) (S ns2) = geqNS ns1 ns2
geqNS _ _ = False

2.4.3 Completing the definition

From here, we can go to geqSOP simply by stripping the SOP constructors:

geqSOP :: All2 Eq xss => SOP I xss -> SOP I xss -> Bool
geqSOP (SOP sop1) (SOP sop2) = geqNS sop1 sop2

And now, it is easy to define a generic equality that works for all representable types:

geq :: (Generic a, All2 Eq (Code a)) => a -> a -> Bool
geq x y = geqSOP (from x) (from y)

If we now wanted to use geq to define equality for a datatype, such as Expr, we could do so
instead of invoking deriving Eq by giving a trivial instance declaration:

32

instance Eq Expr where
(==) = geq

Let’s try this:

GHCi> geq (Add (NumLit 3) (NumLit 5)) (Add (NumLit 3) (NumLit 5))
True
GHCi> geq (Add (NumLit 3) (NumLit 5)) (Add (NumLit 3) (NumLit 6))
False

2.4.4 Improving the product case

Not without reason, we spent a lot of time defining useful functions over NP. One of the
advantages of the generics-sop approach is that it encourages defining high-level operations
that work on NP and NS, and then using a composition of such operators to define (parts of)
generic functions.

Let’s look again at geqNP:

geqNP :: All Eq xs => NP I xs -> NP I xs -> Bool
geqNP Nil Nil = True
geqNP (I x1 :* xs1) (I x2 :* xs2) = x1 == x2 && geqNP xs1 xs2

We can see this as a composition of several different operations: first, we zip the two products
together using (==), getting a homogeneous product of Bools. We can thus collapse that
product into a [Bool] and then just fold with (&&) and True over that list.

The zipping we need here turns out to be a straight-forward generalization of hcmap, again
easy to define using hcpure and hap:

hczipWith :: (All c xs, SListI xs)
=> Proxy c
-> (forall a . (c a) => f a -> g a -> h a)
-> NP f xs -> NP g xs -> NP h xs

hczipWith p f xs1 xs2 = hcpure p (fn_2 f) ‘hap‘ xs1 ‘hap‘ xs2

We can now redefine geqNP as follows:

geqNP’ :: (SListI xs, All Eq xs) => NP I xs -> NP I xs -> Bool
geqNP’ xs ys = and

$ hcollapse
$ hczipWith (Proxy :: Proxy Eq) aux xs ys

where
aux (I x) (I y) = K (x == y)

The only tiny annoyance is that we have to unwrap and rewrap the arguments of (==) from
with I and K constructors as appropriate. We also pay the price of an additional SListI xs
constraint that we then also have to add to the other functions that are used to define geq – but
ultimately, it does not change anything, because we had already imposed SListI constraints
as superclass constraints on Generic.

33

