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Preface 
 
This is the proceedings of the second workshop on Formal Techniques for Java Programs , 
June 12, 2000, held in Sophia Antipolis, France. The workshop is affiliated with the 
14th European Conference on Object-Oriented Programming, ECOOP 2000. Papers in the 
proceedings are included here based on the reviews of the workshop organizers. This 
proceedings will also be available from 
 
www.informatik.fernuni-hagen.de/import/pi5/publications.html 
 
The objective of the workshop is to bring together people developing formal techniques and 
tool support for Java. Formal techniques can help to analyze programs, to precisely describe 
program behavior, and to verify program properties. Applying such techniques to object-
oriented technology is especially interesting because: 
 

1. The OO-paradigm forms the basis for the software component industry with their need 
for certification techniques. 
 

2. It is widely used for distributed and network programming. 
 

3. The potential for reuse in OO-programming carries over to reusing specifications and 
proofs. 

 
Such formal techniques are sound, only if based on a formalization of the language itself. 
 
Java is a good platform to bridge the gap between formal techniques and practical program 
development. It plays an important role in these areas and is on the way to becoming a de 
facto standard because of its reasonably clear semantics and its standardized library. 
 
Sophia Drossopoulou 
Susan Eisenbach 
Bart Jacobs 
Gary T. Leavens 
Peter Müller 
Arnd Poetzsch-Heffter 
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1 Position Statement

To be sure of the meaning of a programming language, we need to have its formal

semantics. But semantic speci�cations are hard to write, and it is di�cult to be

convinced that they are correct. Having an executable semantics helps, since this

allows the semantics to be tested on real programs which tends to expose many

mistakes. But ultimately the correctness of the semantics has to be proved and

then preferably by means of a computerized proof assistant to avoid mistakes in

the proof. This is why we are working towards machine proofs with executable

formal speci�cations. The extended abstract that follows is a step towards that

goal.

2 Introduction

In this article, we are de�ning a dynamic semantics of a large, concurrent subset

of Java. We are not concerned with typing (we assume our programs are typed

correctly). This speci�cation is executable, but it is also used as the basis for

formal veri�cation of Java semantical properties. This executable speci�cation

enables us to derive an environment which includes visualization of programs

execution and tests our semantics.

In Section 3 we present related work in the domain of formal semantics

and property veri�cation. Section 4 describes our formal speci�cation of Java



(syntax and semantics), and the graphical interactive execution environment for

Java we derive from this executable semantics. Section 5 presents Java property

veri�cation in the context of multithreaded applications.. Section 6 concludes

the paper.

3 Related Work

The formal speci�cation of the Java semantics is an active research area. There

are two main approaches. The �rst possibility is to directly specify the semantics

of Java source code. This has been done by e.g. Drossopoulou and Eisenbach [7],

Syme [17], Nipkow and Oheimb [14]. Another approach is to work at the JVM

byte-code level. Qian [16] has speci�ed a subset of the JVM instructions for

objects, methods and subroutines. Börger and Schulte [2, 1] de�ne the JVM

in order to prove the correctness of Java compilation. Jensen, Le Metayer and

Thorn [10] formalize dynamic class loading mechanisms in the JVM and study

some security properties of Java.

One of the most common approaches to veri�cation is to translate the pro-

gram source code into an analysis formalism by using some abstraction tech-

niques. Correctness properties are expressed in the same formalism and a spe-

ci�c mechanism is applied on the program translation to check this correctness

property. This approach has been applied to prove the absence of deadlocks in

multi-threaded Java programs using model-checking (as in [4], and in [9, 5] with

the Spin system), and the absence of livelocks thanks to data and control-�ow

analysis [12].

Another important research topic is to prove properties of the language

itself. Type-soundness (Well typed programs cannot go wrong) is an important

language property studied in [7, 13, 17, 15]. In [15], Müller and Poetzsch-He�ter

present a Hoare-style [11] programming logic for a sequential kernel of Java.

They also specify a formal operational semantics of this subset and prove the

soundness of this semantics by formalizing it and the typing rules in higher-order

logic.the

Our work is original in that the same formal speci�cations are used both to

derive an environment and as a basis for proving properties.

4 Formal Speci�cations For Debugging

This section presents our formal speci�cation of a large, concurrent subset of

Java. We also explain how we derive a visualizing execution environment from

the formal speci�cation.

These speci�cations have been written within the Centaur system [3], which

is a generic programming environment: from the syntax and the semantics

speci�cations of a given language, one can automatically produce a structure
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editor and semantics-based tools (such as type checkers and interpreters) for

this language.

4.1 Java formal speci�cation

Every structured object of our semantics is represented within the system as

an abstract syntax tree. The abstract syntax so de�ned includes 128 operators

and 56 types related to Java constructors (as de�ned in [8]). In our semantics

speci�cation (about 800 Typol rules), objects, threads, and con�gurations (a

pair of objects and static variables) are modeled as semantic structures. Ty-

pol [6] (a formalism which is an implementation of the Natural Semantics) rules

are organized in modules which enhances the design, improves the readability,

and facilitates debugging of the speci�cation. Some modules are expressed in a

Natural Semantics style (especially object-oriented features). Some others are

expressed in a Structural Operational Semantics style (especially concurrent fea-

tures). Our operational semantics simulates concurrency with a deterministic

interleaving of threads.

In Java, the only way for a thread to acquire a lock on a given object is to

either enter a synchronized block or to call a synchronized method. A synchro-

nized method is equivalent to a �normal� method whose body is enclosed in a

synchronized block. The behavior of the synchronized statement is the following:

1. Compute the reference to the concerned object .

2. Perform a lock action on that object: the thread may become (temporar-

ily) blocked if the object is already locked by another thread).

3. Execute the synchronized block body.

4. Perform an unlock action on the object.

Our semantics re�ects this behavior through �ve Typol rules which correspond

to each step of the above informal speci�cation. Two Typol rules are corre-

sponding to the �rst step of the behavior: one concerns the evaluation of the

expression in order to get the reference of the object to lock, whereas the second

one enables the transition between the �rst step and the second one of the syn-

chronization speci�cation. Figure 1 presents the Typol rule which correspond

to the second step of the synchronized statement behavior.

4.2 Visualization environment

A visualization environment (see http://www.inria/oasis/java/ for snap shots

of the environment) is derived from these formal speci�cations. It includes

both textual and graphical visualization of Java programs interpretation. This

environment shows the list of objects using two visualization engines, both of

them based on the semantic structure modeling the object list. The textual

3



Figure 1: Lock the object or block the currently executing thread.

view is a direct pretty-printing of the list of objects and threads. The graphical

view shows the complete topology of the object graph.

In order to provide graphical animation during program execution, the se-

mantics interpreter noti�es the two textual and graphical visualization engines

of important events (state change). This is done by annotating the semantics.

The annotations are e�ectively procedure calls for sending information to and

synchronize with the visualization engines.

5 Formal Speci�cations For Proofs

This section presents work in progress: the veri�cation of important properties

of our semantics. We are particularly interested in synchronization properties

as they are quite complex and di�cult to test.

If two distinct threads can access some speci�c object, this object is shared

by these two threads. This can potentially lead to a protection problem of the

shared data;

Here we aim to present the skeleton of the proof of the following property:

Two threads cannot hold a lock on a same object at the same time

(as stated in [8], page 399). To prove this, we �rst observe the following:

1. When the program interpretation begins, there is only one thread: the

main thread, that is to say a thread which has not been created explicitly

by the programmer but implicitly, to execute the main method.

2. Synchronization needs appear only when there are at least two threads.

From point 1, we can deduce that at the execution beginning, the property

holds.

The main point is to prove that if this property holds at a given step of the

execution, then it still holds at the next step. Indeed, the property holds as long

as no thread wants to acquire a lock on a given object. The step interesting

to study is in fact when an object is locked by a given thread, and when a
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second thread wants to acquire a lock on this object (if the object is not already

locked, there is no problem). Our semantics simulates concurrency through

the introduction of interleaving between the di�erent threads which have been

created by a given program. At each execution step there is therefore only one

executing thread. Moreover, a Typol rule is atomic, which means that nothing

can happen between the execution of the two premises of the rule presented

in Figure 1. The information acquired by the �rst premise about the absence

or presence of lock on the considered object is therefore always right when the

second premise is executed.

There is one special case to study. A thread (thread 1) which calls its wait

method on a speci�c object, releases all the locks it owned on this object and

becomes dormant. When another thread (thread 2) calls the notify or notifyAll

method on this object, thread 1 becomes blocked, waiting for a lock on this

object. Once thread 2 has released and thread 1 acquired the lock, thread 1

becomes executing again.

6 Conclusion

In this extended abstract, we brie�y presented our semantic de�nition of a large

subset of Java. The main point of our work is that the same formal speci�cations

are used to derive an environment and also to prove properties.

The semantic speci�cation, using both a small-step and a big-step style

(thanks to the Typol logical framework which makes it possible to mix these

two styles), includes primitives types, classes, inheritance, instance variables

and methods, class variables and methods, interfaces, overloading, shadowing,

dynamic method binding, object and thread creation, concurrency, arrays and

exceptions. From this speci�cation we derive a graphical programming environ-

ment. This environment is animated and interactive, it includes visualization

of the object topology during program execution.

The last section presented in this abstract is a work in progress. We have

to formalize the proof skeleton given in Section 5. We also intend to study

other thread-speci�c properties. For example, if the execution of a synchronized

method is ever completed, either normally or abruptly (with an exception), an

unlock action is always performed on that same lock ([8], page 416).
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Abstract A semantics based on Winskel's event structures is proposed

for a meaningful subset of Java, including threads and synchronization.

An \adequacy" result relates denotational and operational semantics.

Program equivalences are discussed.

1 Introduction

Mathematical models of programming languages provide foundations for formal

program development and veri�cation, correctness proofs of compilers and of

optimization techniques, and in general for all applications of formal methods.

While the use of formal methods is well established for languages like \C", Pas-

cal or ML [14,13], it is not yet so for concurrent object-oriented languages like

Java [7]: the systems being currently developed for this language [10,9] capture

important aspects concerning types, subclassing and iheritance, but not concur-

rency.

A denotational description of concurrent objects capturing the Java model of

concurrency is not yet available in the literature. To cite a few examples, neither

the CuPer model of Abadi and Cardelli [1] nor the one by Jacobs [8] handle

concurrency. The diÆculty may derive from the fact that, unlike in process

calculi (where the parallel composition of two processes is a process), two objects

running in parallel do not form an object but a \computation" (thus contravening

to Cardelli's slogan that \everything is an object" [3]).

On the other end, several operational descriptions of Java capturing concur-

rency have been proposed in the literature [2,5,6], but here the natural notion of

contextual equivalence which comes with operational semantics is hardly usable

since no \context lemma" is available for Java-like languages, as it is for PCF

[12] or for functional languages with e�ects [11].

In the present paper we propose a semantics of a meaningful subset of Java,

including threads and synchronization, based on Winskel's event structures [16].

There is a rich theory developed for this fundamental model of concurrency [15],

which we so make available for studying notions of equivalence for Java pro-

grams. However, we show that the obvious notion which only takes as equivalent

programs which denote the same event structure, is not enough to prove the com-

mutativity of assignment, a rather surprising property of Java, stating that one

thread cannot observe the order in which another thread performs assignments

to (distinct) shared variables.



2 Operational semantics

In [5] a structural operational semantics is proposed, which captures a signi�cant

portion of Java, including the running and stopping of threads, thread interaction

via shared memory, synchronization by monitoring and noti�cation, and sequen-

tial control mechanisms such as exception handling and return statements. The

operational semantics is parametric in the notion of \event space" [4], which

formalizes the rules that threads and memory must obey in their interaction.

Each thread of control has, in Java, a private working memory in which it

keeps its own working copy of variables that it must use or assign. As the thread

executes a program, it operates on these working copies. The main memory

contains the master copy of each variable. There are rules about when a thread

is permitted or required to transfer the contents of its working copy of a variable

into the master copy or vice versa. The process of copying is asynchronous. There

are also rules which regulate the locking and unlocking of objects, by means of

which threads synchronize with each other. All this is described precisely in

[7, x17] in terms of eight kinds of low-level actions: Use, Assign, Load , Store,

Read , Write , Lock , and Unlock . Here is an example of a rule from [7, x17.6,
p. 407] involving locks and variables. Let T be a thread, V a variable and L a

lock: \Between an Assign action by T on V and a subsequent Unlock action by

T on L, a Store action by T on V must intervene; moreover, the Write action

corresponding to that Store must precede the Unlock action, as seen by the main

memory."

Let thread identi�ers be ranged over by �, objects by o, left values (or \vari-

ables") by l and (right) values by v. Formally, an action is either a triple (A; �; o),

where A 2 fLock ;Unlockg, or a 4-tuple of the form (A; �; l; v), where A 2
fUse;Assign;Load ;Store;Read ;Writeg. When A 2 fUse;Assign;Load ;Storeg,
the tuple (A; �; l; v) records that the thread � performs an A action on l with

value v, while, if A 2 fRead ;Writeg, it records that the main memory performs

an A action on l with value v on behalf of �. If A is Lock or Unlock , (A; �; o)

records that � acquires, or respectively relinquishes, a lock on o. Actions with

name Use, Assign, Load , Store, Lock and Unlock are called thread actions, while

Read , Write , Lock and Unlock are memory actions.

Events are instances of actions, which we think of as happening at di�erent

times during execution. We use the same tuple notation for actions and their

instances: the context clari�es which one is meant.

In [5, x2.2] (to which we refer for more detail) the rules of interaction that

threads and memory must obey are formalised by means of 17 logical clauses

viewed as well-formedness conditions on posets of events called event spaces.

The events of such a poset, which are thought of as occurring in the given order,

are meant to record the activity of memory and threads during the execution

of a Java program. The ajoining of a new event to an event space � = (X;�X)
can be expressed by means of an operation � de�ned as follows: � � a denotes

nondeterministically an event space �0 = (Y;�Y ) such that:

{ �0 extends � consevatively w.r.t. the ordering, with Y = X [ fag;



{ if a is a thread action performed by �, then a0 �Y a for all thread actions a0

by � in �0;
{ if a is a memory action on x, then a0 for all memory actions a0 on x in �0.

If no event space �0 exists satisfying these conditions, then � � a is unde�ned.

A con�guration of the operational semantics is a triple (T; �; �), where T is a

partial map from thread identi�ers to (abstract) Java terms, � is an event space

and � is a memory (shared by all threads). Event spaces are included in the

con�gurations to record \historical" information on the computation which con-

strains the execution of certain actions according to the language speci�cation,

and hence the applicability of certain operational rules. Each term T (�) comes

equipped with a stack, and represents the segment of code being currently ex-

ecuted by thread �. An initial con�guration (T; �; �) is roughly one where the

stacks of all threads in T are empty, � is empty and � contains just the relevant

type information for T . A con�guration (T; �; �) is called �nal when all abstract

terms in T are results and � is complete (we refer to [5] for a precise de�nition

of \results" and \complete").

In presenting the operational rules (see the appendix), only the relevant parts

of a con�guration are made explicit. For example, the rule [access3]:

(�; l); � ! (�; v); � � (Use; �; l; v)

says that a con�guration (T; �; �), where T (�) is a location l evaluates to a con�g-

uration (T 0; �0; �0), where T 0(�) = v, the value stored at l, �0 = �� (Use; �; l; v),

and � and �0, having been omitted, are the same memory. Note that this rule can

be �red only if �� (Use; �; l; v) yields a well-formed event space, thus satisfying

the constraints of the language speci�cation. In this speci�c case the constraints

require that the value v of l has been previously loaded from the main memory

into the working memory of � or assigned by this thread to l. This information

is recorded in �, and this explains the apparent \guessing" of the value v made

by the operational rule.

The operational semantics is the smallest binary relation ! on con�gura-

tions which is closed under the rules given in the appendix. Related pairs of

con�gurations are written 
1 ! 
2 and called operational judgements or transi-

tions. A computation is a chain 
0 ! 
1 ! : : : of transitions, where 
0 is initial,

and which either ends with a �nal con�guration, or is in�nite, and all the event

spaces in it are completable.

Let a fat arrow ) to denote \uneventful" computation. For example, x =

4 + 1 ) 5, where x is a local variable, indicates that, for any � and �, the

evaluation (x = 4 + 1; �; �)!�(5; �0; �0) is uneventful, that is � = �0. Such

computations do not involve the memory, that is � = �0. The following properties

hold of the operational semantics:

Property 1. Let 
!�(T; �; �) and 
!�(T 0; �0; �0). If � = �0 then � = �0 and

there exists T 00 such that T ) T 00 and T 0 ) T 00.

Property 2. If (T1; �1; �1)!
�(T2; �2; �2) and T1 ) T 0

1
, then there exists T 0

2
such

that (T 0

1
; �1; �1)!

�(T 0

2
; �2; �2) and T2 ) T 0

2
.



3 Event structures for Java

Below we map Java programs P to event structures [[P ]]. Let P compile into an

initial con�guration 
0, and let �P be the set of all event spaces which belong to

some computation from 
0. When quantifying over computations we shall mean

those starting from 
0, unless otherwise stated.

It is easy to show that any initial segment of an event space is itself an event

space. If � is an event space and a 2 �, we let � # e be the poset fe0 2 � j e0 � eg
whose order is inherited from �. Similarly, we write � #� e be the poset fe0 2
� j e0 < eg We call primes of � all event spaces of the form � # e. Let E be the

set of all the event spaces which are primes of some element of �P . Ordering E

by subposet inclusion we obtain the underlying poset of [[P ]].

Next we de�ne con
ict on general event spaces in terms of con
ict on actions:

We write a1#a2 i� a1 and a2 are distinct thread actions performed by the same

thread or distinct memory actions performed on the same object or variable. For

example, (Use ; �; l; v)#(Store; �; l0; v0).

De�nition 1 Two event spaces � and �0 in E are in con
ict, written �#�0,

when there exist a 2 � and a0 2 �0 such that a#a0 and � #� a = �0 #� a0.

The above de�nition says that one thread can do one action at a time and

that only one action at a time can be done upon the same variable. Restricting

# to prime event spaces we obtain:

Theorem 2 (E;�;#) is an event structure.

Proof. The relations � and # are disjoint. In fact, assume that � � �0 and let

� #� a = �0 #� a0. Since � � �0 we have � #� a = �0 #� a. If a and a0 are

both memory actions performed by the same thread, it must be either a � a0

or a0 � a in �0. But then it must be a = a0 because, by de�nition, neither

a0 2 �0 #� a0 nor a 2 �0 #� a. Similarly for memory actions performed on the

same variable. Therefore it cannot be �#�0. Finally, # is hereditary. In fact,

assume that � � �0 and �#�00, that is � #� a = �00 #� a0 for some a#a0. Since

� � �0, we have � #� a = �0 #� a, and hence �0#�00. Similarly for memory

actions. 2

Lemma 3 If �1 � �2 in E, there exist �0
1
and �0

2
in � , with �1 a prime of �0

1

and �2 a prime of �0
2
and (T; �0

1
; �)!�(T 0; �0

2
; �0) for some computation.

The con�gurations of an event structure S are de�ned to be the the con
ict-

free, downward-closed subsets of S. Operational and denotational semantics are

so related:

Theorem 4 � is isomorphic to the set of con�gurations of (E;�;#).



Proof (sketch). Primes which are not in con
ict can be merged together to form

a legal event space. Property 1 and 2 of the previous section and the above

lemma are used to show that such an event space can be obtained by running

the operational semantics.
2

This result shows the adequacy of the event structure model with respect to

the operational semantics. In particular it shows that con�gurations obtained

by pasting primes together can all be reached by computation, and vice-versa.

Yet, as the following example shows, identity of denotation does not yield an

abstract enough notion of program equivalence.

Example. Let T be a concurrent program such that T (�) = (x:i = 1 ; x:j = 2)

and let T 0 be such that T 0(�) = (x:j = 2 ; x:i = 1), and agree with T on all the

rest. Let a1 = (Assign; �; x:i; 1) and a2 = (Assign ; �; x:j; 2). [[T ]] is di�erent from

[[T 0]] because a2 � a1 in no event space of [[T ]] and vice-versa for T 0. However,

since the copying to the main memory of the values assigned by a thread to

distinct shared variables are not required by the language speci�cation (and

hence by the operational semantics) to happen in the same order in which the

assignments are made, the swapping of the two actions cannot be observed by

any other thread. To wit, we call this property the commutativity of assignment.

2

Commutativity of assignment is captured by abstracting away from thread

activity, and observing the main memory only. More precisely, let �jread be the
subposet of � made of all and only Write actions. De�ne T � T 0 i�

[[T ]]jread = [[T 0]]jread. This equivalence relates the two programs of the example.
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Appendix: Operational rules

[assign1]
e1 ! e2

e1 = e! e2 = e
[assign2]

e1 ! e2

i = e1 ! i = e2

[assign3]
e1 ! e2

l = e1 ! l = e2
[assign4] i = v ; � ! v ; �[i 7! v]

[assign5] (�; l = v); � ! (�; v); � � (Assign ; �; l; v)

[access1]
e1 ! e2

e1 : f ! e2 : f
[access2]1 null : f; �! throw(o) : f; �0

[access3] (�; l); � ! (�; v); � � (Use; �; l; v)

[this] this ; � ! �(this) ; � [var] i ; � ! �(i) ; �

[new] new C ( ); �! new(C; �) [lit] k ! value(k)

[unop1]
e1 ! e2

op e1 ! op e2
[unop2] op v ! op(v)

[binop1]
e1 ! e2

e1 bop e! e2 bop e
[binop2]

e1 ! e2

v bop e1 ! v bop e2

[binop3] v1 bop v2 ! bop(v1; v2)

[parseq1]
e1 ! e2

e1E ! e2E
[parseq2]

E1 ! E2

v E1 ! v E2

[call1]
e1 ! e2

e1:m(E)! e2:m(E)
[call2]

E1 ! E2

o:m(E1)! o:m(E2)

[call3] o:m(V )! frame(o;m; V ) [call4]1 null:m(V ); �! throw (o); �0

[frame]
b1 ! b2

(m; b1)! (m; b2)
[exit1] (m; f g) ;! �

[exit2] (m; f return S g) ;! � [exit3] (m; f return v S g)! v

[decl]
e1 ! e2

� i = e1 D; ! � i = e2 D;

[locvardecl1] � i = v dD; ; � ! � dD; ; �[i = v]

[locvardecl2] � i = v ; ; � ! � ; �[i = v]

[expstat1]
e1 ! e2

e1 ; ! e2 ;
[expstat2] v ;! �

[skip] ;! � [if1]
e1 ! e2

if(e1) s! if(e2) s

[if2] if(true) s! s [if3] if(false) s! �

1 where (o; �0) = new(NullPointerException; �)



[statseq]
s1 ! s2

s1 S ! s2 S
[�] �S ! S

[block1] f g ! �

[block2]
S1; push(�1; �1)! S2; push(�2; �2)

fS1g�1 ; �1 ! fS2g�2 ; �2

[syn1]2
e1 ! e2

synchronized (e1) b! synchronized (e2) b

[syn2]
e; �1 ! o; �2

(�; synchronized (e) b); �1 ! synchronized (o) b; �2 � (Lock ; �; o)

[syn3]
b1 ! b2

synchronized (o) b1 ! synchronized (o) b2

[syn4]
b; �1 ! c; �2

(�; synchronized (o) b); �1 ! c; �2 � (Unlock ; �; o)

[read]3 T; �; �! T; � � (Read ; �; l; �(l)); �

[load]3 T; � ! T; � � (Load ; �; l; v)

[store]3 T; � ! T; � � (Store; �; l; v)

[write]3 T; �; �! T; � � (Write ; �; l; v); �[l 7! v]

2 if e2 =2 RVal
3 if T (�) is de�ned
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Abstract. In this paper we present a simple calculus (called CJE) corresponding to a

small functional fragment of Java supporting exceptions. We provide a reduction semantics

for the calculus together with two equivalent type systems; the former corresponds to the

speci�cation given in [5] and its formalization in [4], whereas the latter can be considered an

optimization of the former where only the minimal type information about classes/interfaces

and methods are collected in order to type-check a program. The two type systems are proved

to be equivalent and a subject reduction theorem is given.

1 Introduction

The aim of this paper is to deeply investigate the exception mechanism of Java (in particular

its interaction with inheritance) by means of a simple calculus, called CJE for Calculus of Java

Exceptions.

Although calculi for Java exceptions have been considered already in [3, 2], much still has to

be said about this topic; indeed, the approach taken here originates from [2] and presents several

interesting novelties in comparison with [3].

First, we have deliberately omitted from the calculus all the features which we consider orthog-

onal w.r.t. the exception mechanism in Java. Indeed here, following the approach of Featherweight

Java (abbreviated FJ) in [6], the idea is to keep the calculus as simple as possible rather than

trying to give a soundness result for the whole Java language.

Even though it is certainly useful to have a full formal description of the semantics of Java

(and [4, 3] go toward this direction), we think that, when proving speci�c properties or trying to

clarify some tricky point in the informal speci�cation, it is better to separate the concerns and to

consider an essential subset of the language. As a result, the subject reduction proof we give for

CJE is rather simple and compact.

Since in this paper we want to focus on Java exception handling, CJE clearly includes all the

linguistic mechanisms for handling exceptions (finally excluded1), but many others are omitted;

among them, �elds, method overloading (even though not completely, see the discussion below

about abstract classes), constructors, super and even assignment; indeed, like FJ, CJE has no

statements (hence is a functional language). More precisely, the calculus has only four constructs:

method invocation, object creation and the throw, try and catch expressions.

On the other hand, we have not omitted abstract classes since there are some subtle points

in the rules of the Java language speci�cation [5] for checking con
icts in the throws clause and

such rules are particularly complex for abstract classes. These problems do not emerge from the

formalization given in [4, 3] where abstract classes are not considered.

Second, we are interested in another kind of simpli�cation which corresponds to minimizing

the information associated with classes and interfaces needed in order to type-check a program.

Indeed, the type information about classes and interfaces used in the type system de�ned in [4, 3]

? Partially supported by Murst - TOSCA Teoria della Concorrenza, Linguaggi di Ordine Superiore e

Strutture di Tipi and APPlied SEMantics - Esprit Working Group 26142.
1 The finally clause makes no sense in a functional setting; on the other hand, the extension of the type

system to include such mechanism does not imply any problem.



is somehow redundant. Avoiding such redundancy makes, in our opinion, the type system clearer

and helps to shed some light on the obscure points of the Java speci�cation given in [5] (which

can be easily misinterpreted, as shown in the example in Sect.2).

However, this kind of minimization, even though advocated for sake of clarity, neither necessar-

ily implies a simpli�cation of the proofs, nor aims at making type-checking of Java more eÆcient

(even though, in principle, it could be the case and this matter deserves further investigation).

In Sect.2 we give a paradigmatic and motivating example used for showing the complexity of

the rules for the compatibility checks of throws clauses and for explaining the notion of minimal

type. Sect.3 is an outline of the formal de�nition of the calculus and of the main technical results.

Finally, in Sect.4 we draw some conclusion and claim that some modi�cation to the Java language

could partly avoid the complexity of the rules.

An extended version of this paper can be found in [1].

2 A paradigmatic example in Java

Consider the following Java code fragment:

interface I {

void m1() throws E1;

void m2() throws E1;

void m3();

}

abstract class C1 {

public abstract void m1() throws E0,E2;

public void m2() throws E0{}

public void m3() throws E0{}

}

abstract class C2 extends C1 implements I {

public abstract void m3();

}

If we assume that E0, E1 and E2 are exception types s.t. E0 ��

c
E1 ��

c
E2 (where ��

c
corresponds to

the subclass relation determined by an environment � of classes/interfaces corresponding to a Java

program; see Sect.3), then the declaration of the class C2 is statically correct. Indeed, according

to [5] 8.4.6.4, methods m1 of I and m1 of C1 are both inherited by C2 and no compatibility check

for the throws clauses is required; note that if m1 were not abstract in C1 then the code would

be not correct. Indeed, in that case m1 in C1 would override, and therefore implement, m1 in I

and a compatibility check for the throws clauses (which clearly would fail since E2 6��

c
E1) would

be required.

On the other hand, m2 in C1 overrides m2 in I, therefore the compatibility check has to be

performed and in this case it is passed since E0 ��

c
E1.

Finally, m3 in C2 overrides m3 in I and C1, hence the two corresponding checks have to be

performed, whereas no check is needed between m3 in I and m3 in C1; note that this last check

would be performed and would fail if m3 were not in C2.

From this example it should be clear that a type system modeling compatibility checks for

exceptions in presence of an inheritance hierarchy including interfaces and abstract classes is

really needed. Indeed, such a type system would provide a formal basis for understanding what

is going on and whether these complex rules are really necessary or, rather, it is better to take a

simpler approach by somehow restricting the language, as brie
y discussed in Sect.4.

Let us now show what we mean by simpli�cation of types. According to [5] and its formalization

in [4, 3], the type information associated with the class C2 can be expressed as follows:

{void m1() throws E1; void m1() throws E0,E2;

void m2() throws E0; void m3()}



First, we can notice that the clause throws E0,E2 contains some redundancy, since it is equivalent

to throws E2, by virtue of the hypothesis E0 ��

c
E2; hence, we can apply a simpli�cation step to

the type above obtaining a new type where all the throws clauses are minimal.

The other redundacy is that the method void m1() is repeated twice, whereas for type-checking

classes/interfaces it is enough to have a unique occurence where the throws clause is obtained by

means of a sort of \intersection" operator (which formally corresponds to take the greatest lower

bound w.r.t. the natural order for exception sets); therefore, applying this second simpli�cation

step we obtain the minimal type

{void m1() throws E1; void m2() throws E0; void m3()}.

3 Formal de�nitions and results

The abstract syntax and the reduction semantics of CJE are given in Fig.1 and 2, respectively.

In the syntax we use the notation A
� to indicate a sequence of zero or more occurrences of A

and A
~ (resp. A�) to indicate a set (resp. non empty set) of occurrences of A, that is, a sequence

in which there are no repetitions and the order is immaterial. The terminals iname and cname

indicate interface and class names respectively. A generic name is indicated by name.

Note that since CJE is a functional language, the throw and the try and catch constructs are

not statements, as happens in Java, but expressions; furthermore, for sake of simplicity, the throw

expression is built on top of class names (corresponding to exception names) rather than generic

expressions.

The metavariable E ranges over expr , C over class names and m over method names.

There are two kinds of normal forms: those having form new C, corresponding to normal

program terminations evaluating into an object of class C, and those of the form throw C, corre-

sponding to abnormal program terminations throwing the exception C.

The reduction relation !�, the auxiliary function Body� and the subclass relation ��

c
are all

indexed by � which is the environment of classes/interfaces w.r.t. which the reduction is performed;

more precisely, � represents a Java program P and associates with any class/interface name the

corresponding declaration in P .

The auxiliary function Body�, whose de�nition has been omitted for lack of space, performs

method look-up in the environment �: Body�(C ;m) returns the tuple hE; x1 : : : xni corresponding

to the body and the formal parameters, respectively, of the method named m found when starting

look-up at the class C in the environment �; if the method is not found, then Body�(C ;m) is

unde�ned.

Two di�erent type systems are considered. The former, which we call full , corresponds to

the speci�cation given in [5] and formalized in [4, 3], whereas the latter, which we call mini-

mal, uses minimal types. For lack of space Fig.3 contains only the rules for type assignment to

classes/interfaces (see [1] for the complete set of rules).

The type of a class/interface is a pair consisting of a �elds type and a methods type. A �elds

type is a set of �elds, that is, pairs consisting of a �eld name and a �eld type; a methods type is a

set of methods, that is, pairs consisting of a method name quali�ed by the types of the arguments

(what is usually called a signature) and a triple consisting of the kind (abstract or not abstract),

the return type and the set of declared exceptions.

The rules in Fig.3 have the same structure for both the full and the minimal type systems.

What changes is the de�nition of the auxiliary sum functions
�

� used for de�ning the rules (see

below).

The �rst rule de�nes the type of an interface I , which consists of an empty �elds type and a

methods type which is the sum of the methods types of the direct superinterfaces (I 0 s.t. I <1
i
I
0

in � ), updated by the methods MST declared in I .

The second rule de�nes the type of a class C. The �eld types consists in the �elds type FST
0

of the direct superclass updated by the �elds FST declared in C. The methods type consists of

the sum of the methods types of the implemented interfaces (I s.t. C �1
i
I in � ) and the abstract



prog ::= decl
~

decl ::= idecl j cdecl
type ::= iname j cname

exc-type ::= cname
~

cdecl ::= [ abstract ] class cname extends cname

implements iname
~ f meth

~ g
idecl ::= interface iname extends iname

~ f imeth
~ g

params ::= (h type name i�)
imeth ::= abstract type name params throws exc-type

meth ::= instance type name params throws exc-type f expr g j
imeth

expr ::= name j
new cname j
throw cname j
expr :name(expr~) j
try expr hcatch cname expri�

Fig. 1. Syntax

methods of the superclass C 0, updated by the non abstract methods of C 0 updated in turn by the

methods MST declared in C. The last side condition expresses the constraint that a class with

abstract methods must be declared abstract (see [5] 8.4.3.1).

The auxiliary update operations on �elds and methods types, written [ ], return a new �elds

(resp. methods) type obtained updating the �rst argument with new �elds (resp. methods), if this

is possible, accordingly with Java rules on hiding, overloading and overriding (see [5] 8.4.6 and

8.4.7). For instance, updating a methods type is unde�ned if we try to override a method with

another which has the same signature and incompatible throws clause.

The sum operation
�

� is just set union in the full type system, whereas in the minimal type

system it is a modi�ed union that can merge method types as illustrated in Sect.2. More precisely,

merging two method types having ES and ES
0 as sets of declared exceptions, respectively, produces

just one method type whose set of declared exceptions is the \intersection" of ES and ES
0 de�ned

by

C 2 ES
�


 ES
0 i� either C 2 ES and 9C 0 2 ES

0
s :t : � ` C � C

0 or conversely.

When trying to sum two methods with the same signature, the operation is de�ned (in both

versions) only if such methods have the same return type.

The two auxiliary functions Abstract and NonAbstract return the set containing only the

abstract and non abstract methods, respectively.

For the formal de�nition of update and sum operations see [1].

In order to state that the full and minimal type systems are equivalent, for each type envi-

ronment � (containing all the type information about the classes and interfaces in a program) we

de�ne a function simp
�
: FullTypes ! MinTypes which, given a full type � , returns its simpli�ed

version simp
�
(�), that is, a minimal type. This function is indexed by � since the simpli�cation

depends on the subclass and subinterface relations which holds for a given program, as explained

in Sect.2.

Actually, the function simp
�
is a logical relation��� FullTypes�MinTypes de�ned by � �� �

0

i� simp
�
(�) = �

0. This relation is used in the following theorem stating the equivalence of the full

and minimal type systems.

Theorem 1 (Equivalence of the Type Systems). For any type environment � , CJE expres-

sion E and type � , if � `f E:� then there exists �
0
s.t. � `m E:� 0 and � �� �

0
. Conversely, if

� `m E:� then there exists �
0
s.t. � `f E:�

0
and �

0 �� � .



E !� E
0

E:m(E1; : : : ; En)!� E
0
:m(E1; : : : ; En)

(throw C):m(E1; : : : ; En)!� throw C

Ei !� E
0

i

new C:m(new C1; : : : ; new Ci�1; Ei; : : : ; En)!�

new C:m(new C1; : : : ; new Ci�1; E
0

i; : : : ; En)

new C:m(new C1; : : : ; new Ci�1; throw Ci; : : : ; En)!� throw Ci

new C:m(new C1; : : : ; new Cn)!�

Efx1 7! new C1; : : : ; xn 7! new Cn; this 7! new Cg

hE; x1 : : : xni = Body�(C ;m)

E !� E
0

try E catch C1 E1 : : : catch Cn En !�

try E
0
catch C1 E1 : : : catch Cn En

try new C catch C1 E1 : : : catch Cn En !� new C

try throw C catch C1 E1 : : : catch Cn En !� Ei

8 i; j = 1 : : : n

C ��
c Ci ^

(j < i) C 6��
c Cj)

try throw C catch C1 E1 : : : catch Cn En !� throw C

8 i = 1 : : : n

C 6��
c Ci

Fig. 2. Reduction rules

Here � `f E:� and � `m E:� 0 are the usual typing judgments for expressions in the full and

the minimal type system, respectively.

As usual, the theorem can be proved by induction on the typing rules and by proving analogous

properties for all the other judgments of the system. For instance we expect also the following

property to hold: for any type environment � , � `f � i� � `m �, where � `f � and � `m �

are the judgments for well-formed type environments in the full and the minimal type system,

respectively.

Another important property that we prove is subject reduction.

Theorem 2 (Subject Reduction). For any type environment � , class/interface environment

�, CJE expressions E, E
0
and type � , if � `f E:� , � `f � � and E !� E

0
, then there exists a

type �
0
s.t. � `f E

0:� 0 and � `f �
0 � � .

Here � `f � � is the judgment for well-formed class/interface environments � w.r.t. a given

type environment � .

The subject reduction property for the simpli�ed system follows by virtue of the equivalence

stated in Theorem 1 and by the following two properties:

{ � `m � � implies � `f � �;
{ � `f �

0

f
� �f , �f �� �m, �

0

f
�� �

0

m
implies � `m �

0

m
� �m.

4 Conclusion

We have presented a core calculus for Java exceptions, de�ned its reduction semantics and two

provably equivalent type systems, and proved subject reduction for it.



� ` I isi MST � `MST�InterfaceType
� ` I1 : ; MST1 : : : � ` In : ; MSTn

� ` I : ; (MST1

�

� : : :

�

�MSTn)[MST ]�

n � 0

fI1; : : : ; Ing = fI 0jI <1

i I
0 2 �g

Set MSTc = (MST1

�

� : : :

�

�MSTn

�

� Abstract (MST

0))[NonAbstract (MST

0)[MST ]� ]� ;

� ` C isc K FST MST

� ` CT�ClassType
� ` C <

1

c C
0

� ` C0 : FST 0 MST

0

� ` I1 : ; MST1 : : : � ` In : ; MSTn

� ` C : FST 0[FST ] MSTc

n � 0

fI1; : : : ; Ing = fIjC �1

i I 2 �g
K = concrete ) Kind(MSTc) = concrete

Fig. 3. Type assignments to classes/interfaces for both systems

The �rst important contribution of this paper is the full formalization of the complex rules

given in [5] for compatibility checks of throws clauses; such rules have to be performed whenever

a class/interface is extended (by inheritance) and are particularly nasty when abstract classes and

implementation of interfaces are involved.

The second contribution is the de�nition of a minimal type system which is proved to be

equivalent to that given in [4] and has the advantage of avoiding redundancies in favor of a better

understanding of exception handling in Java.

Furthermore, our analysis has pointed out that in some cases the rules de�ning the static

correctness of Java programs can be very tricky. Our feeling is that this could be avoided at the

cost of a minimal loss of 
exibility, by adding some restriction to the language, as sketched below.

In Java if a class C is declared to implement an interface I , then all methods in I that are

neither de�ned in C nor inherited from the superclasses of C are implicitly inherited by C. This

rule implies that a class can inherit more methods with the same signature, a rather strange

situation in a language where classes cannot have more than one parent.

A more coherent choice would consist in requiring C to have all methods (either de�ned or

inherited from its superclasses) contained in I , with the consequence that C cannot inherit methods

from I but only implement them (as properly suggested by the keyword implement). Following

this approach, we would also avoid the counter-intuitive Java rule stating that an abstract method

m in C implements a method m in I only if m is directly de�ned in C (see [5] 8.4.6.1 and 8.4.6.4).
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Abstract

Threads in Java are not constrained to produce sensible run-time be-

haviour. It is possible (accidentally) to write programs with very unde-

sirable properties. Previously we have formalized Java's multi-threaded

behaviour. From our formalization, we have developed a set of applets to

demonstrate the characteristics and e�ects of unsafe behaviours regarding

the usage of shared variables, as well as the additional e�ects of synchro-

nization and volatile declarations. Using synchronization prevents this

level of unsafe properties, but using volatile declarations does not help

prevents these unsafe properties.

1 Introduction

The Java programming language has built-in support for concurrency. A Java

program can spawn threads to work concurrently. The Java Language Speci�-

cation [1] de�nes multi-threaded Java environments to consist of a single main

memory (accessible by all threads) and threads. Every thread in Java has two

components. The �rst is its execution engine, which runs the Java code of each

thread. The other component is the thread's working memory. Each thread

keeps its own working copy of shared variables that it must access, in its working

memory. As the thread executes a Java program, it operates on these working

copies. The main memory contains the master copy of every shared variable.

Furthermore, the main memory contains locks. There is one lock associated with

each object. Threads may compete to acquire a lock for mutual exclusion of an

object. There are four categories of atomic actions that a thread can perform:

� use: transfers the contents of the thread's working copy of a variable to

the thread's execution engine.

� assign: transfers a value from the thread's execution engine into the

thread's working copy of a variable.

� load : puts the value transmitted from the main memory by a read action

into the thread's working copy of that variable.

� store: transfers the working copy of a variable from a thread's working

memory to the main memory, to be used by a later write action.



The main memory manager can perform the following atomic actions:

� read : transmits the contents of the master copy of a variable from the

main memory to a thread's working memory to be used later by a load

action.

� write: puts a value transmitted by a store action into the master copy of

a variable in the main memory.

A thread and the main memory can jointly perform these atomic actions:

� lock : causes a thread to attempt to acquire one claim on a lock of a

particular object. Only one thread at a time is permitted to lay claim

to a lock. A thread that fails to acquire a lock will be blocked at that

point, waiting to compete for the lock again when the lock is released.

Moreover, a thread may acquire the same lock multiple times and does

not relinquish ownership of it until a matching number of unlock actions

have been performed.

� unlock : causes a thread to attempt to release one claim on a lock of a

particular object. A thread is not permitted to unlock a lock it does not

own.

It is crucial that programmers understand how these actions work in order

both to predict correctly the behaviour of concurrent programs and to imple-

ment correct concurrent programs. Moreover, it is crucial for implementors to

follow the actions' de�nitions in order to implement a correctly behaved runtime

system of which behaviour can be formally proven. How these actions work are

stated (as English sentences) in the language speci�cation. Understanding ev-

erything from words descriptions is diÆcult and can be ambiguous. Therefore

we formalized the descriptions. Our papers on the formalization [2, 3] can be

found on our website [4].

Figure 1 shows our graphical representation of what can happen to the mem-

ory model.

Notice that in this model formalization, each store action goes to a distinct

bu�er. The same characteristic is also there for each read action. The reason

for choosing to model these actions this way is to allow maximum 
exibility of

actions in the model, while still following descriptions from The Java Language

Speci�cation [1]. The Language Speci�cation itself does not have any clear

description on this issue.

From our model, we formulate a safety property of the Java memory model.

We call this property `data consistency' (This property is mentioned as `con-

sistent visibility' in Doug Lea's book [5]). `Inconsistent' data usage can occur

when more than one thread [6] shares the same piece of data. Shared data is

considered `consistent' when:

� For each variable V , the use action of a thread always uses the value of

V that comes from an assignment of V of which serialization order [7] is

nearest (and before) that use action. (Or less formally, the latest assigned

value will always be used.)

� If in the serialized execution sequence, an assign on V (say, `assign1')

comes before another assign on V (`assign2'), then the write that corre-

sponds to `assign1' must occur in the serialization before the write that
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Figure 1: The memory model & its actions

corresponds to `assign2'. (Or less formally, the latest assigned value will

always produce the latest write to the main memory.)

and `inconsistent' otherwise.

From the formalization, we divide data inconsistency into the following cat-

egories:

� A thread does not load a value before performing a use action.

� The write action of a thread does not occur before the read action initiated

by another thread, even though the corresponding assign occurs before

use.

� The write actions do not serialize corresponding to the assign actions.

All these can happen under the current Java memory model. These inconsis-

tent usages cause problems di�erent from the thread interference problem. The

thread interference problem can be seen in the following execution ordering:

1 thread1 temp = v;

2 thread2 temp = v;

3 thread1 v = temp + 1;

4 thread2 v = temp + 1;

where v has lost one of its updates.

But our inconsistency situations tell us that v can lose its update even though

the statement execution appears correctly ordered, for example, in the following

situation:



5 thread1 temp = v;

6 thread1 v = temp + 1;

7 thread2 temp = v;

8 thread2 v = temp + 1;

can still lose its update because v from code line 6 may not have been written

to Java's main memory before thread 2, in line 7, start reading v from the main

memory.

The atomic actions: use, assign, load, store, read, write, lock and unlock are

all very low level. It could be argued that at this level there should be complete

freedom and therefore the data inconsistency behaviour is not surprising.

At a higher level, the Java Language Speci�cation [1] de�nes a collection

of rules controlling how a thread's working memory should interact with the

main memory. Apart from governing ordinary variables, the rules are about

synchronization and volatile declarations.

Synchronization is a thread's attempt to gain an exclusive access to a lock.

Synchronization is performed by lock and unlock actions. During its exclusive

access to a lock, before a thread is to perform an unlock action, it must �rst copy

all assigned values in its working memory back out to the main memory. Also,

any shared variable must be assigned or loaded from the main memory before

use. Synchronization, despite being a safe way to handle shared variables, is

a very ineÆcient mechanism due to its forced locking. Therefore Java creators

create another mechanism that seems to be more eÆcient and safe enough in

some cases, called volatile declarations. If a variable is declared to be volatile, a

thread must reconcile its working copy of the �eld with the master copy every

time it accesses(use/assign) that variable. The main memory actions initiated

by the same thread on volatile variables must also be ordered according to their

working memory counterparts. The use of volatile does not lock an object and

hence it seems much more eÆcient than synchronization.

2 Test program

We wanted to �nd out whether the data inconsistency is only in The Java

Language Speci�cation or whether it is a property of Java implementation as

well. We therefore implemented a test program to see whether our sequence of

data inconsistent actions really does happen in actual Java [8] programs. The

test program uses these components:

� Thread A: continuously performs assignment to a variable for �nite num-

ber of times. Each assignment is unique. Thread A records the processor

time just after each assignment (In Java, it is not possible to obtain the

processor time at the actual assign/use action itself).

� Thread B: continuously uses the same variable assigned by thread A for

�nite number of times. It records the processor time just before each use.

� The main program, which invokes both threads.

� The analyzer program: Analyzes data collected from thread A and thread

B. Our analysis is quite simple:



1. First, for each use action, we �nd the earliest possible assign that

the use can take the value from.

2. We then use that point for starting the matching search to �nd if any

assign did assign the value that use action has read.

3. If no assign contains the value that the use action has, then it means

that the use action used the value from earlier than the earliest pos-

sible assignment. This is our scenario for data inconsistency.

Figure 2 shows how our program works. By running the above programs on

JDK 1.2, we can produce a situation demonstrating data inconsistency.

Thread 1 Thread 2

assign 1

time 1

assign 2

time 2

timeU 1

use 1

timeU 2

use 2

1 time 2 is just < timeU 1
, so we know that 
for use 1, the value that
it uses should come from
assign 2 (at the earliest)

assign 3

, for the use to be consider
safe.

assign 4

time 3

2

time 4
time 4 happens to be just > 
timeU 2, therefore assign 4
is the last assign that can
happen before use 1. Hence 
we look at values assigned by 
assign 2 upto assign 4to see
if they match the value read 
by use 1. If not, it means
that unsafe use has occurred.

Figure 2: program detecting data inconsistency

Using the same implementation, but declaring the shared variable volatile,

we can also produce a situation showing data inconsistency. Therefore it is clear

that data inconsistencies occur despite volatile declarations.

3 Demonstration applets

The behaviour of concurrent threads, shown by our formal analysis, is not ob-

vious to see and to describe. Understanding this kind of problem well, requires

`seeing' the problem in action. A form of visualization [9, 10] will be of great

aid for understandability, hence we have developed demonstration programs fol-

lowing the formalized rules of the formal memory model. These demonstration

programs are not in any way related to test programs mentioned in section 2.



While the test programs test the Java implementation, the demonstrations pro-

grams were entirely based on our memory model formalization, with the purpose

of showing the formal model only. We implemented the demonstrations as a col-

lection of Java applets. These applets can be found at [4].

1. Applet 1: showing a use action using the unsafe piece of data, as derived

from the formal model.

2. Applet 2: showing that two assign actions can put values in the master

copy of a variable in an unsafe order.

3. Applet 3: showing that synchronization solves problem of the �rst applet.

4. Applet 4: showing that synchronization solves problem of the second ap-

plet.

5. Applet 5: showing that volatile does not really solve the problem of the

�rst applet, unlike synchronization.

6. Applet 6: showing that the use of volatile does not solve the problem for

unsafe ordering of writes.

All of the applets share a common interface. A description of the displayed

applet is always shown on the right frame of any applet page. The component

of an applet includes:

� Two threads, T1 and T2, each perform an assign or a use action on a

shared variable V . The value of each thread's working memory is dis-

played, unless that thread is to perform an assign action. A thread per-

forming an assign action will have a textbox for a user to enter the desired

new value of V before carrying out the assign action.

� The main memory, with the initial master copy of V .

� There are three `action control' buttons associated with each thread.

These buttons allow a user to manipulate the order of occurrences of ac-

tions associated with assign and use. A user can click any button, in any

order, to force the execution of the action shown on the button. (The user

interface may or may not allow the action, according to our formalized

Java rules.)

� The `Sequence' textbox records the interleaved sequence (serialization) of

actions already taken place.

� The `Result' textbox shows whether a �nished sequence preserves data

consistency.

� A `Reset' button clears all elements of the applet to their original status.

Figure 3 shows an applet when start running. At this state, the master copy

of V (in the main memory) has value `MMM'. T2 has `LLL' as initial value of

its copy of V (a help page on the right side of the applet explains this in more

detail). All our formal rule violations are handled by popping warning messages,

asking the user to make another choice, as seen in �gure 4.



Figure 3: applet when start

Figure 4: error message from formal Java rule violation



As an example of how our demonstration applets work, let us use an applet

to show an execution sequence that displays execution that a thread does not

safely use a shared volatile variable (applet 5).

We use the program to show the second category of unsafe data usage (men-

tioned in section 1), that is when the write action of a thread does not occur

before the read action initiated by another thread (but the corresponding as-

sign occurs before use). The �rst category of unsafe data usage does not happen

under volatile because it forces load action to take place with every use action.

Let's say T1 already carried out `assign' and `store'. We now click `read'. It

can be seen (�gure 5) that even though `write' may be carried out right after

`read', there is no way that `new' can be used by T2 because `read' already

obtained the old value `MMM'. There are many possible execution sequences

that can lead to this situation, such as `read', `assign', `load', `use'.

Figure 5: unsafe data usage, write occurs too late

We now move on (applet 6) to show that volatile declarations still allow

out-of-order writes by attempting to force `T1 assign' click before `T2 assign'

but `T1 write' after `T2 write'.

To start, the `T1 assign' is clicked. We now try to �nd the way to click `T2

write' before `T1 write'. Such execution can be achieved. The applet allows

a sequence like `T1 assign', `T2 assign', `T1 store', `T2 store', `T2 write', `T1

write'. This execution sequence shows that `T1 write' occurs after `T2 write'

although their assignments are in opposite order (see �gure 6).

All the applets, including the e�ect of synchronization, can be accessed

at [4].



Figure 6: volatile declarations allow unsafe ordering of writes across threads

4 Conclusion

In this work, we illustrate a property of the Java memory model that is unsafe

for shared variable access, based on our formalization.

There is one aspect that we did not include in our model. There are methods,

in the Java Language, that support threads coordination. These methods are

`wait', `notify' and `notifyAll', and they operate on the waitset associated with

an object. We left the waitset out of our formalization to simplify our model.

And because the use of methods involving the waitset is always for synchroniza-

tion, the behaviour to be analyzed is thus the behaviour of synchronization.

A possible future work is to code the model into a program analyzer tool

(One such tool that can produce action based model is LTSA [11]). Using

the tool, the model can be exhaustively analyzed, ensuring that everything is

covered. Another possible direction for future work is to compare our formal

model with the Java virtual machine. The Java virtual machine has various

components and operations for managing shared variables. Some components

and operations seem to be working very di�erently from what are described

in the Java Language Speci�cation [1]. The question arises whether the two

models are actually compatible.

5 About the Authors

Susan Eisenbach is Director of Studies in the Department of Computing at Im-

perial College. She was principal investigator of the Multimedia Network Appli-

cation (BECALM) project funded by the UK Engineering and Physical Science



Research Council (EPSRC), where she worked on language design for multi-

media applications in large-scale distributed systems. She is co-investigator of

the EPSRC Systems Engineering project SLURP investigating Java semantics.

Susan Eisenbach was program chair of the OOPSLA'98 Workshop on Formal

Underpinnings of Java Semantics.

Vishnu Kotrajaras obtained his Master in Engineering at Imperial College,

London, in 1997. He is now a PhD student in the SLURP project in the De-

partment of Computing at Imperial College.

References

[1] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation.

Addison Wesley, August 1996.

[2] Vishnu Kotrajaras and Susan Eisenbach. Threads and Main Memory Se-

mantics. In Workshop on Formal Techniques for Java Programs, ECOOP

99, June 1999.

[3] Vishnu Kotrajaras. A demonstration of data inconsistency of the Java

memory model (full paper). web site: http://www.formaljava.fsnet.co.uk,

January 2000.

[4] Vishnu Kotrajaras. Demonstration program for formal study of concurrent

Java. web site: http://www.formaljava.fsnet.co.uk, 1999.

[5] Doug Lea. Concurrent Programming in Java: Design Principles and Pat-

terns. Addison Wesley, 1999.

[6] Scott Oaks and Henry Wong. Java Threads. O'Reilly, January 1997.

[7] Alex Gontmakher and Assaf Schuster. Java Consistency: Non-Operational

Characterizations for Java Memory Behaviour. Technical Report CS0922,

Computer Science Department, Technion, November 1997.

[8] Mark Grand. Java Language Reference. O'Reilly, second edition, July 1997.

[9] Andrea Lawrence. Empirically Evaluating the Use of Animations to Teach

Algorithms. Technical Report GIT-GVU-94-07, Graphics, Visualization,

and Usability Center, Georgia Institute of Technology, 1994.

[10] John Stasko. Using Student-Built Algorithm Animations as Learning Aids.

Technical Report GIT-GVU-96-19, Graphics, Visualization, and Usability

Center, Georgia Institute of Technology, August 1996.

[11] Je� Magee and Je� Kramer. Concurrency: state models and Java programs.

Wiley, 1999.



35 

 
 

Verified Lightweight Bytecode Verification 
 

G. Klein, T. Nipkow 



Verified Lightweight Bytecode Verification

Gerwin Klein and Tobias Nipkow

Technische Universität München, Institut für Informatik
http://www.in.tum.de/~{kleing|nipkow}/

Abstract. Eva and Kristoffer Rose proposed a (sparse) annotation of
Java Virtual Machine code with types to enable a one-pass verification
of welltypedness. We have formalized a variant of their proposal in the
theorem prover Isabelle/HOL and proved soundness and completeness.

1 Introduction

The Java Virtual Machine (JVM ) comprises a typed assembly language, an ab-
stract machine for executing it and the so-called Bytecode Verifier (BV ) for
checking the welltypedness of JVM programs. Resource-bounded JVM imple-
mentations on smart cards do not provide bytecode verification because of the
relatively high space and time consumption. They either do not allow dynamic
loading of JVM code at all or rely on cryptographic methods to ensure that
bytecode verification has taken place off-card. In order to allow on-card ver-
ification, Eva and Kristoffer Rose [3] proposed a (sparse) annotation of Java
Virtual Machine code with types to enable a one-pass verification of welltyped-
ness. Roughly speaking, this transforms a type reconstruction problem into a
type checking problem, which is easier. Based on these ideas we have extended
an existing formalization of the JVM in the theorem prover Isabelle/HOL [2, 1].
In §2 we describe the general idea of bytecode verification and its formalization
in Isabelle/HOL. In §3 we explain how lightweight bytecode verification works,
how we formalized it and proved it correct and complete.

2 Bytecode verification

The JVM is a stack machine where each method activation has its own ex-
pression stack and local variables. The types of operands and results of bytecode
instructions are fixed (modulo subtyping), whereas the type of a storage location
may differ at different points in the program. Let’s look at an example:

instruction stack local variables
Load 0 [] [Class B, int]
Store 1 [Class A] [Class B, unusable]
Getfield F A [] [Class B, Class A]
Goto -2 [Class A] [Class B, Class A]



On the left the instructions are shown and on the right the type of the stack
elements and the local variables. The type information attached to an instruction
characterizes the state before execution of that instruction. We assume that class
B is a subclass of A and that A has a field F of type A.

Execution starts with an empty stack and the two local variables hold a
reference to an object of class B and an integer. The first instruction loads
local variable 0, a reference to a B object, on the stack. The type information
associated with following instruction may puzzle at first sight: it says that a
reference to an A object is on the stack, and that the type of local variable 1
has become unusable. This means the type information has become less precise
but is still correct: a B object is also an A object and an integer is now classified
as unusable. The reason for these more general types is that the predecessor of
the Store instruction may have either been Load 0 or Goto -2. Since there exist
different execution paths to reach Store, the type information of the two paths
has to be “merged”. The type of the second local variable is either int or Class
A, which are incompatible, i.e. the only common supertype is ‘unusable’.

Bytecode verification is the process of inferring the types on the right from the
instruction sequence on the left and some initial condition, and of ensuring that
each instruction receives arguments of the correct type. This can be done on a
per method basis because each method has fixed argument and result types. The
two tables on the right are together called a method type, one line of the method
type is called a state type. To simplify matters we restrict the considerations in
this paper to a single method.

For theoretical investigations it has become customary to separate type in-
ference (computation of a method type) from type checking (checking if an in-
struction sequence fits a method type). Type inference is usually implemented as
a dataflow analysis and may require several iterations due to subtyping. We will
now ignore type inference (although we have also verified it in Isabelle/HOL)
and concentrate on type checking.

A first machine-checked specification of type checking for the JVM was given
by Pusch [2]. Using Isabelle/HOL she connected the type checking rules with
an operational semantics for the JVM by showing that execution of type cor-
rect programs is type sound, i.e. during run time each storage location contains
values of the type predicted by the method type. We will now sketch some the
key ingredients of the type checking specification by Nipkow et al. [1] that our
formalization of lightweight bytecode verification builds on.

Type checking of methods is modeled by a predicate wt method relating
the instruction sequence, types of method parameters, return type, etc. with a
method type ϕ. In essence, the definition

wt method :: [jvm prog,cname,ty list,ty,nat,instr list,method type] → bool
wt method Γ C pTs rT mxl ins ϕ ≡

let max pc = length ins in
max pc < length ϕ ∧ 0 < max pc ∧ wt start Γ C pTs mxl ϕ ∧
(∀pc. pc<max pc −→ wt inst (ins ! pc) Γ rT ϕ max pc pc)

states that, in a declaration context Γ (containing all class declarations of the

2



program), wt method holds for an instruction sequence ins (the method body)
and a method type ϕ when each single instruction ins ! pc is well typed (the
Isabelle/HOL operator ! returns the nth element of a list). The predicate wt inst
checking single instructions may take into account the return type rT , the current
program counter pc, and the maximum program counter max pc (the length of
the instruction sequence). wt start ensures that the types on the operand stack
and of the local variables are initialized correctly with regard to the class C the
method is declared in, the parameters pTs of the method, and the number of
local variables mxl.

wt inst is a case distinction over the instruction set. As the type checking
conditions for single instructions are very similar to each other, we only take a
look at an example:

wt inst :: [instr,jvm prog,ty,method type,nat,nat] → bool
wt inst (Load idx) Γ rT ϕ max pc pc =

let (ST,LT) = ϕ ! pc in
pc+1 < max pc ∧ idx < length LT ∧
(∃t. (LT ! idx) = usable t ∧ Γ ` (t # ST , LT) �s ϕ ! (pc+1))

The predicate first checks some applicability conditions like pc+ 1 < max pc
and idx < length LT , then calculates the effect of the instruction on the current
state type and eventually requires that the result be compatible with the state
type at the next instruction in the control flow.

The current state type consists of the stack ST and the local variables LT
at position pc in the method type. Both are lists containing the types before
execution of the instruction. In the Load case we require some type t other than
unusable at index idx in LT . The state type of the next instruction at position
pc+ 1 must correctly approximate a state type where t is on top of the stack (#
is the list constructor in Isabelle/HOL). The local variables are unchanged. This
correct approximation ` �s is Java’s widen relation lifted to state types and
extended by the element unusable. We already used it informally in the example
program.

3 Lightweight bytecode verification

Two things make the traditional bytecode verifier unsuitable for on-card verifica-
tion: the type reconstruction algorithm itself is large and complex, and the whole
method type is held in memory. Lightweight bytecode verification addresses both
problems.

The need for dataflow analysis is caused by the fact that some instructions
may have multiple preceding paths of execution and that the types constructed
on these paths have to be merged. This can only occur at the targets of jumps.
The basic idea of lightweight bytecode verification is to look what happens when
we provide the result of the type reconstruction process at these points before-
hand. This additional outside information is called the certificate. It becomes
apparent that the type reconstruction is now reduced to a single linear pass over
the instruction sequence: each time we would have to consider more than one

3



path of execution, the result is already there and only needs to be checked, not
constructed. The second effect is that apart from the certificate we only need
constant memory: the type reconstruction can be reduced to a function that
calculates the state type at pc+ 1 only from the state type at pc and the global
information that is already provided from outside. After having calculated the
type at pc+ 1, we can immediately forget about the one at pc.

For our example program, the situation at the start of the lightweight byte-
code verification process looks like that:

instruction stack local variables
Load 0
Store 1 [Class A] [Class B, unusable]
Getfield F A
Goto -2

From that the whole method type is reconstructed in a single linear pass:
The state type ([], [Class B, int]) for the Load instruction will be filled in as
initialization. The state type for Store 1 is in the certificate, since Store is the
target of the Goto -2 jump. The lightweight bytecode verifier calculates the effect
of Load 0, i.e. ([Class B], [Class B, int]), and checks if the certificate ([Class
A], [Class B, unusable]) correctly approximates this result. The types before
execution of Getfield are then easily calculated from the state type and the effect
of Store alone, i.e. the result is ([], [Class B, Class A]). The effect of Getfield F
A also only needs the current state type and yields ([Class A], [Class B, Class
A]). For the last instruction the lightweight bytecode verifier has to check if the
calculated state type is correctly approximated by the jump target. We did not
store this state type, but since it is a target of a jump, we have it in the certificate
and only need to check if the certificate at this point correctly approximates our
calculated state type. Note, that all paths of executions that entered into the
merging for the state type of Store 1 were checked, but no iteration or additional
memory was required.

3.1 Formalization

With that kind of process and certificate in mind, we can start a formalization
of the lightweight bytecode verifier. We have two goals here: On the one hand,
we want the formalization to be similar to the one of the traditional bytecode
verifier, so we can easily spot commonalities and differences. On the other hand,
we now not only want to model type checking, but also the simplified form of
type reconstruction, i.e. we want functions, not predicates. As a solution, we
write the predicates checking single instructions in a form that is similar to the
traditional bytecode verifier, and that can still easily be read as a function. For
example the predicate for Load
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wtl inst :: [instr,jvm prog,ty,state type,state type,nat,nat] → bool
wtl inst (Load idx) Γ rT s s’ cert max pc pc =

let (ST,LT) = s in
pc+1 < max pc ∧ idx < length LT ∧
(∃t. (LT ! idx) = usable t ∧ (t # ST , LT) = s’)

can be read as a function yielding the next state type s′ from the current in-
struction Load idx, the current state type s, the program counter pc, and the
maximum program counter max pc. Declaration context Γ, return type rT , and
the certificate cert are not used in the Load case. The predicate still closely
mimics the corresponding wt inst from the traditional byte code verifier: it is
apparent, that we have the same applicability conditions and model the same
effect the instruction has on the stack.

We now have a function that calculates the state type s′ at pc+ 1 from the
state type s at pc. Iterating this process over the list of instructions we can then
feed this s′ as current state type to the next instruction:

wtl inst list :: [instr list,jvm prog,ty,state type,state type,certificate,nat,nat] → bool
wtl inst list (i#is) Γ rT s0 s2 cert max pc pc =

(∃s1. wtl inst option i Γ rT s0 s1 cert max pc pc ∧
wtl inst list is Γ rT s1 s2 cert max pc (pc+1))

wtl inst option is a simple case distinction: if there is already type information
stored in the certificate at the current program counter, as for Store 1 in the
example, we must not use our calculated type, but the certificate containing
the merged type information instead. To ensure correctness, we still have to
check, if the certificate correctly approximates the calculated state type, i.e. if
the certificate really is the result of a merge of our state type with another one.
Therefore we have:

wtl inst option :: [instr,jvm prog,ty,state type,state type,certificate,nat,nat] → bool
wtl inst option i Γ rT s0 s1 cert max pc pc ≡

case cert!pc of
None → wtl inst i Γ rT s0 s1 cert max pc pc
| Some s0’ → (Γ ` s0 �s s0’) ∧ wtl inst i Γ rT s0’ s1 cert max pc pc

3.2 Soundness

When we specify a new kind of bytecode verification we of course wish to know
if this new bytecode verifier does the right thing. In our case this means: if the
lightweight bytecode verifier accepts a piece of code as welltyped, the traditional
bytecode verifier should accept it, too. We must also show that it is safe to
rely on outside information, i.e. in the soundness proof we must not make any
assumption on how the certificate was produced. So the soundness theorem is

∀cert. wtl method Γ . . . cert =⇒ ∃ϕ. wt method Γ . . . ϕ

5



where Γ . . . is shorthand for the same set of parameters, return type etc. for
both judgments.

This means, that if the certificate was tampered with, the lightweight byte-
code verifier either rejects the method as not welltyped, or if it does not reject,
it was still able to reconstruct the method type correctly.

We prove this by constructing a ϕ from a successful run of the lightweight
bytecode verifier and showing that this ϕ satisfies wt method. ϕ must have the
following properties: if the certificate contains a state type s at some point pc,
ϕ contains that s at the same point pc. Otherwise, if the lightweight bytecode
verifier has come to a position pc in its type reconstruction process and has
calculated a current state type s, ϕ will contain that s at position pc.

If wtl method holds, there clearly always is such a ϕ. By case distinction over
all instructions we get that both bytecode verifiers compute the same effects
of instructions on state types, and, because the certificate is always checked to
correctly approximate the calculated state type, we get that for each instruction
wt inst holds. Thus the traditional bytecode verifier accepts.

3.3 Completeness

Of course, the trivial bytecode verifier that rejects all programs also would be
correct in the sense above. Therefore we show that our lightweight bytecode
verifier also is complete, i.e. that if a program is welltyped with respect to the
traditional bytecode verifier, the lightweight bytecode verifier will accept the
same program with an easy to obtain certificate.

How will this certificate look like? We get the information we need from the
method type of a successful run of the traditional bytecode verifier. Since we
want to minimize the amount of information we have to provide, we do not take
the whole method type as the certificate, but only the state types at certain
positions.

As in the example, the certificate should contain the type information at
jump targets. Due to some simplifications in our formalization of the traditional
bytecode verifier and the µJava language, this is not enough though. The first
thing is, our traditional bytecode verifier does not ignore dead code, but requires
instructions that can never be executed to be type correct, too. If the instruction
directly after a Goto for instance is not a jump target, it can never be executed.
Since the effect of Goto on the state type only tells us something about the target
of the Goto, but nothing about the state type of the instruction at pc + 1, the
lightweight bytecode verifier would have no means to construct this state type
at pc+ 1 if it wasn’t in the certificate. So we also include the state types directly
after Goto and Return instructions. Since dead code should be eliminated by
the compiler anyway, this is not really an issue. On the other hand, it is not
hard to take dead code into account and we plan to do so in the future. We
also need the state type after a method invocation in some cases. This is due to
the fact that we do not really model exceptions at the JVM level. In µJava, a
method invocation on a class reference containing the value null is equivalent to
a halt. If the bytecode verifier discovers that this class reference is always null,
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the instruction after that may again be dead code and we have to include it in
the certificate. Again, programs produced by an optimizing compiler should not
contain such cases.

So the certificate contains the targets of jumps and some rare cases, we have
to include for the completeness proof, because we do not want to make any
assumptions about how the code was produced.

Let make cert be the function that produces such a certificate from an in-
struction sequence and a method type. Then

wt method Γ . . . ins ϕ =⇒ wtl method Γ . . . ins (make cert ins ϕ)

follows by induction over the length of the instruction sequence.

4 Conclusion

We have formalized a variant of lightweight bytecode verification for µJava and
proved its soundness and completeness in Isabelle/HOL. Our formalization is
comparatively easy to transform into a functional program. The completeness
result is both stronger and weaker than that of [3]. Eva and Kristoffer Rose
have a more complex formalization of the lightweight bytecode verifier that only
needs the certificate when a type merge really produces a different type than
calculated so far. Doing so could lead to a smaller type annotation of class files
(although this claim would require formal proof). It does however not save space
during the verification pass, since the state type at jump targets has to be saved
for later checks anyway. Our completeness result on the other hand includes
the simpler and easier to implement notion that (apart from artificial cases) the
targets of jumps are all that is needed for linear type reconstruction.
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1 Introduction

We are currently developing mathematical speci�cations for various components
of the JVM, including the bytecode veri�er [2, 4, 7], the class loading mechanism
[8], and the Java 2 security mechanisms. We are also deriving a complete imple-
mentation of the bytecode veri�er [2] through Specware [10], a system developed
at Kestrel Institute that supports provably correct, compositional development
of software from formal speci�cations.

In the course of our formalization e�orts, we have uncovered subtle bugs
in Sun JDK 1.2.2 that lead to type safety violations. These bugs are in the
bytecode veri�er and relate to the naming of reference types. We found that in
certain circumstances these names can be spoofed by suitable use of delegating
class loaders. Since the JVM speci�cation [6] is informal English prose, we cannot
crisply characterize these bugs as errors in the speci�cation or just in one or more
implementations. However, some of these bugs are consistent with a reasonable
interpretation of the speci�cation. We have veri�ed that the bugs exist in Sun
JDK 1.2.2 (on both Solaris and Windows NT). Some are �xed in Sun JDK 1.3
Beta by restricting access to system packages.

Overall, these 
aws raise the issue of a more precise speci�cation of the
bytecode veri�er and the loading mechanisms, and increased assurance of type
safety properties. Besides �xes for all these bugs, we have devised a more general
approach to insuring type safety that has additional advantages, including lazier
class loading.

2 Types in the JVM

According to [6], a class in the JVM is identi�ed by its fully quali�ed name (FQN)
plus its de�ning loader. In fact, classes are in correspondence with instances
of class java.lang.Class, and the only way to create new Class instances
is through the defineClass methods of class java.lang.ClassLoader. These
methods call internal JVM code that carries out actual class creation from byte
arrays in classfile format. This code enforces the constraint that a class loader
cannot create two classes with a same FQN. Thus it is possible to identify a class
by its FQN plus its de�ning loader.



However, the bytecode veri�er, when verifying a class, essentially uses just
FQNs. In a few cases, it actually resolves class names and makes use of the Class
instances they resolve to. In particular, the bytecode veri�er sometimes needs
to merge, that is �nd the �rst common superclass of two class names. The two
class names are resolved, thus loading the classes and their superclasses, and their
ancestry searched to �nd their �rst common superclass. The bytecode veri�er
also resolves names to check assignment compatibility (i.e., subtype relationship)
between two class names.

The use of FQNs and occasional use of actual classes guarantee type safety
only under certain assumptions. Examples of these assumptions are the loading
constraints introduced in the Java 2 Platform [6, 5] to avoid the type safety
problems exactly arising from the violation of the assumptions they enforce
[9]. Simply stated, loading constraints ensure that classes exchanging objects
(through their methods and �elds) agree on the actual types (and not only on
the FQNs) of such objects.

As it turns out, loading constraints do not cover all the assumptions needed
to guarantee type safety. An example occurs when checking a stack position
that contains the type (FQN) that results from merging two classes: the byte-
code veri�er assumes that the FQN in the stack position resolves (using the
de�ning loader of the analyzed class as the initiating loader) to the actual �rst
common superclass. Another example occurs when checking type constraints
for the invokespecial instruction: the bytecode veri�er assumes that an FQN
of any superclass of the current class resolves to the actual superclass. Fur-
thermore the bytecode veri�er assumes that the FQNs java.lang.Object and
java.lang.String resolve to the \usual" system classes. It is in fact possible
to construct programs where these assumptions are violated, thus causing name
spoo�ng and type safety failures. For reasons of space, here we only describe one
of the bugs. Further details, including runnable programs, can be found in [1].

As in [6] and [5] we use the notation NL to denote the class associated to
name N and loader L when loading of N is initiated by L, i.e., L is an initiating
loader of N . Furthermore hN;Li denotes the (unique) class with FQN N and
de�ning loader L.

3 The merging bug

[6, Sect. 4.9.2] describes how, during data 
ow analysis of a method's code,
the types assigned to stack positions and local variables along di�erent control
paths are merged. In order to merge two distinct class names Sub1 and Sub2,
the corresponding classes are loaded by invoking the loadClass method of the
de�ning loader L of the class whose method is being veri�ed, with argument
Sub1 �rst, then Sub2. The ancestry of the classes Sub1L and Sub2L is then
searched to �nd the �rst common superclass. If the �rst common superclass
found is hSup; L0i then the bytecode veri�er writes the FQN Sup in the merged
stack position. Suppose that, after the merging point, an instruction accesses
a �eld or method of a class named Sup in the �eld or method reference. Since



the bytecode veri�er has deduced that the stack position indeed contains a class
with FQN Sup, the check for assignment compatibility will succeed, as described
in [6, Sect. 4.9.1]. This is correct only assuming that SupL = hSup; L0i, i.e., that
loading of FQN Sup initiated by L results in the actual superclass of Sub1L and
Sub2L.

However, such an assumption can be violated if for example L0 is the system
class loader and L is a user-de�ned class loader that delegates to L0 (by invoking
findSystemClass) the loading of FQNs Sub1 and Sub2 but not of Sup. The
following situation is arranged (Merger is the class being veri�ed):

hSup; L0i

hSub1; L0i

�������������

�����������
hMerger; Li�� ��

��

hSub2; L0i

�� ����������

����������

hSup; Li

A thin arrow from a class (identi�ed by its name and de�ning loader) to another
indicates that the source of the arrow resolves the FQN of the target to the
target. A double arrow indicates that the source is a subclass of the target.
Suppose that class Merger contains the following code:

Sub1 s1 = new Sub1();

Sub2 s2 = new Sub2();

Sup s;

if (s1 != null) s = s1; // this test just serves to

else s = s2; // create two merging paths

s.m(); // type unsafe!

This code passes veri�cation for the reason described above. If hSup; Li has a
method m with the right descriptor, at runtime the method call goes through be-
cause Sup resolves to hSup; Li. However, the object stored in s has class hSup; L0i
(as well as class hSub1; L0i). If hSup; L0i is di�erent from hSup; Li, the e�ect of
the method call is unde�ned. In typical implementations, it will probably call
some unrelated method that happens to have the same index, thus causing type
unsafety.

This may be interpreted as a bug in the JVM speci�cation, rather than the
implementation. Although [6] does not crisply state that types are denoted by
FQNs in the bytecode veri�er (it typically just talks about \reference types"),
that seems to be the intended meaning, or at least the most reasonable inter-
pretation. In any case, future editions of [6] should clarify this point. This bug
also exists in JDK 1.3 Beta.

A possible solution to the problem is to keep information, when merging two
FQNs Sub1 and Sub2, about the actual �rst common superclass hSup; L0i (not
only its FQN Sup). When checking assignment compatibility with the FQN Sup



(referenced in the runtime constant pool), the FQN is resolved and the resulting
Class instance is compared with the one obtained from merging. In this way
there can be no confusion. Interestingly, inspection of the bytecode veri�er code
in JDK 1.2.2 shows that information about the actual �rst common superclass
is indeed maintained and accessible. However, it is not used to prevent this
problem. Alternatively, to avoid early loading of Sup by L, a loading constraint
SupL = SupL0 can be added by the bytecode veri�er to the set of globally
maintained loading constraints.

4 A general solution

As previously mentioned, the bytecode veri�er makes use of FQNs, occasionally
resolving them to actual classes. This resolution results in premature loading of
classes. We now propose a design for the bytecode veri�er (and related parts of
the JVM) that (1) avoids premature loading and (2) allows a cleaner separation
between bytecode veri�cation and loading. This cleaner separation also promotes
a better understanding of how bytecode veri�cation and other mechanisms (such
as loading constraints) cooperate to insure type safety in the JVM.

In the design we propose, the bytecode veri�er uniformly uses FQNs, never
actual classes. The intended disambiguation is that FQN N stands for class
NL, where L is the de�ning loader of the class under veri�cation (note that, at
veri�cation time, class NL might not be present in the JVM yet). The bytecode
veri�er never causes resolution (and loading) of any class.

The result of merging two FQNs is a set containing the two FQNs. More
precisely, the bytecode veri�er uses (�nite) sets of FQNs (and not just FQNs)
to type stack positions and local variables containing reference types [2, 4, 7].
Initially (e.g., in the local variables containing method invocation arguments)
sets are singletons. Merging is set union. The meaning of a set of FQNs typing a
local memory is that the local memory may contain an instance of a class whose
FQN is in the set. No relationship among the elements of the set is intended.

When a set of FQNs is checked for assignment compatibility with a given
FQN N , for each element M of the set di�erent from N , a subtype loading
constraint ML < NL is generated. The meaning of such constraint is that class
ML must be a subclass of classNL. The constraint is added to the global state of
the JVM, and checked for consistency with the loaded class cache. If either class
has not been loaded yet, the constraint is just recorded. Whenever the loaded
class cache is updated, it is checked for consistency with the current subtype
loading constraints. This is very similar to the equality loading constraints of the
form NL = NL

0

introduced in the Java 2 Platform. In fact, subtype constraints
complement equality constraints.

Checking the consistency of the loaded class cache and loading constraints
that include both subtype constraints and equality constraints is neither diÆcult
nor ineÆcient. A na��ve algorithm will transitively close both subtype and equality
constraints and then check that when the loaded class cache is updated none of
the constraints in the transitive closure is violated. An eÆcient algorithm will



use a union-�nd data structure to store equivalence classes of classes asserted to
be the same and track the asserted subtype dependencies of the classes.

In this design, the result of bytecode veri�cation of a class is therefore not
just a yes/no answer, but also a set of subtype constraints that explicitly and
clearly express the assumptions made by the bytecode veri�er to certify the class.
Furthermore, the bytecode veri�er is a well-de�ned, purely functional piece of
the JVM that does not depend on the current state of JVM data structures.

Let us now see how this approach avoids the merging bug. When verifying
the code in Merger, the creation (and initialization) of the two instances of class
Sub1 and Sub2 has the e�ect of typing the local variables as fSub1g and fSub2g.
After the merging point, the type on top of the stack is fSub1; Sub2g. Since
the call of method m references class Sup (through the costant pool), subtype
constraints Sub1L < SupL and Sub2L < SupL are generated. When the code
is eventually executed, before the method is called all of Sub1L, Sub2L, and
SupL will have been loaded. Since subtype constraints are violated, the JVM
will throw an exception preventing resolution of the method (and therefore its
invocation).

Our approach also allows a cleaner treatment of interface types in the byte-
code veri�er. Since an interface can have more than one superinterface, two given
interfaces may not have a unique �rst common superinterface. According to [6],
the result of merging two interface FQNs is therefore java.lang.Object, which
is indeed a superclass of any interface. However, this requires a special treatment
of java.lang.Objectwhen checking its assignment compatibility with an inter-
face FQN: the bytecode veri�er just passes the check because java.lang.Object
might derive from merging interfaces, even though java.lang.Object itself is
not assignment-compatible with an interface. This \looseness" does not cause
type unsafety because the invokeinterface instruction performs a search of the
methods declared in the runtime class of the object on which it is executed. If
no method matching the referenced descriptor is found, an exception is thrown.
This runtime check does not impose any additional runtime penalty. Our scheme
is cleaner in that it provides a uniform treatment of classes and interfaces.

In [8] we provide formal arguments that this design of the bytecode veri�er,
together with (subtype and equality) loading constraints, guarantees type safety
in the JVM. In that paper we formalize the operational semantics of a simpli�ed
JVM that includes class loading, resolution, bytecode veri�cation, and execution
of some instructions, and we prove type safety results about it.

Our approach of having a self-contained bytecode veri�er that generates con-
straints is similar in spirit to [3]. However, they do not consider multiple class
loaders. Their bytecode veri�er generates, besides subtype constraints, several
other kinds of constraints, e.g. for �elds and methods referenced in the code
being veri�ed. We only generate subtype constraints because the others can be
checked at runtime (as speci�ed in [6]) without performance penalty or prema-
ture loading.
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1 Introduction

Java has quickly become a standard for Internet and, through Java Card, for smartcard programming,
putting security issues at stake. Yet recent research has unveiled several problems in the Java Card security
model, most notably with object sharing and the associated mechanism of shareable interfaces, see e.g. [10,
17]�there are further security breaches related to some Java features not present in Java Card but we are
not concerned with them here. It is therefore fundamental to develop environments to verify the security of
the Java Card platform and of Java Card programs. Thus far Java/Java Card security has been studied at
two main levels:

1. platform level: here the goal is to prove safety properties of the language, in particular type safety and
properties related to memory management. This �rst level may be instrumented with proof assistants,
which are well-suited to formalization and logical reasoning;

2. application level: here the goal is to prove that a speci�c program obeys a speci�c security policy, such
as the sandbox security policy or information-�ow based security policies. This second level may be
instrumented with a variety of tools, such as model-checkers, which allow to perform automatically a
symbolic evaluation of programs to check whether a given program adheres to a given security policy.

The long-term goal of our work, part of which is being carried in the context of the Action de Recherche

Coopérative S-Java (see http://www-sop.inria.fr/oasis/SJava), is to provide an environment that inte-
grates both layers and allows to prove security properties for Java Card programs. In the present article, we
set up the foundations for such an environment by providing:

1. an executable formal speci�cation in Coq of a substantial fragment of the JCVM and JCRE. The spec-
i�cation is written in functional style and formalizes one step execution of the JCVM by a function
exec_jcvm of type

jcvm_program -> jcvm_state -> (Exc jcvm_state)

where jcvm_state is the type of JCVM states (see Section 2), and Exc is the Coq representation of the
lift monad. Our speci�cation is rather precise: in particular, it implements the mechanisms of �rewalls
and shareable interfaces upon which Java Card security crucially relies;

2. a tool, written in Java, that translates CAP �les into their Coq representation. In order to achieve a
compact and readable representation of Java Card programs, the CAP tool performs various program
transformations, including linking and index manipulation, and may be viewed as a fair part of a bytecode
veri�er.

The remaining of the abstract is organized as follows: in Section 2, we present our formalization of Java Card
programs and of the JCVM and JCRE. In Section 3, we present the CAP tool that translates CAP �les into
their Coq formalizations. We conclude in Section 4 with related work and perspectives for future research.

2 Formalization of the JCVM

2.1 Java Card programs

Java Card programs are formalized as a record of lists of classes, methods and interfaces:



Record jcvm_program : Set := {

classes : (list Class);

methods : (list Method);

interfaces : (list Interface)

}.

The Class and Interface types are records that contain several �elds not described in this abstract.
The bytecode instructions to be executed by JCVM are encapsulated in the Method type:

Record Method : Set := {

nargs : nat; (* Number of arguments of the method. *)

local : nat; (* Number of local variables. *)

owner : nat; (* Class index. *)

bytecode : (list Instruction) (* All the instructions to be executed. *)

}.

Here Instruction is an inductive type specifying the mnemonic and the format of all the instructions
as sketched below:

Inductive Instruction : Set :=

... |

invokevirtual : nat -> nat -> Instruction |

...

The invokevirtual instruction is formalized as a constructor taking as arguments two naturals that
respectively represent the number of arguments and the position of the invoked virtual function in the
method list of the class of the object under consideration.

2.2 Memory model

The JCVM memory consists of two main elements : the heap and the stack. The heap involves all the
objects that an application may use. It is formalized in Coq using a list of objects. The latter are either class
instances, described using a class reference and a data area (a list of values), or arrays, constructed from
the type of their elements and another data area. The type of values is the cartesian product type*Z where
type represents the data types supported in Java Card (Void, Boolean, Byte, Short, Int, Ref) and Z is the

type of integers.

The stack contains all the running methods and it is represented as a list of frames. Frames are described
in Coq as a record type featuring an operand stack, a list of local variables, a reference to the current class,
the method location, the current context (the type Package contains information that allows to identify a
context) and a program counter that points to the next instruction to be executed:

Record frame : Set := {

opstack : (list valu);

locvars : (list valu);

current_class : nat;

method_loc : nat;

context_ref : Package;

p_count : nat

}.

2.3 One-step execution

We have formalized in Coq one-step execution function of the JCVM as a term exec_jcvm of type

jcvm_program -> jcvm_state -> (Exc jcvm_state)



where jcvm_state is the cartesian product of the heap, the stack and the exception that may be returned.
The term exec_jcvm is built from auxiliary functions that describe the behavior of each instruction. Our
current formalization treats most instructions of the JCVM, including checkcast, athrow, instanceof,
invokeiterface, aastore, new, getfield. In this abstract, we focus on the formalization of the invoke-

virtual instruction, which performs the invocation of an instance method.
The invokevirtual instruction performs the invocation of an instance method. Its semantics is captured

by the Coq function INVOKEVIRTUAL. The function returns an element of type (Exc jcvm_state) and is
described below.

Definition INVOKEVIRTUAL := [nargs,idx:nat][h:frame][hp:heap][s:stack][cap:jcvm_program]

(* The number of arguments must be greater than zero *)

Cases nargs of

O => Error | (S _) =>

(* The object reference which is of type valu is the nargth element of the operand stack.

An element of valu is a pair (t,v) where t is the type of the value v. *)

Cases (Nth_func (opstack h) nargs) of (value x) =>

Cases x of (tx,vx) =>

(* The nargth element must be a reference. *)

Case tx of Ref =>

(* This function raises a Null Pointer exception (Value NullPointer)

if the value vx is null, otherwise returns error. *)

Cases (test_nullpointer vx) of error=>

(* The referenced object is extracted from the heap.

An object in the heap is either an instance or an array. *)

Cases (Nth_func hp (absolu vx)) of

(value nhp) => Cases nhp of

(* Tests if this object is an instance. *)

(Instance ti) =>

Cases ti of (Build_type_instance c _ _ _ _ _ _) =>

(* The current frame is updated and the new

frame is set up and pushed into the stack. *)

(res_invoke c nargs idx h hp s cap nhp)

end |

(Array ta) => ...

The new_frame_invokevirtual function, called by res_invoke, returns an element of type jcvm_state
and, if needed, updates the stack frame.

Definition new_frame_invokevirtual:=

[cref:nat][idx:nat][l,l':(list valu)][h:frame][hp:heap][s:stack][nhp:obj]

Cases (jcre_invoke h nhp) of

(* If an exception is raised then an error state is returned

in which u is the thrown exception. *)

(value u) =>((Value u),(hp,s))

(* Else the current frame is updated, a new frame is set up,

pushed into the stack and becomes the new current frame.

No exception is thrown. *)

error =>((Error), (hp,

(cons (Build_frame (nil valu) (rev l) cref idx



(get_owner_context nhp) (* The currently active context

is the object owner's context. *)

(1)) (* The program counter points

to the first instruction. *)

(cons (update_current_frame l' h)

(tail s)))))

end.

The JCVM may throw an exception under certain conditions. For example:

� a Nullpointer exception is thrown if the object reference extracted from the operand stack is null;
� a Security exception is thrown if the Java Card security policy is violated.

The following example is part of the jcre_invoke Coq function which performs security checks upon
instances (recall that objects are either instances or arrays).

Definition jcre_invoke := [h:frame][the_object:obj]

...

(* Tests if the referenced object is an instance. *)

Cases the_object of (Instance ti) =>

(* Tests if the currently active context is the object owner context. *)

Cases (eqb_AID (AID_pi (context_ref h)) (AID_pi (owner_i ti))) of

true => Error |

false =>

(* Tests if this object is an Entry Point. *)

Cases (eqb (ptE ti) is_ptE) of true => Error |

false =>

(* Tests if the currently active context is the JCRE context. *)

Cases (eqb_AID (AID_pi (context_ref h)) jcre_AID) of true => Error |

(* A Security Exception is thrown. *)

false => (Value Security)

end ...

2.4 Discussion

Our formalization uses a �functional style� of speci�cation. In our opinion, such a style o�ers several advan-
tages over the usual �logic programming� style of formalization using inductive relations. In particular, a
functional style speci�cation

1. is close to an implementation and may be tested for increasing con�dence in the formalization;
2. is well suited to verify program properties that require an exhaustive check of execution traces, including

security properties like information �ow. In particular, functional style speci�cations are easily amenable

to model-checking;
3. is re-usable in other proof-assistants, as it mostly relies on standard typing constructs such as �rst-order

inductive types and record types, and do not make use of dependent types�in fact, we only make use
of a non-standard feature of Coq, namely implicit coercions, to simulate subtyping on inductive types in
the representation of Java Card programs.

3 The CAP tool

In order to test our formalizations, we have developed a CAP tool that transforms CAP �les into their Coq
representations. To this end, the CAP tool performs the following operations:



1. Linking. During this stage, the constant pools (reference tables) of di�erent packages are fully resolved
(for external references) and thus can �nally be removed. This stage also involves transforming the
�at format of the CAP �les into a more realistic tree structure. For instance, bytes indexes in the
Method component are translated to pointers to method objects;

2. Indexes transformation. The JCVM speci�cation and the CAP �le format are word oriented: for example
the stack is described as a short vector and thus int local variables must take two consecutive indexes.
In contrast, our Coq speci�cation is value oriented: the stack is a list of valu and a method contains a
list of Instruction. Therefore, the CAP tool must also make a deep transformation of the byte code:
� indexes in the byte code (for example for the goto instruction) are resolved as Instruction indexes;
� indexes in the stack (for example for the aload instruction) are resolved as valu indexes.

Such a transformation can be viewed as a fair part of a byte code veri�er.

4 Conclusion

We have reported about a precise formalization of a substantial part of the JCVM in Coq. This work is
part of a larger e�ort to build up a toolbox for proving security properties of Java Card programs and many
facets of the project still remain to be addressed.

4.1 Future work

Our most immediate objective is to complete the formalization of the JCVM and JCRE. In parallel, we intend
to develop tools for verifying security properties that are not enforced by the JCVM security mechanisms.

For example, the Java Card language does not make any provision to prevent information leakage through
transitive information �ow; in order to verify the absence of such information leakage, we plan to use [23] to
set up a connection between our formalization of the JCVM and model-checkers.

In the longer term, we are also interested in integrating abstract interpretations to our environment.
Ideally, these abstract interpretations should be certi�ed within Coq itself�preliminary work in this direction
may already be found in [16].

4.2 Related work

Due to space constraints, we mostly focus on projects that make use of speci�cation and/or veri�cation
tools for Java or Java Card. For the sake of clarity, we distinguish between platform-oriented projects and
application-oriented projects.

Platform-oriented projects The proof assistant Coq has been used in a number of case studies on the JVM.
For example, Bertot [2] has formalized the type system of Freund and Mitchell [9], and Segouat [21] has
formalized the correctness of the converter from bytecode to CAP �les following Denney and Jensen [6].

Yet the most impressive work to date is that of the Bali team at Munich, see e.g. [18], who formalized in

Isabelle/HOL a large body of the Java platform, including:

1. the type system and the operational semantics of both the source language, with a proof of type-safety
at both levels;

2. the compiler and an abstract bytecode veri�er, with their proof of correctness.

In addition, there have been a number of similar e�orts by Syme [22], who formalized the operational
semantics of Java and machine-checked the proof of type soundness in DECLARE, by Lanet and Requet
[15] who formalized most of the JCVM in B, and by Cohen [4] who formalized the so-called Defensive JVM
in ACL2.

Application-oriented projects The LOOP project see e.g. [13] has developed a tool to compile Java classes into
PVS or Isabelle theories that form the basis for actual veri�cations. Other projects, such as the Java Path
Finder [12] and Bandera [5], emphasize the use of algorithmic techniques for verifying properties of Java
programs. For example, the Bandera toolset combines several program analyses/program transformation
techniques, including slicing and partial evaluation, to extract from Java source code compact �nite-state
models to be submitted to model-checkers.



Speci�cation projects A number of teams have developed formal speci�cations of Java and its variants: these
include executable speci�cations as in [11] or precise pen-and-pencil speci�cations as in [3, 1, 8]. There is also
a variety of works that focus on speci�c aspects of Java, see e.g. [7, 14, 20], and Java Card, see e.g. [17, 19].

Acknowledgements Thanks to Henrik Nilsson for numerous discussions on the JCVM.
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Abstract. The Java Language Speci�cation devotes a chapter to the

issue of binary compatibility, but at the time it was written there was

no formal work on binary compatibility to serve as a rigorous foundation

for understanding of the issues involved. This is re
ected in the 
aws in

the speci�cation.

This paper introduces two formal models of linking suitable for reasoning

about binary compatibility in Java. The �rst model gives an abstract

view of linking. The second model represents the dependencies between

fragments (replaceable sections of programs). The need for these two

models and the di�erence between their purposes are discussed.

1 Introduction

With separate compilation, as in Java[6], a compiler cannot atomically type

check the whole program, since it does not necessarily receive the whole pro-

gram. When a compiler type checks an individual source �le, it may require

type information corresponding to other source �les, but that type information

can be superseded if those source �les are later modi�ed and recompiled. So in

general, type checking of individual source �les is not suÆcient to guarantee type

safety. That is, values in the executing program are not guaranteed to conform

to their types given in the source �les, leading to the risk that execution will not

be well behaved [2].

If a program is written by a single developer, or a group of developers working

closely together, it is relatively easy for them to ensure that source �les are

recompiled as necessary to ensure type safety. One way to do this is to recompile

every source �le after any source �le is modi�ed, but there are tools which can

achieve the same e�ect with fewer recompilations[4].

However, much software is now delivered and installed as separate object

�les (the �les containing compiled code, sometimes known as binaries) which

can be independently upgraded to later versions. For instance, a Java application

consists of the code written by the application developers, but also of the sections

of the Java platform used by the application. In this context, no recompilations

occur after an object �le is upgraded, since the software will usually be installed

on a machine without access to the source �les or the development tools needed

to recompile them, and type safety may be lost.

The process of combining object �les together and resolving references be-

tween them to form a complete program is known as linking, and when this



process coincides with the execution of the program it is known as dynamic

linking. Dynamic linking has become commonplace, and is a feature of the Java

Virtual Machine[7]. Since it allows object �les to be independently upgraded

up until (and possibly concurrently with) execution of the program, dynamic

linking threatens type safety.

This hazard is the motivation for the notion of binary compatibility. While

arbitrary changes to object �les cause type safety to be lost, there are certain

changes that preserve type safety: If a binary compatible change is made to a

source �le, which is compiled to give a new version of the corresponding object

�le, then substitution of the new version of the object �le for the old version in

any well behaved program yields another well behaved program[5]. An example

of a binary compatible change in Java is the addition of a method to a class.

By evolving a source �le (and hence the corresponding object �le) using only

binary compatible changes, so that later versions are binary compatible with

earlier versions, developers can ensure that well behaved execution is preserved.

In order to maintain the integrity of its security mechanisms, the Java virtual

machine does type checking of object �les when they are loaded and dynamically

linked. This type checking traps ill behaviour before it can arise during execution;

instead the virtual machine throws a linking error exception, e�ectively aborting

the program. But from the perspective of a developer, while an aborted program

may be preferable to an incorrectly functioning program, these linking errors are

still undesirable. So for the purpose Java binary compatibility, we consider well

behaved programs to be those for which linking does not fail.

In order to put the idea of binary compatibility into practice, developers need

a set of guidelines laying out the binary compatible changes they can make. The

Java Language Speci�cation contains such guidelines. Unfortunately, they are

slightly 
awed[3]. By studying binary compatibility formally, we hope to show

that the corrected guidelines are indeed sound. A formal basis for understanding

binary compatibility may also help in the development of binary compatibility

guidelines for other languages, and perhaps help the designers of future languages

to incorporate good support for binary compatibility.

2 Fragment Systems

Since Java binary compatibility is de�ned in terms of the success or failure of

linking, in order to express it formally we �rst need an appropriate model of

linking. This model will be introduced in terms of static linking | linking where

the set of object �les that comprise a program is known without executing (as

opposed to dynamic linking, where this might not be the case). Later on, we will

discuss how to apply the model more generally.

Let B be the set of all possible object �les. We will call sets of object �les

fragments, since in general they are fragments of full programs[1]. Let F be the

set of fragments: F =3DP(B).

A complete fragment is one containing object �les that successfully link to-

gether to yield a whole program. Let CF be the set of complete fragments from



F . Testing whether a fragment is in CF corresponds to testing whether the object

�les in the fragment link together successfully.

According to the description of binary compatibility in the last section, an

object �le a0 2 B is binary compatible with another object �le a 2 B i� for all

b 2 F

fag [ b 2 CF ) fa0
g [ b 2 CF

where the term fag [ b represents a program containing the old version of the

object �le, and fa0g[ b is that program with the old version replaced by the new

version.

Extending that formulation to express binary compatibility between sets of

object �les, i.e. fragments, gives: a fragment a0 2 F is binary compatible with

a 2 F i� for all b 2 F

a [ b 2 CF ) a0
[ b 2 CF

for a; a0 2 F . This also allows changes that involve the addition or removal of

object �les to be considered.

This example of the static linking of object �les is an instance of a fragment

system:

De�nition 1 A fragment system is a set of fragments F equipped with

{ An associative, commutative monoid (F;+; 0F ). That is, given a; b; c 2 F

a+ (b+ c) =3D (a+ b) + c

a+ b =3D b+ a

a+ 0F =3D a

{ The set CF � F of complete fragments.

In the example

F =3DP(B)

CF =3D f a 2 F j links(a) g

a+ b =3D a [ b

0F =3D ;

where links is a predicate that tests whether a set of object �les will link suc-

cessfully.

The notion of completions is useful for expressing several other concepts

within a fragment system:

De�nition 2 For a fragment a of a fragment system F , JaKF denotes the set of

completions of a in F , de�ned by

JaKF =3D f b 2 F j a+ b 2 CF g



The set of completions of a fragment a gives the full behaviour of a within

the fragment system, since for any fragment c =3D a + b (i.e. c contains a), c is

complete if and only if b 2 JaKF .

The formulation for binary compatibility given above can be rewritten in

terms of completions: a0 2 F is binary compatible with a 2 F i�

JaK � Ja0K :

So binary compatible changes are exactly those that preserve completions.

Another use for completions is to express the concept of an ill-formed frag-

ment: one that causes linking to fail when combined with any other fragment.

Examples of ill-formed fragments are those containing corrupt object �les, or

those containing object �les with con
icting de�nitions for a class. For an ill-

formed fragment a,

a+ b =3D2 CF

for all b 2 F . So

JaKF =3D ; :

With dynamic linking, the set of object �les that comprise a program may

depend upon the run-time behaviour of that program; the sequence in which

those object �les are linked in to the image of the executing program may also

vary. So it is possible that a program will sometimes abort with a linking error,

and sometimes execute normally to termination. However, the issue that is of

most practical interest is whether there is any execution of the program that will

abort with a linking error, since that possibility will usually indicate a defect in

the program.

Although with dynamic linking the object �les that make up a program are

not �xed, the object �les must come from somewhere. For Java, they typically

reside on local storage or are retrieved from the World Wide Web. So while there

is no �xed set of object �les that make up a program, there is a �xed pool of

object �les from which an executing program can draw.

In practice, there must also be some means to obtain the initial program. For

example, Java applications and Java applets begin execution with the name of

a class which indicates an initial object �le to be loaded and an initial method

call to perform. Such mechanisms will not be made explicit in the model.

So, a fragment system representing dynamic linking can again use sets of

object �les as fragments, but instead of representing sets that may comprise

programs, they now represent the pools of object �les which executing programs

load from. A complete fragment is one which permits no executions that result

in linking errors.

3 Requirements and Provisions

Fragments systems o�er an elegant way to express binary compatibility through

the preservation of completions, but in order to reason about binary compati-

bility as it applies to a particular programming language we have to specify the



internal structure of the fragments. We could develop language speci�c mod-

els, where the internal structure of the fragments is directly derived from the

language under consideration. However, there are some similarities in how bi-

nary compatibility manifests itself in many di�erent languages. For example, in

Java adding a method to a class is a binary compatible change, and in C++

adding a member function to a class can be a binary compatible change (al-

though most C++ implementation impose restrictions that Java avoids[5]). Fur-

thermore, within a single language, there can be similarities in the way binary

compatibility applies to di�erent language features. For example, in Java adding

a method to a class is a binary compatible change, and so is adding a �eld to a

class.

Fragment systems are too abstract to account for these similarities, so we

need another model which is closer to the realm of concrete programming lan-

guages, but still general enough to applied to many languages. This section

introduces such a model, though the full details of the formalization are too

lengthy to be presented here.

Programming languages typically allow their modules to de�ne entities (vari-

ables, procedures, types, classes, and so on), and to refer to entities de�ned in

other modules. We will use the term requirement for a dependency of a fragment

(corresponding to a set of zero or more modules) upon some entity, and provision

for a feature of a fragment that can resolve such dependencies.

For example, consider the following two fragments for Java: a consists of the

class

class A {

String m() { return "I am an instance of A"; }

}

and b consists of the class

class B {

String n(A x) { return "x says: " + x.m(); }

}

Here the provisions of a are the existence of a class called A and its method

A.m taking no arguments and returning a string. The provisions of b are the

existence of a class called B and its method B.n, and b requires a class called A

having a method A.m taking no arguments and returning a string.

The requirements of fragments are represented formally by a requirements

structure.

De�nition 3 A requirements structure (R;v) is a bounded lattice. Let t, u

denote the join and meet operators, and >R, ?R denote the top and bottom

elements.

?R represents the least requirements in the model; that is, the requirements

of the empty fragment 0F . >R represents requirements that can never be sat-

is�ed. For instance, by interleaving recompilations with modi�cations to source



�les, it is possible to create a pair of Java object �les that require an inheritance

circularity, e.g. with one requiring that a class C is a subclass of D and the other

requiring that D is a subclass of C. The fragment consisting of these two object

�les can never have its requirements satis�ed.

Fragment provisions are represented by a provisions structure:

De�nition 4 For a provisions structure (P; Pv ;+P ; 0P ),

{ P is the set of provisions.

{ Pv is the set of valid provisions; Pv � P . Invalid provisions are those in P

but not in Pv.

{ +P is a commutative associative binary operator on P that combines provi-

sions:

+P : P � P ! P

Invalid provisions always combine to give invalid provisions. Conversely, for

p; q 2 P

p+P q 2 Pv ) [p 2 Pv and q 2 Pv ]

{ 0P 2 Pv is the unit of +P . For p 2 P

p+P 0P =3D p

A provisions structure is more sophisticated than a requirements structure

because we wish to to make certain combinations of provisions invalid. For ex-

ample, a fragment may contain a set of classes with an inheritance circularity.

A Java implementation will abort with a ClassCircularityError in this case,

and the model should re
ect this.

Requirements and provisions are combined through a function Sat which

determines which provisions satisfy which requirements.

De�nition 5 A requirements/provisions system (P; Pv ;+P ; 0P ; R;v;Sat) is a

provisions structure (P; Pv ;+P ; 0P ), a requirements structure (R;v), and a func-

tion

Sat : Pv ! R

A requirements/provisions system must obey the following:

1. For p; q 2 Pv such that p+ q 2 Pv, Sat (p) t Sat (q) =3D Sat (p+ q).

2. For p; q; q0 2 Pv such that p+ q 2 Pv and Sat (q0) v Sat (q), p+ q0 2 Pv.

The satis�es relation is de�ned in terms of Sat: For p 2 Pv and r 2 R,

p ` r , r v Sat (p)

Note that the domain of Sat is Pv , not P ; this is the sense in which the

provisions in P � Pv are not valid.



The corresponding fragment system is constructed using pairs of provisions

and requirements:

F =3D P �R

+ =3D (+P )� (t)

0F =3D (0P ;?R)

CF =3D f (p; r) j r v Sat (p) g

We can derive properties of the completions in this fragment system in terms

of requirements and provisions. For p; q 2 Pv and r; s 2 R,

(q; s) 2 J(p; r)KF

i�

s v Sat (p) t Sat (q) , and

r v Sat (p) t Sat (q) .

So the completions of a fragment (p; r) grow as the requirements r are reduced,

and as Sat (p), the ability of the provisions p to satisfy requirements, grows. Since

the binary compatible changes are those that preserve completions, binary com-

patible changes can be stated in terms of the way they a�ect the requirements

and provisions of fragments written in the programming language under consid-

eration. These statements are not very di�erent to the informal descriptions of

the binary compatible changes given in the Java Language Speci�cation.

4 Conclusions

This paper has introduced two models of linking for investigating binary com-

patibility. These models have di�erent purposes. The model of fragment systems

is more abstract, and so enables the concise expression of high-level concepts.

The model of requirements and provisions is closer to concrete programming

languages, and so allows us to reason about how binary compatibility manifests

itself, but still without being restricted to a particular language.
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Abstract. Run-time authorization of network communications between

untrusted applications and remote hosts is one of many security features

in the Java platform. We describe the corresponding security mechanism,

which is part of the runtime library, and observe that establishing its

correctness requires a surprisingly complex line of argument involving a

number of salient features of the Java language. This makes it a challeng-

ing case study in formal veri�cation of object-oriented software. Finally,

we give an overview of our current work which is based on refutation in

temporal logic, Floyd/Hoare style semantics and on-the-
y generation of

program speci�cations.

1 Introduction

Java security is commonly associated with advanced techniques such as byte-

code veri�cation and dynamic class loading [1]. However, several critical security

mechanisms consist of simple run-time checks performed by the Java runtime li-

brary. There is strong incentive to formally verify that these mechanisms cannot

be bypassed by hostile applications.

Principals who execute untrusted Java code expect the runtime library to

guarantee that dangerous operations are always authorized by the so-called Se-
curityManager, a distinguished object which embodies the security policy of the

virtual machine.1 Consider the following hypothetical code for deleting �les:

public class File f
static public void delete(String path) f

SecurityManager security = System:getSecurityManager();

if ( security ! = null ) security:checkDelete(path);

really delete(path);

g
static native private void really delete(String path);

g

? This work was partially supported by Eurescom project P1005.
1 How the decision is taken (e.g. by matching cryptographic credentials with access

control lists, as in JDK1.2) is beyond the scope of this paper.



Native method really delete performs the actual system calls. Applications

can only reach it through method delete, which �rst calls method checkDelete
of the SecurityManager (if one has been installed). checkDelete(path) is expected
to throw a SecurityException if the security policy forbids deletion of the �le

speci�ed by its argument.

In the next section we will see that establishing the e�ectiveness of other

basic run-time security checks can be much more complex.

2 Network access control in the Java runtime library

2.1 Description

Class Socket allows Java programs to open TCP connections. The security model

speci�es that all connections will be authorized by method checkConnect of the
SecurityManager. This could have been implemented like the �le access control

in section 1; unfortunately, the actual design is more complex:

{ A Socket object is not associated with a system socket. Instead, it contains

a pointer to an instance of SocketImpl.
{ For the sake of 
exibility, class Socket can be instructed to obtain Sock-

etImpl objects either by instanciating the default class PlainSocketImpl, or
by invoking method createSocketImpl of a user-supplied SocketImplFactory.

{ The native methods whose access must be controlled are members of class

PlainSocketImpl, but the security checks are performed in class Socket.

For clarity, we provide in �gure 1 a simple, stand-alone Java package which

essentially re
ects publicly available APIs and documentation [2]. Readers are

encouraged to examine Sun's reference implementation, which contains many

additional features, but is not signi�cantly harder to analyze.

2.2 Informal veri�cation

We assume that compiled, dynamically-loaded classes obey language-level con-

straints such as access modi�ers and structured control 
ow. This is essentially

what bytecode veri�cation, secure class loading and many other design decisions

aim to guarantee. Correctness of the checkConnect() mechanism can then be

informally speci�ed as the negation of:

De�nition 1. (Attack) There exists an application A, two pointers sm and addr,
two states S and S0, an execution path P from S to S0 for A, and a thread T
such that:

{ In state S, System.security=sm.
{ sm6=null.
{ In state S, the machine is executing untrusted application code.
{ P does not contain a successful invocation of sm.checkConnect(addr) by T .
{ In state S0, T is about to invoke PlainSocketImpl.connect(addr).



The foregoing code is provided courtesy of Sun Microsystems, Inc.

(c) 1998, 1999 Sun Microsystems, Inc.

ALL RIGHTS RESERVED.

File runtime/Socket.java

package runtime; == :::re
ects java:lang and java:net

public class Socket f
SocketImpl impl; == Recall that the default visibility is "package"

public Socket(Address a) f
impl = new PlainSocketImpl();

SecurityManager sm = System:getSecurity();

if ( sm ! = null ) sm:checkConnect(a);

impl:connect(a);

g
g

File runtime/SocketImpl.java

package runtime;

public abstract class SocketImpl f
protected abstract void connect(Address a);

g

File runtime/PlainSocketImpl.java

package runtime;

class PlainSocketImpl extends SocketImpl f
protected native void connect(Address a);

g

File runtime/System.java

package runtime;

public �nal class System f
private static SecurityManager security = null;

public static synchronized void setSecurity(SecurityManager sm) f
if ( security == null ) security = sm;

g
public static SecurityManager getSecurity() f return security; g

g

File runtime/SecurityManager.java

package runtime;

public class SecurityManager f
public void checkConnect(Address a) f g

g

File runtime/Address.java

package runtime;

public class Address f g

Fig. 1. A stand-alone case study. The only external reference is class java.lang.Object.



Our impression is that the design in �gure 1 actually satis�es this speci�ca-

tion. Due to lack of space, details of the informal proof are left as an exercise for

the reader. We suggest refuting attacks by tracing execution paths P backwards

and obtaining contradictions before reaching untrusted application code. This

approach requires the following auxiliary results:

{ Field System.security can be assigned only once in the lifetime of the

virtual machine. Note that attribute synchronized on method setSecurity
prevents interleaved executions by multiple threads.

{ Pointers to instances of PlainSocketImpl cannot be leaked to un-

trusted code. This requires a non-trivial data 
ow analysis.

Note also that several arguments about visibility rules can only be carried out

by exhaustively searching whole classes or even packages for speci�c instructions

such as assignments and instanciations of particular �elds and classes.

3 Formal veri�cation

From the perspective of formal veri�cation, the checkConnect() mechanism has

several interesting characteristics:

{ Assurance requirements: The implementation of this mechanism is security-

sensitive code installed in millions of computers. It is neither trivial nor exces-

sively hard to verify, and makes brilliant use of Java's language-level security

features: most attempts to change access modi�ers would either introduce

vulnerabilities or decrease functionality.
{ Hybrid techniques required: It is doubtful that a single veri�cation tech-

nique could handle all kinds of arguments mentioned in section 2.
{ Scalability: Although the problem boils down to 30 lines of Java source

code, veri�cation cannot be carried out without examining large volumes of

surrounding code.
{ Object-oriented features involved: DiÆculties stem from subtle interac-

tions between control 
ow, inheritance, exceptions and Java's sophisticated

visibility rules.

We are currently designing veri�cation techniques to address these issues.

Our approach is characterized by:

{ Veri�cation on bytecode rather that source code: For veri�cation

purposes, bytecode is generally a convenient representation of Java programs

(with the exception of subroutines).
{ Semi-automated refutation in temporal logic: We extend CTL with

JVM-speci�c atomic formulae, embed it in a proof assistant, and use a library

of theorems to mimic the backward-branching reasoning style of section 2.

For example, [[ (EX P ) ) Q ]] ! [[ (EF P ) ) P _ (EF Q) ]] is a basic

theorem for reasoning about purely sequential programs. We hope to obtain

human-readable proofs appropriate for use in government-sponsored security

evaluation frameworks such as ITSEC and Common Criteria.



{ Floyd/Hoare-like semantics: We do not explicitly describe the seman-

tics of Java bytecode; instead, logic formulae are transformed by pre- and

post-condition generators. This is inspired from the veri�cation condition

generator in [5], with extensions for threads and temporal logic.
{ On-the-
y generation of program speci�cations: Thanks to Java's

structured control 
ow, bytecode can be translated into pre- and post-

condition generators for CTL formulae one method at a time, as required by

the current goal. This is essential for scalability.

4 Related work and perspectives

Because of its industrial relevance, reasonable design and advanced security fea-

tures, the Java platform is a target of choice for formal methods. Signi�cant

work has already been invested in the formalization of both the language and

the virtual machine. Surprisingly enough, veri�cation techniques for Java pro-

grams have received less consideration.

Both ESC [7] and LOOP [3] use a translation into an intermediate language

followed by theorem proving in order to verify generic safety properties, possibly

involving complex invariants. Our work is more focused on security properties

and temporal reasoning. It was strongly motivated by [4], which also uses a

temporal logic to automatically verify programs with more complex security

properties, but does not address data-dependent behaviour.

One of our major concerns, also found in [6], is easy application to existing

code: although we discussed a simpli�ed case study in this paper, our goal is to

provide programmers with tools that can process programs and libraries with

minimal adaptation. Signi�cant work will be required to handle peculiar features

of Java such as static class initialization, �nalizers, object locks, re
ection and

serialization.
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1 Introduction

This document is an extended abstract of ongoing work on reasoning about cor-
rectness and behavioral subclassing for programs using some of the challenging
features of Java. We include dynamic binding and inheritance, visibility con-
trol, and mutually recursive classes and recursive methods (but not pointers or
concurrency). In [CN99a,CN99b,CN00] we give a predicate-transformer seman-
tics for a language with these features as well as speci�cation constructs from
re�nement calculi [Mor94,BvW98]. Here we discuss intrinsic notions of behav-
ioral subclassing and re�nement, and we discuss soundness of proof by forward
simulation.

This section describes the context and objectives for our project. Section 2
presents the language and semantics; Section 3 discusses re�nement; Section 4
sketches the background of the authors and our expectations for the workshop.

Our work is part of an ongoing collaboration involving others at UFPE
(P. Borba and A. Sampaio) and Birmingham (U. Reddy) and our research as-
sistants. A long-term goal is to use re�nement laws as the basis both for a
development method and for tools supporting program analysis, veri�cation,
and compilation. In our current project the focus is on semantics, behavioral
subclassing and re�nement, and laws of re�nement that are suÆcient to reduce
programs to a normal form. Laws, however, are beyond the scope of this abstract.

The speci�cation statement x : [pre; post ] is treated as a command (albeit one
that is not executable). The relation v of (algorithmic) re�nement subsumes the
usual notion of satisfaction of speci�cations; in particular, x : [�;  ] v c holds
just if c meets the speci�cation \modi�es x , requires �, ensures  ". Rules of
Hoare logic are reformulated in terms of re�nement laws.

Intermixing speci�cations with programs is very natural for use with ab-
stract classes. For stepwise development of object-oriented programs, one needs
a notion of re�nement to account for correctness-preserving replacement of one
de�nition of a class by another. We write cds � c for a program c using classes



declared in a collection cds of class declarations. When a class declaration cd is
behaviorally re�ned by another class declaration cd

0, we should have that

cds ; cd � c v cds ; cd
0
� c (1)

for suitable main programs c. Indeed, this can be taken as the intrinsic de�nition
of class re�nement.

A complementary notion of behavioral re�nement is that of behavioral sub-
classing: here, two classes cd and cd

0 coexist, with cd
0 declaring a class by exten-

sion from cd . Syntactic subclassing allows objects from cd
0 to be used in place

of objects from cd , so the behavior of cd 0 objects should re�ne the behavior of
cd objects. If this is not the case, it can be extremely diÆcult to reason about
program behavior, and many programs will exhibit undesirable behavior.

Adequate formalization of re�nement depends on language features used in
programs and speci�cations. Unbridled type tests and casts can thwart behav-
ioral subclassing because their semantics is based on naming. For example, in a
context where cd 0 declares a subclass C 0 of the class C declared by cd , and x is
a variable of type C , the command

if x instanceof C 0 then abort else skip �

is ill behaved even if cd and cd
0 de�ne identical behavior.

By making a careful study of behavioral re�nement in a language with many
of the challenging features of Java, we believe we will contribute to the advance
of formal techniques for analysis and veri�cation of Java programs. Many of
the issues apply to both notions of behavioral re�nement described above. Our
results shed light on issues relevant beyond the relatively narrow and long-term
goals of program development based on re�nement. In particular, our semantic
model can illuminate issues that are obscured in detailed operational models,
just as other abstractions |Hoare logic, coalgebras, and monads| are useful
conceptual tools.

On the other hand, abstract semantic models must be justi�ed in terms of
a suitable connection with concrete operational semantics, and that connection
should be as transparent as possible. Weakest precondition predicate transform-
ers are attractive because, for imperative programs, the connection with oper-
ational semantics is well known (and crucial in completeness proofs connecting
Hoare logics with operational semantics). To a surprising extent, we succeeded
in using de�nitions that extend standard de�nitions of weakest preconditions
for sequential programs [Mor94]. One of the most exciting moments in our work
came when we found a semantics for dynamic dispatch that is, on the one hand,
a transparent re
ection of the operational mechanism, and, on the other hand,
compatible with the usual de�nitions of weakest preconditions for ordinary com-
mands.



2 Syntax and semantics

We present the syntax by means of a small contrived example.

class C pri x : int; nxt : C
meth Dec b= avar y � x : [x = y ; x < y ] end y

meth Inc b= res r � x := x + 1; nxt := (new C ; nxt : self :nxt); r := x

� c:Inc()

The main program works in a state space with variable c of type C , in a context
where C has private attributes x and nxt . Public method Dec is speci�ed to
decrease x , leaving nxt unchanged; the speci�cation uses \angelic varible" y as
a logical constant. As in most other work, our expressions have no side e�ects,
although they can fail, as in null dereferencing. Values are returned via result
parameters like r in method Inc. Pointers are a complication we choose to set
aside. In method Inc, the expression new C constructs a fresh object, and in the
asignment to nxt there is an update expression which creates a copy of new C

with its nxt �eld set to a copy of self :nxt .1 Constructors and related issues are
ignored throughout this abstract.

As in other current work (e.g, [PHM99]), our formalism is not fully composi-
tional: to reason about method calls we need the complete collection of existing
classes. But we do allow the main program to have variables of declared ob-
ject types (not just primitive data) which allows compositional reasoning about
main programs in a �xed context. Public attributes can be used to specify such
programs.

Semantically, commands denote predicate transformers. We have also given
a set-theoretic semantics for expressions, which we use to prove type-correctness
results; eventually this semantics will be used as part of the connection between
predicate transformer and state transformer semantics. In the semantics of ex-
pressions, object states are tuples, �nitely nested in the case of recursive classes
like C above.

To organize the semantic de�nitions we adopt type-theoretic techniques. A
complete program cds � c is typed in the context of its global variables, as in
x : T B cds � c. For command c that can occur in method bodies in class N ,
we use a typing judgement � ; x :T ;N B c where � contains information about
declared classes and subclassing, attributes, and method signatures; here x is a
list of attributes, parameters, and local variables with corresponding types T . A
similar judgement is used for expressions. The typing rules embody Java's rules
for visibility and for subsumption in assignments and parameter passing.

The semantics of a typing judgement is given by induction on the typing
derivation. The semantics of a command depends on an environment that gives
the semantics of methods. Because commands can have recursive calls, the en-
vironment is obtained by a �xpoint construction. Given the environment �, the
semantics [[� ; x :T ;N B c]]� is a function from and to formulas, with the prop-
erty that if  is typable for � ; x :T ;N then so is [[� ; x :T ;N B c]]�  .

1 In conventional syntax this is t := new C ; t :nxt := nxt ; nxt := t with local t .



Parameter passing is by value and result; self is treated as an implicit value-
result parameter. A call x :m(e) has the following semantics, explained below.

[[�;N B x :m(e)]]�  = (_
N 0�

�
N 00� x isExactly N

0 ^ fN 0 )

where fN 0 = [[�;N B (� N
0
m)((N 0)x ; e)]]� for each N

0 �� N
00, and N

00 is the
type of x . The environment provides program text � N

0
m for method m in class

N
0; this text is obtained using �xpoint techniques from [LM98,CSW99]), and

refers to attributes by way of an explicit self parameter. It is applied to argument
e and also (N 0)x which passes x explicitly as self, so that the application can
be typed in the context of the call. The cast (N 0) is needed because the self
value-result parameter in class N 0 has exactly type N

0.
This semantics captures dynamic dispatch and the actual semantics of method

bodies: an exact type test ensures that the method body applied is exactly that
determined by the dynamic type of the object. To avoid unsoundness [MS98]
and simplify logic [PHM99,AL97] it is natural to reason in terms of a base class
speci�cation, and some work goes so far as to require a speci�cation which is
then taken to be the semantics of a method call [Lei98]. But we want to study
reasoning methods rather than presupposing them in semantic de�nitions.

Algorithmic re�nement of commands is de�ned in terms of the pointwise
order on predicate transformers: omitting typing context we have c v c

0 i�
[[c]] ) [[c0]] for all suitably typed predicate formulas  . Typing of predicates
poses an interesting issue with respect to visibility. If we consider only predi-
cates that respect the visibility rules, then we cannot distinguish appropriately
between commands with inadequate visible state. For the example program, no
postcondition for c:Inc could distinguish the given method body from one in
which Inc sets nxt to null. As a result, our semantics would fail to be oper-
ationally sound. Thus for some semantic purposes we use an extended typing
system in which visibility constraints are dropped.

3 Re�nement

In this abstract we con�ne attention to a relation cds B cd 4= cd
0 intended to

capture the situation that cd and cd
0 declare the same class name (and super-

class), with cd
0 a behavioral re�nement of cd in the context of other classes cds

with which there may be mutually recursive references. The intrinsic requirement
for behavioral re�nement is the one mentioned at start of paper: (1) should hold
for all main programs c. Basically, that is our de�nition of 4=, but there are
some other concerns as explained in [CN00].

The standard technique for proving such a relation is simulation. Even for
data re�nement of ordinary modules (without dynamic binding and inheritance)
it is known that two forms of simulation, forward and backward, are needed for
this to be a complete proof technique even when nondeterminacy is bounded
[HHS86]. So it is a little surprising that forward simulation has been proposed
as a de�nition for class re�nement (e.g. [LW94,BMvW97,MS98]). In any case,
simulation needs to be shown sound in the sense that it implies the relation we



call 4=. We are aware of few such results (except in the context of concurrent
objects using method call traces rather than pre-post speci�cations). One such
result appears in [BMvW97] for a restricted language and main programs of a
�xed shape.

Our main conjecture says that if cds ; ci B cd 4 cd
0 then cds B cd 4= cd

0.
Here cds ; ci B cd 4 cd

0 expresses that there is a forward simulation using cou-
pling relation ci , as we explain below. We are con�dent in the result but call it
a conjecture because some details have not been checked at the time of writing.
Our work on this result has been fruitful in uncovering subtleties. For exam-
ple, in (1) the algorithmic re�nement relation v needs to be de�ned in terms of
predicates that are typable in the state space of the command c. Also, we ought
consider only commands that do not refer to globals of the type being re�ned.
Otherwise, the comparison would be between commands in di�erent state spaces.
The corresponding result for behavioral subclassing is even more interesting due
to type tests and casts, as mentioned earlier.

Predicate transformers seem to be at a good level of abstraction for such
proofs. Despite our rigorous treatment of typing and so forth, the proofs are
comprehensible and tractable by hand with diligence.

For a command c in the context of a method body for the re�ned class, the
forward simulation condition for coupling invariant ci takes the form:

(9 vs � ci ^ [[�;NS B c]]�  )) [[� 0
;NS B c

0]]�0 (9 vs � ci ^  ) (2)

for all suitable postconditions  . Here vs are the abstract variables used in cd ; the
coupling invariant relates them to concrete variables vs 0 used in cd

0. Also, � and
� (respectively, � 0 and �0) are environments for cds cd , NS , and c (respectively,
cds cd

0, NS , and c
0), and NS is the class declared by both cd and cd

0.
Outside these classes, commands should not need to be modi�ed, as only

private attributes of the classes are changed. Nevertheless, even though these
commands cannot access or a�ect the attributes being changed, their weakest
precondition semantics is de�ned in terms of postconditions that can refer to
these attributes. Therefore, we de�ne a forward simulation relation for all com-
mands. A function gci is needed to generalize the coupling invariant ci from
the state space of the re�ned class to state spaces in other classes (and to im-
pose suitable existential quanti�cations). We omit some arguments to gci in the
forward simulation condition for commands:

gci ci ([[�;N B c]]�  )) [[� 0
;N B c]]�0 (gci ci  ) (3)

We show that this holds for all c provided (2) holds for method bodies of the
re�ned class. For predicates that do not refer to the private attributes of the
re�ned class, gci reduces to the identity function; this \identity extension lemma"
is used to derive the main soundness result from (3).

In set theoretic models, it is easy to de�ne the extension of a coupling relation
to arbitrary data types and state spaces [BMvW97,Nau00b], but gci must act
in purely syntactic terms on formulas, which is one of the main challenges in
obtaining our result. The bene�t is that it is the syntactic form that is needed in
proof rules anyway, if such rules are to be expressed at the level of speci�cations.



4 The authors

For reasons of funding, we expect that only Naumann can attend the workshop.

Cavalcanti extended Morgan's re�nement calculus to give sound semantics
and proof rules for recursive procedures [CSW99]. She is writing a book with
Jim Woodcock on a re�nement calculus for Z, based on their joint research
[Cav97,CW98]. She has designed one of the object-oriented Z extensions, called
MooZ [MC90,MC92,MCS94]. She is interested in semantics for object-oriented
languages in general [MSM+00].

Currently she is also working with Sampaio on laws for transforming speci-
�cations of concurrrent systems written in a combination of CSP and Z to Java
programs. This work is based on a Java library that implements occam program-
ming primitives.

Our joint work also grew out of Naumann's set theoretic predicate trans-
former semantics for a re�nement calculus based on Oberon, using transformers
of semantic predicates [Nau00a]. This language includes extensible records and
stored procedures which can encode dynamic dispatch and inheritance. The se-
mantics is based on an abstract categorical analysis of predicate transformers at
higher types [Nau95b,Nau98b]. That analysis has also been used to extend calcu-
lational programming methods for functional programs [BdMH96] to higher or-
der imperative programming with inductive data types [Nau94,Nau98c,Nau98a].
Naumann has studied data re�nement both in abstract categorical settings
[Nau95a] and for the Oberon-like language [Nau00b]. He is currently writing
an undergraduate textbook on data structures in Java with emphasis on data
re�nement.

With Kedar Namjoshi, Naumann is currently working on decidable logics for
reasoning about pointers. In particular, they are using model checking to decide
questions of aliasing and also dynamic typing of references in Java.

Our expectation is that the workshop will be a fruitful forum in which to
discuss what are the most crucial research issues and promising directions. In
particular we are interested in becoming more familiar with the work of others on
speci�cation and abstraction and on reasoning about pointers. We expect that
techniques like dependencies (for \modi�es" speci�cations) will �t smoothly in
our setting, and that the usual model of the heap as an array can be adapted
to our setting; it will be very helpful to discuss these features and others, with
researchers who are currently dealing with them.

We are also keen to explore possible connections with operational semantics
of Java. Our project plan originally called for development of a state-transformer
model based on semantics of Idealized Algol, but it is not clear that a complete
connection can be found in the near term. We would like a more concrete oper-
ational foundation in any case.

We would be especially interested to learn of semantics for Java that are
compositional at the level of classes. We have some tentative ideas on extending
our semantics with a \hook" that would represent a dynamic dispatcher, but
this has not been worked out carefully.



Finally, we are interested in current experience and available libraries for
theorem provers. Naumann has been talking with Shankar for several years about
using PVS for the higher order re�nement calculus, and we would like to take
advantage of the considerable work that has already been done for Java.
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Abstract. This paper discusses the foundation of a generic approach

to statically analyze Java programs in order to detect potential errors

(bugs). We discuss a framework that supports our approach and car-

ries out the static analysis of Java code automatically. Our approach

can automatically detect such potential bugs and report them before the

program is executed. For a Java class, invariants related to the category

of error under examination are automatically generated and used to as-

sess the validity of variable usage in the implementation of this class. A

research prototype is under development. It assists us in evaluating the

feasibility and e�ectiveness of our approach.

1 Introduction

In recent years extensive research e�ort has been made in the area of formal
methods with remarkable results. This e�ort though, did not have much practical
impact in the sense of acceptance within the software development industry. The
reason for such a misfortune can be found in certain constraints and burdens that
have been imposed by the promise, coming from the formal methods research

community, that the use of formalization could bring absolute correctness in
designs and implementations. If we allow formal methods to aim at more modest
goals than absolute correctness and absence of errors, then we may be able to
apply it at a relatively low cost in mainstream software industry. The detection
of common programming errors is de�nitely such a goal. Our goal is to provide
a practical mechanism to assist the application of formal methods in speci�c
areas of software development such as the detection of common potential errors
in programs at compile time.

Speci�cally, we work on a generic approach to statically analyze Java pro-
grams in order to detect potential errors (bugs). Our approach is based on the
concept of class invariant. Java language has been selected as the target language
in our research, for a number of reasons: it is quickly becoming one of the most
widely used programming languages in software industry and it is more man-
ageable than C and C++, since no pointer arithmetic is allowed, the semantics
of its control 
ow is simpler without the goto statement and o�ers widely used
class libraries with documentation and source code available for analysis.



Class invariants related to the category of error under examination are au-
tomatically generated and used to assess the validity of variable usage in the
implementation of this class. Our approach bridges two areas namely, formal
methods and static analysis under a uni�ed framework. It is distinctive in its
emphasis to provide a practical generic mechanism for error detection that is ca-
pable of addressing error detection for a variety of error categories via a web of
specialized components. Our research e�ort is experimental in nature. Its success
can be judged through experiments rather than theoretical proofs and analyses.
Experimentation is used as a feedback mechanism to our theoretical studies and
solutions. The goal is to gain and demonstrate e�ectiveness, through experimen-
tation. A research prototype is under development and a number of test cases
have been examined. Small-scale projects have been tried and the results are
being evaluated. The key characteristics of our approach could be summarized
as follows:

Generic detection. The approach presented here is both speci�c enough to
detect errors deterministically and generic enough to provide an eÆcient
and e�ective framework for an extensive variety of error categories.

Full automation. No e�ort is needed from the software practitioner. The entire
process of analyzing the source code and reporting potential violations is fully
automatic.

Absence of formal speci�cations. No need for formal speci�cations. Indeed,
we recover the relevant speci�cations from the source code.

Extensibility. User provided speci�cations in the form of simple annotations,
can be easily incorporated in order to strengthen the capability of the anal-
ysis component.

Existing static analysis techniques use 
ow based analysis to detect errors and
fail to address the above classes of run-time errors. Over the past twenty years
there have been approaches that intend to verify fully the functional correctness
of programs. These approaches very often use subsets of existing programming
languages as their targets.[2]. Ongoing research work at DEC laboratories has
resulted in Extended Static Checking (ESC) [6] and checking object invariants [5].
They attempt to use formal methods to identify particular kinds of bugs in a
programming language and provide also some kind of feedback to the program-
mer about those potential bugs. ESC translates each procedure into a guarded
command representation similar to Dijkstra's approach. These research e�orts
require the presence of some kind of speci�cation given by the developer, either
in the form of simple program annotations or even more complicated formal
speci�cations. Our approach generates automatically the relevant speci�cations.

2 Our Approach

The goal of the research work that is presented here is to develop a static analysis
technique that can detect program bugs that cannot be caught by compilers
and 
ow-control approaches. We have identi�ed a restricted domain of potential



run-time errors that can be detected by analyzing the source code and developed
algorithms that will allow us to detect these during compilation time. Automated
discharge of generated proof obligation is achieved by a properly tailored general
purpose theorem prover with tactics and specialized decision procedures.

Complete source code veri�cation is infeasible and impractical partly due to
the high complexity and size of software systems that are currently built. As
Jackson and Wing [3] have suggested, it is not necessary to insist in absolute
formalization in developing software models. We follow this lightweight approach
by limiting the scope of our detection mechanism to gain automation and de-
terminism. The selection of the potential run-time errors to be included in the
restricted domain of our research depends on the frequent occurrence in every-
day programming tasks so their early detection will have a positive impact in the
quality of the developed software and their automatic detection potential. Cur-
rently we focus on detecting illegal dereference and array bounds violations. Such
an approach poses challenges in the generation of the class invariants regarding
the restricted domain of potential errors, the formulation of the appropriate
veri�cation conditions to detect potential violations and the tailoring a general
purpose light-weight automatic theorem prover with the appropriate heuristics
and decision procedures to carry out the proofs automatically

2.1 Foundation

The theoretical foundation is based on the de�nition of weakest precondition.
We have extended the rules for partial correctness of a small language as de�ned
by Gries in order to be able to cover syntactically and semantically richer Java
language. Our approach includes mechanisms of reasoning about the partial cor-
rectness of Java programs with respect to speci�c potential errors. The extension
assumes that an expression e has no side e�ect. In general, this is not the case
in most programming languages and in Java in particular. In order to make the
application of these rules to Java expressions possible, we need to consider a
subset of Java language that includes only expressions with no side e�ects. We
de�ned a subset of Java language in which we enforce the following rule: One
expression is not allowed to have side e�ects. We do so by providing a small
number of transformation rules,[7] that transform compound expressions, into
semantically equivalent ones. In doing so, we are able to cover the entire Java
language without lessening the e�ectiveness of our approach.

In the following set of rules, we use the notation R[x :=3D e] to denote textual
substitution on predicate R as de�ned by Gries [1]. If we consider the predicate
P as the precondition and the predicate R as the desired postcondition upon
termination of execution of a number of statements, op is a binary operator in
Java and L is a statement label, then the following set of rules applies:



Empty Statement:

true
fPg ; fPg

P)R
fPg ; fRg

Assignment Statement:

true
fR[x :=3De]g x=3De; fRg

P)R[x :=3De]

fPg x=3De; fRg

Composition of Statements:

fPg S1 ; fQg;fQg S2 ; fRg
fPg S1; S2; fRg

If-Else Statement

fP^Bg S1; fRg;fP^:Bg S2; fRg
fPg if (B) S1; else S2; fRg

Break Statement:

fPg)fRg
fPg break [id]; fRg

Continue Statement:

fPg)fRg
fPg continue[id]; fRg

Return Statement:

fPg)fRg
fPg return v ; fRg

Throw Statement:

fPg)fRg
fPg throw e; fRg

Labeled Statement:

L: fPg S ; fRg
fPg L: S ; fRg

Synchronized Statement:

fPg S ; fRg
fPg synchronized (e) S ; fRg

While Statement:

fP^Bg S ; fPg
fPg while(B) S ; fP^:Bg

While Statement: (cont'd)

P^B)I ; fI^Bg S ; fIg; I^:B)Q

fPg while(B) S ; fQg

Switch Statement:

fP^B1g S1; fRg; ::: fP^Bng Sn ; fRg;fP^:B1^ ::: ^:Bng)fRg
fPg switch(exp) case(B1): S1; ::: case(Bn): Sn ; fRg

Try Statement:

fP^QE1
g St ; S1; Sf fRg; ::: f P^:QE1

^::: ^:QEn
g Sf ; fRg

fPg try St ; catch(E1) S1; ::: catch(En) Sn ; [�nally Sf ; ] fRg

where En is an expression of ExceptionType e, St , Sf , Sn are Java statements
and QEn

is a condition created from the input in catch clause En :

e instanceof ExceptionType

The detection mechanism of our approach has certain limitations, mainly
due to the intractability of the theorem proving process. We can not guarantee
absolute success in �nding all the code anomalies even for the restricted types
of analysis discussed earlier. Our goal is not to �nd all potential errors rather to



�nd the majority of them automatically. Despite the limitations, experimental
results show that the set of potential errors that our approach can detect is
substantial. We used our prototype tool to run an extensive number of test
cases for both types of specialized analysis (null pointer and array bounds) and
the results were encouraging. Our approach did e�ectively detect the majority
of program anomalies in the test cases.

2.2 The Algorithms

We have developed two generic algorithms[4, 7]: DetermineInvariant and Check-

Violation which are the cornerstone of our approach. The former accepts as
input a Java class and returns a predicate that is satis�ed by all non-transient
instances of this class. It reads in the class �elds, both static and non-static,
and forms a candidate invariant. It breaks down the formed invariant into two
predicates: one that expresses a condition about static variables only and one
about all the class level variables. Invariant is broken down into two sets in order
to examine separately the properties that do not depend on the instantiation of
the Java class from the ones that do. Each predicate is examined separately
and if it ful�lls the requirements of an invariant, is added to the invariant of
the class. The output of the algorithm is the invariant for the Java class under
examination. The main steps of the algorithm, are as follows.

1. construct two sets of predicates as a candidate static and instance invariants
from all class level class variables and break it down into a number of possible
combinations of them, each one of which will be tried to verify if it satis�es
the invariant property.

2. mutate the candidate for static invariant into a number of mutated forms.

3. determine a static invariant checking each of the mutated predicates from
the static candidate invariant set until an invariant is found.

4. mutate the candidate for instance invariant into a number of mutated forms.

5. determine an instance invariant checking each of the mutated predicates
from the candidate invariant set until an invariant is found.

6. return the union of those two sets of invariants as the invariant set of pred-
icates for the class.

As soon as the invariants have been detected, we use them to assess the
validity of particular usage of variables. This is illustrated below:

void aMethod(...) {

fInvariantg the pre-condition

// ... other statements

f:isNull(v)g the assertion we attempt to prove

v.m(...) the dereference

// ... other statements

}



We can now check the usage of each relevant variable to detect any possible
violations with CheckViolation algorithm. It scans though the implementation
of the class, locates all the relevant variables and forms the appropriate veri�ca-
tion conditions. An overview of the CheckViolation algorithm follows. The term
variable of interest refers to the variables related to the class of potential errors
that the algorithm attempts to detect. For each use of a variable of interest in
StaticBlock, the algorithm forms the veri�cation condition and prove it using as
precondition the predicate true. It repeats the same process for each constructor
(using as precondition the StaticInvariant) and public method with precondition
the class invariant.

3 Future Work

The research outlined here is currently applied to intra class - intra method cases.
Our work continues in extending the foundation to cover a more comprehensive
analysis of Java classes. Our work will evolve in two main directions in order to
provide: stronger analysis techniques which will cover more complicated cases
within the already de�ned categories of potential bugs and an extensive array of
algorithms capable of handling di�erent cases. The inter-class and inter-methods
domain analysis to automatically extract relevant speci�cations for null pointer
and array index is well underway. Possible directions of this e�ort also include:
stronger analysis by incorporating user provided simple and intuitive annotations
in a notation closely resembling the Java notation and broader coverage of kinds
of errors that can be automatically checked. These include but are not limited
to: illegal downcasting, string index out of bounds, etc.
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Abstract. We introduce a Hoare-style calculus for a nearly full subset
of sequential Java, which we call Java`ight.
This axiomatic semantics has been proved sound and complete w.r.t. our
operational semantics of Java`ight, described in earlier papers. The proofs
also give new insights into the role of type-safety. All the formalization
and proofs have been done with the theorem prover Isabelle/HOL.

1 Introduction

Since languages like Java are widely used in safety-critical applications, verifi-
cation of object-oriented programs has grown more and more important. A first
step towards verification seems to be developing a suitable axiomatic semantics
(a.k.a. “Hoare logic”) for such languages.

Recently several proposals for Hoare logics for object-oriented languages, e.g.
[dB99,PHM99,HJ00], have been given. They deal with some small core language
and are partially proved sound (on paper), but are known to be incomplete
or at least have not been proved complete. Our new logic, in part inspired by
[PHM99], has the following special merits.

– Apart from static overloading and dynamic binding of methods as well as
references to dynamically allocated objects, it also covers full exception han-
dling, static fields and methods, and static initialization of classes. Thus our
sequential sublanguage Java`ight is almost the same as Java Card[Sun99].

– Instead of modeling expressions with side-effects as assignments to inter-
mediate variables, it handles all expressions and variables first-class. Thus
programs to be verified do not need to undergo an artificial structural trans-
formation.

– It is both sound – w.r.t. a mature formalization of the operational semantics
of Java – and complete. This means that programs using even non-trivial
features like mutual recursion, dynamic binding, and static initialization can
be proved correct.

– Apart from being rigorously and unambiguously defined (in the interactive
theorem proving system Isabelle/HOL[Pau94]), it has been proved sound
and complete within the system. This gives maximal confidence in the results
obtained.

? Research funded by the DFG Project Bali, http://isabelle.in.tum.de/Bali/

http://www.in.tum.de/~oheimb/


2 Some basics of the Java`ight formalization

Our axiomatic semantics inherits all features concerning type declarations and
the program state from our operational semantics of Java`ight. See [ON99] for a
more detailed description.

Here we just recall that a program Γ (which serves as the context for most
judgments) consists of a list of class and interface declarations and that the
execution state is defined as

datatype st = st (globs) (locals)
types state = xcpt option × st

where globs and locals map class references to objects (including class objects) and
variable names to values, respectively, and xcpt references an exception object.
Using the projection operators on tuples, we define e.g. normal σ ≡ fst σ = None,
which expresses that in state σ there is no pending exception, and write snd σ to
refer to the state without the information on exceptions, typically denoted by s.

A term of Java`ight is either an expression, a statement, a variable, or an
expression list, and has a corresponding result. For uniformity, even a statement
has a (dummy) result, called Unit. The result of a variable is an lval, which is a
value (for read access) and a state update function (for write access).

types terms = (expr + stmt) + var + expr list
types vals = val + lval + val list
types lval = val × (val → state → state)

There are many other auxiliary type and function definitions which we cannot
define here for lack of space. The complete Isabelle sources, including an example,
may be obtained from http://isabelle.in.tum.de/Bali/src/Bali4/.

3 The axiomatic semantics

3.1 Assertions

In our axiomatic semantics we shallow-embed assertions in the meta logic HOL,
i.e. define them as predicates on (basically) the state, making the dependence
on the state explicit and simplifying their handling within Isabelle. This general
approach is extended in two ways.

– We let the assertions depend also on so-called auxiliary variables (denoted
by the meta variable Z of any type α), which are required to relate variable
contents between pre- and postconditions, as discussed in [Sch97].

– We extend the state by a stack (implemented as a list and denoted byY) of
result values of type res, which are used to transfer results between Hoare
triples. In an operational semantics, these nameless values can be referred to
via meta variables, but in an axiomatic semantics, such a simple technique
is impossible since all values in a triple are logically bound to that scope (by
universal quantification).

As a result, we define the type of assertions (with parameter α) as
types α assn = res list × state → α → bool
datatype res = Res (vals) | Xcpt (xcpt option) | Lcls (locals) | DynT (tname)

http://isabelle.in.tum.de/Bali/src/Bali4/


We write e.g. Val v as an abbreviation for Res (In1 v), injecting a value v into
res. Names like Val and DynT are used not only as constructors, but also as
(destructor) patterns. For example, λVal v :Y. f v Y is a function on the result
stack that expects a value v as the top element and passes it to f together with
the rest of the stack, referred to byY.

In order to keep the Hoare rules short and thus more readable, we define
several assertion (predicate) transformers.
– λs : P s ≡ λ(Y,σ). P (snd σ) (Y,σ) allows P to peek at the state directly.
– P ∧. p ≡ λ(Y,σ) Z. P (Y,σ) Z ∧ p σ means that not only P holds but also p

(applied to the program state only). The assertion Normal P ≡ P ∧. normal

is a simple application stating that P holds and no exception has occurred.
– P←:f ≡ λ(Y,σ). P (Y,f σ) means that P holds for the state transformed by f.
– P ;. f ≡ λ(Y,σ′) Z. ∃σ. P (Y,σ) Z ∧ σ′= f σ means that P holds for some state
σ and the current state is then derived from σ by the state transformer f.

3.2 Hoare triples and validity

We define triples as judgments of the form prog`{α assn} terms� {α assn}
with some obvious variants for the different sorts of terms, e.g.
Γ`{P} e-� {Q} ≡ Γ`{P} In1(Inl e)� {Q} and {P} .c. {Q} ≡ {P} In1(Inr c)� {Q}.

Here we simplify the presentation by leaving out triples as assumptions within
judgments, which are necessary to handle recursion; we have discussed this issue
in detail in [Ohe99]. The validity of triples is defined as

Γ |={P} t� {Q} ≡ ∀Y σ Z. P (Y,σ) Z −→ type ok Γ t σ −→
∀v σ′. Γ`σ −t�→ (v,σ′) −→ Q (res t v Y,σ′) Z

where Y stands for the result stack and Z denotes the auxiliary variables. The
judgment type ok Γ t σ means that the term t is well-typed (if σ is a normal
state) and that all values in σ conform to their static types. This additional pre-
condition is required to ensure soundness, as discussed in §3.5. Γ`σ −t�→ (v,σ′)

is the evaluation judgment from the operational semantics meaning that from
the initial state σ the term t evaluates to a value v and final state σ′. Note that
we define partial correctness.

Unless t is statement, the result value v is pushed onto the result stack via
res t v Y ≡ if is stmt t then Y else Res v :Y.

3.3 Result value passing

We define the following abbreviations for producing and consuming results:
– P↑ :w ≡ λ(Y,σ). P (w :Y,σ) means that P holds where the result w is pushed.
– λw :. P w ≡ λ(w :Y,σ). P w (Y,σ) expects and pops a result w and asserts P w.

A typical application of the former is the rule for literal values v:

Lit
Γ`{Normal (P↑ :Val v)} Lit v-� {P}

Analogously to the well-known assignment rule, it states that for a literal ex-
pression (i.e., constant) v the postcondition P can be derived if P – with the
value v inserted – holds as the precondition and the (pre-)state is normal.



The rule for array variables handles result values in a more advanced way:

AVar
Γ`{Normal P} e1-� {Q} Γ`{Q} e2-� {λVal i :. RefVar (avar Γ i)}

Γ`{Normal P} e1[e2]=� {R}

where RefVar vf P ≡ λ(Val a :Y,(x,s)). let (v,x′) = vf a x s in (P↑ :Var v) (Y,(x′,s)).

Both subexpressions are evaluated in sequence, where Q as intermediate assertion
typically involves the result of e1. The final postcondition R is modified for the
proof on e2 as follows: from the result stack two values are expected and popped,
namely i (the index) and a (an address) of e2 and e1, respectively. Out of these
and the intermediate state (x,s), the auxiliary function avar computes the variable
v, which is pushed as the final result, and (possibly) an exception x′.

For terms involving a condition, we define the assertion P↑ :Bool=b ≡ λ(Y,σ) Z.

∃v. (P↑ :Val v) (Y,σ) Z ∧ (normal σ −→ the Bool v = b) expressing (basically) that
the result of a preceding boolean expression is b. Together with the meta-level
conditional expression (if b then e1 else e2) depending on b and P ′↑ :Bool=b identi-
fying b with the result of a boolean expression e0, we can describe both branches
of conditional terms with a single triple, like in

Cond
Γ`{Normal P} e0-� {P ′} ∀b. Γ`{P ′↑ :Bool=b} (if b then e1 else e2)-� {Q}

Γ`{Normal P} e0 ? e1 : e2-� {Q}

The value b is universally quantified, such that when applying this rule, one has
to prove its second antecedent for any possible value, i.e., both True and False.
What is a notational convenience here (to avoid two triples, one for each case),
will be essential for the Call rule, given below.

The rules for the standard statements appear almost as usual:

Skip
Γ`{P} .Skip. {P}

Loop
Γ`{P} e-� {P ′} Γ`{P ′↑ :Bool=True} .c. {P}

Γ`{P} .while(e) c. {P ′↑ :Bool=False}

Note that in all1 rules (except Loop for obvious reasons) the postconditions
of the conclusion is a variable. Thus in the typical “backward-proof” style of
Hoare logic the rules are applied easily.

3.4 Dynamic binding

The great challenge of an axiomatic semantics for an object-oriented language
is dynamic binding in method calls, for two reasons.

First, the code selected depends on the class D dynamically computed from a
reference expression e. The range of values for D depends on the whole program
and thus cannot be fixed locally, in contrast to the two possible boolean values
appearing in conditional terms described above. Standard Hoare triples cannot
express such an unbound case distinction. We handle this problem with the
strong technique given above, using universal quantification and the precondition
R↑ :DynT D ∧. . . with the special result value DynT D. An alternative solution is
1 The rules not mentioned here may be found in the appendix.



given in [PHM99], where D is referred to via This and the possible variety of D

is handled in a cascadic way using several special rules.
Second, the actual value D often can be inferred statically, but in general

for invocation mode “virtual”, one can only know that it is a subtype of some
reference type rt computed by static analysis during type-checking. The intuitive
– but absolutely non-trivial – reason why the subtype relation Class D�RefT rt

holds is of course type-safety. The problem here is how to establish this relation.
[PHM99] simply places it into the precondition of the consequence of the appro-
priate rule, but in general this puts a heavy burden on the rule user, making
the calculus at least practically incomplete. In contrast, our solution puts the
relation (as the formula Γ`mode→D�rt) into the precondition of an antecedent
and thus provides the user with an additional helpful assumption, transferring
the proof burden once and for all to the soundness proof.

The remaining parts of the rule for method calls deals with the unproblematic
issues of argument evaluation, setting up the local variables (including parame-
ters) of the called method and restoring the previous local variables on return,
for which we use the special result value Lcls.

Call

Γ`{Normal P} e-� {Q}
Γ`{Q} args

.
=� {λVals vs :Val a :. λs : let D = dyn class mode s a τ in

R↑ :DynT D↑ :Lcls (locals s)←:init lvars Γ D (mn,pTs) mode a vs}
∀D. Γ`{R↑ :DynT D ∧.λσ. normal σ −→ Γ`mode→D�rt}

Body D (mn,pTs)-� {λVal v :Lcls l :. S↑ :Val v←:set lvars l}
Γ`{Normal P} {rt,τ ,mode}e.mn({pTs}args)-� {S}

3.5 Soundness and completeness

With the help of Isabelle/HOL, we have proved soundness and completeness:

wf prog Γ =⇒ Γ |={P} t� {Q} = Γ`{P} t� {Q}

where wf prog Γ means that the program Γ is well-formed. As usual, soundness
is proved by rule induction on the derivation of triples. Surprisingly, type-safety
plays a crucial role here. The important fact that for method calls the subtype
relation Class D�RefT rt holds can be derived only if the state conforms to the
environment. This was the reason for bringing the judgment type ok into our
definition of validity, which also gives rise to the new rule (required for the
completeness proof)

hazard
Γ`{P ∧. Not ◦ type ok Γ t} t� {Q}

indicating that if at any time conformance was violated, anything could happen.
Completeness is proved (basically) by structural induction with the MGF

approach discussed in [Ohe99]. This includes an outer auxiliary induction on the
number of methods already verified, which requires well-typedness in order to
ensure that for any program there is only a finite number of methods to consider.
Due to class initialization, an extra induction on the number of classes already
initialized is required.
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A The remaining rules

conseq

∀Y σ Z . P (Y ,σ) Z −→ (∃P ′ Q ′. Γ`{P ′} t� {Q ′} ∧ (∀w σ′.
(∀Y ′ Z ′. P ′ (Y ′,σ) Z ′ −→ Q ′ (res t w Y ′,σ′) Z ′) −→ Q (res t w Y ,σ′) Z))

Γ`{P} t� {Q}

Xcpt
Γ`{(λ(Y,σ). P (res t (arbitrary3 t) Y,σ)) ∧. Not ◦ normal} t� {P}

Super
Γ`{Normal (λs : P↑ :Val (val this s))} super-� {P}

LVar
Γ`{Normal (λs : P↑ :Var (lvar vn s))} LVar vn=� {P}

FVar
Γ`{Normal P} .init C. {Q} Γ`{Q} e-� {RefVar (fvar C stat fn) R}

Γ`{Normal P} {C,stat}e.fn=� {R}

Acc
Γ`{Normal P} va=� {λVar (v,f) :. Q↑ :Val v}

Γ`{Normal P} Acc va-� {Q}

Ass

Γ`{Normal P} va=� {Q}
Γ`{Q} e-� {λVal v :Var (w,f) :. R↑ :Val v←:assign f v}

Γ`{Normal P} va:=e-� {R}

Nil
{Normal P↑ :Vals []} []

.
=� {P}

http://isabelle.in.tum.de/Bali/papers/Springer98.html
http://isabelle.in.tum.de/
http://java.sun.com/products/javacard/


Cons
Γ`{Normal P} e-� {Q} Γ`{Q} es

.
=� {λVals vs :Val v :. R↑ :Vals (v :vs)}

Γ`{Normal P} e :es
.
=� {R}

NewC
Γ`{Normal P} .init C. {Alloc Γ (CInst C) id Q}

Γ`{Normal P} new C-� {Q}
where Alloc Γ otag f P ≡
λ(Y,(x,s)) Z. ∀σ′ a. Γ`(f x,s) −halloc otag�a→ σ′−→ (P↑ :Val (Addr a)) (Y,σ′) Z

NewA

Γ`{Normal P} .init comp ty T. {Q}
Γ`{Q} e-� {λVal i :. Alloc Γ (Arr T (the Intg i)) (check neg i) R}

Γ`{Normal P} new T[e]-� {R}

Cast
Γ`{Normal P} e-� {λVal v :. Q↑ :Val v←:λ(x,s). (raise if (¬Γ ,s`v fits T) ClassCast x,s)}

Γ`{Normal P} Cast T e-� {Q}

Inst
Γ`{Normal P} e-� {λVal v :. λs : (Q↑ :Val (Bool (v 6=Null ∧ Γ ,s`v fits RefT T)))}

Γ`{Normal P} e instanceof T-� {Q}

Body

the (cmethd Γ C sig) = (md, , , blk, res)

Γ`{Normal P} .init md. {Q} Γ`{Q} .blk. {R} Γ`{R} res-� {S}
Γ`{Normal P} Body C sig-� {S}

Expr
Γ`{Normal P} e-� {λw :. Q}
Γ`{Normal P} .Expr e. {Q}

Comp
Γ`{Normal P} .c1. {Q} Γ`{Q} .c2. {R}

Γ`{Normal P} .c1;c2. {R}

If
Γ`{Normal P} e-� {P ′} ∀b. Γ`{P ′↑ :Bool=b} .(if b then c1 else c2). {Q}

Γ`{Normal P} .if(e) c1 else c2. {Q}

Throw
Γ`{Normal P} e-� {λVal a :. Q←:λ(x,s). (throw a x,s)}

Γ`{Normal P} .throw e. {Q}

Try

Γ`{Normal P} .c1. {Q}
Γ`{(Q ∧.λσ. Γ ,σ`catch C) ;. new xcpt var vn} .c2. {R}
Γ`{Q ∧.λσ. ¬Γ ,σ`catch C} .Skip. {R}

Γ`{Normal P} .try c1 catch(C vn) c2. {R}

Fin

Γ`{Normal P}.c1.{λ(Y,(x,s)). (Q↑ :Xcpt x) (Y,(None,s))}
Γ`{Normal Q}.c2.{λXcpt x′ :. R←:λ(x,s). (xcpt if (x′ 6=None) x′ x,s)}

Γ`{Normal P} .c1 finally c2. {R}

Done
Γ`{Normal (P ∧. initd C)} .init C. {P}

Init

the (class Γ C) = (sc, , , ,ini) sup = if C = Object then Skip else init sc

Γ`{Normal ((P ∧. Not ◦ initd C) ;. supd (new stat obj Γ C))} .sup. {Q↑ :.λs. Lcls (locals s)}
Γ`{Q ;. set lvars empty} .ini. {λLcls l :. R←:set lvars l}

Γ`{Normal (P ∧. Not ◦ initd C)} .init C. {R}
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1 Introduction

We are constructing a system that supports automated theorem proving based
on a combination of model checking and deduction. A major application area we
have in mind is a distributed component service where a component is searched
or invoked based on interface de�nitions and some semantic constraints. The
system may also be of use in choosing appropriate codes from distributed pro-
gramme libraries. In view of the current trends, java libraries are among the
most promising targets for the system.

2 Preliminaries

The system deals with CafeOBJ, a language based on the combinations of (re-
stricted) rewriting logic and (a variant of) hidden-algebraic logic. A subset of
CafeOBJ is an algebraic speci�cation language in the traditional sense. The as-
pect of rewriting logic, although heavily used for some case studies, is not used
in this paper so that I give no explanation thereof.

The aspect of hidden-algebraic logic is the main concern of the system and
the paper. In this logic, two kinds of sorts (or types) are distinguished. A vis-
ible sort is for an abstract data type, and its elements are indenti�ed up to
equality. A hidden sort is for a state space, and its elements are identi�ed up
to behavioural equivalence. Two elements are behaviourally equivalent i� they
behave identically under any context.

As an illustration I show how current bank accounts are de�ned in CafeOBJ.
To get rid of unnecessary complications, I modi�ed keywords and conventions a
little.

module ACCOUNT {

importing (INT)

*[ Account ]*

bop balance : Account -> Int

op open : -> Account

op deposit : Nat Account -> Account

op withdraw : Nat Account -> Account

var N : Nat



var A : Account

eq balance(deposit(N,A)) = balance(A) + N .

ceq balance(withdraw(N,A)) = balance(A) if N > balance(A) .

ceq balance(withdraw(N,A)) = balance(A) - N

if not N > balance(A) .

}

{ module introduces a speci�cation unit. ACCOUNT is the name of this module.
{ importing another module makes its sorts and operators available here. I
assumed INT is a module that speci�es integers Int and natural numbers
Nat. In�x operators + and -, and a predicate > were assumed to be de�ned
in Int.

{ *[,]* enclose names of hidden sorts.
{ bop introduces operators that de�ne observational contexts. In the example

balance is the only context.
{ op introduces other operators.
{ Both bop and op are followed by the name of the operator, :, the arity, ->,
and the coarity.

{ var is a variable declaration.
{ eq (ceq) asserts an unconditional (conditional) axiom. For the purpose of
this paper, universally quanti�ed (conditional) equations are the only forms
axioms can take.

{ A condition is an expression built out of user-de�ned predicates and such
propositional connectives as and and not.

The module de�ned the sort Account to be the state space observable only by
balance (getting the balance of an account). As their names suggest, deposit
(withdraw) increases (decreases) a balance. An overdraft is not allowed. open is
to open a new account, but the balance of a newly opened account is not de�ned.
Thus an implementation that puts a bonus into a new account of a valuable
client does satisfy this speci�cation. The possibility of such underspeci�cations
is one important advantage in using hidden-algebraic logic, in contrast to the
traditional equational logic.

3 Asserting and Checking Properties

For a hidden-algebraic speci�cation in CafeOBJ, our system allows the user to
de�ne a property, and to prove it to be an invariance. A general scheme is as
follows. Let h be a hidden sort for which we want to show an invariant property,
such as safety.

1. The user introduces a predicate P monadic on h.
2. He de�nes P with a (full) �rst-order logic with equality. Unlike the CafeOBJ

proper, the system allows negations, existential quanti�ers, and so on.

After these preparations from the user, the system takes charge.



3. For each \constant" c of sort h (see below), the system tries to prove P (c)
from the de�nition of P .

4. If there is c with which the system failed to prove P (c), the proof failed.
Otherwise,

5. Let S = fXg where X is a variable of sort h.
5-1. Let F be the set of operators monadic on h and with coarity h, and let

S0 = ff(Y ; t; Y 0)jf : shs0 ! h 2 F; t 2 Sg where s, s0 are (possibly
empty) lists of sorts, and Y , Y 0 are corresponding lists of variables.

5-2. For each t 2 S0,
5-2-1. The system tries to �nd t0 2 S bisimilar to t. If such t0 is found, let

S0 = S0 � ftg and continue. Otherwise,
5-2-2. Writing down t as f(Y ; t0; Y 0), the system tries to prove the implica-

tion 8X:[P (t0) ) 8Y ; Y 0:P (t)] where X is the list of variables that
appear in t0.

5-2-3. If the implication is proven, continue. Otherwise the overall proof
failed.

5-3. If S0 is empty, the proof succeeded. Otherwise, let S = S [ S0 and go
back to 5-1.

The scheme is just a sketch, and there are a lot of technical details to �ll in.
For example, to �nd a bisimilar element at step 5-2-1. is not a trivial problem:
in fact, since t may contain variables, a \bisimilar element" is even an abuse of
language. The e�ciency is also not taken into account. For example, at step 5-1.
unnecessary repetitions may occur quite often. For this brief paper, however,
I concentrate on the overall picture and give explanations on a couple of key
points.

{ A \constant" c at step 3. is relative to h, and can be any operator with
coarity h, as long as h is not in its arity. For example, an operator

op open' : Nat -> Account

is regarded as a constant of sort Account in this procedure. In such a case,
the proof is on the universal closure of P (c). Constants correspond to initial
states when viewed from the state transition perspective.

{ The condition of monadicity at step 5-1. is inherited from the underlying
CafeOBJ. Its variant of hidden-algebraic logic restricts attention to monadic
operators.

{ S at step 5. acts as a set of states visited so far. At each iteration terms of
one more depth, which correspond to one-step transitions, are considered.
At 5-2-1. the system cuts out the transitions leading to states bisimilar to
ones already visited. At 5-2-2., the system checks if the remaining transitions
preserves P .

{ That S0 is empty at step 5-3. means every further one-step transition leads to
a state already checked. To put the iteration at step 5. in another perspective,
it is to calculate a �xed-point of an operator on the state space, and upon
successful termination at 5-3. S is indeed a �xed-point.



{ The procedure may not stop if S0 remains non-empty forever. A control by
a loop counter is necessary to implmenent an actual system.

{ If you only want to check reachable states, the state space S may be initiated
to the set of constants. The above scheme tries to prove a slightly stronger
condition, and the user should be given a choice on which condition he wants
to check.

As an example, let us see how to prove that an overdraft is not allowed for
the currect accounts as de�ned in ACCOUNT. This property may be stated as a
predicate P de�ned as

def P(A:Account) = balance(A) >= 0 .

(Here >= is assumed to be de�ned in INT already.) As a matter of fact, since
open is underspeci�ed, this property is not an invariance. But we may at least
show that, if an account is non-negative, it remains so forever. Apply step 5. to
this example and you get the following result. Assume that N1 etc. are variables
of relevant sorts.

start: S = { A0 }

5-1.: S' = { deposit(N1,A1), withdraw(N2,A2) }

5-2.: for t = deposit(N1,A1) or withdraw(N2,A2),

5-2-1.: a bisimilar element is not found

5-2-2.: P(A1) (or P(A2)) => P(t) is proven

5-2-3.: continue

5-3.: S = { A0, deposit(N1,A1), withdraw(N2,A2) }

5-1.: S' = { deposit(N3,A3), withdraw(N4,A4),

deposit(N5,deposit(N6,A6)),

deposit(N7,withdraw(N8,A7)),

withdraw(N9,deposit(N10,A8)),

withdraw(N11,withdraw(N12,A9)) }

5-2. for each t in S',

5-2-1.: a bisimilar element is found;

S' = S' - { t }

5-2-3.: continue

5-3.: S' is empty

In this example, just by one-step transitions the state spaces are exhausted.

4 Searching for Speci�cations

The proof system sketched in the previous section is intended to be part of
a component search engine, to be invoked autonomously. Targets of a search
procedure are speci�cations (of components) written in CafeOBJ. The search
engine �rst restricts the search space by signature matching, and then checks
which component, if any, satis�es the desired properties.



Signature matching consists of generating signature morphisms by purely
syntactical means: given a source signature, for each component speci�cation, the
system tries to generate (possibly more than one) mappings of sorts, visibles to
visibles and hiddens to hiddens, and those of operators, consistently. If predicates
are also given, the system checks candidate components against that predicates,
under the translations de�ned by the signature morphisms.

5 Implementation

A preliminary prototype was already implemented. It is an extension to a CafeOBJ
processor, and contains the following features.

{ To �nd a bisimilar element, a kind of context induction and a coinduction
were implemented. The former is suitable for automatic invocation but there
is no guarantee that the procedure terminates, and is controlled by a loop
counter. The latter is useful if an easy congruent relation is found, but oth-
erwise un�t for automatic proof procedures.

{ As a prover for general �rst-order sentences, a resolution procedure was im-
plemented. The implementation utilises the heterogeneousness of the carrier
set, and a couple of experiments have shown that it leads to a drastic ef-
�ciency gain. For equational reasoning, paramodulation and demodulation
are used.

{ The model checking procedure explained in the paper is presented as a for-
ward search but a backward search is also possible. The user may choose
either.

{ To have a realistic image of the system, a CORBA-based component search
service is also implemented experimentally.

{ On some technical details. CafeOBJ does not have a concept of predicate
per se: there are only Boolean operators. The actual implementation did
not deviate from this convention so that all the \predicate"s that appeared
in the paper are actually Boolean operators. First-order sentences are also
treated as plain Boolean expressions.

6 Final Remarks

Most of the current model checking tools deal with modal logics, such as LTL
and CTL. In contrast, the target logic of our system is a �rst-order logic with
equality. One reason behind this choice is that, for a software speci�cation (as
against a hardware speci�cation), a naive formulation of state transitions will
lead to space explosions, so that an abstraction at the level of state spaces is
essential.

We made preliminary case studies of our language and system, mainly in the
�eld of protocol speci�cations, Not every expression of modal logics (especially of
CTL) has a counterpart in our logic, but most prominent examples of properties
to check, such as various kinds of safeties, can be formulated in our language



with ease. Moreover, the prototype did prove some of them within a reasonable
timespan (the order is of minutes or seconds, not of hours), in spite of the
fact that no tuning for e�ciency was attempted. The results so far are thus
encouraging.

We have not seen how large a component search space can be. A little ex-
periment on a score of speci�cations, for various kinds of containers, has shown
that the response time is of the order of seconds, again without any tuning for
e�ciency. If a search occurs in a more serious scale over a distributed, hence
transmission-sensitive, environment, such usual tricks as cachings and encodings
may become necessary. However, we have not yet worked out a stragegy on this
point.

This article was processed using the LaTEX macro package with LLNCS style
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Abstract This note describes the �rst steps toward a rigorous formal

semantics of JML speci�cations for Java. This semantics is developed

within the framework of the LOOP project [5,11]. JML speci�cations

stating invariants, pre- and post-conditions are expressed as Hoare sen-

tences tailored to Java.

1 Introduction

The Java Modeling Language [7,6], JML for short, is a behavioural interface

speci�cation language tailored to Java. JML is a superset of Java. Using JML,

a Java class can be speci�ed by invariants, pre- and post-conditions, in the

tradition of Ei�el [9] and following the `Design by Contract' approach [10].

Our goal is to develop a formal semantics for JML to enable proof tool-

assisted veri�cation. Within the LOOP project [5,11] a semantics for sequential

Java (i.e. a semantics for Java without threads) has already been developed (and

used for many veri�cations). Our JML semantics extends this Java semantics.

The Java semantics is used in a special purpose compiler, the LOOP tool,

which translates Java classes into their Java semantics. This semantics is gen-

erated as a series of logical theories of the proof tools PVS or Isabelle/HOL.

Assisted by PVS or Isabelle/HOL, a user can then prove properties about these

Java classes. A large invariant veri�cation for Java's Vector class has shown that

such proof tool-assisted veri�cation is feasible [4]. The development of a formal

semantics for JML makes it possible to extend the LOOP tool and to reason

with JML speci�cations.

A design goal of JML is to use a notation which is \readily understandable

by Java programmers" [6]. Therefore, its syntax is an extension of the Java ex-

pression syntax. This introduces several complications, namely the possibility of

side-e�ects, abrupt termination, and even non-termination in predicates; these

complications cannot arise in ordinary logical formulae. Any formal semantics

for JML will have to deal with these issues. At some point we will have to trans-

form Java expressions (which can terminate normally with true or false, or can

terminate abruptly) into ordinary logical values true and false1. Moreover, ab-

1 We do not want to use some three-valued logic.



ruptly terminating pre-conditions may lead to inconsistencies (see Subsection 4.3

below).

JML speci�cations stating invariants and pre- and post-conditions are ex-

pressed as Hoare sentences. Due to possible abrupt termination of statements

and expressions in Java, traditional Hoare sentences are not adequate. Therefore,

we use special Hoare sentences tailored to Java, as introduced in [3].

This note is organised as follows. It starts with a brief introduction to the

type theoretic language that will be used. Section 3 describes our semantics of

JML predicates. Section 4 describes the translation of behaviour speci�cations

to Hoare sentences.

2 Technical preliminaries

This section describes very brie
y the semantics of Java expressions. A more

detailed description of this semantics can be found in [5,3,1].

Expressions in Java, and thus in JML as well, may hang, terminate normally,

or terminate abruptly by throwing an exception. If an expression evaluated in a

state x terminates normally, it produces a result and a successor state (because

expressions may have side-e�ects). If its evaluation in state x terminates ab-

ruptly, a successor state together with a reference to an exception object (see [2,

x15.5]) is produced. In our semantics, expressions are modelled as state trans-

former functions of the type below, where Self is the state space, Out the type

of the expression, and RefType the type of references:

Self �� ExprResult[Self;Out]
def
= f hang : unit

j norm : [ ns: Self; res:Out ]
j abnorm : [ es: Self; ex:RefType ] g

The type ExprResult (with type parameters Self and Out) is a (labelled) variant

type, which makes a distinction between non-termination (labelled hang), normal

termination (labelled norm) and abrupt termination (labelled abnorm). For the

latter two options, a labelled product type [ , ] is used. Functions on a variant

type like ExprResult are de�ned by pattern matching, using a CASES notation

as below.

3 Semantics of JML predicates

JML extends the Java expression syntax with logical operators, like implication,

==>, and the universal and existential quantors, nforall and nexists (see [6,

x3.1] for a complete overview). Obviously, JML predicates have type boolean.

Like for Java expressions, the semantics of a JML predicate P is written as

[[P ]]: Self ! ExprResult[Self; boolean].
Just like there are two di�erent meanings for disjunction in Java, namely |

and ||, there are two di�erent meanings for implication, namely (1) !p | q and



(2) !p || q. The di�erence between these two options is in whether the right-

hand operand is always evaluated. If the evaluation of p terminates normally,

then in (1) q is always evaluated, but in (2) q is evaluated only if p evaluates to

true. An example predicate, j != 0 ==> 5/j != 0, illustrates the di�erence: in

(1) it terminates abruptly if j equals 0, in (2) it terminates normally for all j.

Therefore, we choose [[ p ==> q ]] = [[ !p || q ]].

Before �xing the semantics of the universal quantor, let's consider an ex-

ample: the predicate nforall (int j) 5/j != 0, where, obviously, 5/j will

terminate abruptly for j equals 0. We do not wish this universally quanti�ed

predicate to terminate normally, because it is not properly de�ned for all j.

Thus, its semantics would be either (1) hang or (2) abnorm. We choose for op-

tion (2). In order to let this predicate terminate normally, an implication can

be added: nforall (int j) j != 0 ==> 5/j != 0. Our semantics of a uni-

versally quanti�ed predicate nforall (T t) P is: if for any element of type T

predicate P terminates normally, then nforall (T t) P terminates normally,

otherwise it terminates abruptly. Abrupt termination is caused by throwing a

null reference instead of a reference to an exception object. Since abrupt termin-

ation with a null reference cannot be caused by Java statements and expressions,

it identi�es ill-de�ned quanti�ed predicates. Summarising:

pred:Out ! Self ! ExprResult[Self; boolean] `

FORALL � pred : Self ! ExprResult[Self; boolean]
def
=

�x: Self: IF 8(o:Out):CASES pred � o � x OF f
j hang() 7! false
j norm y 7! true
j abnorma 7! false g

THEN norm(ns = x; res = 8(o:Out):BE2B � (pred � o) � x)
ELSE abnorm(es = x; ex = null)
ENDIF

where BE2B is a function that turns JML predicates into ordinary predicates; it

is de�ned as

p: Self ! ExprResult[Self; boolean] `

BE2B � p : Self ! boolean
def
=

�x: Self: CASES p � x OF f
j hang() 7! false
j norm y 7! y:res
j abnorma 7! false g

An example of an existentially quanti�ed predicate is nexists (int j) 5/j

!= 0. Again, the division 5/j will terminate abruptly for j equals 0. Similarly

to universally quanti�ed predicates, we de�ne the interpretation of nexists
(int j) 5/j != 0 to be abrupt termination2. The semantics of nexists is
2 For some, this might be counter-intuitive, since there exists a j satisfying 5/j != 0,

e.g. j equals 1. Our reason for not interpreting 9j:5=j 6= 0 as true is that tools like



de�ned logically equivalent to the semantics of nforall, such that the property

8x:� = :9x::� holds for JML quantors.

4 Semantics of JML speci�cations

This section will focus on JML speci�cations stating invariants and pre- and post-

conditions for methods expressed in so-called behaviour speci�cations. There are

several ways to specify a method's behaviour. Basically, each behaviour speci�c-

ation consists of a pre-condition (the requires clause), and a post-condition

(in case of normal termination, the ensures clause, and/or in case of abrupt

termination, the signals clause). Besides specifying a method's pre- and post-

condition, a behaviour speci�cation can specify much more, like a modifiable

clause listing the �elds which may be changed by the method. Clauses other

than pre- and post-conditions are not considered here.

An example of a JML speci�cation is:

public int firstElement (int[] array)

/*@ normal_behavior

@ requires : array != null && array.length > 0;

@ ensures : true;

@*/

{ return array[0]; }

The JML predicates used here are array != null && array.length > 0 and

true.

In JML also invariants can be speci�ed. An invariant should hold after object

creation via one of the constructors, and should be preserved by all non-private

methods. So, an invariant is implicitly included in pre- and post-conditions for

each non-private method.

4.1 From JML speci�cations to Hoare sentences

The semantics of behaviour speci�cations can be expressed as Hoare sentences.

Traditional Hoare sentences do not deal with abrupt termination, and therefore

they are not suitable in this context. In [3] a Hoare logic tailored to Java is

introduced, covering abrupt termination.

A normal behavior speci�cation is interpreted as follows. The proof obliga-

tion for a method m with a pre-condition Pre : Self ! boolean, a post-condition

Post : Self ! boolean is the total correctness Hoare sentence
�
Pre

�
m

�
Post

�
.

This Hoare sentence says that for any state x such that Pre � x, executing m in

x terminates normally resulting in a successor state y such that Post � y.
An exceptional behavior speci�cation is interpreted as follows. The proof

obligation for a method m with a pre-condition Pre : Self ! boolean, a post-

condition Post : Self ! RefType ! boolean, an exception type E: string is the

PVS de�ne this predicate to be logically equivalent to :8j:5=j = 0 (which is not

de�ned for j equals 0).



total exception correctness Hoare sentence
�
Pre

�
m

�
exception(Post ; E)

�
. This

Hoare sentence says that for any state x such that Pre � x, executing m in x

terminates abruptly, because of an exception e, resulting in a successor state y

such that Post � y � e, and e is an instance of E.

Things are a bit more complicated, since the post-condition may contain

expressions of the form nold(T ) which refer to the value of T in the `pre-

state'. Therefore, the post-condition has type Self ! Self ! boolean instead

of Self ! boolean. Thus, the proof obligation generated for a normal behavior

speci�cation becomes: for any state x such that Pre �x, executing m in x termin-

ates normally resulting in a successor state y such that Post �x �y. To express this
as a Hoare sentence, we use the standard technique of introducing logical vari-

ables. Concretely, we introduce a logical variable Z: Self and take as pre-condition
Pre0 = �x: Self:Pre �x^x = Z and as post-condition Post 0 = �x: Self:Post �Z �x.
The resulting Hoare sentence becomes

�
Pre0

�
m

�
Post 0

�
, which is equivalent to

the proof obligation above.

4.2 From JML Boolean expressions to truth values

As explained above, given pre- and post-conditions of type Self ! boolean,
behaviour speci�cations can be expressed as Hoare sentences. However, pre- and

post-conditions in JML have type Self ! ExprResult[Self; boolean]. Earlier, we
de�ned the function BE2B to convert JML predicates into logical predicates.

Using BE2B, a normal behavior speci�cation with a pre-condition P and a

post-condition Q would yield the following proof obligation:

�
BE2B � [[P ]]

�
m

�
BE2B � [[Q ]]

�

But what does this mean if the pre-condition P terminates abruptly? Applying

BE2B to P then yields false, and makes the whole proof obligation trivially true.

Obviously, this is not what we want. One option is to say that BE2B should

be partial and then the proof obligation would not be well-de�ned. Because we

want to generate proof obligations for PVS, in which the use of partial functions

is not practical, we de�ne a total function BE2B pre.

p: Self ! ExprResult[Self; boolean] `

BE2B pre � p : Self ! boolean
def
=

�x: Self: CASES p � x OF f
j hang() 7! true
j norm y 7! y:res
j abnorma 7! true g

Using this function for converting pre-conditions, non-terminating and ab-

ruptly terminating JML predicates are interpreted as true, so that they become

useless, as assumptions. This makes the proof obligation as hard as possible. The

obligation for the normal behavior speci�cation is thus:



�
BE2B pre � [[P ]]

�
m

�
BE2B � [[Q ]]

�

If there is also an invariant I , the speci�cation's semantics becomes:

�
BE2B pre � [[ I && P ]]

�
m

�
BE2B � [[ I && Q ]]

�

4.3 Example

We wish to illustrate that abruptly terminating pre-conditions should be avoided

with our semantics. Consider therefore:

public void copyInto (int[] from, int[] to);

/*@ normal_behavior

@ requires : from.length <= to.length;

@ ensures : true;

@ also

@ exceptional_behavior

@ requires : from.length > to.length;

@ signals : (MyException e) true;

@*/

These behaviour speci�cations are expressed as a conjunction of Hoare sentences:

�
BE2B pre � [[ from.length <= to.length ]]

�

copyInto(from, to)�
BE2B � [[ true ]]

�

^�
BE2B pre � [[ from.length > to.length ]]

�

copyInto(from, to)�
exception(BE2B � [[ true ]]; MyException)

�

Applying BE2B pre to the pre-conditions in case one of the parameter arrays

is a null reference will make them true. Thus, in this case abruptly terminating

pre-conditions make this speci�cation inconsistent: method copyInto will have

to terminate both normally and abruptly. Adding non-null reference checks, from

!= null && to != null, to the pre-conditions prevents abrupt termination of

these predicates. The proof obligation generated for this behaviour speci�cation

is then consistent.

5 Conclusion

We have given a strict interpretation of JML speci�cations (closely following

Java), speci�cally by using BE2B pre (instead of BE2B) for pre-conditions. Thus
a pre-condition a[2] == b[3] is problematic, and requires a lengthy alternative:



a != null && a.length > 2 && b != null && b.length > 3 && a[2] == b[3],

called a \protective" speci�cation in [8]. In the end, this is a matter of choice.

We think it is best to make all assumptions explicit, because after all this the

point of speci�cation languages.

The approach described in this paper treats JML predicates as much as pos-

sible as Java Booleans, following the prescribed Java evaluation order for e.g.

&& and ||. We are currently experimenting to evaluate its practicality by veri-

fying JML-annotated programs using PVS. An alternative is to use the intented

JML semantics mentioned in [6], where partial functions are modelled as under-

speci�ed total functions. This would require some e�ort to change the LOOP

tool, since such a JML semantics would no longer be an extension of the Java

semantics; for example, 5/i == 0 || i == 0 for i equals 0 would no longer

terminate abruptly, but would be true.
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Abstract. In this paper, I describe a Dynamic Logic for Java Card and

outline a sequent calculus for this logic that axiomatises Java Card. The

purpose of the logic is to provide a framework for software veri�cation

that can be integrated into real-world software development processes.

1 Introduction

Design principles and goals. The work that is reported in this paper has

been carried out as part of the KeY project [1]. The goal of KeY is to enhance a

commercial CASE tool with functionality for formal speci�cation and deductive

veri�cation and, thus, to integrate formal methods into real-world software devel-

opment processes. Accordingly, the design principles for the software veri�cation

component of the KeY system are:

{ The programs that are veri�ed should be written in a \real" object-oriented

(OO) programming language.

{ The logical formalism should be as easy as possible to use for software de-

velopers (that do not have years of training in formal methods).

Java Card. We use Java Card [10, 5] (soon to be replaced by Java 2 Micro

Edition, J2ME) as the target programming language. Java Card is a \real"

OO language and has, accordingly, features that are diÆcult to handle such as

dynamic data structures, exceptions, and initialisation; but it lacks some crucial

complications of the full Java language such as threads and dynamic loading

of classes. Java smart cards are an extremely suitable application for software

veri�cation: (a) Java Card applications are small (Java smart cards currently

o�er 32K memory for code); (b) at the same time, Java Card applications are

embedded into larger program systems or business processes which should be

modeled (though not necessarily formally veri�ed); (c) Java Card applications

are often security-critical, giving incentive to apply formal methods; (d) the

high number of deployed smart cards constitutes a new motivation for formal

veri�cation, as arbitrary updates are not feasible.



Dynamic Logic. We use Dynamic Logic (DL) [6], which is an extension of

Hoare logic [3], as the logical basis of the KeY system's software veri�cation

component. We believe that this is a good choice because deduction in DL is

based on symbolic program execution and simple program transformations and

is, thus, close to a programmer's understanding of Java Card.

DL is successfully used in the KIV software veri�cation system [9] for a

programming language that is not object-oriented; and Poetzsch-He�ter and

M�uller's de�nition of a Hoare logic for a Java subset [8] shows that there are no

principal obstacles to adapting the DL/Hoare approach to OO languages.

DL can be seen as a modal predicate logic with a modality hpi for every

program p (we allow p to be any legal Java Card program); hpi refers to

the successor worlds (called states in the DL framework) that are reachable by

running the program p. In classical DL there can be several such states (worlds)

because the programs can be non-deterministic; but here, since Java Card

programs are deterministic, there is exactly one such world|if p terminates|or

there is no such world|if p does not terminate. The formula hpi� expresses that

the program p terminates in a state in which � holds. A formula �! hpi is

valid if for every state s satisfying precondition � a run of the program p starting

in s terminates, and in the terminating state the postcondition  holds.

Thus, the formula �! hpi is similar to the Hoare triple f�gpf g. But in
contrast to Hoare logic, the set of formulas of DL is closed under the usual logical

operators: In Hoare logic, the formulas � and  are pure �rst-order formulas,

whereas in DL they can contain programs. DL allows to involve programs in

the descriptions � resp.  of states. For example, using a program, it is easy to

specify that a data structure is not cyclic, which is impossible in pure �rst-order

logic. Also, Java constructs such as instanceof are available in DL for the

description of states. It is, therefore, not necessary to de�ne an abstract data

type state and to represent states as terms of that type (as has, for example,

been done in [8]); instead DL formulas can be used to give a (partial) description

of states, which is a more 
exible technique and allows to concentrate on the

relevant properties of a state.

In comparison to classical DL (that uses a simple \arti�cial" programming

language), a DL for a \real" OO programming language like Java Card has to

cope with the following complications:

{ A program state does not only depend on the value of program variables but

also on the values of the attributes of all existing objects.
{ The evaluation of a Java expression may have side e�ects; thus, there is a

di�erence between an expression and a logical term.
{ Language features such as built-in data types, exception handling, and object

initialisation have to be handled.

2 Syntax of Java Card DL

The non-dynamic part of our DL is basically a typed �rst-order predicate logic.

To de�ne its syntax, we have to specify its sets of variables, its types, and its



terms (which we often call \logical terms" in the following to emphasise that

they are di�erent from Java expressions). Then, we de�ne what the programs

of the DL are. In the programs that are part of a DL formula, we allow an

extension of Java Card, where logical terms may occur in place of expressions

of the same type. Finally, the syntax of DL formulas and sequents is de�ned.

Context. We do not allow class de�nitions in the programs that are part of

DL formulas, but de�ne syntax and semantics of DL formulas w.r.t. a given

Java Card program (the context), i.e., a sequence of class de�nitions. With the

following restrictions any syntactically legal Java Card program may be used:

A context must not contain occurrences of local inner classes ; and break and

continue must be used with (explicit) labels. These restrictions are \harmless"

because any Java Card program can easily be transformed accordingly.

We assume that the following methods and �elds are implicitly de�ned for

each class Cls in the context and can thus be used in DL formulas (but not

in the context). They allow to access information about the program state that

is otherwise inaccessible in Java: a list of all existing objects of a class and

information on whether a class resp. its objects are initialised. The objects of a

certain class are considered to be organised into an (in�nite) ordered list; this

list is used by new to \create" objects (intuitively, new changes the attributes

lastCreatedObj of the class and sets the attribute created of the new object

to true, see Section 4).

public static Cls firstObj; // the �rst object in the list,

// whether already created or not

public static Cls lastCreatedObj; // the last created object,

// null if no object exists

public Cls prevObj; // the previous object in the list;

// null if for the �rst object

public Cls nextObj; // the next object in the list

public boolean beforeObj(Cls obj); // returns true if this

// is before obj in the list

public boolean created; // true if the object has already been

// created with new, and false otherwise

public static boolean classInitialised; // true if the class resp.

public boolean objInitialised; // the object is initialised

Variables. In classical DL there is only one type of variables. Here however, to

avoid confusion, we use two kinds of variables.

Program variables are denoted with x, y, z, : : : Their value can di�er from

state to state and can be changed by programs. They occur in programs and can

also be used in the non-program parts of formulas (there they behave like modal

constants, i.e., constants whose value can di�er from state to state). Program

variables cannot be quanti�ed and they cannot be instantiated with terms.

Logical variables are denoted with x, y, z, : : : They are assigned the same

values in all states; a statement such as \x = 1;", which tries to change the



value of the logical variable x, is illegal. Logical variables must be bound by

a quanti�er, free occurrences are not allowed; they can be instantiated with

terms (preserving syntactical correctness of a formula but not necessarily its

satis�ability or validity).

Types. The set of types of our DL contains (a) the primitive types of Java

Card (boolean, byte, short), (b) the classes (object types) de�ned in the

context, (c) the built-in classes such as String, and (d) an array type for each

of the types in (a){(c). In addition, there are user-de�ned types; typically these

are abstract data types. There is no type hierarchy, i.e., no sub-typing concept.

Terms. Logical terms are constructed as usual from program variables, logical

variables, and the constant and function symbols of all types. The set of terms in-

cludes in particular all Java Card literals for the primitive types, string literals,

and the null object reference literal.

In addition, (a) if o is a term of class type C (i.e., denotes an object) and a is

a �eld (attribute) of class C, then o.a is a term. (b) If Class is a class name

and a is a static �eld of Class , then Class.a is a term. (c) If a is an array

type term and i is a term of type byte, then a[i] is a term.

Programs. The programs in DL formulas are executable code; as said above,

they are not allowed to contain class declarations. The (basic) programs are

the legal Java Card statements, including: (a) expression statements such

as \x = 1;" (assignments), \m(1);" (method calls), \i++;", \new Cls;", lo-

cal variable declarations (which restrict the \visibility" of program variables);

(b) blocks and compound statements built with if-else, switch, for, while,

and do-while; (c) statements with exception handling using try-catch-finally;

(d) statements that abruptly redirect the control 
ow (throw, return, break,

continue); (e) labelled statements; (f) the empty statement.

The technique for handling method calls in a DL calculus is to syntacti-

cally replace the call by the method's implementation. To handle the return

statement in the right way, it is necessary to record the program variable or

attribute that the result is to be bound to and to mark the boundaries of the

implementation when it is substituted for the method call. For that purpose,

we allow statements of the form call(x=m (arg1,: : :,argn)){prog} to occur

in DL programs.

In addition, we allow programs in DL formulas (not in the context) to contain

logical terms. Wherever a Java Card expression can be used, a term of the same

type as the expression can be used as well. Accordingly, expressions can contain

terms (but not vice versa).

Formulas. Formulas are built as usual from the (logical) terms, the predicate

symbols of all the types and the equality predicate
:
=, the logical connectives :,

^, _, !, the quanti�ers 8 and 9 (that can be applied to logical variables but



not to program variables), and the modal operator hp i, i.e., if p is a program

and � is a formula, then hp i� is a formula as well.

If o is a variable of some class type C, then a quanti�cation such as (8o)�(o)
ranges over the (in�nite) set of all objects of type C whether they have been cre-

ated or not. The fact that all created objects of class C have a certain property �

can be expressed using the formula (8o)(o:created
:
= true! �(o)).

To simplify notation, we allow updates of the form fx  tg resp. fo:a  tg
to be attached to terms and formulas, where x is a program variable, o is a term

denoting an object with attribute a , and t is a term. The intuitive meaning of an

update is that the term or formula that it is attached to is to be evaluated after

changing the state accordingly, i.e., �fx tg has the same semantics as hx =ti�
(but is easier to handle because the evaluation of t is known to have no side

e�ects).

Sequents. A sequent is of the form �1; : : : ;  m `  1; : : : ;  n (m;n � 0), where

the �i and  j are DL formulas. The meaning of a sequent is that the conjunction

of the �i's implies the disjunction of the  j 's.

3 Semantics of Java Card DL

To de�ne the semantics of Java Card DL we use the semantics of the Java

Card programming language. In case of doubt, we refer to the precise formal

semantics of Java de�ned by B�orger and Schulte [4] using Abstract State Ma-

chines.1

The models of DL are Kripke structures consisting of possible worlds that

are called states. All states of a model share the same universe containing a

suÆcient number of elements of each type.

The function and predicate symbols that are not user-de�ned|such as the

equality predicate and the function symbols of the primitive Java Card types|

have a �xed interpretation. In all models they are interpreted according to their

intended semantics resp. their meaning in the Java Card language.

Logical variables are interpreted using a (global) variable assignment; they

have the same value in all states of a model.

States. In each state a (possibly di�erent) value (an element of the universe) of

the appropriate type is assigned to: (a) the program variables, (b) the attributes

(�elds) of all objects, (c) the class attributes (static �elds) of all classes in the

context, and (d) the special object variable this. Variables and attributes of

object types can be assigned the special value null .

Note, that states do not contain any information on control 
ow such as a

program counter or the fact that an exception has been thrown.

1 Following another approach, Nipkow and von Oheimb have obtained a precise se-

mantics of a Java sublanguage by embedding it into Isabelle/HOL; they also use an

axiomatic semantics [7].



Programs and Formulas The semantics of a program p is a state transition,

i.e., it assigns to each state s the set of all states that can be reached by running p

starting in s. Since Java Card is deterministic, that set either contains exactly

one state or is empty. The set of states of a model must be closed under the

reachability relation for all programs p , i.e., all states that are reachable must

exist in a model (other models are not considered).

The semantics of a logical term t occurring in a program is the same as that

of an expression whose evaluation is free of side-e�ects and gives the same value

as t.

For formulas � that do not contain programs, the notion of � being satis�ed

by a state is de�ned as usual in �rst-order logic. A formula hp i� is satis�ed by

a state s if the program p, when started in s, terminates in a state s0 in which

� is satis�ed. A formula is satis�ed by a model M , if it is satis�ed by one of the

states of M . A formula is valid in a model M if it is satis�ed by all states of M ;

and a formula is valid if it is valid in all models.

We consider programs that terminate abnormally to be non-terminating. Ex-

amples are a program that throws an uncaught exception and a return state-

ment that is not within the boundaries of a method invocation. Thus, for exam-

ple, hthrow x;i� is unsatis�able for all �. Nevertheless, it is possible to express

and (if true) prove the fact that a program p terminates abnormally (and, for

example, throws an exception) using a sequence such as

e
:
= null ` htry{p}catch{Exception e}i(: e

:
= null) :

Sequents. The semantics of a sequent �1; : : : ;  m `  1; : : : ;  n is the same as

that of the formula (�1 ^ : : : ^  m)! ( 1 _ : : : _  n).

4 A Sequent Calculus for Java Card DL

In this section we outline the ideas behind the sequent calculus for Java Card

DL, and we present some of the basic rules.2

The DL rules of our calculus operate on the �rst active command p of a

program �p!. The non-active pre�x � consists of an arbitrary sequence of open-

ing braces \{", labels, beginnings \try{" of try-catch blocks, and beginnings

\call(: : :){" of method invocation blocks. The pre�x is needed to keep track

of the blocks that the (�rst) active command is part of, such that the commands

throw, return, break, and continue that abruptly change the control 
ow can

be handled appropriatly.3

2 These are simpli�ed versions of the actual rules. In particular, initialisation of objects

and classes is not considered.
3 In classical DL, where no pre�xes are needed, any formula of the form hp q i� can

be replaced by hp ihq i�. In our calculus, splitting of h�pq!i� into h�p ihq!i� is

not possible (unless the pre�x � is empty) because �p is not a valid program; and

the formula h�p!ih�q!i� cannot be used either because its semantics is in general

di�erent from that of h�pq!i�.



Assignment Rule. The assignment rule is the most important rule of the DL

calculus:

�
fx cg

; x
:
= expr fx cg ` h�!i�; �fx cg

� ` h� x = expr; !i�; �
c is a new constant (1)

In classical DL, rule (1) is always applicable; here however, we have to im-

pose a restriction: this rule can only be used if the expression expr is a logical

term. Otherwise, other rules have to be applied �rst to evaluate expr (as that

evaluation may have side e�ects). For example, these rules replace the formula

hx = ++i;i� by hi = i+1; x = i;i�.
Moreover, the handling of updates is more diÆcult in Java Card DL: In

classical DL �
fx cg is equivalent to the formula that is constructed from � by

syntactically replacing the left side x of the update by the right side c. Now

however, because several object variables may refer to the same object, more

complex rules have to be used to simplify the result �fo :a cg of an update of an

object (or class) attribute.

Rule for Creating Objects. The new statement is treated by the calculus as

if it were implemented as follows (this implementation accesses the �elds that

are implicitly de�ned for all classes, see the explanation in Section 2):

public static Cls new() {

if (lastCreatedObj == null)

lastCreatedObj = firstObj;

else

lastCreatedObj = lastCreatedObj.nextObj;

lastCreatedObj.created = true;

return lastCreatedObj;

}

Rules for Loops. The following rules allow to \unwind" while loops. These

are simpli�ed versions that only work if (a) cnd is a logical term (and, thus, its

evaluation does not have side e�ects), and (b) prg does not contain a continue

statement. Similar rules are de�ned for do-while and for loops.

� ` cnd
:
= true; � � ` h� prg while(cnd) prg !i�; �

� ` h� while(cnd) prg !i�; �
(2)

� ` cnd
:
= false; � � ` h�!i�; �

� ` h� while(cnd) prg !i�; �
(3)

These rules allow to handle loops if used together with induction schemata for

the primitive and the user de�ned types, such as:

� ` �(c); � � ` (8x)(�(x) ! �(f(x))); �

� ` (8x)�(x); �
(4)

(where the type of x is generated by c and f).



Rules for Handling Exceptions. The following rules allow to handle try-

catch-finally blocks and the throw statement. Again, these are simpli�ed ver-

sions of the actual rules; they are only applicable if (a) exc is a logical term

(e.g., a program variable), and (b) the statements break, continue, and return

do not occur.

� ` instanceof (exc ; T ) � ` h� try{e=exc; q }finally{r} !i�; �

� ` h� try{throw exc; p }catch(T e ){q}finally{r} !i�; �

(5)

� ` :instanceof (exc ; T ) � ` h� r ; throw exc; !i�; �

� ` h� try{throw exc ; p }catch(T e ){q }finally{r} !i�; �
(6)

� ` h� r !i�; �

� ` h� try{}catch(T e ){q}finally{r} !i�; �
(7)

Rule (5) applies if an exception exc is thrown that is an instance of exception

class T , i.e., the exception is caught; otherwise, if the exception is not caught,

rule (6) applies. Rule (7) applies if the try block is empty and, thus, terminates

normally.
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1 Introduction

Sharing mutable objects is typical for object-oriented programs. As a direct

consequence of the concept of object identities, it is one of the fundamentals

of the OO-programming model. Furthermore, OO-programs gain much of their

eÆciency through sharing and destructive updates.

However, uncontrolled sharing leads to serious problems: Usually several ob-

jects work together to represent larger components such as windows, parsers,

dictionaries, etc. Current OO-languages do not prevent references to objects

of such components from leaking outside the components' boundaries, a phe-

nomenon called rep exposure. Thus, arbitrary objects can use these references to

manipulate the internal state of components without using their explicit inter-

face. These manipulations can e�ect both the abstract value of components and

their invariants. This makes OO-programs very hard to reason about. Further-

more, in systems with uncontrolled sharing, basically every object can interact

with any other object. Therefore, such systems lack a modular structure and are

diÆcult to maintain.

In this extended abstract, we present a type system for Java and similar lan-

guages that enforces a hierarchical partitioning of the object store into so-called

universes and controls references between universes. The universe type system

provides support for preventing rep exposure while retaining a 
exible sharing

model. It is easy to apply and guarantees an invariant that is strong enough for

modular veri�cation. Our type system is related to ownership types ([CPN98]),

balloon types ([Alm97]), and islands ([Hog91]). However, it is capable of specify-

ing certain implementation patterns (e.g., binary methods, several objects using

a common representation) which cannot be handled by the other approaches.

Overview. Section 2 presents the universe programming model. The universe

type system is informally described in Section 3. Section 4 demonstrates the

application of universes. Our conclusions are contained in Section 5.

2 Structuring the Object Store

OO-languages in general allow for arbitrary references between objects. The

universe type system enables the programmer to structure the object store ac-

cording to a component-oriented programming model and provides support for



sharing-control between components. It is a proper re�nement of usual type sys-

tems; i.e., the programmer can use the additional power of the type system, but

is not forced to do so.

The Universe Programming Model. Systems usually comprise several compo-

nents. Components consist of one or more objects. Some of these objects are

used to interact with other components. Their interfaces form the interface of the

component. The other objects are the internal representation of the component.

A component's representation should be modi�ed only through the component's

interface to control modi�cation of the component's abstract value ([MPH00a])

and to guarantee data consistency. Therefore, references to objects of a compo-

nent's representation must not be passed to other components (rep exposure),

i.e., references to representation objects must be kept inside the component.

Representations and Universes. We associate every component with a partition

of the object store that contains the component's representation, a so-called uni-

verse. Since a component's representation may contain other components which

are in turn associated with a universe, universes form a hierarchical structure.

A designated root universe corresponds to the whole object store and encloses

all other universes. Two universes either enclose each other or are disjoint. The

hierarchy of universes introduces a partial order of universes with the root uni-

verse as greatest element. We use the term an object X belongs to universe U if

U is the least universe containing X .

The objects at the interface of a component are not part of the representation

(and therefore not contained in the universe). We call them the owner objects of

the corresponding universe. Owner objects of universe U belong to the universe

directly enclosing U .

Consider a component for a doubly linked list of objects with iterators. The

list header and the iterators are non-representation objects of the component.

They are the owners of the component's universe which contains the nodes of

the list.

Sharing Control. An owner object may reference objects belonging to its uni-

verse. All other references across universe boundaries are basically prohibited

for the following reasons: (a) Objects outside a universe must not reference ob-

jects inside. Otherwise, they could use these references to manipulate the internal

state of the component.1 (b) Objects inside a universe must not reference objects

outside. If the abstract value of the component depended on the state of objects

outside its representation, it could be modi�ed without using the component's

interface.

These rules guarantee that objects belonging to universe U can only be ref-

erenced by objects belonging to U and U 's owner objects. However, the above

rules are too strong in two situations: (1) Components might want to pass parts

1 In this context, local variables and formal parameters behave like instance variables

of the this object. That is, universes control both static and dynamic aliasing.



of their representations to other components, provided that these components

do not use the references for modi�cations. Such situations occur e.g., when a

component needs to store a representation object in a container or when two

components have to be tested for structural equality. (2) Objects inside a uni-

verse could contain references to objects outside if their abstract values did not

depend on the states of the objects outside. To support both situations, we

introduce so-called read-only references.

Read-only References. Read-only references cannot be used to perform �eld up-

dates or method invocations on the referenced object2. Reading �elds via read-

only references in turn yields read-only references (or values of primitive types).

Abstract values of components must not depend on states of objects referenced

read-only (but can depend on their identities).

Read-only references can be used to pass references across universe bound-

aries. A read-only reference to an object belonging to universe U can be turned

into a normal reference by objects of U and U 's owner objects. For example,

object X can pass a reference to object Y as read-only reference to a container.

When this reference is retrieved later, X can cast it back to a normal reference

and use it for method invocations, etc.

Fig. 1 shows the object structure of a doubly linked list of objects with two

iterators. (Objects are depicted by boxes; solid and dashed arrows depict normal

and read-only references, resp.; the universe is drawn as ellipse.) The nodes are

the representation of the component and therefore inside the universe. Other

components can interact with the list header and the iterators, which are the

owner objects of the universe. The objects stored in the list are referenced read-

only. Section 4 sketches the implementation of the list/iterator example.
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Fig. 1. Object Structure for List/Iterator Example

2 To keep things simple, we do not consider read-only methods here (i.e., methods

without side-e�ects). For practical applications, they would be helpful.



3 Static Checking of Representation Containment

In the last subsection, we sketched an ideal scenario for alias control for com-

ponents. However, to check reference containment statically, we have to use a

slightly weaker programming model. In this subsection, we present the re�ned

programming model and informally describe a type system to enforce it.

Component Programming Model and Universes. We simplify the com-

ponent programming model as follows: (1) We associate every object with its

own object universe. That is, each object X is regarded as the interface of a

component with a possibly empty representation. An object is the only owner

object of its object universe. (2) We associate every type with a type universe. If

T is a type declared in module M then every object of a type declared in M is

an owner object of T 's type universe. Due to inheritance, objects of subtypes of

types declared in M may also contain references to objects in T 's type universe.

However, access control guarantees that subtype methods cannot manipulate

objects via such references. Type universes allow objects of types declared in

the same module to access a common representation. Thus, components with

several owner objects can be realized by implementing them in one module.

The use of type universes reduces the amount of sharing control that can

be done. For instance, type universes do not provide support for keeping the

nodes of two lists disjoint if the lists' representations are stored in the same

type universe. However, objects in T 's type universe can only be manipulated by

methods implemented in T 's module. Therefore, type universes provide suÆcient

sharing control for modular reasoning, since all \dangerous" code is located in

one module (cf. [MPH00a] for a discussion).

The Universe Type System. Reference containment for universes is statically

checked by the universe type system. In this subsection, we present the basic

ideas of a universe type system. A formalization of the type system and a sketch

of the type safety proof can be found in [MPH99,MPH00b].

Universes and Types. There are three kinds of universes: The root universe,

type universes, and object universes. Each class C introduces one type for read-

only references (read-only type) and one type for every universe in a program

execution (reference types); C is called the base class of these types. All types

having the same base class share a common implementation, but are regarded

as di�erent types.

The subtype relation follows the subclass relation in Java. Two reference

types are subtypes if they belong to the same universe and their base classes are

subclasses. Two read-only types are subtypes if their base classes are subclasses.

Each reference type with base class C is a subtype of the read-only type for C.

Since objects of a class in di�erent universes have di�erent types, objects

of one universe cannot be assigned to variables expecting objects of another.

All reference types are subtypes of the corresponding read-only type. Therefore,

variables of read-only types can hold objects of any universe.



Type Schemes. A class introduces one reference type for each universe (in par-

ticular, for each object universe). Thus, the set of types is not �xed at compile

time. To enable static type checking, we use so-called type schemes to statically

type variables, methods, expressions, etc.

Since the universe of a type T is not known at compile time, the implemen-

tation of the base class of T can refer to other reference types only relatively

to the universe T belongs to. To support the programming model described in

Section 2, the universe type system provides three kinds of type schemes for

reference types: (1) Ground type schemes of the form C to refer to the type for

class C belonging to the same universe as T , (2) object type schemes of the form

C<obj> to refer to the type for class C in the object universe owned by this, and

(3) class type schemes (C<S>) to refer to the type for class C in the type universe

associated with the type for class S in the universe T belongs to. Furthermore,

there are type schemes for read-only types (C<ro>), and primitive types.

The subtype relation on type schemes resembles the subtype relation on

types. Since read-only type schemes are supertypes of the corresponding refer-

ence type schemes, the cast operation can be used to downcast expressions of

read-only type schemes to reference type schemes. As for ordinary casts, a dy-

namic check guarantees that the dynamic type of the right-hand-side object is

a subtype of the type of the left-hand-side variable and therefore refers to the

same universe.

Informal Type Rules. Three basic rules guarantee type safety of the universe

type system (cf. [MPH00b] for a formalization): (1) A type scheme combinator

(see appendix) is used to determine the type schemes for �elds accesses and

method invocations. The resulting type scheme must not be unde�ned to guar-

antee that an expression does not evaluate to a (non-read-only) reference that

points \two steps down" in the universe hierarchy (e.g., by reading an object

scheme �eld on an object scheme variable). (2) To keep object universes on the

same level of the universe hierarchy disjoint (except for read-only references),

all local variables/formal parameters of object type schemes refer to the object

universe of this. To check this property statically, �elds of object type schemes

and methods with object type schemes as result/parameter type schemes may

only be accessed/invoked on this. (3) Neither writing �eld access nor method

invocation is allowed on read-only references

The Universe Invariant. In every well-typed state, each instance variable and

each local variable/formal parameter holds a value of a subtype of the declared

type of the variable. Thus, if object X references object Y exactly one of the

following cases holds:3 (1) X and Y belong to the same universe; (2) Y belongs

to the object universe owned by X ; (3) Y belongs to a type universe owned by

X ; (4) the reference is read-only.

This invariant guarantees the following representation containment property:

All access paths from the root universe to a representation object X that do not

contain read-only references pass through owners of X 's universe.

3 Again, local variables/formal parameters behave like instance variables of this.



4 Example

We illustrate the application of object and type universes, and of read-only

types by two implementations of a doubly linked list. Our examples contain two

patterns that cannot be handled in other type systems for alias control: Binary

methods and cooperating objects that access a common representation.

Doubly Linked Lists. Our list implementation consists of a class Node for the
node structure and a class List for the head of the list. Since the list is supposed
to contain objects of any universe, Node's elem �eld is declared read-only. Each
node structure exclusively belongs to one list header. Therefore, the nodes are
stored in the object universe of the list header (first and last use the object
type scheme). The equals method in List takes a read-only parameter. Thus,
it can access its representation and compare it to the representation of this.

class Node { Object<ro> elem; Node prev; Node next; }

class List {

Node<obj> first; Node<obj> last;

public List() {

Node<obj> f = new Node<obj>(); Node<obj> l = new Node<obj>();

this.first = f; this.last = l;

f.next = l; l.prev = f; }

public void appFront(Object<ro> o) { ... }

public boolean equals(List<ro> l) {

Node<obj> n1 = this.first; Node<ro> n2 = l.first;

Node<obj> l1 = this.last; Node<ro> l2 = l.last;

Object o1<ro> = n1.elem; Object<ro> o2 = n2.elem;

while (n1 != l1 && n2 != l2 && o1==o2) {

n1 = n1.next; n2 = n2.next;

o1 = n1.elem; o2 = n2.elem; }

return n1 == l1 && n2 == l2; }

}

At �rst sight, the above example does not require the usage of universes since no

List method returns a reference to a Node object. However, the universe type

system guarantees that subclasses of List cannot introduce additional methods

that violate representation containment. And, what is even more important, it

prevents programmers from accidently writing classes that give away references

to representation objects.

Lists with Iterators. By a variant of the above example, we demonstrate the
use of type universes. The example shows how list iterators can be realized.
Iterators allow one to remove elements from the list. Therefore, they must be
able to modify the list representation and cannot be implemented via read-only
references. To allow lists and iterators to access a common representation, we
use type universes instead of object universes to store the node structure of the
list. To do that, every Node<obj> in the above program has to be replaced by
Node<List>. The same type scheme is used by the implementation of Iter:



class Iter {

List list; Node<List> position; public Iter(List l) { ... }

public boolean hasNext() { ... } public Object<ro> next() { ... }

public void remove() { ... } }

5 Conclusion

We presented a 
exible model for object-oriented programming that supports a

hierarchical structure of the object store. It is a proper extension of the classical

model in which all objects belong to one universe. It supports read-only refer-

ences to express restricted access to objects. Read-only references increase the


exibility of the programming model and simplify the implementation of meth-

ods that need access to two representations. The programming model is realized

by a type system that enforces a special representation containment property.

The representation containment property guarantees that modi�cation of a

representation is only possible by calling a method on a corresponding owner

object. It can be considered as a further step towards \semantic encapsulation",

simplifying program veri�cation and optimization. In addition to this, the un-

derlying programming model might be helpful for a better understanding of

component-based programming approaches and distributed programming.
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A Appendix

Type Scheme Combinator. To determine the type scheme of method invo-

cations and �eld accesses, the following table is used, where the type scheme of

the target of the method invocation/�eld access determines the line, and the re-

sult/parameter/�eld type scheme determines the column (all combinations not

mentioned in the table yield unde�ned). For instance, the �eld access expression

v.f with v and f having type schemes D<obj> and C, resp., has type scheme

C<obj>.

C C<obj> C<T> C<ro> boolean int

D C C<obj> C<T> C<ro> boolean int

D<obj> C<obj> unde�ned unde�ned C<ro> boolean int

D<S> C<S> unde�ned unde�ned C<ro> boolean int

D<ro> C<ro> C<ro> C<ro> C<ro> boolean int
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Abstract. There has been much interest in refactoring recently, but lit-
tle work has been done on tool support for refactoring or on demonstrat-
ing that a refactoring does indeed preserve program behaviour. We pro-
pose a method for developing composite refactorings for Java programs
in such a way that a rigorous demonstration of behaviour preservation
is possible.

1 Introduction

A refactoring is a change made to the internal structure of software that im-
proves it in some way but does not alter its observable behaviour [2]. Refactoring
has increased in importance as a technique for improving the design of existing
code, especially with the advent of methodologies such as Extreme Program-
ming [1] that involve little up-front design and multiple iterations through the
software lifecycle. The earliest significant work on refactoring was the suite of
C++ refactorings developed by William Opdyke [4]. This work was hampered by
the low-level complexities of the C++ language and was never developed into a
practical tool. It did however form the basis for the development of the Smalltalk
Refactory Browser [6]. Smalltalk is a much cleaner language than C++ and this
refactoring tool has been very successful. Its principal limitation is probably
that Smalltalk is not a very widely-used language outside of academia. These
experiences suggest that the Java programming language may be a promising
language to serve as a domain for refactoring development. In spite of the ob-
vious syntactic similarities, it is a much simpler language than C++ and has
become extremely popular in the past number of years.

The ultimate aim of our work is the development of a methodology for the
construction of program transformations that introduce design patterns to a
Java program [3]. The algorithm that describes a design pattern transformation
is expressed as a composition of refactorings using sequencing, iteration and con-
ditional constructs. This type of transformation must not change the behaviour
of the progam, and so it is necessary to be able to calculate if a given composition
of primitive refactorings is itself behaviour preserving. Each primitive refactoring
has a precondition and a postcondition. When applied to a program for which



the precondition holds, the resulting transformed program exhibits the same
behaviour as the original, and the postcondition holds for this program. This
paper describes a technique that, given a composition of refactorings, computes
whether it is a refactoring, and what its pre- and postconditions are.

2 Preliminaries

Is this section we describe the mathematical notation we use and outline the
basic elements of our approach.

2.1 Notation

We use the same notation as Roberts in his refactoring work [5]:

– P : This is the program to be refactored.
– IP : Denotes an interpretation of first-order predicate logic where the domain

of discourse is the program elements of P.
– |=IP preR: Denotes the evaluation of the precondition of the refactoring R

on the interpretation IP .
– postR(IP ): Denotes the interpretation IP , rewritten with the postcondition

of the refactoring R.
– f [(x, y)/true]: Denotes the function f , extended with the new element (x, y).

This syntax is used in postconditions to describe the effect of the refactoring
on the analysis functions.

2.2 Analysis Functions

We do not explicitly build an internal representation of the program; rather the
required information is extracted when needed. Analysis functions are used to
extract this information. They serve a dual role in that they are used both in
specifying the preconditions to the refactorings and as an transformation de-
signer’s view of the program being transformed. An example of the specification
of an analysis function is as follows:

Boolean contains(c:Class, m:Method): Returns true iff the class c con-
tains the method m.

2.3 Helper Functions

In describing a refactoring it may be necessary to extract richer content from
the program code than is provided by the analysis functions. Helper functions
are used to perform this type of task. As they are not at the primitive level of
the analysis functions, we provide them with pre- and postconditions. Helper
functions are proper functions without side-effects on the program, so the post-
condition invariably involves the return value of the helper function itself. For
example the makeAbstract helper function is specified as follows:



Method makeAbstract(c:Constructor, newName:String): Returns a method
called newName that, given the same arguments, will create the same
object as the constructor c.
pre: None.
post: createsSameObject′ = createsSameObject[(c,m)/true] ∧

nameOf′ = nameOf[(m,newName)/true], where m is the returned method.

2.4 Primitive Refactorings

Composite refactorings are built upon a layer of primitive refactorings. Each
primitive refactoring is given a precondition written in first-order predicate logic
and a postcondition that describes the effect of applying this refactoring in terms
of changes to the relevant analysis functions. An argument that behaviour is
preserved by this transformation is also provided. This is not formal, but it is
at least as strong as the argument a programmer would make internally were
they to perform the refactoring by hand. Also, this argument is only made once
by the designer of the primitive refactoring and is effectively reused each time
a new composite refactoring uses the primitive refactoring. As an example, the
addMethod refactoring is specified as follows:

addMethod(c:Class, m:Method): Adds the method m to the class c.
A method with this signature must not already exist in this class or its
superclasses. This refactoring extends the external interface of the class.

pre: isClass(c) ∧ ¬defines(c, nameOf(m), sigOf(m))
post: contains′ = contains[(c,m)/true] ∧

∀ a:Class, a �=c, if equalInterface(a,c) then
equalInterface′ = equalInterface[(a,c)/false].

behaviour preservation: Since a method with the same name and
signature as the method being added is not defined in the class, there
can be no name clashes and no existing invocations of this method.

3 Composite Refactorings

In this section we describe the way in which refactorings are composed, and
present a technique for deriving the pre- and postconditions of a composite
refactoring. The importance of this technique lies in the fact that it allows us
to build complex transformations as a composition of primitive refactorings and
then to check the legality of the composition and calculate its pre- and postcon-
ditions. Here we consider two ways in which refactorings are composed, namely
chaining and set iteration.

Chaining is where a sequence of refactorings are applied one after the other.
For example, the following chain adds methods foo and foobar to the class c.

addMethod(c,foo)
addMethod(c,foobar)



Set iteration is where a refactoring or a refactoring chain is performed on a
set of program elements. For example, the following set iteration copies all the
methods of the class a to the class b.

ForAll m:Method, classOf(m)=a {
addMethod(b,m)

}
A selection statement can also be used. For space reasons we omit it here.

3.1 Computing Pre- and Postconditions for a Chain of Refactorings

A chain of refactorings may be of any length, but we can simplify the compu-
tation of its pre- and postconditions by observing that we need only solve the
problem for a chain of length 2. This procedure can then be repeatedly applied to
the remaining chain until the full pre- and postconditions have been computed.

The two refactorings to be composed are referred to as R1 and R2. For a
general refactoring Ri, its precondition and postcondition are denoted by preRi

and postRi respectively. Figure 1 presents a graphical depiction of this. The

R
2

R
1

PreR1 PreR2PostR1 PostR2

Precomposite Postcomposite

Fig. 1. A Refactoring Chain

precondition of this chain is not simply the conjunction of preR1 and preR2 .
Firstly, postR1 may guarantee preR2 which means that an unnecessarily strong
precondition would result. Secondly, although the precondition for R2 may be
made part of the precondition for the chain, the refactoring R1 may break it
meaning that this composition of refactorings can never be legal.

The technique we present first attempts to compute the precondition of the
chain. During this computation it may emerge that the chain is illegal. Assuming
the chain is indeed legal, its postcondition is computed.

1. Legality test and precondition computation: First we compute the parts of
preR2 that are not guaranteed by postR1 :

|=postR1 (IP ) preR2

If a contradiction arises in this evaluation, the chain is illegal. The post-
condition of the first refactoring creates a condition that contradicts the
precondition to the second refactoring.
The precondition of the complete chain is obtained by evaluating:



preR1∧ |=postR1 (IP ) preR2

A contradiction can arise in this evaluation as well, and this also means
that the chain is illegal. In this case the precondition to the first refactoring
demands a certain condition that contradicts the precondition to the second
refactoring, and the first refactoring does not change this condition.

2. Postcondition computation: The postcondition is obtained by “sequentially
ANDing” the postconditions. By this we mean that if postR1 ∧ postR2 leads
to a contradiction, the part of postR1 that causes the problem is dropped.
So if postR1 contains the mapping:

classOf ′ = classOf [(foo, c)/true]
and postR2 contains the mapping:

classOf ′ = classOf [(foo, c)/false]
then it is classOf ′ = classOf [(foo, c)/false] that becomes part of the post-
condition of the chain. Denoting this operator as ∧seq we state the postcon-
dition of the chain to be:

postR1 ∧seq postR2

3.2 Computing Pre- and Postconditions for a Set Iteration

A set iteration has the following format:

ForAll x:someProgElement, somePredicate(x,...) {
someRefactoring(x, . . . )

}
where “. . .” denotes the program entities that are arguments to the predicate
and/or arguments to the refactoring. If the set of x of type someProgElement
that satisfies somePredicate(x, . . .) is given as {x1, x2 . . . , xn}, then this itera-
tion may be viewed as the following chain:

someRefactoring(x1, . . .)
someRefactoring(x2, . . .)
. . .
someRefactoring(xn, . . .)

However this is a set iteration, so the refactorings can take place in any order.
In particular any of them can be first and this fact enables us to define when a
set iteration is legal and what its pre- and postconditions should be.

1. Legality test : A set iteration is illegal if the precondition of any component
refactoring depends on the postcondition of another component refactoring.
It is also illegal if the postcondition of any component refactoring contradicts
the precondition of another component refactoring.

2. Precondition computation: The precondition of the first refactoring of a chain
must form part of the precondition for the whole chain, so the precondition
of the set iteration must be at least the ANDing of the preconditions of
each of the component refactorings. Nothing stronger is required, so the
precondition for the above chain can be expressed as:



i=n∧

i=1

presomeRefactoring(xi,...)

3. Postcondition computation: By a similar argument, the postcondition for the
above chain can be expressed as:

i=n∧

i=1

postsomeRefactoring(xi,...)

The legality test for a set iteration is not as prescriptive as in the chaining
case. It is usually necessary to study the general postcondition carefully to ensure
that it has no impact on the precondition on another iteration. It has nevertheless
proved to be useful in the cases we have examined.

4 Conclusions

We have described a method for building composite refactorings based on a set
of primitive refactorings. Our layer of primitive refactorings are Java-specific,
though in principle they could be defined for another language as well. The
method of computing the pre- and postconditions of a composite refactoring is
similar to Roberts’ approach [5], but our work improves on this in several ways.
We explicitly calculate whether or not a composite refactoring is legal and we
also compute its postcondition as we want to be able to use this composite as
a component in future composite refactorings. Roberts also only permits chains
of refactorings and does not consider any type of iteration.

We have successfully designed and implemented several composite refactor-
ings that introduce design patterns to a Java program. The techniques described
here improved our confidence greatly that the transformations are behaviour pre-
serving. The computation of pre- and postconditions is currently performed by
hand by the designer of the design pattern transformation, but our aim is to
automate much of this work in the future. We believe that the layer of primi-
tive refactorings we have built coupled with the composition method provides a
useful support for further work in the area of refactoring of Java programs.
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3. Mel Ó Cinnéide and Paddy Nixon. A methodology for the automated introduction
of design patterns. In Hongji Yang and Lee White, editors, Proceedings of the Inter-
national Conference on Software Maintenence, pages 463–472, Oxford, September
1999. IEEE Press.

4. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD dissertation,
University of Illinois at Urbana-Champaign, Department of Computer Science, 1992.

5. Donald Roberts. Eliminating Analysis in Refactoring. PhD dissertation, University
of Illinois at Urbana-Champaign, Department of Computer Science, 1999.

6. Donald Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk.
Theory and Practice of Object Systems, 3(4), 1997.



136 

 
 

Java Access Protection through Typing 
 

E. Rose, K. Høgsbro Rose 



Java Access Protection through Typing?

Eva Rose1 and Kristoffer Høgsbro Rose2

1 INRIA-Rocquencourt (GIE Dyade); Domaine de Voluceau, Rocquencourt B.P. 105;
F–78153 Le Chesnay (France)
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Abstract. We propose integrating field access in general, and dedicated read-
only field access in particular, into the Java type system. The principal gain is
that “getter” methods can be eliminated such that

– fast static lookup can be used instead of dynamic dispatch for field access
(without requiring a sophisticated inlining analyses),

– the (noticeable) space required by getter methods is avoided,
– denial-of-service attacks on field access is prevented, and
– access protection violations can be discovered by the bytecode verifier thus

further simplifying the required run-time support.

We obtain this by extending a formalization of the Java bytecode verifier with
access control so we can prove that the change is safe and backwards compatible.

1 Introduction

Object-oriented programming languages in general, and Java in particular, do
not distinguish between read- and write-access to fields. Instead the recom-
mended method to only permit read access to a field is to make the field private
and write a “getter” method that accesses the field and returns the stored value.

For Java, the semantics of field access states that the actual field location
accessed in an object can be determined statically (at compile-time), whereas
the actual getter method invocation is determined dynamically (at run-time) [1,
§15.10.1]. This has the following consequences:

– Using a getter method is significantly slower (at run-time) than using a direct
field access. (The traditional remedy for this is to declare getter methods
final which permits the compiler toinline its body, i.e., insert the field
access instruction directly at the invocation place. In Java this is frequently
not feasible because Java employsdynamic class loading which means that
often a class to inline from is not available when installing a class using a
getter method.)

? Extended abstract .



– It is possible to access the field belonging to a particular (super)class of an
object by simply casting the object of the field access to the appropriate
class. One cannot obtain a similar effect with a getter method. (One may see
this as a feature rather than an inconvenience.)

– “Denial-of-service” attacks are possible in that a getter method can be over-
riden by a subclass. (This can also be avoided by declaring the method
final.)

– Finally, getter methods may add a significant space overhead to class files
since they must be declared and their code given. For example, getter meth-
ods account for about one fourth of the total number of methods in the stan-
dard Java “java.*” package source classes.1

Furthermore theJava virtual machine (JVM) specifies that field access control
is performed through (dynamic) load and run time checks. This seems a shame
since everything else about fields is static.

Here is a traditional example with a getter method: an object that simply
contains an integer value that should be publicly readable.

class CrCardRd1 {
int it;
public int getIt() {return it;}

}

Access to theit field value of an objectcc of type CrCardRd1 requires the
method invocationcc.getIt() with the problems discussed above.

In this paper we propose a simple modification in two steps that eliminates
the problem altogether:

1. add a specialget-specific access modifier that permits making the reading of
a field “more public” than the modification of it, and

2. integrate field access checks into the type system.

In effect we propose replacing the above code with

class CrCardRd2 {
read public int it;

}

which explicitly permits everyone to read off the field value with the usual field
access syntaxcc.it (but not to assign to it).

1 This measure obtained for Sun’s JDK 1.1 [4] with the unix commands “find jdk1.1
-name ’*.java’ -exec grep ’ +public .*(’ ’{}’ ’;’ | wc -l” to get the total
number of public methods (4317), and “find jdk1.1 -name ’*.java’ -exec egrep
’ +public .* get.*(’ ’{}’ ’;’ | wc -l” to get the number of getter methods (999).
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same class X X X X

other class, same package� X X X

subclass outside package� � X X

other class outside package� � � X

Table 1. Java Access Modifiers.

Plan. In section 2 we propose a mininimal extension of the Java language [1]
with the desired semantics, and since the Java runtime environment is centered
around the JVM [2], we exlain how the modification could be specified for the
JVM. In section 3 we then explain how we can integrate field access into the
type system of the JVM to be performed by the JVMbytecode verifier. Finally,
we conclude in section 4 with some remarks on future work.

2 Read-only Field Access in Java

Recall that the Java access “modifiers” change the access rights as shown in
table 1. (The “package” modifier is the default assumed when no modifier key-
word is present and the table hasX when access is permitted and� when it
is not.) Notice that the permissions are strictly included in each other and, in
fact, statically checkable, since both the class hosting the field and the method
attempting to access it are statically known.

We propose to extend the Java language with syntax for specifying an access
modifier specific toreading a field value. This can be done with the following
syntax extension to the Java Language Specification [1, §8.3.1]:

FieldDeclaration:
FieldModifiersop ReadModifierop Type VariableDeclarators ;
: : :

ReadModifier:
read AccessModifierop

The semantics of the new construction is that we must separate fieldaccess
from field assignment: an access that is not an assignment,i.e., is not a Java
LeftHandSide [1, §15.25], is permitted if either of the (original) field access
modifier or the specific read access modifier (if any) permits it.



By using “either” we ensure that our extension is conservative in that old
systems ignoring the read modifier will always be strictly less permissive than
new ones.

This change permeates through to the JVM [2] where it could be realized
directly by extending theaccess flags item of thefield info structure and
modifying thegetfield semantics correspondingly, however, we will prefer to
integrate it into the type system as described in the next section.

3 Field Access Types

At present field access rights are checked for thegetfield instruction both at Java
verification time, for the declared “static” type [2, §4.8.2, p.138], and again at
run-time, using the real “dynamic” type [2, §6.4, p.248].

Our idea is the following: if access information is integrated into the type
system then

1. the bytecode verifier can check for access violations assuming that the pro-
vided access information (in the type) is correct, and

2. resolution requires equality of the used and actual type.

Thus once resolution has happened the system has checked that no access vio-
lation can happen.

Formalizing this is based on the ordering

private< package< protected< public

(where larger access rights define more accessible fields).
Assume a field is declared like

class c1 {
w read r t f;

}

with c1 the class hosting the field,w the “write” access modifiers,r the “read”
access modifiers,t the field (value) type, andf the field name. Consider an
access in a classc from within some method with code like

c2 x;
: : : x.f : : :

(with c2 a subclass ofc1). When we include the access modifiers in the type
information this means that the field access generates the JVM instruction

getfield(c1; w read r t ;f)

where we note that the bytecode (as usual) contains



– the class where the field is declared:c1,
– a copy of the (complete) type of the field extracted from the original defini-

tion:w read r t, and
– the field name:f.

We will express the static check for access rights of the above situation by ex-
tending the JVM type checking (verification) rules with a judgment like

c ` getfield(c1; w read r t ;f)

defined by

c ` getfield(c1; w read public t ;f)

r� protected c�: c1

c ` getfield(c1; w read r t ;f)

r� package same-package(c;c1)

c ` getfield(c1; w read r t ;f)

c ` getfield(c; w read private t ;f)

Notice that it is the fact that the checks in table 1 are static that makes this
possible since the verifier merely needs to be able to determine whether two
classes belong to the same package and whether the current class is a subclass
of the class owning the field; both can be checked with information readily
available. There are similar rules forputfield checking thew component of the
type, of course.

All that remains is to encode the access modifiers into the JVMFieldDe-
scriptor encoding [2, §4.3.2]: the existing type equality test at resolution time
will ensure that the verifier has not made false assumptions. (The encoding is
not difficult but outside the scope of this paper.)

In the full paper we integrate the above rules into our formalization of a
Java bytecode verifier [3], and show that “well-access-typed” programs cannot
violate field permissions.

4 Conclusion

We have outlined how access rights to fields, and specificallyread-only access
rights, can be encoded in the Java type system as implemented by a (slightly



modified) Java bytecode verifier, thus eliminating all access right checks at run-
time.

One very interesting further venue of research is that using “access types”
could be used to implement “sticky” access rights such as “private objects”
where thevalue cannot be passed out of the current method, for example.

One may comment that “static is bad because everything should be run-time
configurable.” This possibility remains (using setter and getter methods) but we
believe it is important to give the programmer of a class the choice of permitting
(efficient) build-in static field access even for read-only fields, specifically for
the variants of Java targeted at devices with limited resources [5].

Another question that one could ask is “why not for ‘setter’ methods?” This
can be done but is complicated by the fact that “setter” methods usually also
check the value to be stored for validity to ensure that the object is (internally)
consistent. One could introduce special “validity checks” such that our getter
example could be extended, for example, with a

class CrCardRd raises IllegalCreCaIt {
protected read public int it
{if (it<0) raise IllegalCreCaIt;}

}

with the semantics that any assignment toit would execute the additional “as-
sertion” code. Such an addition may be worth considering, however, in contrast
to the read-only case it complicates the Java language considerably.

Finally we remark that the above can without problems be integrated with
lightweight bytecode verification [3], as used by Sun’s KVM [6], to permit static
access control even in sparse resources.
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Abstract. We suggest an escaping analysis for Java programs, to iden-

tify stack-allocatable objects. This analysis considers an object escaping

if it is used after the deactivation of the method that created it. For

each object, this analysis records the interprocedural movement of the

method of its creation. An object is considered escaping the method that

created it, if the method of its creation has been already deactivated. Our

approach is di�erent from prior works, in that special cares of non-local

variables need not be taken. This enables us to handle some cases that

are missed in the previous approach. The whole analysis is done in a

single phase.

1 Introduction

Garbage collecting objects in Java makes memory management easier for the

programmer, but it is time consuming { stack allocation may be an alternative

[1, 3, 5]. This article presents a static analysis to identify the objects that never

escape the method of their creation.

The analysis is based on the fact that an object escapes the method that

created it, if and only if it is used after the method is deactivated[4]. To identify

such cases, we record for each object its interprocedural behaviors of the method

that created it. At each expression using the object, the analysis checks if its

record contains the sign for the deactivation of the method of its creation. If so,

the object is deemed escaping the method; otherwise, it can be allocated in the

? This work is done while the �rst author was associated in ROPAS

(http://ropas.kaist.ac.kr), KAIST in 1999 { 2000.
?? This work is supported by Creative Research Initiatives of the Korean Ministry of

Science and Technology, and by Brain Korea 21 project.



method stack. This approach is quite di�erent from conventional analyses, which

consider objects escaping as long as they are assigned to non-local variables,

irrespective of whether they are actually used or not.

The analysis is done in a single-phase, based on abstract interpretation[2].

We consider a core of Java for presentation simplicity. The abstract syntax is

shown in Figure 1. We assume one formal parameter for each method, one �eld

variable for each object and no arrays. We do not consider loops, which can be

simulated by recursions. Neither do we consider local variables since they make

no important e�ects on our analysis. And `this' cannot be abbreviated in the

expressions for �eld access and method invocations upon it.

Except the case that finalize methods destroy the objects in sequence, no

ordering on the destruction of objects is assumed, such as the one forced by

run-time garbage collection.

P ::= C�e e ::= x
C ::= class c ext c fvar x� M�g j head:x
M ::= method m(x)=e j x := e

j head:x := e
c class name j new c
m method name j e ; e
x variable name j this

j if e then e else e
j e:m(e)

head ::= head:x
j this
j x

Fig. 1. Syntax of the language

2 Analysis

To safely estimate the information of interprocedural behavior, we build an ab-

stract interpreter. Iterative evaluation of the interpretation function reaches to

a �xed point that is our analysis result.

At the creation of each object, we start recording the interprocedural move-

ments of the method that created it by encoding the movements into seven types

of abstract entities: P̂ = f?; �; u; uu+; dd+; ud; ud+g. For the object o, let the

method that created it be m; � indicates that no activation/deactivation of m has

happened; u (upward movement of the stack pointer) means that an instance

of m is deactivated (returned); uu+ and dd
+ respectively means that multiple

instances of m has been deactivated and activated; ud represents one call after

one return from m; ud+ stands for one or more activation after one or more de-

activation of m. The matched pairs of activation and deactivation of the same

instance of m is ignored, which is useless in determining if it is \outside of m or



not". The four interprocedural movements u, uu+, ud, and ud
+ of m for object

o imply that that the object may-escape m. These seven abstract symbols cover

all the cases of interprocedural movement of m after the creation of o.

This record of the interprocedural behavior is based on the concept of proce-

dure string in Harrison's work[4]. He proposed an escaping analyses for functional

languages, to handle implicitly created objects such as cons cells and closures.

Procedure string is the sequence of �u's and �
d's to record the interprocedural

behavior of running programs, where � is a function (method) name. An abstract

value of a procedure string is a mapping from the function (method) names to

subsets of the set f�; u; uu+; d; dd+; ud; ud+g.

Note that we do not use d, which would indicate a single call of method m that

created the object o. It would happen only if another instance of m is invoked

before the existing instance of m, which created o, is deactivated. This means

that the program part responsible for d must include recursive call of m, which

would always result in dd
+. In addition, we have a new type ud, representing a

single pair of deactivation and invocation. This enables us to handle the repeated

but non-recursive invocations of m, which were abstracted in the same way as

recursive invocations of m in [4].

An abstract memory object is identi�ed by the new expression together with

the record of interprocedural movement of the method of its creation. The former

one ensures that for each new expression, at least one abstract object is identi�ed.

The latter one is useful when a new expression creates more than one object, as

in loops or in recursive functions. 2
^ORef in heap, environment and escaping is

the set of ideals ordered by set inclusion.

The interpretation function Ê takes a pre-state and returns a post-state,

where a pre-state is an element of ^
Env � ^

Heap � ^
Escape, and a post-state is

an element of 2
^ORef � ^

Env � ^
Heap� ^

Escape. The �rst element of a post-state

represents a set of abstract objects, the possible result of a given expression. Each

pre-state and post-state describes the current heap, the current environment and

escaping information. A heap maps each object to its possible �eld values, which

are again objects. head:x refers the heap; head:x:=e and new� c change the heaps.

An environment consists of the pairs of sets of objects for the variable this and

those for the parameter x. It is accessed by the expressions x and this, and

modi�ed by x:=e. Modifying this is impossible.

Domains

labels for new expressions � 2 B

interprocedural behavior p̂ 2 P̂ = f�; u; dd+; uu+; ud; ud+g [ ?
object reference r̂ 2 ^ORef = B? � P̂?
heap ĥ 2 ^Heap = ^ORef ! 2

^ORef

environment �̂ 2 ^Env = 2
^ORef � 2

^ORef

escaping ê 2 ^Escape = B? ! f>;?g



Ê 2 Expr! ( ^Env � ^Heap� ^Escape)! (2
^ORef � ^Env � ^Heap� ^Escape)

F̂ 2 (Expr! ( ^Env � ^Heap� ^Escape)! (2
^ORef � ^Env � ^Heap� ^Escape))!

(Expr! ( ^Env � ^Heap� ^Escape)! (2
^ORef � ^Env � ^Heap� ^Escape))

F̂Ê [[ x ]]h �̂; ĥ; ê i = h snd(�̂); �̂; ĥ; ê i

F̂Ê [[ this ]]h �̂; ĥ; ê i = h �(this); �̂; ĥ; ê i

F̂Ê [[ head:x ]]h �̂; ĥ; ê i = let h r̂s; �̂; ĥ; ê1 i = Ê [[ head ]]h �̂; ĥ; ê i

in h ReadH ĥ r̂s; �̂; changeE ê1 r̂s i

F̂Ê [[ x:=e ]]h �̂; ĥ; ê i = let h ^rs1; �̂1; ĥ1; ê1 i = Ê [[ e ]]h �̂; ĥ; ê i

in h ^rs1; h fst(�̂1); snd(�̂2) t ^rs1 i; ĥ1; ê1 i

F̂Ê [[ head:x:=e ]]h �̂; ĥ; ê i = let h ^rs1; �̂; ĥ; ê1 i = Ê [[ head ]]h �̂; ĥ; ê i

h ^rs2; �̂2; ĥ2; ê2 i = Ê [[ e ]]h �̂; ĥ; ê1 i

in h ^rs2; �̂2;WriteH ĥ2 ^rs1 ^rs2;

changeE ê2 ^rs1 i

F̂Ê [[ new� c ]]h �̂; ĥ; ê i = let r̂ = h �; � i r̂s = fr̂g

in h r̂s; �;WriteH ĥ r̂s fInitF ield(c)g; ê i

F̂Ê [[ e1:m(e2) ]]h �̂; ĥ; ê i = let h ^rs1; �̂1; ĥ1; ê1 i = Ê [[ e1 ]]h �̂; ĥ; ê i

h ^rs2; �̂2; ĥ2; ê2 i = Ê [[ e2 ]]h �̂1; ĥ1; ê1 i

in
8>>>>>>><
>>>>>>>:

h ^rs1; �̂; ĥ; ê i if ^rs1 = ?F
pairwise

f h ^UpRs ^rs3 �; �2; ^UpH ĥ3 �; ê3 i j

h ^rs3; �̂3; ĥ3; ê3 i = Ê [[ e ]]

h ^DownEnv h fr̂g; ^rs2 i �; ^DownH ĥ2 �;

changeE (changeE ê2 ^rs2)fr̂g i

^ ��x:e = ^Method(snd(r̂);m) ^ r̂ 2 ^rs1 g
otherwise

F̂Ê [[ e1; e2 ]]h �̂; ĥ; ê i = let h ^rs1; ŝ1; ĥ1; ê1 i = Ê [[ e1 ]]h �̂; ĥ; ê i

in Ê [[ e2 ]]h �̂1; ĥ1; ê1 i

F̂Ê [[ if e1 e2 e3 ]]h �̂; ĥ; ê i = let h ^rs1; �̂1; ĥ1; ê1 i = Ê [[ e1 ]]h �̂; ĥ; ê i

in Ê [[ e2 ]]h �̂1; ĥ1; changeE ê1 ^rs1 iF
Ê [[ e3 ]]h �̂1; ĥ1; changeE ê1 ^rs1 i

Fig. 2. De�nition of abstract evaluation function



The method is invoked with a new environment that consists of the receiver

and the parameter as its this and x; the previous environment is restored af-

ter the method is returned. The evaluation of method invocation updates the

record of the interprocedural behavior for the objects related. This assigns new

identi�ers to the objects, since the record is a part of the object identi�er. To

hide the complexity of this operation, auxiliary functions pre�xed with Up and

Down are introduced. They also adjust the heap and the environment to the

new object identi�ers. The de�nitions of auxiliary functions are in the appendix.

The result of the analysis is collected in ê, a mapping from each new ex-

pression to f>;?g, where > means may-escaping and ? means never-escaping.

At the beginning of the analysis, the ? value is assumed for every new expres-

sion. The value is updated to > whenever one of the objects created by the

new expression is possibly used. Here, \using" an object means that the object

is accessed. Thus, changeE, updating operation for ê, is applied whenever the

objects in heap are referenced: reading/writing the objects, passing the objects

to the methods as actual parameters are passed, and so on. Note that, during

the abstract evaluation the escaping value is only increasing from ? to >, which

makes the iterative application of the abstract monotonic interpreter (collecting

the escaping information) reach a �xed point within a �nite time.

The correctness of our analysis is shown by the following theorem. fixF [[ expr ]]

is a concrete semantics of the language. We abuse the terms `pre-state' and `post-

state' in the theorem for the ones before the abstraction.

Theorem 1. For any expression expr,

Abspost-state Æ fix F [[ expr ]] v fixF̂ [[ expr ]] ÆAbspre-state

3 Related Works

Unlike our analysis, previous escaping analyses for Java[1, 3, 5] consider an ob-

ject escaping the method that created it, as soon as it is assigned to global

variables, parameters, and/or return variables. Thus, they miss the objects that

are assigned to such variables, but not actually used outside the methods of

their creation. As far as we know, this analysis, considering actual using points

of objects, is the only one to cover such cases.

Blanchet[1] proposed a type-based and two-phase (a backward phase and a

forward phase) escaping analysis. Like our work, he build an abstract interpre-

tation and de�ned more than one abstract objects for each new expression.

4 Conclusions

This paper introduces a single phase escape analysis based on abstract interpre-

tation to determine if an object is stack-allocatable. By recording the interproce-

dural movement of the method of creation for each object, this analysis considers

an object stack allocatable as long as it is not actually used after the method

of its creation is deactivated. We are now concentrating on the cases with the

unknown methods, and implementing the analysis to obtain experimental result.



Appendix : Auxiliary functions

changeE = �ê:�r̂s

8<
:
? if ê = ?

��:

(
ê(�) t > if p̂ 2 fu; uu+; ud; ud+g

for some h �; p̂ i 2 r̂s
ê(�) otherwise

)
otherwise

ReadH = �ĥ:�r̂s:
F
r̂2r̂s

ĥ(r̂); WriteH = �ĥ:� ^rs1:� ^rs2:�r̂:

(
? if r̂ = ?
ĥ(r̂) if r̂ 62 ^rs1
ĥ(r̂) t ^rs2 otherwise

� u d+ uu+ ud ud+ ?
�d fdg fudg fd+g fud+g fud+g fud+g �

�u fug fuu+g f�; d+g fuu+g fug fu; uu+; ud+g �
	d � � f�g � fug fu; uu+; ud+g �
	u � f�g � fu; uu+g � � �

^DownR = �h �; p̂ i:��:

(
? = � if h �; p̂ i = ?

fh �; p̂0 ijp̂0 2 p̂� dg if birthmethod(�) = �
fh �; p̂ ig

DownRs = �r̂s:��:

n
� if r̂s = �
fDownR r̂ �jr̂ 2 r̂sg otherwise

^DownH = �ĥ:��:�h �; p̂ i:

8<
:
? if ĥ = ? = �

tf ^DownR ĥh �; p̂0 i �jp̂0 2 p̂	 dg if birthmethod(�) = �
^DownR ĥ h �; p̂ i � otherwise

^DownEnv = ��̂:��:

(
h �; � i if �̂ = ?
h
F
fDownR r̂ � j r̂ 2 fst(�̂)g;F

fDownR r̂ � j r̂ 2 fst(�̂)g i otherwise
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Abstract. The combination of overloading and inheritance in Java in-
troduces questions about function selection, and makes some function
calls ambiguous. We believe that the approach taken by Java designers
is counterintuitive. We explore an alternative, and argue that it is more
intuitive and agrees with the Java rules for the cases where Java con-
siders the function calls unambiguous, but gives meaning to more calls
than Java does.

1 Overloading and Inheritance

Overloading, already present in the seventies (LIS, Ada, Hope), allows the de�-
nition of several, di�erent, functions with the same name and di�erent parame-
ter types. Thus, the programmer is freed from the burden of dreaming di�erent
identi�ers for functions which perform essentially the same operation, but on dif-
ferent types of parameters. Overloading is usually resolved statically1, namely,
the function that �ts the actual parameter types is selected. Thus, overloading
resolution corresponds to consistent renaming of the function de�nitions and the
corresponding function calls.

Inheritance, already present in the sixties (Simula), allows classes to be or-
ganized in a class hierarchy, and either to inherit functions from their superclass
or to rede�ne these functions. When a function is called for a certain object, the
function from the most speci�c superclass is called. Resolution for inheritance
can only take place at run-time, and depends on the dynamic class of the re-
ceiver. Inheritance introduces subtyping, namely an object of a subclass may be
used where an object of a superclass is expected.

The combination of subtyping and overloading is not straight-forward, since
now more than one method may �t the types of the arguments of a function call.

Java overloading resolution Assume that Oyster is a subclass of Food, and that
aPhl, pascal, aFood and anOyster are variables of type Phil, FrPhil, Food and
Oyster respectively. Consider the following example:

1 Dynamic resolution is also possible, as it actually happens in object-oriented lan-
guages for the �rst argument and for all arguments in languages with multimethods;
see [1] for a deep analysis of the di�erence. In this paper, we only consider overloading
with static resolution.



class Phil extends Object f
int eat ( Food x ) f return 1; g
int eat ( Oyster x ) f return 2 ;g

g

class FrPhil extends Phil f
int eat ( Food x ) f return 3; g

g

For the method call aPhl.eat (anOyster ), two methods are applicable,
both declared in the class Phil: one with parameter type Food (returning 1) and
one with parameter type Oyster (returning 2).

In cases where several methods are applicable, Java (and C++ before) took
the approach of selecting the method that \�ts" best, calledmost speci�c.2 In the
call from above, it is clear that the method with parameterOyster �ts better than
the method with parameter Phil, therefore this method is selected. In general,
if many methods declared in the same class are applicable, then that with most
speci�c argument's type is selected, if any, otherwise3 the call is ambiguous.

Much less obvious is the case when we have to compare methods declared
in di�erent classes, like in the method call pascal.eat (anOyster). Here, both
the method returning 2 and that returning 3 are applicable, and in Java's view
none �ts better than the other, hence the method call is ambiguous.

In our experience, many people (even with a deep knowledge of Java) are
unaware of the implication of the Java overloading resolution in this case, and
expect on the contrary that the method returning 2 is selected. In our opinion
this is so, because the latter solution corresponds to an intuitive understanding
of inheritance semantics. This is explained in the next section.

Alternative overloading resolution In our view the method call pascal.eat (anOyster)
should not be ambiguous, and should return 2. This view is based both on
methodological and language semantics reasons.

On the methodological side, an implication of the Java rule is that program-
mers who use a class and want to be aware of how method overloading will be
resolved need to know not only which methods are inherited, but also the exact
class containing the de�nition of these inherited methods. This con
icts with
a modular approach to software development where all the information needed
for the correct use of a module (class in this case) should be provided by its
speci�cation alone.

For instance, the speci�cation of class FrPhil states that this class has two
methods int eat ( Food x ) and int eat ( Oyster x ). However, with this
information only, users cannot know which will be the e�ect of the call pascal.eat
(anOyster).

2 Another solution would be to avoid the occurrence of such situations where several
methods are applicable, and forbid the de�nition of overloaded methods with param-
eter types with non-empty intersections of sets of values. This would make the class
Phil from above illegal. However, such a solution would restrict overloading only to
non-class, non-interface parameter types, since the value null belongs to all classes.

3 For instance, if there are two applicable methods with two arguments with types
Food,Oyster and Oyster,Food, respectively.



The counterpart at the level of language semantics is that inheritance should
be explainable as a mechanism for code sharing. In other words, a natural intu-
itive understanding of inheritance is as a linguistic mechanism allowing to get
for free the same e�ect that one could obtain \by hand" by duplicating parent's
code in the heir. Thus, the subclass FrPhil should be equivalent to a copy of Phil,
where the overriden methods of Phil are replaced by the corresponding methods
from FrPhil. That is, FrPhil should be equivalent to FrPhil by Copy, de�ned as:

class FrPhil by Copy extends Phil f
int eat ( Oyster x ) f return 2; g
int eat ( Phil x ) f return 3; g

g

Then, for a variable rousseau of class FrPhil by Copy, the call rousseau eat
(anOyster ), would be unambiguous, and would return 2. Therefore, by analogy,
the call pascal.eat (anOyster) should return 2 as well!

2 The alternative approach \subsumes" the Java
approach

The alternative approach corresponds to the Java approach for all cases where
Java considers the method call unambiguous. As we have seen, in some cases
where Java considers the call ambiguous the alternative gives it an unambiguous
meaning.

The rest of the paper is devoted to the proof of this claim.
For simplicity, and without restricting the applicability of our result, we

assume that all methods have one parameter.
Moreover, we start from considering only non-abstract classes. The general-

ization to interfaces and abstract classes requires more involved de�nitions and
will be considered in the full paper [2].

Both the Java approach and the alternative approach start from the same
set of applicable methods, which are all the methods of the receiver's class, either
directly declared or inherited (that is, declared in a superclass and not overidden,
cf. [3] 15.11.1) , which are type compatible with the given method call, cf. [3]
15.11.2.1), but they di�er in the way they consider methods to \�t better" than
others.

Sets of applicable methods are denoted by A, A0 etc., and contain method
types. Method types consist of the class containing the method declaration, the
argument type and the result type.

For example, the applicable methods for the call aPhl.eat (anOyster ) are
A1 = f< Phil;Food; int >;< Phil;Oyster; int >g.

Also, the applicable methods for the method call pascal.eat (anOyster ), are
A2 = f< Phil;Oyster; int >;< FrPhil;Food; int >g.

In Java, a method \�ts better" than another one if the former is de�ned in a
subclass of where the latter is de�ned and the argument types of the �rst widen4

to the corresponding argument types of the second, cf. [3] 15.11.2.2.

4 A type t widens to another type t0 if they are identical, or t is a subclass of t0, or t

is a subinterface of t0, or t is a subclass of a class that implements a subinterface of
t0, cf. [3] 5.1.4 .



On the other hand, for the alternative de�nition, a method \�ts better" than
another one if the argument types of the former widen to the corresponding
argument types of the latter.

So, we de�ne the following two ordering relationships on method types:

{ < t1; t2; t3 > �j < t0
1
; t0

2
; t0

3
> i� t1 subclass of t0

1
and t2 widens to t0

2

{ < t1; t2; t3 > �a < t0
1
; t0
2
; t0

3
> i� t2 widens to t0

2

Notice that, by de�nition of applicable methods, there can be at most one
applicable method with a given name and argument type, hence the ordering
relationship �a can be equivalently de�ned as follows:

< t1; t2; t3 > �a < t0
1
; t0

2
; t0
3
> i� t2 widens to t0

2
, t2 6=t0

2
, or

t2=t0
2
and t1 subclass of t0

1

The equivalence follows from the fact that if t2 = t0
2
then also t1 subclass

of t0
1
for the reason explained above. This formulation point out that the two

ordering relationships correspond to two di�erent ways of combining the ordering
relationships existing on the �rst and second component of method types, that
is, componentwise and lexicographical from right to left.

For example,< Phil;Oyster; int > �j < Phil;Food; int >, and similarly, in the
alternative approach, < Phil;Oyster; int > �a < Phil;Food; int >. This makes
the call aPhl.eat (anOyster ) unambiguous in both approaches.

On the other hand, < Phil;Oyster; int > �a < FrPhil;Food; int >, but the
method types are incomparable in the sense of �j . So, pascal.eat (anOyster )
is unambiguous in the alternative approach and ambiguous in Java.

It is easy to see that both �j and �a are re
exive and transitive. The
relation �j is antisymmetric if the program is well-formed (i.e., if the subclass
relationship is acyclic), whereas the relation �a is not antisymmetric: a coun-
terexample would be a method de�ned in class c1 and de�ned with the same
parameter type in whichever di�erent class c2. Also, one can immediately see
that �j is stronger than �a , i.e., that:

< t1; t2; t3 > �j < t0
1
; t0

2
; t0

3
> ) < t1; t2; t3 > �a < t0

1
; t0

2
; t0

3
>

Finally, the type of a method call with applicable methods A is de�ned as
the return type of the least method type from A in the sense of the ordering
either �j (in Java) or �a (in the alternative). If this minimum does not exist,
then the method call is ambiguous.

It only remains to be shown that if a set A of applicable methods has a least
element in the sense of �j then this is also the least element in the sense of �a

. This is easy, because �j implies �a .
This completes the proof that the alternative approach is a conservative

extension of the Java approach, in the sense that it gives the same meaning to
all the method calls which are unambiguous for Java.

Another alternative As stated above, the two ordering relationships correspond
to two di�erent ways of combining the ordering relationships existing on the �rst
and second component of method types. It is natural therefore to also consider
a third possibility, which corresponds to lexicographical order from left to right,
that is:



< t1; t2; t3 > �a2 < t0
1
; t0

2
; t0

3
> i� t1 subclass of t0

1
, or

t1=t0
1
and t2 widens to t0

2

Such a rule resolves overloading by selecting the method that �ts �rst. It
searches from the most speci�c subclass following the superclass hierarchy up-
wards, and only takes those overloaded methods into account which were de-
clared in the �rst superclass that contains applicable methods. With this rule
the method call pascal.eat (anOyster) would select the method returning 3.
However, this does not in
uence of course the Java rule for overriding; so, for
instance, in the call aPhil.eat(anOyster) the method declared in Phil with
argument type Oyster is selected (and kept at run time) even in the case aPhl
has dynamic type FrPhil.

It is easy to see that this alternative too is conservative (and less restrictive)
w.r.t. Java rule; indeed, also �a2 is implied by �j . We will further investigate
the methodological implications of this third possibility.

3 Outline of the full paper

We have argued that the Java approach to overloading resolution considers am-
biguous some method calls which would have a meaning if we had taken a more
intuitive view of inheritance, based on copying. We have given an alternative rule
for overloading resolution which gives meaning to more calls than Java does and
gives the same meaning as Java when Java considers a method call unambiguous,
and have proven this result.

We brie
y illustrate now which are the further topics which will be developed
in the full paper [2].

Methodological aspects We will include a survey of the design space of the se-
mantics of method overloading in the presence of subtyping. In particular we will
discuss more extensively advantages and disadvantages of the di�erent possible
choices and analyze what happens in other object-oriented languages, notably
in C++.

Extension to abstract classes and interfaces The main di�erence w.r.t what has
been previously presented is that when considering also abstract classes and
interfaces more than one method with the same signature an be inherited, as
explicitly stated in [3] 8.4.6.4.

Hence, now in applicable methods there can be two methods with the same
name and argument type.

For instance in the following example

interface I1 f
void m ( ) ;

g

interface I2 f
void m ( ) ;

g



interface I extends I1; I2 f
g

the applicable methods for a call i:m() with i of type I are

f< I1; void; void >;< I2; void; void >g:

Hence this call should be ambiguous following the Java rule in [3] (even
though di�erent Java compilers have di�erent, and sometimes obscure, behaviour
on this and similar examples), while the alternative approach corresponds to
assume that the interface I has just one method void m(), regardless of how
many copies have been inherited, hence the call is not ambiguous.

We will show that it is possible to generalize the previous formalization of
the two rules and that the result that �a is a conservative extension of �j still
holds.

An interesting remark is that the above situation shows that there is a con-
tradiction in [3] between the de�nition of overloading given in 8.4.7 and the rule
for overloading resolution, and that this contradiction disappears if one considers
the alternative rule.

Copy semantics of inheritance We have repeatedly stated that the alternative
approach corresponds to an intuitive interpretation of inheritance as a mecha-
nism achieving the same e�ect one would have by copying parent's code in the
heir. In some more detail, that means that a simple way for expressing inheri-
tance semantics is to translate a Java program in an intermediate representation
(which we call Flat Java) consisting, roughly speaking, of a subtype-hierarchy
part and a collection of \
at" classes (that is, without any extends or implements
clause). Methods of one of these classes are all the methods (either directly
declared or inherited) of the original Java class.

In Flat Java there is no longer notion of inheritance, hence in method calls
there is no need for method look-up. Of course, the information about the sub-
typing relation is still needed, but only for type-checking bodies of methods,
while no information about that is needed at run time.

This model corresponds to a natural intuitive understanding of the basic
inheritance mechanism in object-oriented languages; some more sophisticated
features of Java, like the super mechanism and the possibility of hiding �elds, do
not have a direct copy semantics but can be easily simulated.

In [2] we will provide a formal de�nition of copy semantics by means of a
translation from Java into Flat Java and show that, for what concerns overload-
ing, copy semantics leads to the alternative approach we proposed, while the
Java rule is not directly expressible.
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The Java programming language is evolving. Sun releases new versions of

their compilers, sometimes clarifying and amending features of the language [9].

They withdrew the language from the standardization procedure "to ensure

compatibility and continued rapid pace of innovation" encouraging the world-

wide community "to compete on implementation" [11]. Their latest language

description \The Java Language Speci�cation" (JLS) is currently only a draft

document [10].

What this means to programmers, compiler writers and formalizers, is that

on features where the JLS is ambiguous or out-of-date one has to test a feature

on the latest Sun compiler to see what the expected behaviour should be. So

the de-facto speci�cation of Java is obtained by running Sun's latest compiler.

Therefore, we have been developing the Java Test Suite for online, automated,

classi�ed experimenting over Java features as speci�ed in [7].

The Java Test Suite is a web based tool that enables the user to submit

test programs, to specify the expected results for compilation and execution,

to select individual or groups of test programs for features testing, to select

compilers, to run the tests on one or more compilers, and to compare the results

from two points of view: (1) actual and expected behaviour, and (2) programs'

behaviour under various compilers. The test programs and test engine can also

be downloaded for running in the user's own environment.

When working on the operational semantics of Java [4] occasionally we are

told that our semantics are incorrect [2]. Usually we use the test suite to check

the behaviour of di�erent compilers exercising the speci�c feature in question.

Normally what has happened is the language has changed and the semantics has

not kept up. So, old versions of the compiler produce results compatible with

our semantics and the latest compiler produces something di�erent.

Java is a language that loads its classes at runtime. To our knowledge other

test suites for other languages run in batch mode. This would not enable the

testing of behaviours that come from dynamically loading classes. The Java Test

Suite can deal with dynamic behaviours. Classes can be loaded separately, some

changed and then reloaded. In most languages, one can recreate a binary of a

1



program by compiling all the sources together, linking and loading. This is not

necessarily true in Java [5, 6, 3]. It is possible to create an executable over time

where no such sources can exist. This feature can also be tested.

Having a web based application leads to all sorts of potential security prob-

lems. The Test Suite enables users to run programs on our machines. It therefore

could not let people put test programs in directly. Rather they go into a sub-

mission database, and an administrator checks them and moves them into the

actual database of test programs. This is time consuming and we welcome alter-

native solutions to the security problem. We wonder whether this precaution is

actually necessary.

There exist two versions of the suite: the �rst implementation was as CGI

scripts, Perl, SQL [1], the second one as Java servlets [8].

The suite is populated with a wide range of test programs to give a broad

coverage of all Java features. Programs need to be concise and accurate and

should test only one feature. When fully populated we expect it should contain

thousands of programs covering various aspects of Java features. Therefore, we

wish to disseminate the Java Test Suite widely to help populate it quickly. We

are especially interested in Java programs that show behaviour that is surprising.
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