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Abstract. Specification languages that use the same expression language as the
implementation language must decide whether or not to permit functional ab-
straction, i.e., method calls in specification expressions. The difficulty is that a
specification must not change the functional behavior of the associated program.
There are three main current approaches: a) forbid the use of functions in specifi-
cations, b) allow only provably pure functions, or c) allow programmers free use
of functions. The first approach is not scalable, the second overly restrictive and
the third unsound. We propose a definition ofobservational purityfor a class of
benevolent functions and a sound static analysis for detecting them.

0 Introduction

An obvious truth is that a software specification is meant to be a description; it is clearly
not the thing that it is describing. Software specifications which share the same expres-
sion language as the implementation programming language run the risk of blurring
this distinction. When specifications contain expressions that change the state of the
program, then the meaning of the program may differ depending on whether or not the
specifications are present; the two are no longer independent.

Despite this, there are many reasons for using the same expression language in both
an implementation and its specification. To prevent unwanted interference, specifica-
tions are usually restricted to a side-effect free (pure) subset of the expression language.
An important decision to make is whether (programmer-defined) functions belong in the
subset or not: there are three main current approaches.

– The simplest approach is to forbid the use of functions in specifications altogether.
While easy to implement, this solution does not scale and is overly restrictive on
the practical use of specifications. ESC/Java [9] uses this solution.

– From a theoretical perspective, a pleasing solution is to allow only provably pure
functions. However, any realization must be overly conservative and thus overly
restrictive. JML [11] uses this solution.

– An unsound solution is to request for the programmer to refrain from using side-
effects in the functions they write, but to actually allow the free use of functions.
While not restrictive at all (and particularly easy to implement), this means it is not
possible to guarantee that a program’s meaning is unchanged when including its
specification. It also is impractical for library functions that are beyond the control
of the programmer. Eiffel [12] uses this solution.
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We are interested in a sound, practical static analysis that allowsbenignside-effects
so programmers can use functions in specifications as freely as possible. We propose
a definition ofobservational purityand a static analysis to determine it. The intuition
behind observational purity is that a function is allowed to have side-effects only if they
are not observable to callers of the function. As with programs, we restrict our attention
to effects that are observable in terms of the source language (Java or C#) and ignore
effects such as memory usage or power consumption. Our prototypical example of an
observationally pure function is one that maintains an internal cache. Changing this
internal cache is a side-effect, but it is not visible outside of the object. Other examples
are methods that write to a log file that is not read by the rest of the program and
methods that perform lazy initialization. Algorithms that are optimized for amortized
complexity, such as a list that uses a “move to front” heuristic, also perform significant
state updates that are not visible externally. Observationally pure methods often occur
in library code that is highly optimized and also frequently used in specifications, e.g.,
the equality methods in a string library.

Our proposal uses a conservative static analysis together with a mild verification
condition. It appears that for the many simple cases that occur in practice the proposal
requires very little effort on the part of the programmer.

Section 1 begins by discussing the example of a function that maintains an internal
cache. Then we define observational purity in semantic terms. In Section 2 we outline a
static analysis that provides a conservative approximation for observational purity. We
show the resulting annotations induced by the analysis in Section 3. Section 4 discusses
related work and future directions for our work.

1 Observational Purity

Figure 0 shows a classC that contains a methodf which is meant to compute a
function, expensive , of type T → U . This function is actually quite expensive to
compute, so as an optimization the actual computation is done only the first time thatf
is called for each argumentx . The classC maintains an internal cache to store already
computed results. The cache is implemented as a hashtable,t , where it stores pairs
(x , expensive(x )) so that future queries forx do a table lookup instead of recomputing
expensive(x ) . We assume thatexpensive is a (strongly) pure function and so can be
used in specifications. In a more complete example there would be other methods in the
class. It is important to note that the classC doesnot implement the methodexpensive
in the program; clients use methodf and need to be able to express conditions about
c.f (. . .) for some objectc of type C .

Assuming that no other methods in the class accesst , this private field is effec-
tively encapsulated inf . It should be possible to allowf to appear in specifications
since f (x ) = expensive(x ) for any x and the side effect is not observable. More
formally, the reasonf is observationally pure is that we can define a relationR of in-
distinguishabilityto describe that any side-effects off are encapsulated. The relation
is between two program heaps; for this example we defineR(h, k) if and only if for
every allocated objecto we haveh(o).F = k(o).F for every field F other thant .
(We regard a heap as a function whose domain is the set of allocated objects.) In short,
h is indistinguishable fromk if they are identical except for the (contents of their)t
fields.
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class C {
private Hashtable t := new Hashtable();

invariant Forall{U x in t .Keys : t [x ] = expensive(x )};
[ObservationallyPure]
public U f (T x )
requires x 6= null;
ensures result = expensive(x );

{
if (¬t .ContainsKey(x )){

U y = . . . ; // computeexpensive(x )
t .Add(x , y); }

return (U )t [x ];
}

}

Fig. 0.A class C that maintains a cachet to avoid recomputingexpensive .

If t is encapsulated to be accessed only byf , then its only influence on computa-
tions or on evaluation of assertions is by way off . According to its postcondition,f
returns a result independent from the state oft ; and the stated invariant is sufficient to
verify that this specification is satisfied.

We sketch a formalization ignoring termination but taking into account method pre-
conditions. Typical examples are terminating and the ideas appear to adapt easily to
take termination into account if necessary. We assume a language in which methods
cannot make non-local references to mutable state except fields of objects in the heap.

Consider a methodf that takes a parameter listx . If f is an instance method,
then x includes the receiver object. We write

f (x ), h → v , k

to mean thatf ’s execution on argumentsx in initial heaph yields result valuev and
final heapk . We use similar notation for expressions and commands. Iff is to be used
in specifications it should be deterministic, but this does not obtrude in the sequel.

Definition 1. f is strongly purefor preconditionP if P(x , h) and f (x ), h → v , k
implies h = k .

This is slightly stronger than necessary: It is possible to allow allocation of fresh objects,
disallowing only updates to preexisting objects. This is the approach taken in JML and
also by S̆alcianu and Rinard [17]. To focus on the main issues, we omit this refinement.
To check the condition statically, it is enough to check that there are no field updates.
Writes to local variables are fine.

Definition 2. Given preconditionsPg for every methodg , we say f is observation-
ally pureif there exists a binary relationR on heaps such that the following conditions
hold. First, for f :

Pf (x , h) ∧ f (x ), h → v , k ⇒ R(h, k) (0)
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Second, for anyg , if Pg(x , h) and Pg(x , h ′) then

R(h, h ′) ∧ g(x ), h → v , k ∧ g(x ), h ′ → v ′, k ′ ⇒ R(k , k ′) ∧ v = v ′ (1)

Condition (1) is like thenoninterferenceproperty that formalizes secure information
flow [10, 16]: it expresses thatR -related states are not distinguished by any methods,
not even byf itself. Condition (0) says that the state after an invocation off cannot
be distinguished from the state before.

For our running example, define the relationR0(h, k) to hold just if h, k agree
on fields other thant and, in bothh and k , every instance ofC satisfies the class
invariant. Note that (1) fails forf unless we include the invariant to constrain the cache.

A consequence of condition (1), which we will call (1*), is thatR is preserved by
arbitrary commands and expressions.0

An observationally pure method may be used in preconditions and other assertions
without affecting the semantics of specifications. To be more precise, we argue that

S = assert Q ;S

for any commandS and anyQ such that for any invocationf (x ) that occurs inQ
we have (a)f is observationally pure and (b) the precondition off holds.1 The dis-
played equation formalizes both thatQ has no effect for runtime checking and that
in terms of static verification it is sound to ignore the effect ofQ in reasoning about
“ assert Q ;S ”. Of course Q does have a semantic effect, so the semantics of the
assert statement depends on evaluatingQ which yields a heap. To prove the equa-
tion, consider any initial stateh and anyR witnessing observational purity. Suppose
Q , h → v , h ′ ; then R(h, h ′) by (a), (b), and (0). IfS , h ′ → k ′ and S , h → k then
by (1*) we haveR(k , k ′) . Evaluating any expressione in the final statesk , k ′ yields
equal results, by (1*) fore . So the two sides of the equation are equal up to observ-
ability using expressions in the language.

Definition 2 assumes we are given a preconditionPg for every method. We are
mostly interested in using the definition withPg = true for all g other thanf , for two
reasons. One reason is modularity: we want to checkf independently of contexts in
which it may be used. The other reason is soundness. We want to check programs with
respect to their designated specifications and we wantf to be used in specifications. If
we allow somePg to involve f , then there is a circularity —it would take a delicate
argument, and additional conditions, to avoid unsoundness in this case.

Condition (1) is impractically global. The usual way to achieve such a property by
modular reasoning is to encapsulate the part of state on whichR depends, so that (1)
always holds forg that has no dependence on the encapsulated state. Encapsulation
for this purpose is studied in [2] and other disciplines for encapsulating invariants can
be used as well, e.g. [5, 13]. Such disciplines typically base encapsulation boundaries
on program structures such as modules and private fields. For observational purity we
typically want finer-grained encapsulation. That is addressed in the next section.

0 This holds for languages such as Java or C# ([2] or [3]). In the presence of pointer arithmetic or
if an out-of-memory condition is considered observable, the consequence fails; but then even
allocation of fresh objects could not be allowed for pure methods.

1 The objective is to allow use of an observationally pure method in assertions where it is
guarded in the sense that its preconditionP holds, e.g., in contexts likeP ∧ f (x ) and
P ⇒ f (x ) . We are agnostic as to how (b) is achieved.
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To make the sketch above more precise, one would argue that the equation holds up
to observability by expressions outside the encapsulation boundary; e.g., (1*) does not
hold for the expressiont .ContainsKey(x ) and the givenR0 .

Note that the definition allows the encapsulated state to be manipulated by other
methods. For example,f could be a membership test on a set represented by an un-
ordered list, with the side-effect of rearranging the list (the “move to front” heuristic).
The list is accessible to methods that insert new elements, which are not observation-
ally pure. Another (observationally pure) method might sort the list in order to compute
its intersection with another set. For such examples it may require nontrivial program
annotation to delimit the effect and justify observational purity.

We are particularly interested in static analysis for simple cases like our leading
example where the updated state is tightly encapsulated. For this we propose a static
analysis that requires only annotation forf .

2 Information Flow

To ensure that (1) holds automatically for all methods other thanf , we propose to use
a dependency or information flow analysis [1, 18, 16]. Information flow analyses check
for complete absence of dependencies. The standard specification of the noninterference
property checked by such an analysis [10, 18] uses a condition of the form (1) where the
simple indistinguishability relationR expresses equality of the components of program
state that are deemed to be visible.

In a class that contains a method purported to be observationally pure, we annotate
fields to distinguish betweensecretandopen. 2 Any field written by a method marked
observationally pure is asecretfield. Otherwise it is anopenfield (the unmarked de-
fault). All parameters and results are open (at least for public methods). The simple
indistinguishability relationR(h, k) holds just if h and k have the same domain and
object states that are equal on all open fields. This makes (0) hold by construction.3 An
information flow analysis, such as a fast flow-insensitive type-based analysis can now
be used to check that the secret field is encapsulated inf . It is sufficient to check the
class of f . The property achieved by flow analysis is exactly (1) [18, 4].

But there is a problem. Standard analysis rules will rejectf because of the manifest
dependence of its (open) result on the secret field: The expressiont [x ] involves the
secret t and is thus treated as a secret. Yet, according to its specification,f (x ) =
expensive(x ) and the result fromexpensive is not secret. Indeed, sound rules must
reject f because (1) fails for the simple indistinguishabiity relation. To avoid the need
for more general relations likeR0 in the example, we resort to program annotation.

We propose the following new rule for information flow. We express it more gener-
ally in terms of assignments, asreturn e can be taken to abbreviateresult := e .

If y and e0 are open, then “assert e = e0; y := e ” is allowed.

2 We use the term “open” instead of “public” to avoid confusion with the visibility modifiers
(private, protected, public) that are common in object-oriented programming.

3 To allow for allocation of fresh objects, the definition would be refined to incorporate a bijec-
tion on visible objects [4].
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(Even if the level ofe is secret.) It should not be difficult to show that this is sound
with respect to the noninterference property4 (1). Information flow analysis must also
take control flow into account; we return to this point later.

3 Annotated Example

To support flow analysis, classC is annotated as shown in Figure 1. Note that the

class C {
[Secret ]
private Hashtable t := new Hashtable();

invariant Forall{U x in t .Keys : t [x ] = expensive(x )};
[ObservationallyPure]
public U f (T x )
requires x 6= null;
ensures result = expensive(x );

{
if (¬t .ContainsKey(x )){

U y = . . . ; // computeexpensive(x )
t .Add(x , y); }

assert (U )t [x ] = expensive(x );
return (U )t [x ];

}
}

Fig. 1.The annotated classC . The “leak” of secret information has been guarded by an assertion.

required assertion is an immediate consequence of the class invariant that has been in-
troduced as part of specifying the correctness off regardless of the issue of purity.
We think it is important that we avoid the need for building the invariant into the in-
distinguishabity relation. The annotated version off doessatisfy (1) for the standard
indistinguishability relation.

Our approach would prevent a method such as the following from being added to
classC :

[ObservationallyPure]
public int leak()
{

return t .Count ;
}

Such a method would require the programmer to validate an assertion relating the num-
ber of items in the hashtable to some open data, which is unlikely to be possible.

4 Unlike the more general notion of declassification that is needed to handle actual leakage of
information [16, 14].
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It is important to also consider how information can be revealed via control flow.
For instance, suppose the programmer added this method to the example classC :

[ObservationallyPure]
public U problem(T x )

requires x 6= null;
ensures result = expensive(x );

{
if (t .ContainsKey(x ))

throw new Exception(. . .);
else

return f (x );
}

Then problem(x ) returnsexpensive(x ) on the first occurrence ofx as an argument
to f (or problem ), but otherwise throws an exception. Most information flow analyses
check that in the branches of a conditional with secret guard, there are no flows on open
channels (e.g., assignments to an open variable, normal or exceptional return) [16]. For
exceptional flows and unstructured code, control dependencies are tracked [8]; an open
flow is not allowed if the program counter is influenced by secrets.

For our purposes, a rule like the following could be convenient:

If e0 is open thenassert e = e0; if (e) then S0 else S1 is allowed.

(Even if S0,S1 are open ande secret.) Alternatively, the code can be rewritten to use a
temporary variable for the guard condition, initialized toe using the rule in Section 2.

4 Conclusions

It is important to provide for observational purity for both theoretical and practical
reasons. When specifications do not modify the observable state of a program, then
specifications can be combined with programs without changing their meaning. This
makes it much easier to implement both static and dynamic analysis tools. We conjec-
ture that many library methods are observationally pure; it would be inconvenient to
have them unavailable for use in contracts. Observational purity may also provide some
useful concepts for dealing with object isolation and information flow.

4.0 Related Work

Runtime verification using AsmL [7] does not restrict the use of functions in specfiica-
tions. It provides an alternative data space from the implementation so that side-effects
in this space are insulated from the data space of the implementation. But AsmL is
unsound since it allows full interoperability with arbitrary components.

JML has decided on the conservative approach of outlawing all side-effects [11].
Library methods that cause side-effects cannot be used in specifications, instead pure
replacements must be used. This complicates life for specifiers: one must always be
aware of which methods one can use and which are outlawed. Also, not all of the JML
tools are capable of using the replacement methods.
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These issues have long been known in the Eiffel community; Meyer [12] discusses
at length the desire to allow benevolent side-effects. However, Eiffel does not enforce
any policy, but leaves it as a design principle.

Sălcianu and Rinard [17] have designed a purity analysis that is able to distinguish
updates to pre-existing objects and newly allocated objects. The mutation of the latter is
allowed in a pure method. They also are able to extract regular-expression descriptions
of updates that violate purity.

4.1 Future Work

We plan to perform an analysis of the .NET base class library to see how many func-
tions that would informally be considered as pure are actually observationally pure,
but not strongly pure. We are also implementing our observational purity system in the
context of the Boogie project [5, 6] within Microsoft Research. This context provides
automated theorem-proving support to check assertions. For simple examples involv-
ing lazy initialization and caches, superficial syntactic heuristics might be adequate for
checking the relevant assertions. The theoretical justification will adapt noninterference
theory to the more general relations of representation independence [15, 2].
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