
Reconstructing Transparent Objects by

Refractive Light-Path Triangulation

by

Eron Steger

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2006 by Eron Steger



Abstract

Reconstructing Transparent Objects by Refractive Light-Path Triangulation

Eron Steger

Master of Science

Graduate Department of Computer Science

University of Toronto

2006

This thesis presents a method for reconstructing the shape of specular, transparent ob-

jects from multiple viewpoints. This method works on scenes where light refracts through

the object twice, entering and exiting the object’s surface. Scenes are reconstructed by

determining the 3D path light takes through each pixel on a camera’s image plane.

Triangulating this light path is accomplished by finding the one that is consistent with

known light rays from multiple viewpoints of the scene, determined using an environment-

matting based approach. It is shown that this method requires at least three viewpoints

to triangulate light paths in general, four if the index of refraction is unknown. Also,

shapes and camera configurations for which light-path triangulation fails regardless of

the number of viewpoints are explored. Results of our method applied to several glass

objects are analyzed.
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Chapter 1

Introduction

When looking at a glass of water, we do not see the glass directly. Instead, we see

a distortion of the scene behind. This effect is known as refraction and can be seen

through any transparent or translucent object. Consider what this distortion tells us

about the glass’s shape. Clearly, the shape of the object affects the appearance of the

refractive distortion. While the physics behind refraction are well known, determining

the path light takes through a transparent object is nontrivial. In this thesis, we describe

a method to determine the light paths through a scene containing a specular, transparent

object1, given images of it from multiple viewpoints.

1.1 Motivation

Reconstructing the shape of transparent objects is an open problem in the computational

vision community. Unlike most opaque objects, transparent objects do not have a local

appearance. Instead, their appearance is primarily from light reflecting or refracting off

their surface. This causes methods that rely on local reflectance models [49] or tracking

features on an object’s surface [2, 17] to fail. To analyze the shape of a transparent

1We often refer to specular, transparent objects simply as transparent objects.

1



Chapter 1. Introduction 2

object, one cannot ignore how light reflects and refracts off its surface.

Many methods currently exist for analyzing refraction within a scene. The field

of Multi-media Photogrammetry specifically deals with the problem of analyzing light

travelling through at least two different media. Unfortunately, limitations of existing

methods do not make them ideal for analyzing many transparent objects. For instance,

some methods only analyze light undergoing refraction once, such as light coming from

the bottom of a pool to a viewer above the water’s surface [32, 33]. To analyze transparent

objects such as diamonds and glass figurines, we must consider light refracting twice—

first when it enters the object and again as it exits the object. While there are methods

that can deal with light refracting more than once, they often require the object’s shape

to fit a predefined parametric model [4]. The method we present can determine the path

light takes through more general scenes.

A wide variety of methods can be used to determine the shape of transparent objects

by analyzing how light reflects off their surfaces [5, 16, 42]. These methods are usually

geared for mirror surfaces, however they can also be applied to transparent surfaces as

they almost always reflect light. Unfortunately, since light reflecting off a transparent

object is only visible when it reflects at a relatively steep angle to the surface’s normal,

it is often difficult to capture the shape of the entire object. Since the appearance

of transparent objects is primarily from refraction, methods that analyze shape using

refraction should theoretically provide better results than those using reflection.

1.2 Summary of Contributions

• We present a theoretical framework for determining the path of light refracting

through a specular, transparent scene. We show how to evaluate a hypothesized

light path by determining if it is consistent with multiple viewpoints of the scene.

In our analysis, we show that at least three viewpoints of the scene are necessary
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to unambiguously determine such light paths using our method.

• We present a novel method to determine the light paths that refract twice through

a specular, transparent object. Our method is local, that is, it is able to determine

the light path going through a pixel without considering the shape of surrounding

pixels. Unlike methods that rely solely on analyzing the silhouette of an object,

our method can determine the shape of concave objects.

• We provide experimental results of our method applied to real transparent scenes.

We analyze the quality these results and highlight cases where our method failed

to uniquely determine light paths through the scene.

1.3 Thesis Structure

The structure of this thesis after the introduction is as follows. In Chapter 2, we present

background information. This includes a summary of refraction, image-based models

useful for representing specular scenes, and previous methods for reconstructing the shape

of specular scenes.

Chapter 3 presents a theoretical framework for analyzing the path of light refracting

through a scene. We introduce the notion of light-path consistency to describe light paths

that are consistent with images from several viewpoints of a scene.

In Chapter 4, we describe our method for reconstructing the shape of transparent

scenes. First, we describe how to determine part of the light path from images of a

transparent object distorting a known backdrop placed behind it. We then present an

algorithm to fully determine light paths within the scene by finding those that are con-

sistent with the data obtained in the first step. Finally, we present an analysis of cases

where the problem of determining the light path is ambiguous no matter how many views

of the scene we have.
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We present the results of our method on real transparent objects in Chapter 5. First,

we describe the imaging apparatus used to capture images of the scene. Next, we show

the results from our method by applying the algorithms from Chapter 4 to images of

a transparent scene captured from several viewpoints. These results are analyzed to

determine the quality of the reconstruction.

In Chapter 6, we conclude by summarizing the major contributions of this thesis and

discuss possible future areas of research related to this work.



Chapter 2

Background

There has been much fascination within the computer graphics and computer vision

communities in transparent scenes. This is evidenced by the many models that exist for

representing their reflective and refractive properties. Some of these models take into

consideration the entire image formation process, analyzing how light rays interact with

surfaces in the scene. Others mainly ignore this, concentrating on only capturing the

scene’s appearance.

Before describing our approach for capturing the shape of specular, transparent

scenes, we first consider previous related work. In the first section, we look at how

refraction in light works, detailing its fundamental properties. Next, we present ap-

pearance models useful for representing transparent scenes, with a particular interest in

Environment Matting as it plays a key role in our reconstruction method. Finally, we

describe previous methods for reconstructing the shape of specular scenes.

2.1 Refraction

Refraction is the change in a light wave’s direction as it passes from one transparent

medium to another. The appearance of a refractive object is a distortion of the scene

behind it. This effect can be seen when looking through a glass object (Figure 2.1).

5



Chapter 2. Background 6

Figure 2.1: A checker background refractively distorted by a transparent object.
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Refraction occurs due to differences in the optical densities of the transparent media

light is travelling through. The optical density of a medium affects the speed of light

travelling through it. Light moves faster through a medium of low optical density than

through a medium of high optical density. The speed of light is maximized when it is

travelling through a vacuum.

Consider a wavefront of light travelling from a medium of low optical density, such as

air, to a medium of higher optical density, such as glass. Suppose the boundary between

the two media is at an angle to the incoming wavefront (Figure 2.2). As a light wave

passes through the boundary between the media, part of it will be in the low density

medium while the other part is in the higher density medium. Different parts of the light

wave move at different speeds, causing it to bend [18]. A similar effect occurs as light

moves from a high density material to a low density material.

The angle between the wavefront and the boundary between the two media affects

how much the light bends due to refraction. As this angle increases, the light bends

further. If the wavefront and the boundary are parallel to each other, the light does not

bend at all.

2.1.1 Index of Refraction

To describe the optical density of a medium, we measure its index of refraction [18]. This

index describes the ratio between the speed of light travelling through a vacuum and the

speed of light travelling through the medium. Specifically, the index of refraction for a

medium is:

a = c/v (2.1)

where a is the index of refraction, c is the speed of light in a vacuum, and v is the speed

of light travelling through the medium.
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wavefront

medium boundary
waterair

Figure 2.2: An incoming wavefront passing through the boundary between air and water.

Parallel black lines represent waves, while red arrows show the direction of these waves. As

a wave pass through the boundary between air and water, it slows down. Since the medium

boundary is not parallel with the incoming wavefront, parts of the wave will be on each side of

the boundary. This means that different parts of the wave move at different speeds. This causes

the wave to bend. Also, due to the change in speed, the wavelength of the light is reduced.
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incoming ray

refracted ray

medium boundary

normal

Figure 2.3: An incoming ray refracted at the boundary between two media toward an outgoing

refracted ray. The angle between the normal and the incoming ray is θi, and the angle between

the refracted ray and the normal is θr. Snell’s law describes the relationship between θi, θr,

and the indices of refraction of the two media.

2.1.2 Snell’s Law

We can describe how refraction bends a ray of light using Snell’s Law. Snell’s Law [18]

describes the relationship between an incoming light ray, the outgoing refracted ray, the

normal at the medium boundary, and the indices of refraction of the two media (Figure

2.3). Snell’s Law is defined as:

ai sin(θi) = ar sin(θr) (2.2)

where θi and θr are the angles between the incoming and outgoing light rays and the

surface normal, respectively, and ai and ar are the indices of refraction of the media

containing the incoming and outgoing rays.
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2.1.3 Total Internal Reflection

For light moving from a higher density medium to a low density medium, that is, ai > ar,

Snell’s law implies θi > θr. For some angle γ, when θi > γ, θr will be greater than 90

degrees. In this case, Equation 2.2 does not describe the path the light takes. The angle

at which this occurs is known as the critical angle. We can derive the critical angle from

Snell’s law as:

γ = arcsin(ar/ai) (2.3)

When θi is greater than the critical angle, no refraction occurs. Instead, we get an

effect called total internal reflection. In this case, instead of refracting at the boundary

between two mediums, light is reflected (Figure 2.4).

Fiber optic cable takes advantage of this effect to transmit light through it. The cable

is made of solid glass, which is optically denser than air. As long as the cable is not bent

too much, the angle between the normal of the surface of the cable and any incoming

light waves will be larger than the critical angle between glass and air. This causes total

internal refraction to occur, allowing the light to travel through the entire length of the

cable.

2.2 Appearance Models

While geometric models describe the shape of a scene, it is also important to consider

its appearance. Appearance models provide a description of a scene’s appearance, often

without taking its geometry into account. Such models can provide the basis for rendering

the scene from novel viewpoints [15, 25, 37, 44, 48], with modified lighting [9], or with

modified reflectance properties [3]. Appearance models can in some cases be used to

determine geometric models.
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incoming ray

refracted ray

medium boundary

normal

= 90º

=

(a)

incoming ray

reflected ray

medium boundary

normal

reflect

(b)

Figure 2.4: (a) When angle of incidence (θi) is equal to the critical angle (γ), the angle of

refraction (θr) is maximized at 90◦. (b) When the angle of incidence is greater than the critical

angle, no light is refracted, and total internal reflection occurs. The angle of reflection (θreflect)

is equal to the angle of incidence.
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2.2.1 Light Fields

Light fields, introduced by Levoy and Hanrahan in [25] and Gortler et al. in [15], are a

model for representing all light rays within a scene using a 4-dimensional representation.

From this model, it is possible to generate images of a scene from nearly any viewpoint

with the appearance of light accurately reproduced, including global effects such as re-

flection and refraction. This model is appearance based and does not require geometric

information of the scene.

Plenoptic Function

The light field representation is based on the plenoptic function [1]. This function de-

scribes the radiance going in any direction from any point in a scene. The full plenoptic

function P is defined as:

P = P (ω, θ, λ, t, Vx, Vy, Vz) (2.4)

where Vx, Vy, Vz is the point in the scene, ω, θ is the direction of the light, λ represents

the light’s wavelength, and t represents the time. If we assume time and wavelength are

constant, this reduces to a 5-dimensional function.

Light Slabs and the Lumigraph

The light field representation simplifies this to a 4-dimensional representation by only

considering light that is not occluded by the scene. This simplification takes into ac-

count that radiance along a light ray is the same for any unoccluded points along it. A

ray of light is parameterized as its intersection points with two arbitrary planes. This

parameterization is called a light slab or Lumigraph. It is defined as:

L(u, v, s, t) (2.5)

where L is the Lumigraph function returning the radiance of a given light ray, u,v is the

intersection point of the light ray with the first plane, and s,t is the intersection point



Chapter 2. Background 13

of the light ray with the second plane. The intersection points are represented as local

coordinates on their corresponding planes.

Capturing Light Fields

Light fields are captured by taking a set of images of the scene from different camera

positions and orientations. The method used in both [15] and [25] capture images of the

scene from a set of viewpoints along a plane. This plane is split into a set of equally

spaced grid points, with each point representing a position sampled along one of the

Lumigraph’s planes. The other Lumigraph plane is sampled at the intersection points of

the view rays of pixels in each image.

Levoy and Hanrahan [25] analyze a variety of possible capture setups, considering

issues such as the viewpoints used to capture the scene, the camera’s aperture size, and

the scene’s lighting. These issues affect the quality of novel viewpoints reconstructed

using the light field model. Gortler et al. [15] developed a method of reducing aliasing

artifacts in these reconstructions by taking a rough estimate of the scene’s shape into

account.

2.2.2 Environment Matting

Traditional matting and compositing processes, such as blue screen matting, are used to

separate a foreground object from a single coloured backdrop [10]. Once separated, the

image of the foreground object can be inserted into another scene. With blue screen

matting, images of a foreground object are taken in front of a solid coloured backdrop.

From these images, a pixel is determined to be in the background if it is close to the

colour of the backdrop, otherwise it is identified as part of the foreground. Unfortunately,

this method is limited as it can only handle opaque foregrounds. Smith and Blinn [43]

present a method to determine the transparency of objects by capturing the scene using

two backdrops. While this method is an improvement on blue screen matting, it cannot
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capture the reflective and refractive properties of specular objects.

Environment Matting, introduced by Zongker et al. in [50], is a technique for cap-

turing the appearance of scene depending on the environment surrounding it. Unlike

previous matting techniques, it is able to reproduce effects such as reflection and refrac-

tion. An environment matte describes how the foreground, background, and surrounding

environment combine to form the appearance of each pixel. The colour of each a pixel

C in the scene is modelled as:

C = F + (1 − α)B + φ (2.6)

where F is the foreground colour, B is the background colour, α is the transparency of the

foreground object, and φ describes the contribution of light from the environment. This

equation is called the environment matting equation and is the basis for the environment

matting technique.

Suppose we describe the environment as a function E(ω) returning the incoming

radiance from the environment for all directions ω. We can then describe the effect the

environment has on a specific pixel as:

φ =

∫
R(ω)E(ω)dω (2.7)

where R(ω) is an attenuation function specific to the pixel describing how much light

from any direction ω in the environment is reflected toward the camera. To determine a

pixel in the environment matte, we must determine F , B, α, and R(ω).

Capturing an Environment Matte

To capture an environment matte, images of the scene are taken from a single viewpoint

with one or more monitors placed around the object. In each image, a different pattern

is displayed from the monitors. These patterns are designed such that the area on the

backdrop seen through each pixel can be estimated. In [50], stripe patterns are used,

such that the stripes width changes logarithmically from image to image.
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To determine an environment matte from these images, a three step approach is taken.

First, a coarse estimate of the coverage of each pixel is made to determine α. This is

done by determining if a pixel varies between images using different backdrops. Next,

F and B are determined by analyzing the scene behind two solid coloured backdrops.

Finally, R(ω) is determined by finding the rectangular area on each monitor that best

reconstructs the captured images using Equations 2.6 and 2.7. It is assumed that within

this rectangular area R(ω) is a constant, and for all other directions it is zero.

Environment Compositing

Once an environment matte is captured, images of the foreground object with novel

environments can be generated. This is done by calculating the environment matting

equation using different values for B and E(ω). For most scenes the generated image

looks very close to images of the actual scene with the new environment. However,

for some scenes the generated image and the actual image don’t match, such as those

containing glossy surfaces. This is due to the representation of R(ω) as a rectangular

area.

Changing the Backdrop’s Depth

An interesting extension to this technique is the construction of an environment matte

where backdrop can be moved to different depths. This is done by capturing the scene

with the monitor placed at two different depths, obtaining two rectangular areas repre-

senting R(ω) for each pixel. By interpolating and extrapolating between the two rectan-

gular areas for each pixel, environment mattes for any depth can by estimated.

Improving Accuracy and Capturing Environment Mattes in Real-time

In [8], Chuang et al. extend environment matting to overcome two key limitations, its

poor accuracy and its inability to handle motion. To increase accuracy, more images of
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the scene are used as input. Instead of logarithmic patterns, a 1-dimensional Gaussian

stripe is moved across the monitor. While this requires more images than the original

method, it allows for the estimation of more accurate environment mattes.

To capture environment mattes in real-time, the number of images necessary to de-

termine it must be decreased. To accomplish this, a single colour-ramp backdrop is used.

Unfortunately, since less images are used, more assumptions need to be made about the

scene in order to capture the environment matte. This causes noticeable artifacts to

appear in the matte, the most noticeable of which is that specular highlights are not

captured. To overcome this a heuristic is used to add highlights, providing results that,

while not accurate, are visually pleasing.

Image Based Environment Matting

Wexler, Fitzgibbon, and Zisserman [47] describe a method for determining environment

mattes without the use of calibrated backgrounds. This is done by taking pictures of

the scene with the backdrop positioned at multiple locations. Unfortunately, the nature

of this setup means that different areas of the backdrop are occluded by the foreground

object in different images. To fill in the image of the backdrop, a homography mapping

the pixels from one backdrop position to another is determined. Using this mapping,

areas of the backdrop that are occluded in one image can filled in using another image

where that area is not occluded.

2.3 Specular Reconstruction

In this section, we discuss techniques for shape reconstruction of specular surfaces, both

reflective and refractive. Many shape reconstruction techniques use local reflectance

models [49], which do not model the global reflectance effects necessary to represent

specular scenes. Some techniques rely on tracking features points on surfaces [2, 17].



Chapter 2. Background 17

However, feature points seen on a specular surface are often not on the surface itself but

are instead a reflection from elsewhere in the scene. Due to this, methods that do not

take reflection or refraction into account will fail.

A wide variety of techniques have been developed to reconstruct specular surfaces.

Some techniques analyze how the surface reflectively or refractively distorts the scene sur-

rounding it. Other work looks at the polarization of light reflecting off specular surfaces.

Some ignore the surface’s reflectance properties altogether, instead analyzing silhouettes

of the surface.

2.3.1 Reflective Distortion

The appearance of a specularly reflective surface is a distortion of the scene around it.

The nature of this distortion is directly tied to surface’s shape. For example, the reflection

of a line off a planar mirror is also a line, while the reflection of a line off a spherical

mirror is a curve. Many techniques for reconstructing the shape of specular surfaces rely

on analyzing this distortion.

Single View

Savarese and Perona [41] determine the shape of a specular surface by analyzing how

lines from a calibrated pattern reflect off it. To do this, they derive a mapping between

the reflected lines as seen on the specular surface to the 2D curves they project to on the

image plane. Analyzing the first and second derivatives of these mappings allows them

to find explicit solutions for solving for the shape of planes and spheres. In [42], they

extend this work to provide explicit solutions for any smooth surface. Their techniques

are able to determine the depth, normal, and curvature for points on the surface.

Tarini et al. [45] describe a method to determine a depth and normal map for specular

mirror surfaces from an environment matte of the scene. The environment matte provides

a mapping between each pixel on the surface and a point on a backdrop that is being
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reflected off the surface. First, they show the surface normal at a pixel can be determined

from its depth. This is done by finding the normal that directly reflects the incoming

light ray from the backdrop off the surface at the known depth toward the camera. Using

this, they create an initial estimate of the shape by choosing some initial depth for one

pixel and propagate depths to other pixels by following the implicitly defined normals.

They refine their estimate by integrating the normal map to determine a new depth map,

and then recalculate the normal map using the new depth map. This process is repeated

until convergence.

Multiple Views

Oren and Nayar [36] analyze the motion of feature points in a scene containing a specular

surface as the camera is moved. These feature points are either scene points viewed

directly, or ‘virtual’ feature points which are reflections of scene points. First, they

develop support functions to classify whether a feature point is part of the surface or

a reflection. Then, by analyzing the image trajectory of the virtual feature points as

the camera is moved, they reconstruct profiles of the object along the curves the feature

points reflect off the surface.

Bonfort and Sturm [5] describe a voxel carving approach for determining the shape of

specular surfaces. As input, images of a scene containing the unknown specular surface

are taken from a set of calibrated cameras. The surface reflects a pattern whose feature

points’ positions are known. The shape of the surface is modelled using a voxel grid.

From each camera, the voxels are assigned a set of normals such that they would reflect

scene points viewed through them toward the camera if the voxel represents the true

specular surface. The surface is then carved out of by discarding those voxels whose

normals are not consistent across the cameras.
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Videokeratography

As the eye is a specular surface, many techniques for analyzing specular surfaces come

from optometry. Analyzing the shape of the eye’s cornea has important medical uses,

such as fitting contact lenses or identifying astigmatisms. The field of analyzing the

cornea’s topography from images of the eye is known as Videokeratography [16, 22, 46].

Halstead et al. [16] present a method for determining a model of the cornea accurate

to within microns. Using a device known as a videokeratograph, an image of the eye is

taken with a pattern of concentric rings reflecting off it. Using a backward raytracer to

simulate the scene, a hypothesized model of the surface of the cornea can be evaluated

by comparing the edges of the concentric rings in the raytraced image with the edges in

the input image. By adjusting the surface model until these edges match, the shape of

the cornea can be determined.

2.3.2 Multi-media Photogrammetry

Much research in the vision community deals with the refraction of light. Multi-media

photogrammetry is the field analyzing how rays of light refract through a scene containing

several media before reaching the camera [4, 21, 32, 33]. Most of these techniques are

limited to dealing with parametric shape models of the scene [4, 21, 26], while others use

more general shape models [32, 33].

Ben-Ezra and Nayar [4] analyze scene points refracting through a transparent object

from multiple viewpoints to determine its shape, modelled as a superquadric ellipsoid.

The scene points are assumed to be distant from the object, so it can be assumed any rays

refracting toward the same scene point are parallel. Using this assumption, a hypothe-

sized shape can be analyzed by tracing light rays backward through it at each imaged

scene point from multiple viewpoints and measuring the variance in the direction of these

rays. For the true shape there is no variance in their direction. To determine the shape,
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the ellipsoid’s parameters are optimized using a steepest-descent approach.

Much work deals with reconstructing the shape of moving water [32, 33]. Morris and

Kutulakos [32] determine depth and normal maps of the surface of water by analyzing

the distortion of a calibrated checkerboard pattern placed underwater. Given a point on

the pattern whose location is known, the depth of the water viewing that point implicitly

defines a normal refracting it toward the camera. For the true depth, the implicitly

defined normals are consistent across multiple cameras. To follow the shape of the water

over time, the feature points need to be tracked. Unfortunately, the feature points are

often obscured as the water moves. To handle this problem, a heuristic was developed

to identify feature points as they go in and out of view.

2.3.3 Polarization

The polarization of light reflecting off a specular surface is dependent on its shape. For

example, unpolarized light reflecting off a smooth surface becomes partial linear polarized

[40]. Many reconstruction methods take advantage of this to determine the normal map

of specular scenes.

Saito et al. [40] present a method for determining surface orientation across trans-

parent objects by analyzing the polarization of specularly reflected light. They first

determine the angle of polarization and degree of polarization across an image of an

evenly lit scene containing the object. By analyzing the angle of polarization, they de-

termine the plane containing the camera, the surface normal, and the incoming light ray

reflecting off the surface. Then using the degree of polarization, they determine the angle

of reflection, restricting the normal to a finite set. Using a heuristic, they determine a

unique normal.

To analyze the polarization of the scene, multiple images of it are taken with a linear

polarizer placed in front of the camera. In each successive image, the linear polarizer is

rotated a constant amount from the previous image. These images are taken until the
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polarizer has been rotated by 180◦. To determine the angle of polarization of a pixel, they

find the polarizer rotation that maximizes its intensity. The degree of polarization of a

pixel can be measured by dividing the difference of the maximum and minimum intensities

with the unpolarized pixel intensity. The unpolarized intensity can be determined by

taking the sum of the maximum and minimum intensities.

A major issue with this method is that it does not provide a one-to-one mapping

between the angle and degree of polarization, and the surface normal. Miyazaki et al.

[30, 31] describe a method to handle this ambiguity by analyzing the scene from two view

points, one slightly tilted from the other. They segment the surface along curves where

the degree of polarization is one, denoting such curves as Brewster curves. Within each

segment, the surface normals can be restricted to a subset of possible normals. From this

they are able to uniquely determine the normal for each point on the surface.

2.3.4 Visual Hull

The silhouette of an object is a useful feature for determining its shape and is the basis

for determining an object’s visual hull. The visual hull of an object is the smallest volume

encompassing all possible shapes that project within the silhouettes seen from a set of

viewpoints. These methods do not require analysis of the reflectance properties of an

object, thus they work equally well for opaque and transparent scenes.

Usually we are restricted to capturing images of the silhouette from camera positions

outside the object’s convex hull. Thus, it is useful to consider the external visual hull

of an object, which is the visual hull consisting of all views outside the object’s convex

hull. Unfortunately, such a visual hull can only fully define shapes that are convex. For

concave objects, the shape can be only be partially determined.

Matusik et al. [27] describe an image-based approach to rendering visual hulls. In-

stead of determining the shape of the hull beforehand, they determine where the view ray

for each pixel in a desired view intersects with the visual hull. This is done by projecting
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the view ray into multiple silhouette images and determining the intervals along it that

fall within silhouette in all the images.

In [28], this work is extended by representing image silhouettes as alpha mattes. This

provides higher quality results on specular scenes and scenes containing fuzzy materi-

als. In [29] this work is further extended by using environment matting to capture the

reflective and refractive properties of specular scenes.



Chapter 3

Refractive Light-Path Triangulation

Reconstruction of transparent objects is complicated by the fact that they do not have a

local appearance. Instead, their appearance is primarily from refraction, which appears

as a distortion of the scene behind it. As this distortion changes depending on the

viewpoint, it is difficult to find useful correspondences between images for determining

the shape.

In order to analyze the shape of a transparent object, it is important to consider how

light propagates through the scene it is contained within. Each view of the scene provides

some information about light propagating toward the camera. Given enough views of the

scene, if light only intersects with the surface of the object twice1, we can constrain the

problem to a finite set of possible shapes. This idea is the basis for refractive light-path

triangulation.

In this chapter we describe the theory behind refractive light-path triangulation. We

first define a model describing light propagation through a scene containing a transparent

object. From each camera, we can partially determine how light propagates through the

scene toward it. Using this, we constrain the shape to those that are consistent with our

knowledge of light propagation from multiple viewpoints. We then show that under this

1Specifically, the path light takes from its source through the scene toward the camera only enters
and exits the object once.

23
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model, there is a minimum number of viewpoints necessary to constrain the shape to a

finite set of solutions.

3.1 Scene Model

Consider a scene consisting of a transparent object with a homogeneously dense interior

and a specularly smooth surface of arbitrary and unknown shape. As the object is

smooth, incident light on the surface is not scattered2. We further assume that the

surface is reflective. Within such a scene, incident light at the surface of the object can

only be refracted [13, 34]. Given these restrictions, light propagation throughout the

scene is linear except when it refracts at the object’s surface. Finally, we assume that

light travelling through the object is refracted exactly twice, once as it enters the object

and again as it exits the object.

Suppose we have a camera viewing this scene from viewpoint c. Let us consider a 3D

point p in the scene that is observed by some pixel located at 3D point q on the camera’s

image plane. If our view of this point is not obscured by the object—that is, the path

from p to c does not pass through the object—q will be located at the intersection point

of this path and image plane (Figure 3.1(a)). This projection of point p to pixel q is

referred to as perspective projection [7].

Now suppose our view of point p through pixel q is obscured by the transparent

object. For light from p to reach the camera through pixel q, it must take a path

through the object, refracting at the object’s surface. We refer to this path as the light

path of pixel q (Figure 3.1(b)). Since light travels linearly through the scene except when

it refracts at the object’s surface, the light path is a piecewise linear curve. We refer

to the points where the light path changes direction—when it intersects the object—as

its vertices. We assume that the light path of pixel q intersects with the surface exactly

2This differs from a Lambertian scene where incident light on a surface scatters uniformly.
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twice, and thus has two vertices. Note that in this case perspective projection fails to

describe how light from a scene point reaches the image plane, as it ignores the effect

refraction has on the light path.

In order to take refraction into account, we need to consider how light indirectly

projects from point p through to pixel q. We do this by following the light path of the

pixel. Let b be the point along the light path that first intersects with the object, nb be

the normal of the surface at this point, and ℓb be the ray from p to b (Figure 3.1(b)).

Incident light along ray ℓb is refracted at the surface of the object at point b to a ray ℓm

inside the object. The light path continues inside the object along this ray till it intersects

the surface a second time. Let f be this intersection point and nf be the surface’s normal

at this point. Incident light on the path along ray ℓm is refracted away from the object

at the surface of the object at point f to a ray ℓf . This ray travels from f to camera c,

intersecting the camera’s image plane at pixel q.

3.2 Problem Statement

Consider the light path of a pixel q in the scene that is obscured by the transparent

object. Suppose we know for this light path the ray ℓb entering the object, as well the

ray ℓf exiting the object toward the camera. We would like to determine the points b

and f , and surface normals nb and nf , fully determining the light path. As we will see

later, given information only from a single camera, the problem is under-constrained.

3.2.1 Viewing Scene With Multiple Cameras

To constrain the problem, we extend our scene model to consider 3 camera views3. We

refer to c1 as the position of the reference camera and c2 and c3 as the positions of

the validation cameras (Figure 3.2). We define 3 different light paths through f by

3We describe in §3.3 why we need at least 3 cameras to sufficiently constrain the problem.
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Figure 3.1: Light projection. A scene point p viewed by a camera c projects to some

pixel q. (a) If p can be viewed directly by the camera, the relationship between p and

q can be described by perspective projection. That is, q will be located where the line

from p to c intersects the image plane. (b) If the camera’s view of point p is obscured

by a transparent object, perspective projection fails to describe the relationship between

p and q. To take into account refraction at the surface of the object, we must consider

the light path of the pixel, which describes how the point p projects through the scene

to the camera. The points b and f are where the light path intersects the object, with

associated surface normals nb and nf , respectively. The path is composed of segments

ℓb, ℓm, and ℓf .



Chapter 3. Refractive Light-Path Triangulation 27

appending the camera as a subscript to our original notation. Perspectively projecting f

in the reference camera, we obtain the pixel q1. Light path 1 is the light path through

q1.

To analyze the scene from the validation cameras, we again consider the light paths

going through point f . Perspectively projecting f into the validation cameras, we obtain

pixel locations q2 and q3 for cameras c2 and c3, respectively. Light path 2 is the one

through q2 on camera 2 and light path 3 is the one through q3 on camera 3. The light

paths through both the reference camera and the validation cameras all exit the object

at the same surface point f with normal nf , so no subscript is used when referring to

these.

Consider the light path through the reference camera. Suppose we know the ray ℓb1

entering the object, as well the ray ℓf1 exiting the object toward the camera. Moreover,

suppose for each camera ci, we know for any pixel q̂i the first and last rays along its light

path, denoted ℓ̂bi and ℓ̂fi , respectively. On the reference camera’s light path we would

like to determine the points b1 and f , and surface normals nb
1 and nf . Moreover, we

would also like to determine b2, b3, nb
2 , and nb

3 , fully determining the light paths in

the validation cameras. Informally, refractive light-path triangulation is the problem of

determining these variables such that they are consistent with the known light rays in

the reference and validation cameras.

3.2.2 Light Path Consistency

We know that the point f must be somewhere along ray ℓf1. Suppose we hypothesize

its depth along this ray, letting f̂ be the hypothesized point. Let us also hypothesize a

surface normal n̂f for this point. We would like to know whether this point-normal pair

is consistent with the known rays of the light paths going through it.

We first consider consistency with a single camera at viewpoint c. Perspectively

projecting f̂ determines a pixel q̂ on the image plane of the camera. The light path for
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Figure 3.2: Light paths for multiple cameras. Notation is the same as in Figure 3.1 with

the addition of subscripts denoting the camera the light path is associated with. Each

view of point f on the surface of the object goes through a different light path. All light

paths first refract at different points (b1,b2,b3) on the surface of the object, travelling

through till refracting at shared surface point f , then finally travelling to their respective

cameras.
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q̂ is made up of the rays ℓ̂b, ℓ̂m, and ℓ̂f , where ℓ̂b and ℓ̂f are known. Unknown on this

light path are ray ℓ̂m along with surface intersection points b̂ and f̂ , as well as their

corresponding surface normals n̂b and n̂f .

For a light path to be consistent with the laws of refraction, it must hold the following

constraints (Figure 3.3) [13]:

• Planarity constraint: Incident light refracting at the surface of the object is

planar with the surface normal and the refracted light. Thus, ℓb, nb, and ℓm are

on a plane, and similarly, ℓm, nf , and ℓf are on a plane.

• Refraction constraint: For light refracting at the surface of the object, the angle

of incidence, angle of refraction, and surface normal are related by Snell’s law (See

§2.1.2). Thus:

a1αi = a2αr (3.1)

where αi is the angle between ℓb and nb, αr is the angle between ℓb and −nb, and

a2 and a1 are the indices of refraction of the object and the medium surrounding

it, respectively. Similarly:

a2θi = a1θr (3.2)

where θi is the angle between ℓf and −nf , and θr is the angle between ℓf and nf .

This leads to the following definition:

Definition 1. Consider the light-path through a 3D point f̂ on some camera c. Suppose

that the first ray ℓb and last ray ℓf along this light path are known. We say that a

position-normal pair
〈
f̂ , n̂f

〉
defining the last light-path vertex is light-path consistent

with camera c if there exists a point b and normal nb defining the first vertex such that

the resulting light-path satisfies the planarity and refraction constraints.

Such position-normal pairs are often referred to as surfels [20, 38].
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Figure 3.3: Diagram highlighting the properties of a light-path consistent with the laws of

refraction. Incident light refracting at the surface of the object is planar with the surface

normal and the refracted light (planes shown in orange). The relationship between the

angles of incidence and refraction of these rays is dictated by Snell’s law.

3.2.3 Triangulating the Light Path

Knowing that a light path is consistent with a camera allows us to determine whether

a surfel could represent the true surface. However, as described earlier, a single camera

does not fully constrain the set of solutions. Instead, we need to determine whether a

surfel is consistent with a set of cameras. Also, consistency does not provide a method

of determining which surfel represents the true surface, but instead provides a test that

describes whether or not a given surfel is ‘correct’ given what we know about the scene.

This leads to following definition:

Definition 2. Refractive light-path triangulation is the assignment of a depth d̂ and

normal n̂f for a pixel q1, such that the surfel ŝ = 〈f̂ , n̂f 〉 is light-path consistent with all

camera views, where f̂ = c1 + d̂ ℓf

‖ℓf‖
.



Chapter 3. Refractive Light-Path Triangulation 31

3.3 Triangulation Solution Space

The solution space of light-path triangulation differs depending on the number of camera

views we have of the scene. For a given pixel q1, we want to determine both a depth

and normal. The problem space can be encoded in 3 dimensions, with 1 dimension

representing the depth along the view ray and 2 dimensions representing the normal

at that point. We wish to determine the number of cameras necessary to restrict the

solution space to a 0-dimensional manifold, that is, a set of isolated set of depth/normal

pairs. To do this, we analyze how the solution space for this pixel changes as we add

more cameras to the scene.

3.3.1 One Camera

With a single camera, we know the rays ℓb1 and ℓf1 on the light path of the pixel. We

first consider the solution space for a fixed depth (Figure 3.4(a)). This depth defines a

position f̂ along the ray ℓf1. We wish to determine the normals of a surfel at this depth

that are light-path consistent with this camera. For a light path to be consistent, it must

refract at some point b̂1 along ray ℓb1 toward f̂ . Each point b̂1 defines the ray ℓ̂m1 , and

thus the incoming and refracted rays at both vertices of the light path (Figure 3.4(b)).

Assuming this light path is consistent with the laws of refraction, we can use these rays

to solve for the normals at both vertices (See §2.1)4. As the surfel’s normal is defined by

the position of b̂1 along ray ℓb1 , it is restricted to a 1D set (Figure 3.4(c)).

Now consider the entire solution space where the depth is not fixed. For any combi-

nation of depth and position along ray ℓb1 whose resulting light path is consistent with

the laws of refraction, we can determine a normal and thus a surfel that is light-path

consistent with our single view of the scene. Thus, the entire solution space with a single

camera is 2-dimensional.

4The light path will not be consistent with the laws of refraction if the angle between the normal
implicitly defined by Snell’s law and the incoming ray is past the critical angle. See §2.1.3.
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Figure 3.4: Solution space of surfels at 3D position f̂ with a single camera. (a) A possible

light path refracting at b̂1 along known ray ℓb1 . With f̂ fixed, b̂1 defines the normal n̂f .

(b) As we trace the position of b̂1 along ray ℓb1 , we define a set of surfel normals. (c) The

set of surfel normals obtained by tracing b̂1 along ray ℓb1 , mapped onto a sphere.

3.3.2 Two Cameras

Now consider the solution space if an additional camera is added to the scene. We again

first consider the problem for a fixed depth. The first camera restricts the set of light-

path consistent surfels at this depth to those whose normals are on a 1D set. For light

paths on the second camera, we know rays ℓ̂b2 and ℓ̂f2 (Figure 3.5(a)). In a similar manner

as with the first camera, the second camera also restricts the set of surfel normals to a

1D set. This set of normals is determined by the light paths refracting at f̂ and points

along ray ℓ̂b2 . The set of light-path consistent surfels is the intersection of the surfel sets

consistent with each camera (Figure 3.5(b)). It can be shown that in general, this is a

0-dimensional set [23].

Now consider the entire solution space where the depth is not fixed. Though we cannot

determine the depth, we can for any specific depth obtain a set of isolated normals. Thus,

the solution space with 2 cameras is 1-dimensional.
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Figure 3.5: Solution space of surfels at 3D position f̂ with two cameras. (a) Light paths

for the second camera refracting at positions along known ray ℓ̂b2 . Tracing b̂2 along ray

ℓ̂b2 defines a set of surfel normals. (b) The sets of normals obtained by tracing along b̂1

along ray ℓb1 in camera 1 and b̂2 along ray ℓ̂b2 in camera 2, mapped onto a sphere.

3.3.3 Three Cameras

Now consider the solution space if we have three cameras viewing the scene. First consider

the problem for fixed depth. In general, the first two camera views restrict the normal

to a 0-dimensional set. In a similar manner, the third camera restricts the set of possible

normals to those along a 1-dimensional set. If this is the true depth of the surface, this set

will intersect with the 0-dimensional set obtained from the first two cameras at the true

normal (Figure 3.6(b)). In general, if this is not the correct depth, it will not intersect

except at an isolated set of depths (Figure 3.6(a)) [23].

Now consider the entire solution space where the depth is not fixed. The set of light-

path consistent surfels has been restricted to those at isolated depths. Moreover, for each

depth, we have restricted the surfels to an isolated set of normals. Thus, the entire set

of surfels that are light-path consistent is 0-dimensional.
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Figure 3.6: Solution space of surfels at fixed 3D positions with three cameras. Each

camera restricts the surfel normal along a curve. (a) Surfel’s depth is not the true depth

of the surface. In this case the normals generally will not all intersect. (b) Surfel’s depth

is the true depth of the surface. In this case the normals intersect at the true surface

normal.



Chapter 4

Reconstruction Method

In this chapter, we develop a method for reconstructing transparent scenes using re-

fractive light-path triangulation. In Chapter 3 we defined light-path triangulation as the

process of determining for some pixel the surfel that is light-path consistent with multiple

viewpoints of the scene.

Our approach to reconstruction requires us to solve two main problems. First, we

need some way to determine for each pixel in every camera the first ray along the light

path indirectly projecting through it. We then need a method to determine the surfel

that is light-path consistent from each viewpoint in the scene.

We determine the initial light-path ray for each pixel by projecting structured light

patterns through the scene. For each camera i, we determine the function Li mapping

pixels qi to their corresponding initial light-path ray ℓbi as

ℓbi = Li(qi). (4.1)

To triangulate the light-path consistent surfel, we solve an optimization problem. We

define a metric measuring the reconstruction error of the light path in a single camera,

and then extend it to handle multiple cameras. The reconstruction error is defined such

that it is minimized when the surfel is light-path consistent for the given cameras.

35
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q
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s
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Figure 4.1: The light path of pixel q through backdrops at two locations. The initial ray

on the light path L(q) is determined by the intersection points s1 and s2 of the ray with

the backdrops.

4.1 Correspondence Map

To determine the initial light-path ray for each pixel, we take an approach similar to

that used for Environment Matting [50]. We display a set of patterned backdrops from

a monitor placed behind the transparent object. From a camera, we capture a set of

images of these backdrops being distorted due to refraction by the object. Using these

images as input, we infer for each pixel the 3D points on the backdrop seen through it.

This gives us a point along the first ray of the light path. To determine another point on

the ray, we repeat this process with the monitor placed at a different position. Having

two points on the ray allows us to determine its direction, and thus fully determine the

ray (Figure 4.1).

4.1.1 Setup

We have a scene containing the specular object, a calibrated camera viewing the object,

and a monitor (Figures 4.1 and 4.2). The monitor is positioned such that it is seen by the
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camera from behind the object. A 4x4 transformation matrix MW←S which transforms

from screen coordinates to world coordinates is known. The matrix is defined such that:



sx

sy

sz

1




= MW←S




rx

ry

0

1




(4.2)

where r = [rx ry] is a point in screen coordinates, and s = [sx sy sz] is the position of r

in world coordinates.

4.1.2 Stripe Projection

The backdrop images used must provide some way to determine for any pixel the point

on the monitor indirectly projecting through it. As the monitor is planar, determining

this location is a 2-dimensional problem. We can simplify the problem if we determine

the horizontal and vertical positions separately. To accomplish this, we use two sets of

backdrop images, one for each dimension. Each set will use images that only vary along

a single dimension.

The first image set Bh contains an image of a white vertical stripe on a black back-

ground for each pixel along the horizontal axis of the monitor. Similarly, the second

image set Bv contains an image of a white horizontal stripe on a black background for

each pixel along the vertical axis of the monitor. Formally, these images are defined as:

Bh
i (rx, ry) =





1 when rx = i

0 when rx 6= j

and

Bv
j (rx, ry) =





1 when ry = j

0 when ry 6= j

where Bh
i is the i-th binary image in the first image set, and Bv

j is the j-th binary image

in the second image set.
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camera
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Figure 4.2: Physical setup for capturing correspondence maps. A camera views a refrac-

tive object with a monitor positioned behind it. The monitor displays a backdrop, which

when viewed through the camera is distorted by the object due to refraction.
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We take an image of the scene using each of these images as the backdrop projecting

from the monitor. For a pixel q on the image plane, let Iq(x) be the intensity of the

pixel using the backdrop Bh
x and Jq(y) be the intensity of the pixel using the backdrop

Bv
y. A pixel’s intensity will be bright when the stripe is on a part of the backdrop being

indirectly projected through it.

4.1.3 Determining the Backdrop Position

For each pixel, we wish to determine a single location on the monitor that indirectly

projects to the centre of the pixel. Unfortunately, localizing this position is difficult

as: (1) the input data is noisy, (2) our input data does not record light impinging at a

single point but instead records light impinging over the entire area of a pixel, and (3)

we only know a pixel’s intensity for discrete positions of the stripe. The first problem is

dealt with by applying a Gaussian filter to I and J. To deal with the second problem,

we make the assumption that the intensity across a pixel’s area is maximized for light

projecting through the centre of the pixel. We deal with the final problem by assuming

the derivatives of the functions I and J are linear between the sampled stripe positions1.

Our goal is determine the 2D location r = (rx, ry) on the backdrop refracting through

the pixel:

rx = arg max
x

Iq(x)

ry = arg max
y

Jq(y)

We can find the maximum on the intensity curve by finding the zero-crossings of its

derivative [14]. The curve is locally maximized or minimized at the zero-crossings of its

derivative. We determine the values of x and y such that:

I′q(x) = 0

J′q(y) = 0

1This is equivalent to using a quadratic approximation of the function between sampled positions.
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We approximate the derivative of I and J at each stripe position by calculating their

finite differences:

I′q(x) ≈ △Iq(x) = [Iq(x + 1) − Iq(x − 1)]/2

J′q(y) ≈ △Jq(y) = [Jq(y + 1) − Jq(y − 1)]/2

For each stripe position, we have an estimate of its derivative. If this value is exactly

0, we can trivially identify it as a zero-crossing. For values where the derivative’s sign

changes between two stripe positions, we know a zero-crossing exists somewhere between

them. If the function is 0 for neighbouring stripe positions, we use their mid-point.

To determine the location of a zero-crossing between stripe positions x0 and x0 + 1,

we use our assumption that the derivative is linear between them. We construct a line ℓ

through the derivatives of these neighbouring stripes:

ℓ(x) = △Iq(x0) + (x − x0)[△Iq(x0 + 1) −△Iq(x0)] (4.3)

We determine the zero-crossing as the stripe position x where this line crosses 0:

0 = △Iq(x0) + (x − x0)[△Iq(x0 + 1) −△Iq(x0)] (4.4)

⇒ x = x0 −
△Iq(x0)

△Iq(x0 + 1) −△Iq(x0)
(4.5)

We may have several zero-crossings, each of which could maximize I. We can discount

those where the derivative changes from negative to positive, as these represent local

minima. Those remaining represent local maxima. Of these, we choose the one that is

closest to the discrete stripe position of maximal pixel intensity.

From this, we have a continuous estimate of the horizontal and vertical stripe posi-

tions maximizing the pixel intensity. The position where these stripes cross gives us our

estimated 2D backdrop position r.
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4.1.4 Determining the Corresponding Ray

We now need to determine for each pixel the entire first ray along its light path. The

capture process presented determines a single point along this ray. If we know another

point on this ray, we can fully determine it. To get a second point, we repeat the capture

process but with the monitor moved to a different known location. Doing this, we obtain

a new set of images I2 and J2, which can be used to estimate another set of points along

the first ray that cross through the backdrop.

We can now define the mapping between pixels and rays as:

L(q) =
〈
M1

W←Sr
1, M2

W←Sr
2
〉

(4.6)

where r1 and r2 are the 2D pixel positions on the monitor indirectly projecting through q

for the first and second monitor locations, respectively, and M1
W←S and M2

W←S transform

2D pixel locations on the monitor into 3D world coordinates for pixels on the first and

second monitor locations, respectively (Figure 4.1).

4.2 Reconstruction Algorithm

In this section, we present our method for finding a surfel that is light-path consistent

with a set of views of the scene for some image point. We approach this as an optimization

problem. Our goal is to determine the surfel that is the ‘most consistent’ with the cameras

viewing the scene. To do this, we need to answer several questions. First, what metric

should we use to measure the consistency of a surfel? Then, given such a metric, how do

we find the most consistent surfel?

We define a function E(s) to measure light-path consistency error across a set of

cameras. We design this function by making the observation that if a surfel is light-

path consistent with a camera, we can determine the second ray on its light path in

each camera using Snell’s law (Figure 4.3(a)). These implied rays must intersect with
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their corresponding initial light-path ray for the surfel to be light-path consistent (Figure

4.3(b)).

To minimize E(s) for some pixel q in the reference camera, we take a two-step ap-

proach. First, we obtain a rough estimate of the optimal surfel by limiting the search

space to surfels whose implied second light-path ray in the reference camera intersect ex-

actly with the known first light-path ray L1(q). We then refine the solution by searching

the full 3-dimensional set of possible surfels, obtaining a result that is not biased toward

error in the reference camera.

4.2.1 Light-Path Consistency Metric

We first define a consistency metric with respect to a single camera. The camera’s

intrinsic and extrinsic parameters are known, thus we know its position c and the trans-

formation P(p) projecting a point p from world space into the image plane of the camera.

Consider some hypothesized surfel ŝ = 〈f̂ , n̂f 〉. This surfel projects into the camera at

pixel q = P(f̂). We determine the first and last rays along its light path, denoted ℓb and

ℓf , as:

ℓf = 〈q, c〉 (4.7)

ℓb = L(q). (4.8)

Suppose ŝ represents the true surface. Tracing refraction at ŝ backward along ℓf , we

would obtain the implied ray ℓ̂m as:

ℓ̂m =
〈
f̂ , f̂ + refract(ℓf , 〈f̂ , n̂f , ai, ar)

〉
(4.9)

where refract(v,n, ai, ar) is the refracted vector for a given normalized incoming vector

v refracting off a surface with the normal n from a medium whose index of refraction is

ai to a medium whose index of refraction is ar. Snell’s law is used to derive refract in
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Figure 4.3: (a) Using Snell’s law, we can trace refraction backwards from known ray ℓf

through surfel s, determining the ray ℓ̂m. (b) When s is light-path consistent, it intersects

with initial light-path ray ℓb, which is determined using the method described in §4.1.
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[13] as:

refract(v,n, ai, ar) = −
ai

ar

v + n


ai

ar

b −

√

1 −

(
ai

ar

)2

(1 − b2)


 (4.10)

where

b = v · n (4.11)

If ŝ is light-path consistent with the camera, then ℓ̂m will intersect with ray ℓb. Oth-

erwise, ℓ̂m will be some distance away from ℓb. Using this idea, we define reconstruction

error e in a single camera as:

e(ŝ) = d2(ℓ̂m, ℓb) (4.12)

where d returns the shortest distance between two rays. This function measures the

squared distance between the ray that would be travelling through the object if the

hypothesized surfel represents the true surface and the first ray on the light path. Error

will be minimized to 0 if and only if the surfel given is light-path consistent with the

camera.

To find the shortest distance between two rays, we first find a plane whose normal is

perpendicular to both rays. We then project onto this plane a line segment connecting

two arbitrary points on each ray together. The length of this projected line segment is

the shortest ray distance. This can be expressed as [12]:

d (〈x1, x2〉 , 〈y1, y2〉) =
|(y1 − x1) · [(x2 − x1) × (y2 − y1)]|

|(x2 − x1) × (y2 − y1)|
(4.13)

where 〈x1, x2〉 and 〈y1, y2〉 represent the two rays each as pairs of 3D points.

We now use this to create a metric E measuring the reconstruction error in multiple

cameras. This is done by summing the reconstruction error in all cameras together:

E(ŝ) =
∑

i

ei(ŝ) (4.14)

where ei is the reconstruction error of the surfel ŝ with the i-th camera. When the surfel

is consistent with all the cameras, E(ŝ) = 0. Otherwise, E(ŝ) > 0.
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Figure 4.4: Determining the distance between the implied second ray of the light path

and the first ray of the light path.

4.2.2 Depth Sampling

Our goal is to find the surfel ŝ that minimizes E(ŝ). While the space of possible surfels

is 3-dimensional, we can simplify the search space considerably if we take known ray

ℓb1 into account. As our analysis in §3.3 showed, this ray restricts the search space to

2 dimensions. Here we describe in detail our depth sampling algorithm to obtain a

light-path consistent surfel. An overview of this is described in Algorithm 1.

Let us consider the problem of triangulation for some pixel in the reference camera.

On the light path for this pixel, we know the rays ℓb1 and ℓf1. The vertex b1 must be

somewhere along ℓb1 , and the vertex f must be somewhere along ray ℓf1. Furthermore,

as the light path must be consistent with the laws of refraction, the normals nb
1 and nf

are determined by the positions of f and b1. Thus, we can simplify triangulation to a

2-dimensional search for the vertices b1 and f along the rays ℓb1 and ℓf1, respectively.

We perform a brute force search on the possible locations of the vertices b1 and f

(Figure 4.5). First, we choose ranges along the rays ℓb1 and ℓf1 on the reference camera that

include the locations of b1 and f on the true surface, respectively. On each ray, we choose

n equally spaced sample points along its corresponding range. Let B =
{
b̂1

1, b̂
2
1, . . . , b̂

n
1

}
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Figure 4.5: Sampling the space of points f̂ and b̂ along light-path rays ℓf and ℓb, re-

spectively. (a) For each f̂ and b̂, solve for the surfel normal n̂f . (b) For each f̂ , sample

the space of possible intersection points with ℓb. (c) For each b̂, we sample possible

intersection points with ℓf .
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be the sampled points along ℓb and F =
{
f̂1, f̂2, . . . , f̂n

}
be the sampled points along ℓf .

Each of these points represent hypothesized locations for b̂1 and f̂ . We sample each of

the n2 combination of points along these rays.

For each sample
(
f i,bj

1

)
, we solve for the normal n̂f

i,j
such that refracting the ray

ℓf1 backward through the surfel ŝi,j = 〈f̂ i, n̂f 〉 using Equation 4.10, we obtain a ray that

goes through b
j
1 [32]. For any such surfel, the error on the reference camera is 0. This

means that only error in the validation cameras will be used to measure the light-path

consistency of the surfel.

We now measure the error of each surfel ŝi,j. For each camera c, we project the surfel

into the camera’s image plane to determine the image point qc. We then use our stored

initial light-path ray obtained in §4.1 for this pixel as ℓbc = L(qc). Given this ray and the

known final ray on the light path ℓfc = 〈c, f i〉, we evaluate the reconstruction error ec(ŝ
i,j).

Summing together the error in all the cameras, we obtain the total reconstruction error

E(ŝi,j).

Finally, we choose the surfel with the lowest total reconstruction error as our estimate.

This search can be done relatively quickly as it is only 2-dimensional. Also, assuming

the step size is small enough and the ranges sampled include the true positions of the

light-path vertices, this algorithm will find the global minimum.

Unfortunately, this sampling method has several disadvantages. Since we are sampling

only for equally spaced points along the first and last ray of the light path, we limit the

accuracy of our result. Furthermore, by sampling along the ray ℓb1 in the reference camera

we bias the result to error in this camera. With the presence of noise, it would be best

if we could treat all cameras equally.

4.2.3 Refining the Solution

While depth sampling provides a rough estimate of the light-path consistent surfel, we

can obtain a more accurate result by refining the solution. For this refinement step, we
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Algorithm 1 Estimating s by Depth Sampling

1: for j = 1 to n do

2: for i = 1 to n do

3: Determine the normal n̂f such that (f̂ i − b̂j) = refract(f̂ i − c1, n̂f , ai, ar)

4: for all c ∈ C do

5: Project the surfel into camera c using Pc(f̂
i) to determine the image point qc.

6: Determine the initial ray ℓbc = L(qc) on the light path of qc.

7: Evaluate the reconstruction error e(ŝ) in camera c for the surfel ŝ =
〈
f̂ i, n̂f

〉

using Equation 4.12.

8: end for

9: Sum the error in each camera to determine the total error E(ŝ).

10: end for

11: end for

12: Return the surfel with the minimum total reconstruction error.

do not limit our samples to discrete points along the light path, and we take into account

all camera views equally by not searching along the first ray in the reference camera’s

light path. At this point, we rely on depth sampling’s ability to avoid local minima and

thus are only concerned with increasing the accuracy of a result which is close to the

global minimum.

We search the space of depths and normals for the surfel, taking into account the

entire 3-dimensional space of possible surfels. This allows us to avoid biasing the result

to any one camera. We use a down-hill simplex method [35, 39], as it works well with

multiple parameters and does not require us to know the derivative of the objective

function.

The function we wish to minimize is E(ŝ). We search along along a depth parameter

d for the position of f̂ and 2 spherical parameters φ, θ for the surface normal n̂f . These
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Figure 4.6: The initial light path vertex b̂ is estimated by back projecting the light path

from c through surfel ŝ = 〈f̂ , n̂f 〉 and determining the point closest to both the estimated

refracted ray ℓ̂m and the initial light-path ray ℓb.

parameters are mapped as follows:

f̂ = c1 + d(q1 − c1) (4.15)

n̂f = (sin φ cos θ, sin φ sin θ, cos φ) (4.16)

By applying the down-hill simplex method on the function E(ŝ) on the parameters d, φ,

and θ, we obtain our refined solution for surfel ŝ.

4.2.4 Estimating the Initial Light-Path Vertices

Using our estimate of the second light path vertex s, we can estimate the position where

the light path first intersects with the back of the object. We do this by determining the

point closest to the initial light-path ray and the ray refracting through the object.

From each camera i, we trace refraction at ŝ backward from ci, obtaining the ray ℓ̂mi .

We estimate the 3D position b̂i where the light path enters the object by determining

the point closest to both ℓ̂m and ℓb (Figure 4.6).
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4.2.5 Determining the Index of Refraction

The algorithm presented requires us to know the index of refraction of the transparent

object. While sometimes it is possible to determine the index beforehand by analyzing

the object optically, it is often difficult to determine. If we have at least four cameras

viewing the scene, it is possible to compute the index of refraction.

Our approach is to apply the triangulation method multiple times using different

indices of refraction. We determine the index of refraction as the one resulting in the

lowest total error. For the true index of refraction, this error should approach zero.

First, we choose a set of n pixels on the reference camera, and m indices of refraction.

We then triangulate the surfels for each of the n pixels m times, once with each hypoth-

esized index of refraction. For each pixel and index of refraction, we have a measure of

reconstruction error. After removing from consideration outlier pixels, we determine the

index of refraction that has the minimum total error.

4.3 Summary of the Triangulation Method

Refractive light-path triangulation is summarized as follows (Figure 4.7):

1. Capture images of the scene in front of stripe backdrops.

2. Determine the correspondence map.

3. Determine the index of refraction that minimizes the total reconstruction error for

a set of pixels.

4. For each pixel in the reference view, triangulate the surfel:

(a) Depth sample along the first and last light-path rays.

(b) Refine the solution by optimizing along the surfel’s depth and normal.
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Determine the correspondence map

Capture images of the scene with stripe backdrops

Depth sample along the first and last light-path rays

Optimize the surfel along the depth and normal

For each pixel in the reference view

Triangulate the light-path consistent surfel

Determine index of

refraction with the

lowest reconstruction

errror

Figure 4.7: The refractive light-path triangulation method for reconstructing the shape

of specular, transparent objects.
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4.4 Degeneracies in the Solution Space

As described in §3.3, at least three viewpoints are necessary to reconstruct the scene

using our method. However, there are cases where it fails no matter how many views

are used. In these cases, the set of surfels that are light-path consistent with a pixel is

infinite. Such situations occur due to either the shape of the object or both its shape and

the placement of the cameras. Here, we describe several key examples where this occurs,

and what information we can obtain about the shape in these cases.

4.4.1 Shape Degeneracies

A major cause of degeneracies in light-path triangulation is the shape of the scene.

No matter how many cameras are used, nor how they are setup, the scene cannot be

reconstructed. Here we cover two cases, a scene where light refracts at two parallel

planes, and a scene where light refracts through a transparent sphere. We show these

cases are degenerate by constructing an infinite number light-path consistent surfels for

a pixel. In all our examples, we show that for any such surfel, in each camera all the

rays on the resulting light path are on the same plane. This shows that all the rays must

intersect, and thus that the surfel is light-path consistent. Note that other degenerate

cases may exist for light paths that are not planar.

Parallel Planes

Consider a flat transparent object which has two planar surfaces that are parallel to each

other (Figure 4.8(a)). The normal of these planes is n. Let us consider the light path for

some pixel. The surfel s = 〈f ,n〉 is the last vertex along this light path, and the surfel

sb = 〈b,n〉 is the first vertex. By the properties of refraction, the initial light-path ray,

the normal n at point b, and the second light-path ray are all along the same plane P.

Similarly, the second light-path ray, the normal n at point f , and the last light-path
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Figure 4.8: (a) A light path crossing through two parallel planes at points f and bi, both

with surface normal n. The entire light path is on a plane. (b) Any hypothesized surfel

with the true surface normal is light-path consistent for any camera. Examples of these

surfels are shown as points f̂ and normals n, along with the true surfel located at point

f . To see that these surfels are light-path consistent, follow refraction backward through

the surfel, determining the second light-path ray (shown in blue). As this ray is on the

same plane as the first ray of the true light path, it must intersect with it.
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ray are also on a plane P2. Since the normal n is the same on both surfaces, and both

planes cross the point f , P = P2. Thus, all refraction occurs on the same plane.

Now, let us consider a hypothesized surfel ŝ =
〈
f̂ ,n

〉
, such that f̂ is some point along

the last light-path ray. Since f̂ is along this ray, it is on plane P (Figure 4.8(b)). Similarly,

the plane contains the direction n at f̂ . We determine the implied second ray of the light

path by tracing refraction backward through ŝ. By the properties of refraction, this ray

is also on P since f̂ and n are on it. Since both this ray and the initial light-path ray are

on this plane, they must intersect. Thus, ŝ is light-path consistent.

Features Extractable on Parallel Planes

As can be seen, any surfel with the true surface normal n is light-path consistent in

all camera views. Moreover, only surfels with this normal are light-path consistent in

general. To see this, consider the light-path in each view. For a surfel to be light-path

consistent, the normal must be on the same plane as the first and last rays of the light

path, or else the second ray will not intersect with the first ray. Thus, the normal is

restricted to lie on the intersection of the light-path planes from all viewpoints. Since in

general the plane the light path is on will not be the same across multiple camera views,

the intersection of these planes will result in a single normal. Therefore, the normal of

a surfel that is light-path consistent with all camera views is in general the same as the

true normal.

While we cannot determine the position of f , we can determine the distance between f

and b. This is due to the fact that the first and last light-path rays are parallel. Consider

any light-path consistent surfel. Tracing refraction backward from the camera through

this surfel, we obtain the implied second light-path ray. Since the normal of the surfel

is the same as the true surface normal, the second light-path ray will be parallel with

the true second light-path ray (Figure 4.8(b)). The true second light-path ray intersects

the first and last light-path rays at points b and f , respectively, and the implied second
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light-path ray intersects the first and last light-path rays at points b̂ and f̂ , respectively.

Since the true and implied second light-path rays are parallel, along with the first and

last light-path rays, we can trace a parallelogram through points
(
b̂, f̂ , f ,b

)
. Since the

length of opposite sides of a parallelogram are equal, the distance between f and b is

equal to the distance between f̂ and b̂.

Sphere

Consider a scene containing a transparent sphere (Figure 4.9(a)). Let us consider the light

path for some pixel. The surfel s = 〈f ,nf 〉 is the last vertex along this light path, and the

surfel sb = 〈b,nb〉 is the first vertex. Let P be the plane containing the initial light-path

ray, the normal nb, and the second light-path ray. Let P2 be the plane containing the

second light-path ray, the normal nf , and the final light-path ray.

First we will show that P = P2. The normal at any point on the surface goes through

the centre of the sphere, which we will denote as r. Since both planes contain r, f , and

b, P = P2.

Now, let us consider a hypothesized surfel ŝ =
〈
f̂ , n̂f

〉
, such that f̂ is some point along

the last light-path ray and the normal n̂f at f̂ points toward r (Figure 4.9(b)). Since

f̂ is along the last light-path ray, it is on plane P. Similarly, since n̂f points toward r,

and r is on P, n̂f is also on P. We determine the second ray of the light path by tracing

refraction backward through ŝ. By the properties of refraction, this ray is also on P since

f̂ and n̂f are on it as well. Since the known initial light-path ray is on this plane, it must

intersect with this second light-path ray. Thus, ŝ is light-path consistent.

Features Extractable on a Sphere

Unlike the situation with parallel planes, we cannot determine either the depth or the

normal of the surface. If we do know the object is a sphere beforehand, we can determine

its centre r. Since each light-path consistent surfel has a normal pointing toward r, we
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Figure 4.9: (a) A light path crossing through a sphere at points f and bi, where the

surface normals nf and nb
i both point away from the sphere’s centre. The entire light

path is on a plane. (b) Any hypothesized surfel with the normal pointing away from the

sphere’s centre is light-path consistent with all cameras. An example of such a surfel is

shown as point f̂ and normal n̂f . To see that such a surfel is light-path consistent, follow

refraction backward through the surfel, determining the implied second light-path ray

(shown in blue). As this ray is on the same plane as the first ray of the true light path,

it must intersect with the first ray.
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can determine its position by finding the point where the normals of any two light-path

consistent surfels intersect.

4.4.2 Camera Degeneracies

Another set of degeneracies occurs due to the combination of the shape of the object

and the camera views used to capture the scene. Consider if we were to capture views of

a transparent object by leaving the camera fixed and rotating the object along a single

axis. In this case, all the resulting viewpoints would be along a plane. Since all the

viewpoints are on the same plane, the epipolar plane through any combination of two

cameras will be the same as this plane, and the epipolar lines in each pair of cameras

will be along the same part of the object.

Consider the case where due to the shape of the object, from each viewpoint the

light path is along the epipolar plane (Figure 4.10). Such a situation would occur if the

surface normals of points seen through the epipolar line are along the epipolar plane.

Any hypothesized surfel whose position and normal are on this plane will be light-path

consistent. This is because all refraction occurs along a single plane, thus the initial

light-path ray and the implied second light-path ray will intersect.

In such cases, the best way to avoid this problem is to ensure the viewpoints are not

all along the same plane.
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Figure 4.10: Ambiguity due to the first and last light-path rays, ℓb and ℓf , being along

the same plane. As long as the hypothesized surfel’s normal is on this plane, the implied

second light-path rays ℓ̂m will also be on this plane, and thus will intersect with the first

light-path rays.
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Results

5.1 Introduction

In this chapter, we examine 3D shape reconstructions obtained using the light-path trian-

gulation method described in Chapter 4. We analyze the quality of these reconstructions

to determine how well our method works, and on what kinds of shapes it has difficulty

with.

We first describe the imaging apparatus used to capture images of the scene. Our

setup allows us to capture accurate correspondence maps from different viewpoints of

the object using a single camera. We then show the results of our method applied to two

different objects: a Bohemian crystal structure and a glass ashtray. These results are il-

lustrated as depth and normal maps, as well as 3D views of the estimated surfels. Finally,

we analyze the quality of these results by looking at how well our method reconstructs

planar areas of the objects.

5.2 Imaging Apparatus

The imaging apparatus used to capture correspondence maps of refractive scenes is shown

in Figure 5.1. The refractive object is mounted onto a Daedal 20601 Motor Driven Rotary

59
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camera

refractive object

turntabletranslation stage

monitor

Figure 5.1: Apparatus used to capture the correspondence maps. The monitor is moved

toward and away from the refractive object using the translation stage. The refractive

object is rotated using the turntable.

Table. A Sony DXC-9000 3CCD video camera, which is able to capture images at a

resolution of 640x480, is placed such that it views the object from about one meter away.

Behind the object relative to the camera, a Dell 2000FP 20” LCD monitor is mounted

onto a Daedal 404LXR Linear Motor Table, such that its screen is 10-30 cm away from

the object. The resolution of the monitor is 1600x1200. Both the turntable and the

translation stage are controlled using a Compumotor 6K4 Servo/Stepper controller.

5.2.1 Controllable Stages

While we have only one camera, we can obtain different viewpoints of the refractive

object by rotating it with the turntable it is mounted to. Viewing the object at different

rotation angles is equivalent to rotating the rest of the scene, including the camera and
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monitor, in the opposite direction relative to the turntable’s rotation axis. The controller

is able to rotate the object to absolute rotation angles specified by the user, thus we know

the relative rotation of the object between different views.

Using this single camera approach has several advantages. First, we only have to

determine one set of intrinsic parameters. Second, we only have to make sure the LCD

backdrop is viewable from one viewpoint. If we were to place multiple cameras to get

multiple viewpoints instead of rotating the object, it would be impossible to image the

side of the object being obscured by the monitor. The main problem with using a single

camera is that all our views come from rotating the object along a single rotation axis,

and thus the viewpoints relative to the object are all along the same plane. We will see

that our reconstruction method sometimes cannot solve for a unique light-path consistent

surfel due to ambiguities in the solution space.

To capture the scene with the backdrop at multiple positions, we move the LCD

monitor using the translation stage it is mounted to. Similar to the turntable, we are

able specify absolute positions of the stage. When capturing the correspondence map,

we move the monitor to each of two user specified positions for each rotated view of the

transparent object.

5.2.2 Camera

When capturing images of the scene, we would like to keep as much of it in focus as

possible. This can be difficult as we not only want the transparent object to be in focus,

but also the LCD backdrop when viewed directly and indirectly through the object.

Therefore, we increase the depth of field of the camera by using a low aperture setting.

As this does not allow much light into the camera, we have to compensate by increasing

its exposure time.

To calibrate the camera, we use the method described in [19]. Given a set of images

taken from the camera of a planar calibration pattern, this technique allows us to estimate
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its intrinsic and extrinsic parameters. With the object removed from the scene, we use

the LCD monitor to project the image of the calibration pattern. A first set of images

is obtained by mounting the LCD monitor to the turntable and taking images of it

at several rotations. Another set of images is taken with the LCD monitor mounted

onto the translation stage, taking images at several positions along it. Processing these

images through the Camera Calibration Toolbox for Matlab [6], we obtain the camera’s

parameters. From this, we can readily obtain the positions and orientations of the LCD

display. Also, the images taken of the monitor on the turntable allow us to determine its

axis of rotation.

5.3 Experimental Results

5.3.1 Bohemian Crystal

Here we show the results of our method applied to a Bohemian crystal figure with a

diamond cut (Figure 5.2). For the capture session, we needed to ensure that the LCD

backdrop could be seen indirectly through as much of the visible surface of the the object

as possible, as we will not be able to determine the initial light-path ray for pixels through

which the backdrop is not visible. We found we could do this by positioning the glass

such that in the reference view the point on its bottom was directed toward the camera.

We captured images of the object from 7 viewpoints, rotated 0, ±10, ±20, and ±30

degrees (Figure 5.3). The total capture time was 8.5 hours.

Using our method we obtained the depth and normal maps shown in Figure 5.4, and

a 3D view of the estimated surfels shown in Figure 5.5. Using the method described in

§4.2.5, we determined the index of refraction to be 1.55. As can be seen, the reconstructed

depths and normals are quite consistent over the surface of each facet. The planar facets

on the surface of the object are flat in their reconstruction, though some have a fair

amount of nonuniform noise. Note that in the depth and normals maps the facets are
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Figure 5.2: Bohemian crystal with a diamond cut.
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Reference View

-10˚

-20˚

-30˚

10˚
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Figure 5.3: Reference and rotated views of the Bohemian crystal used for reconstruction.
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segmented. This occurs because we cannot accurately estimate the correspondence maps

near facet edges, and thus no estimate of shape is made for these pixels.

Accuracy

To measure the quality of the reconstruction, we measure how ‘planar’ the reconstruction

of the planar facets are. We first define a set of metrics to measure the planarity of a

set of estimated surfels S = {〈p1,n2〉 , . . . , 〈pn,nn〉}. We define the metrics Enorm, Ẽnorm,

Epos, and Ẽpos, the first two measuring the planarity of the surfel set’s normals and the

latter two measuring the planarity of the surfel set’s 3D positions. Enorm and Ẽnorm are

defined to measure the mean and median angle between each surfel normal from the

mean surfel normal, respectively. That is,

navg =

∑
(ni)

‖
∑

(ni)‖
(5.1)

ei
norm = acos(ni · navg) (5.2)

Enorm = meani(e
i
norm) (5.3)

Ẽnorm = mediani(e
i
norm) (5.4)

where navg is the average surfel normal, ni is the normal of the i-th surfel, and ei
norm is

the normal error of i-th surfel.

To measure the positional planarity, we first fit the position of the points to a plane

robustly using RANSAC [11]. To perform this fit, we determine the three points that

define a plane that maximizes the number of inlier points to it. A point is considered an

inlier if it is within 0.5 mm of the plane. We then perform a least squares fit on these

inlier points to determine the plane. We define Epos and Ẽpos to measure the mean and

median squared distance of each surfel’s position to the plane as:

ei
pos = [projR(pi) − pi]

2 (5.5)

Enorm = meani(e
i
pos) (5.6)

Ẽnorm = mediani(e
i
pos) (5.7)
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(a)

(b)

Figure 5.4: Reconstruction of the Bohemian crystal figure. (a) Depth map of the reference

view. (b) Normal maps of the reference view, showing the slant (left image) and tilt (right

image).
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Figure 5.5: 3D view of the reconstructed surfels from the Bohemian crystal dataset.
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Figure 5.6: Facet labels on the Bohemian crystal.

where pi is the position of the i-th surfel, R is the RANSAC fit plane, projR(p) projects

point p onto plane R, and ei
pos is the position error of i-th surfel.

The labeled facets are shown in Figure 5.6, with their planar error listed in Table

5.1. As can be seen, the median normal error is around 1-3 degrees for most facets,

and the median positional error between 0.30 mm and 1.58 mm. To determine whether

error is caused by our optimization method not being able to find an optimal surfel, we

discount surfels whose mean reconstruction error per camera is above 0.1 mm (Equation

4.12), obtaining error listed in Table 5.2. As can be seen, error drops somewhat for most

surfels, though not significantly. Thus, much of the planar error is occurring even though

we have low reconstruction error.
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Facet label 1 2 3 4 5 6 7 8

Mean normal error (degrees) 4.46 1.70 2.80 3.15 8.32 6.42 4.14 1.53

Median normal error (degrees) 2.99 1.21 1.83 1.98 6.34 4.18 2.87 1.11

Mean position error (mm) 2.10 0.74 1.60 1.69 2.18 3.40 1.84 0.86

Median position error (mm) 0.71 0.30 0.45 0.47 1.58 0.65 0.57 0.30

RANSAC position inliers (%) 35.9 64.0 52.8 50.1 18.8 40.3 45.1 67.5

Table 5.1: Planar error of facets labeled in Figure 5.6 in the reconstruction of the Bo-

hemian crystal. Normal is determined using Equation 5.2. Position error is measured as

the squared distance between the position of a surfel and the plane fit to all inlier surfels

using RANSAC.

Facet label 1 2 3 4 5 6 7 8

Mean normal error (degrees) 4.34 1.58 2.60 2.80 7.64 5.43 3.97 1.30

Median normal error (degrees) 3.11 1.11 1.74 1.75 5.94 3.21 2.74 1.08

Mean position error (mm) 1.93 0.67 1.51 1.47 2.10 3.06 1.75 0.63

Median position error (mm) 0.60 0.30 0.47 0.41 1.51 0.55 0.55 0.29

RANSAC position inliers (%) 42.2 65.9 49.9 55.8 20.7 44.8 46.4 68.4

Table 5.2: Planar error of facets labeled in Figure 5.6 in the reconstruction of the Bo-

hemian crystal, discounting surfels whose mean reconstruction error is above 0.1 mm

(Equation 4.12).
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Analysis

We analyze the error further by looking at the objective function at specific points (Figure

5.7). For points on facets we can accurately reconstruct, we find the objective function

comes to a well defined minimum (Figure 5.8(a)). On facets we cannot accurately recon-

struct the objective function does not have a well defined minimum (Figure 5.8(b)). As

the object is highly symmetrical, the only real difference between facets is their relative

views from the camera. Thus, we should be able to increase the quality within these

facets if we place the camera at a different location.

Note that on the plots of the objective functions (Figure 5.8), there are several impor-

tant landmarks. For some depths along the last light-path ray, we cannot calculate the

objective function. These are marked as feature ‘A’. The reason the objective function

cannot be calculated is because in at least one camera, the position of the hypothesized

point projected onto the camera’s image plane is either not on the surface of the Bo-

hemian crystal, or it is at a point between facets where the correspondence map cannot

be determined.

Another important feature is the depth along which there is a vertical valley in the

objective function, marked as feature ‘B’. At this depth, the last light-path ray is closest to

the initial light-path ray. In the set of hypothesized normals generated by depth-sampling

along the initial light-path ray, most pairs of normals have little angular distance between

them. Since these hypothesized surfels are all at the same 3D point and most have nearly

the same normals, the objective function will be nearly the same for them. Note that

this feature will not be seen in general, as it is specific to the shape of the crystal and

the position of the viewpoints.
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Figure 5.7: Pixels whose objective functions are shown in Figure 5.8.
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Figure 5.8: Optimization function over a set of depths along known light-path rays. The

vertical axis represents the hypothesized point of refraction along the initial light-path

ray while the horizontal axis represents the hypothesized point of refraction along the last

light-path ray. The red circle represents the minimum error found by depth sampling.

(a) Error for pixel on facet 2, which could be accurately reconstructed. (b) Error for

pixel on facet 5, which could not be reconstructed.
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Figure 5.9: Glass ashtray.

5.3.2 Ashtray

Here we show the results of our method applied to a glass ashtray (Figure 5.9). The

bottom of this ashtray is planar, while the top is concave with a planar edge. Note that

this concavity makes it impossible to reconstruct the ashtray using methods relying solely

on its visual convex hull [24]. For the capture session, the ashtray was positioned such

that the top was pointed toward the camera in the reference view. We captured this

object from 7 viewpoints, rotated 0, ±10, ±20, and ±30 degrees (Figure 5.10). The total

capture time was 13 hours.

Using our method we obtained the depth and normal maps shown in Figure 5.11,
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Figure 5.10: Reference and rotated views of the ashtray used for reconstruction.
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(a)

(b)

Figure 5.11: Reconstruction of the ashtray. (a) Depth map of the reference view. (b)

Normal maps of the reference view, showing the slant (left image) and tilt (right image).

and a 3D view of the estimated surfels shown in Figure 5.12. The estimated index of

refraction of the ashtray is 1.54. As can be seen our method is able to reconstruct the

concavity of the ashtray. We observe noise vertically along the ashtray where the axis

of rotation is located, and horizontally across the ashtray. Also, on the top planar edge

of the ashtray the normal map is smoothly reconstructed while the depth map contains

significant error.
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Figure 5.12: 3D views of the reconstructed surfels from the ashtray dataset.
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Figure 5.13: Area on the ashtray used for the planarity measurement.

Accuracy

To analyze the quality of the reconstruction, we determine how planar our reconstruction

of the back of the object is. Using the method presented in §4.2.4, we determine the points

where the light path from the reference camera intersects with the back of the ashtray for

pixels within the concave region (Figure 5.13). We measure their planarity the same way

we measure position planarity error for facets on the Bohemian crystal. The positional

error has a mean of 207.62 mm and median of 1.21 mm. The plane fit with RANSAC

uses 23.5% of the surfel points as inliers. The mean error is very large due to the outlier

points that are poorly reconstructed, but the median error measure which is more robust

is relatively low.
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Figure 5.14: Ashtray split into four regions for analysis. The squares are pixels whose

objective function are shown in Figures 5.15-5.18.

Analysis

The quality of the reconstruction differs over the area of the ashtray. For analytical

purposes, we will split the ashtray into four regions (Figure 5.14):

(A) Concave region reconstructed smoothly

(B) Horizontal axis within the concave region reconstructed poorly

(C) Vertical axis within the concave region reconstructed poorly

(D) Planar edge around the top

We measure the planar error of all 3x3 patches in each region (Table 5.3). The

planarity of each patch is measured the same way we measure normal planarity error

for facets on the Bohemian crystal. We show the mean and median planar error of all
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Patch A B C D

Mean normal error (degrees) 1.79 10.28 6.64 0.90

Median normal error (degrees) 1.63 7.51 6.75 0.21

Mean slant error (degrees) 1.99 17.20 0.82 1.00

Median slant error (degrees) 1.79 12.12 0.70 0.21

Mean tilt error (degrees) 2.35 2.46 10.63 0.92

Median tilt error (degrees) 2.08 2.24 10.77 0.17

Table 5.3: Average planar error of all 3x3 patches within the regions marked in Figure

5.14 in the reconstruction of the ashtray.

patches within each region. Since the quality of the normal reconstruction differs over the

slant and tilt maps, we measure the error for these individually. Although the ashtray is

concave over most of its surface, we expect it to be relatively flat for small patches.

In region A, the concave area is reconstructed with no ambiguities (Figure 5.11).

Both the reconstructed depth and normal maps within this region are smooth. Looking

at Figure 5.15, we can see the objective function has a well defined minimum. This shows

that unlike silhouette based techniques (See §2.3.4), our method is able to reconstruct

concave surfaces.

In region B, the horizontal axis within the concave region could not be fully recon-

structed. As can be seen in Figure 5.11, the depth in this area has significant error. In

the normal map, we see that the while there is error in the slant of the normal, the tilt of

the normal was smoothly reconstructed. This can also be seen in the planarity measure-

ments shown in Table 5.3. Taking a look at the objective function of a pixel within this

region (Figure 5.16), we see that the minimum is not well defined, causing our method to

fail. Although it is difficult to fully determine the nature of this ambiguity, it appears to

be due to the placement of the cameras (See §4.4.2). The normals of these points are all

along a plane parallel to the plane containing the viewpoints. Such an ambiguity could
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Figure 5.15: Optimization function for a pixel within region A of the ashtray.

be dealt with by adding additional camera views not along the same plane.

In region C, we see the vertical axis in the concave region could not be reconstructed.

This region encloses the rotation axis along which the object was rotated to obtain

multiple viewpoints. As was also the case with region B, the depth map within region C

has significant error. However in this case, while there is error in the tilt of the normal, we

can reconstruct its slant smoothly (Table 5.3). The objective function for a point within

this region is shown in Figure 5.17. Again no unique surfel minimizing the objective

function can be found. As these points occur along the axis the ashtray was rotated, this

ambiguity is due to the placement of the camera. Thus, adding different viewpoints of

the scene should improve the quality of these results.

Region D, the planar area of the ashtray, is partially reconstructed. While the depth

map has significant error, the normal map is accurately reconstructed. This is because

this region is parallel with the bottom of the ashtray. As shown in §4.4.1, if the light
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Figure 5.16: Optimization function for a pixel within region B of the ashtray.
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Figure 5.17: Optimization function for a pixel within region C of the ashtray.
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Figure 5.18: Optimization function for a pixel within region D of the ashtray.

paths through a point on the surface go through two parallel planes, the depth cannot be

determined. The normal planar error along this entire region had a mean of 1.13◦, and

a median of 0.56◦. The objective function for a pixel within this area is shown in Figure

5.18.



Chapter 6

Conclusion

We have shown how the shape of a transparent scene can be reconstructed by analyzing

how light refracts through it. Using an environment matting technique, we determine

for each pixel the light rays entering a transparent object. We then determine the light

paths that are consistent with these initial light rays from multiple viewpoints of the

scene.

A theoretical framework of our method was developed to describe the nature of light

refracting through transparent objects. Using this, we proved our method requires at

least three views of the scene to uniquely determine the light paths. Finally, we applied

our method to images of real transparent objects, generating depth and normal maps of

the scenes.

While our current method provides a useful framework for analyzing transparent

scenes, we would like to improve the quality of the reconstructions. Of particular concern

are shapes where the light path cannot be uniquely determine due to the object’s shape.

It may be possible to improve the quality of our method and handle these ambiguities

by enforcing an integrability constraint to ensure the depth maps and normal maps are

consistent.

While we deal with the light refracting twice at the surface of an object, it would be

83
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useful to extend out method to handle more complex light paths. This would allow us

to handle objects made of multiple transparent media, such as a glass filled water. As

shown in [23], it is impossible to handle such a scene if we consider each point on the

object’s surface independently. Thus, handling such situations may require us to take a

more global approach, optimizing for the entire surface of the media.
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