
CSC321 Winter 2018 Programming Assignment 4

Programming Assignment 4: CycleGAN

Deadline: April 3, at 11:59pm
TAs: Guodong Zhang (csc321staff@cs.toronto.edu)
Assignment by Paul Vicol

Submission: You must submit three files through MarkUs1: a PDF file containing your writeup,
titled a4-writeup.pdf, and your code files models.py and cycle_gan.py. Your writeup must be
typeset using LATEX.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

Introduction

In this assignment, you’ll get hands-on experience coding and training GANs. This assignment is
divided into two parts: in the first part, we will implement a specific type of GAN designed to
process images, called a Deep Convolutional GAN (DCGAN). We’ll train the DCGAN to generate
emojis from samples of random noise. In the second part, we will implement a more complex
GAN architecture called CycleGAN, which was designed for the task of image-to-image translation
(described in more detail in Part 2). We’ll train the CycleGAN to convert between Apple-style and
Windows-style emojis.

In both parts, you’ll gain experience implementing GANs by writing code for the generator,
discriminator, and training loop, for each model.

Important Note

We provide a script to check your models, that you can run as follows:

python model_checker.py

This checks that the outputs of DCGenerator, DCDiscriminator, and CycleGenerator match the
expected outputs for specific inputs. This model checker is provided for convenience only. It may
give false negatives, so do not use it as the only way to check that your model is correct.

The training scripts run much faster (∼ 5x faster) on the teaching lab machines if you add
MKL NUM THREADS=1 before the Python call, as follows:

MKL NUM THREADS=1 python cycle gan.py --load=pretrained cycle --train iters=100

Remember to add MKL NUM THREADS=1 before each Python command in this assignment.

1https://markus.teach.cs.toronto.edu/csc321-2018-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/syllabus.pdf

1

https://markus.teach.cs.toronto.edu/csc321-2018-01
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/syllabus.pdf

CSC321 Winter 2018 Programming Assignment 4

Part 1: Deep Convolutional GAN (DCGAN)

For the first part of this assignment, we will implement a Deep Convolutional GAN (DCGAN).
A DCGAN is simply a GAN that uses a convolutional neural network as the discriminator, and
a network composed of transposed convolutions as the generator. To implement the DCGAN, we
need to specify three things: 1) the generator, 2) the discriminator, and 3) the training procedure.
We will develop each of these three components in the following subsections.

Implement the Discriminator of the DCGAN [10%]

The discriminator in this DCGAN is a convolutional neural network that has the following archi-
tecture:

conv1 conv2 conv3 conv4

32

32

3

16

16
32

8

8
64

4

4
128

1
1

1

Sigmoid

Discriminator

BatchNorm & ReLU BatchNorm & ReLU BatchNorm & ReLU

1. Padding: In each of the convolutional layers shown above, we downsample the spatial di-
mension of the input volume by a factor of 2. Given that we use kernel size K = 4 and stride
S = 2, what should the padding be? Write your answer in your writeup, and show your work
(e.g., the formula you used to derive the padding).

2. Implementation: Implement this architecture by filling in the __init__ method of the
DCDiscriminator class in models.py, shown below. Note that the forward pass of DCDiscriminator
is already provided for you.

def __init__(self, conv_dim=64):

super(DCDiscriminator, self).__init__()

###

FILL THIS IN: CREATE ARCHITECTURE

###

self.conv1 = conv(...)

self.conv2 = conv(...)

self.conv3 = conv(...)

self.conv4 = conv(...)

Note: The function conv in models.py has an optional argument batch_norm: if batch_norm
is False, then conv simply returns a torch.nn.Conv2d layer; if batch_norm is True, then
conv returns a network block that consists of a Conv2d layer followed by a torch.nn.BatchNorm2d
layer. Use the conv function in your implementation.

2

CSC321 Winter 2018 Programming Assignment 4

Generator [10%]

Now, we will implement the generator of the DCGAN, which consists of a sequence of transpose
convolutional layers that progressively upsample the input noise sample to generate a fake image.
The generator we’ll use in this DCGAN has the following architecture:

deconv4deconv3deconv2deconv1

32

32

3

16

16
32

8

8
64

4

4
128

tanhBatchNorm & ReLU

Generator

BatchNorm & ReLU BatchNorm & ReLU

100
1

1

1. Implementation: Implement this architecture by filling in the __init__ method of the
DCGenerator class in models.py, shown below. Note that the forward pass of DCGenerator
is already provided for you.

def __init__(self, noise_size, conv_dim):

super(DCGenerator, self).__init__()

###

FILL THIS IN: CREATE ARCHITECTURE

###

self.deconv1 = deconv(...)

self.deconv2 = deconv(...)

self.deconv3 = deconv(...)

self.deconv4 = deconv(...)

Note: Use the deconv function (analogous to the conv function used for the discriminator
above) in your generator implementation.

Training Loop [15%]

Next, you will implement the training loop for the DCGAN. A DCGAN is simply a GAN with a
specific type of generator and discriminator; thus, we train it in exactly the same way as a standard
GAN. The pseudo-code for the training procedure is shown below. The actual implementation is
simpler than it may seem from the pseudo-code: this will give you practice in translating math to
code.

1. Implementation: Open up the file vanilla_gan.py and fill in the indicated parts of the
training_loop function, starting at line 149, i.e., where it says

FILL THIS IN

1. Compute the discriminator loss on real images

D_real_loss = ...

3

CSC321 Winter 2018 Programming Assignment 4

Algorithm 1 GAN Training Loop Pseudocode

1: procedure TrainGAN
2: Draw m training examples {x(1), . . . , x(m)} from the data distribution pdata
3: Draw m noise samples {z(1), . . . , z(m)} from the noise distribution pz
4: Generate fake images from the noise: G(z(i)) for i ∈ {1,m}
5: Compute the (least-squares) discriminator loss:

J (D) =
1

2m

m∑
i=1

[(
D(x(i))− 1

)2]
+

1

2m

m∑
i=1

[(
D(G(z(i)))

)2]
6: Update the parameters of the discriminator
7: Draw m new noise samples {z(1), . . . , z(m)} from the noise distribution pz
8: Generate fake images from the noise: G(z(i)) for i ∈ {1,m}
9: Compute the (least-squares) generator loss:

J (G) =
1

m

m∑
i=1

[(
D(G(z(i)))− 1

)2]
10: Update the parameters of the generator

There are 5 numbered bullets in the code to fill in for the discriminator and 3 bullets for the
generator. Each of these can be done in a single line of code, although you will not lose marks
for using multiple lines.

Experiment [10%]

1. Train the DCGAN with the command:

python vanilla_gan.py --num_epochs=40

By default, the script runs for 40 epochs (5680 iterations), and should take approximately 30
minutes on the teaching lab machines (it may be faster on your own computer). The script
saves the output of the generator for a fixed noise sample every 200 iterations throughout
training; this allows you to see how the generator improves over time. Include in your
write-up one of the samples from early in training (e.g., iteration 200) and one
of the samples from later in training, and give the iteration number for those
samples. Briefly comment on the quality of the samples, and in what way they
improve through training.

Part 2: CycleGAN

Now we are going to implement the CycleGAN architecture.

Motivation: Image-to-Image Translation

Say you have a picture of a sunny landscape, and you wonder what it would look like in the rain. Or
perhaps you wonder what a painter like Monet or van Gogh would see in it? These questions can be

4

CSC321 Winter 2018 Programming Assignment 4

addressed through image-to-image translation wherein an input image is automatically converted
into a new image with some desired appearance.

Recently, Generative Adversarial Networks have been successfully applied to image translation,
and have sparked a resurgence of interest in the topic. The basic idea behind the GAN-based
approaches is to use a conditional GAN to learn a mapping from input to output images. The loss
functions of these approaches generally include extra terms (in addition to the standard GAN loss),
to express constraints on the types of images that are generated.

A recently-introduced method for image-to-image translation called CycleGAN is particularly
interesting because it allows us to use un-paired training data. This means that in order to train
it to translate images from domain X to domain Y , we do not have to have exact correspondences
between individual images in those domains. For example, in the paper that introduced CycleGANs,
the authors are able to translate between images of horses and zebras, even though there are no
images of a zebra in exactly the same position as a horse, and with exactly the same background,
etc.

Thus, CycleGANs enable learning a mapping from one domain X (say, images of horses) to
another domain Y (images of zebras) without having to find perfectly matched training pairs.

To summarize the differences between paired and un-paired data, we have:

• Paired training data: {(x(i), y(i))}Ni=1

• Un-paired training data:

– Source set: {x(i)}Ni=1 with each x(i) ∈ X

– Target set: {y(j)}Mj=1 with each y(j) ∈ Y

– For example, X is the set of horse pictures, and Y is the set of zebra pictures, where
there are no direct correspondences between images in X and Y

Emoji CycleGAN

Now we’ll build a CycleGAN and use it to translate emojis between two different styles, in partic-
ular, Windows ↔ Apple emojis.

Generator [20%]

The generator in the CycleGAN has layers that implement three stages of computation: 1) the first
stage encodes the input via a series of convolutional layers that extract the image features; 2) the
second stage then transforms the features by passing them through one or more residual blocks;
and 3) the third stage decodes the transformed features using a series of transpose convolutional
layers, to build an output image of the same size as the input.

The residual block used in the transformation stage consists of a convolutional layer, where the
input is added to the output of the convolution. This is done so that the characteristics of the
output image (e.g., the shapes of objects) do not differ too much from the input.

Implement the following generator architecture by completing the __init__ method of the
CycleGenerator class in models.py.

def __init__(self, conv_dim=64, init_zero_weights=False):

super(CycleGenerator, self).__init__()

###

5

CSC321 Winter 2018 Programming Assignment 4

conv deconv conv deconv

Apple
Emoji

Windows
Emoji

Apple
Emoji

conv

GXtoY GYtoX

DY

[0, 1]

Does the generated
image look like it came

from the set of Windows
emojis?

GYtoX GXtoY

FILL THIS IN: CREATE ARCHITECTURE

###

1. Define the encoder part of the generator

self.conv1 = ...

self.conv2 = ...

2. Define the transformation part of the generator

self.resnet_block = ...

3. Define the decoder part of the generator

self.deconv1 = ...

self.deconv2 = ...

To do this, you will need to use the conv and deconv functions, as well as the ResnetBlock

class, all provided in models.py.
Note: There are two generators in the CycleGAN model, GX→Y and GY→X , but their imple-

mentations are identical. Thus, in the code, GX→Y and GY→X are simply different instantiations
of the same class.

6

CSC321 Winter 2018 Programming Assignment 4

deconv2deconv1conv2conv1

32

32

3

16

16
32

8

8
64

4

4
128

tanhBatchNorm & ReLU

CycleGAN Generator

BatchNorm & ReLU BatchNorm & ReLU

100

32

32

3

16

16
32

8

8
64

Redidual block

BatchNorm & ReLU

CycleGAN Training Loop [20%]

Finally, we will implement the CycleGAN training procedure, which is more involved than the
procedure in Part 1.

Algorithm 2 CycleGAN Training Loop Pseudocode

1: procedure TrainCycleGAN
2: Draw a minibatch of samples {x(1), . . . , x(m)} from domain X
3: Draw a minibatch of samples {y(1), . . . , y(m)} from domain Y
4: Compute the discriminator loss on real images:

J (D)
real =

1

m

m∑
i=1

(DX(x(i))− 1)2 +
1

n

n∑
j=1

(DY (y(j) − 1)2

5: Compute the discriminator loss on fake images:

J (D)
fake =

1

m

m∑
i=1

(DY (GX→Y (x(i))))2 +
1

n

n∑
j=1

(DX(GY→X(y(j))))2

6: Update the discriminators
7: Compute the Y → X generator loss:

J (GY →X) =
1

n

n∑
j=1

(DX(GY→X(y(j)))− 1)2 + J (Y→X→Y)
cycle

8: Compute the X → Y generator loss:

J (GX→Y) =
1

m

m∑
i=1

(DY (GX→Y (x(i)))− 1)2 + J (X→Y→X)
cycle

9: Update the generators

Similarly to Part 1, this training loop is not as difficult to implement as it may seem. There
is a lot of symmetry in the training procedure, because all operations are done for both X → Y
and Y → X directions. Complete the training_loop function in cycle_gan.py, starting from the
following section:

==

TRAIN THE DISCRIMINATORS

==

7

CSC321 Winter 2018 Programming Assignment 4

###

FILL THIS IN

###

Train with real images

d_optimizer.zero_grad()

1. Compute the discriminator losses on real images

D_X_loss = ...

D_Y_loss = ...

There are 5 bullet points in the code for training the discriminators, and 6 bullet points in total
for training the generators. Due to the symmetry between domains, several parts of the code you
fill in will be identical except for swapping X and Y ; this is normal and expected.

Cycle Consistency

The most interesting idea behind CycleGANs (and the one from which they get their name) is
the idea of introducing a cycle consistency loss to constrain the model. The idea is that when we
translate an image from domain X to domain Y , and then translate the generated image back to
domain X, the result should look like the original image that we started with.

The cycle consistency component of the loss is the mean squared error between the input
images and their reconstructions obtained by passing through both generators in sequence (i.e.,
from domain X to Y via the X → Y generator, and then from domain Y back to X via the Y → X
generator). The cycle consistency loss for the Y → X → Y cycle is expressed as follows:

1

m

m∑
i=1

(y(i) −GX→Y (GY→X(y(i))))2)

The loss for the X → Y → X cycle is analogous.
Implement the cycle consistency loss by filling in the following section in cycle_gan.py. Note

that there are two such sections, and their implementations are identical except for swapping X
and Y . You must implement both of them.

if opts.use_cycle_consistency_loss:

reconstructed_X = G_YtoX(fake_Y)

3. Compute the cycle consistency loss (the reconstruction loss)

cycle_consistency_loss = ...

g_loss += cycle_consistency_loss

CycleGAN Experiments [15%]

Training the CycleGAN from scratch can be time-consuming if you don’t have a GPU. In this part,
you will train your models from scratch for just 600 iterations, to check the results. To save training
time, we provide the weights of pre-trained models that you can load into your implementation. In
order to load the weights, your implementation must be correct.

1. Train the CycleGAN without the cycle-consistency loss from scratch using the command:

8

CSC321 Winter 2018 Programming Assignment 4

python cycle_gan.py

This runs for 600 iterations, and saves generated samples in the samples_cyclegan folder.
In each sample, images from the source domain are shown with their translations to the right.
Include in your writeup the samples from both generators at either iteration 400 or 600, e.g.,
sample-000400-X-Y.png and sample-000400-Y-X.png.

2. Train the CycleGAN with the cycle-consistency loss from scratch using the command:

python cycle_gan.py --use_cycle_consistency_loss

Similarly, this runs for 600 iterations, and saves generated samples in the samples_cyclegan_cycle
folder. Include in your writeup the samples from both generators at either iteration 400 or
600 as above.

3. Now, we’ll switch to using pre-trained models, which have been trained for 40000 iterations.
Run the pre-trained CycleGAN without the cycle-consistency loss using the command:

python cycle_gan.py --load=pretrained --train_iters=100

You only need 100 training iterations because the provided weights have already been trained
to convergence. The samples from the generators will be saved in the folder
samples_cyclegan_pretrained. Include the sampled output from your model.

4. Run the pre-trained CycleGAN with the cycle-consistency loss using the command:

python cycle_gan.py --load=pretrained_cycle \

--use_cycle_consistency_loss \

--train_iters=100

The samples will be saved in the folder samples_cyclegan_cycle_pretrained. Include
the final sampled output from your model.

5. Do you notice a difference between the results with and without the cycle consistency loss?
Write down your observations (positive or negative) in your writeup. Can you explain these
results, i.e., why there is or isn’t a difference between the two?

What you need to submit

• Three code files: models.py, vanilla_gan.py, and cycle_gan.py.

• A PDF document titled a4-writeup.pdf containing samples generated by your DCGAN and
CycleGAN models, and your answers to the written questions.

9

CSC321 Winter 2018 Programming Assignment 4

Further Resources

For further reading on GANs in general, and CycleGANs in particular, the following links may be
useful:

1. Unpaired image-to-image translation using cycle-consistent adversarial networks (Zhu et al.,
2017)

2. Generative Adversarial Nets (Goodfellow et al., 2014)

3. An Introduction to GANs in Tensorflow

4. Generative Models Blog Post from OpenAI

5. Official PyTorch Implementations of Pix2Pix and CycleGAN

10

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1406.2661.pdf
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
https://blog.openai.com/generative-models/
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

