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Abstract—Searching microblogs, e.g., tweets and comments, is to put a limit £ on the number of returned results. Hence, all

practically supported through main-memory indexing for scalable
data digestion and efficient query evaluation. With continuity
and excessive numbers of microblogs, it is infeasible to keep
data in main-memory for long periods. Thus, once allocated
memory budget is filled, a portion of data is flushed from
memory to disk to continuously accommodate newly incoming
data. Existing techniques come with either low memory hit ratio
due to flushing items regardless of their relevance to incoming
queries or significant overhead of tracking individual data items,
which limit scalability of microblogs systems in either cases. In
this paper, we proposekFlushing policy that exploits popularity
of top-k queries in microblogs to smartly select a subset of
microblogs to flush. kFlushing is mainly designed to increase
memory hit ratio. To this end, it identifies and flushes in-memory
data that does not contribute to incoming queries. The freed
memory space is utilized to accumulate more useful data that is
used to answer more queries from memory contents. When all
memory is utilized for useful data, kFlushing flushes data that is
less likely to degrade memory hit ratio. In addition, kFlushing
comes with a little overhead that keeps high system scalability
in terms of high digestion rates of incoming fast data. Extensive
experimental evaluation shows the effectiveness and scalability o
kFlushing to improve main-memory hit by 26-330% while coping
up with fast microblog streams of up to 100K microblog/second.

I. INTRODUCTION

search queries on microblogs turned out tottye-k queries,
where thek results are selected based on a certain ranking
criterion.

Existing work for fop-k) search queries on microblogs [5,
16, 19, 28] mainly focus on building scalable indexing tech-
niguesin main-memoryto digest incoming microblogs with
their high arrival rates. Existing index structures alonighw
their query processing techniques either explicitly orlioigy
assume the following two assumptions: (1) Memory is so large
that almost all queries of interest will be answered from in-
memory contents. In case that the answer is not found in-
memory, the search will continue in another disk-basedxnde
structure. However, onlyn-memory query response time
reported for performance evaluation, ignoring the diskeasc
(2) Once the memory is filled up, a chunkatiestin-memory
microblogs is flushed to disk, leaving their valuable memory
space for new incoming microblogs.

Unfortunately, the implications of these two implicit as-
sumptions are way underestimated in all prior work. Such as-
sumptions are only geared towaridsmemory query response
time, while ignoring another critical performance measure,
which is memory hit ratiq i.e., the ratio of queries that are
completely answered from in-memory contents. With such

Microblogs, e.g., tweets, reviews, news comments, FaceWo implicit assumptions, existing techniques may have a
book comments, and Foursquare check ins, have beconk@d performance due to a lomemory hit ratioas many of
incredibly popular among web users, where several billionghe incoming queries may not be answered from in-memory
microblogs are posted everyday [10, 27]. Microblogs comecontents. Such queries are answered from disk with a vety hig

with rich contents and time-sensitive information thatluie

cost. For example, the queryihd most recent k tweets that

textual contents, locations, and user information. Thé ric has the keyword Obarhavould most likely be answered from

contents of microblogs have motivated several practicpli-ap

in-memory contents becaus@bamais a popular (i.e., high-

cations like news dissemination [3], rescue services [@l a frequency) keyword. However, if the same query asks for the

tracking health-related issues [25]. Such important usafge

keyword “concurrency, which is not common in tweets, it is

microblogs has motivated researchers to spend major effortinlikely to find the answer in memory, and hence a visit to
to efficiently support search queries for large numbers ofn-disk index has to be paid resulting in poor query latency.

microblogs. Search queries on microblogs include keyword
search queries Find microblogs that contain certain key-

word(s) [5, 6, 16], location search queriesthd microblogs
that are posted within a certain locatidpril9, 24], and user

timeline search queried=ind microblogs that are posted by a
certain uset [28]. Due to the large number of returned results
for any of these search queries, all proposed technique agr
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The rational of existing techniques is that most queries
ask for popular keywords and will be answered from memory.
Hence, it is reasonable to support such queries efficiesutig,
kind of ignore other queries that does not ask about popular
words. However, such rational is not always favorable in
practical scenarios. For example, web search engines iaptim
their performance to serve 95% of their search queries mithi
a certain threshold, e.g., 50-100ms. So, it is important to
optimize for worst case scenario, i.e., we need to ensute tha
95% of our queries are answered below a certain threshold,
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which is favorable than optimizing for the average query
response time. Considering timeemory hit ratioas a major

query performance in searching microblogs ensures tha¢ mor |: ;
queries are answered efficiently from memory, which matches |1 ||
the same optimization goal of major web search engines.

To illustrate the memory management problem in mi- HHTT ‘ } ‘ l ‘ ‘ } ‘ }

croblogs data management systems, Figure 1(a) depicts a Simznanamemenmewe

. . eywords Keywords
typical snapshot of the memory contents. The figure shows
nine keywordscw1 to kw9, on the horizontal axis, along with
the number of microblogs containing each keyword on thesg 1 kriushing main idea
vertical axis. The figure also has a horizontal line corresiso
to the numbelk, wherek is the default value used in any top-
k query. Only three keywordskwl, kw2, and kw3 appear different terminologies, e.ghuffer managemenin database
more thank times, while the rest of keywords have appearedmanagement systems (DBMSs) [%nti-caching in main-
less thank times. Existing index structures and their query memory databases [8, 15, 30], atmhd sheddingin data
processors for search queries on microblogs work with sucktream management systems (DSMSs) [1, 12, 13]. However,
memory contents as is to retrieve their answers. Thereforaeither buffer management nor anti-caching techniquelmixp
for any incoming query on any of the nine keywords intop-k queries as they decide on flushing an item based on its
Figure 1(a), only the ones asking about the first three kegisvor latest access time regardless of other items. When optigiizin
can be answered form memory very efficiently as there are infor top-k queries, the decision to evict or keep an item in main-
memory k keywords for each of them. However, any query memory depends on the presence/absence of other items that
asking about other keywords will have to encounter a disksatisfy the query. Meanwhile, the main focusl@did shedding
access to retrievie items, resulting in a very poor performance. techniques is to drop a portion of incoming data to optimize
Unfortunately, existing techniques have all their focushoww  memory contents for a set of registered continuous gqueries.
to query and index the first three keywords very efficientlyThis is different from the case of microblogs that removes
while ignoring queries coming on the rest of keywords. Thefrom existing indexed data to optimize for any query that may
implicit assumption is that there is a background proceas th come later on.

regularly evicts old memory contents to give room for new . 100 i
incoming ones. However, such process would still maintain kFIushlnger_anoys a paramete® (default=10%) that rep
the memory contents to be similar to Figure 1(a). resents the ratio of memory contents that need to be flushed.

Then, the main idea of oukFlushingpolicy is to employ a

In this paper, we presetflushing a new flushing policy three-phase strategy. In the first phase, we try to get¥ie
that is triggered once memory is full. The goal is to evictfrom those microblogs with keywords that have more than
part of the in-memory contents to the disk storage, allowingk microblogs. However, repeatedly doing so will result in a
new incoming microblogs to be digested in memdilushing  memory saturation, where we cannot @ out. In that case,
spots the problem in Figure 1(a), where a major part of thave employ the second phase that aims to get rid of keywords
memory is consumed by useless microblogs that will nothat have less thah microblogs, as they would require disk
help in answering any top-query. For example, consider access in all cases. Again, another repetitive executiandvo
the set of microblogs that include the first three keywords irresult in another memory saturation case. In that case, we
Figure 1(a), but they are ranked above khkevel according to  employ our third and final stage that checks on the query
the underlying ranking function. Such microblogs woulderev access pattern with the aim of having the memory contents as
show up in a query answer for any tépguery with the same in Figure 1(b). We show that tHe-lushingpolicy is extensible
ranking function. Our observations on real Twitter dataveho for: (a) various search attributes beyond the keyword $earc
that for k=20 and a temporal ranking function based on tweetyuery, (b) various ranking functions, and (c) multiple keyd
arrival time, more than 75% of memory contents are consumegearch queries. Extensive experimental evaluation usiaty r
by tweets that will never show up in a query answer for akop- Twitter data and various realistic query workloads shova th
keyword search query. kFlushingimproves the memory hit ratio for up to 330%, while
keeping the in-memory query performance intact.

“.4 ---1. Trim redundant microblogs

2. Fill low-frequency gaps Optimal goal: all keywords
H have exactly k microblogs

=

(a) Before kFlushing (b) After kFlushing

The goal of our propose#Flushing policy is to ensure
that all memory contents are useful. This is done by getting The rest of this paper is organized as follows. Section H for
rid of the useless microblogs and use their space for thenulates the problem. Sections Ill presentskR&ishingpolicy
keywords that have less tha@nmicroblogs. Ultimately, with  for keyword search queries and temporal ranking functidre T
kFlushing the memory contents should look like Figure 1(b), extensibility of kFlushingto other query types and ranking
where each keyword has exaclymicroblogs in memory. In  functions is discussed in Section IV. Section V provides
that case, a query coming to any of the nine keywdrdd to  experimental evaluation. Section VI highlights relatedrikvo
kw9 will be fully answered from in-memory contents, which Finally, Section VII concludes the paper.
significantly increases the system memory hit ratielushing

enables existing algorithms for tdpmicroblog search queries [I. PRELIMINARIES
(e.g., [5, 6, 16, 24, 19, 28]) to reach to their full potentald . ) ) i L
significantly increasing their memory hit ratio. This section gives important preliminaries for our progbse

flushing policy that includes the underlying environmergd¢s

The concept of adjusting memory contents to increasgion II-A), the queries of interest (Section 1I-B), and pein
memory hit ratio has been studied in different contexts undeformulation (Section I1-C).
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satisfy the search criterial. (2) Thek microblogs are the top
ranked ones according to the ranking functién

5. Return disk answer

Fig. 2. Microblogs queries environment The above query definition can be translated to a query
on keyword 'Find k£ microblogs that contain certain key-
A. Environment word(s) [5], a query on locationsFind & microblogs that are

) ) . ) , . posted at a certain locatidrj19], or a query on a user timeline
Figure 2 gives the underlying environment of indexing and«fijnq £ microblogs that are posted by a certain us¢28].

querying microblogs, in which our proposed flushing policy sych basic search queries are most common for end users
will be applied. The data input to this environment is a sliea anq supported in major commercial microblogging platfarms
of microblogs, with high arrival rates, that is directly dged oy example, Twitter supports retrieving microblogs of an
into an in-memory da_lta structure. Once the memory becomeggividual useru timeline where the search criteriais the 1D
full, the flushing policyis triggered to select parts of the of ysery, k=20, and the ranking functio& is temporal (i.e.,
memory contents and flush it to the disk storage. All existingmost recent). Also, Twitter supports having the searcteiat
work in querying microblogs assume that such flushing workss 55 5 set of search keyword(£x20, andF as one of two
in atemporglway \_/vh_erg the oldest in-memory contents areéranking functions, denoted asll (ranking by time) andTop
flushed to disk. This is in contrast to our proposédushing (ranking over some popularity function). Finally, basiasz
policy, where we tune this flushing module to go beyondqgyeries on microblogs represent the basic building blooks f
temporal flushing and smartly selects the flushing victims iny \yide spectrum of applications, e.g., event detectiony use

a way that increases thmemory hit ratiofor incoming top%  recommendation, or geo-targeted advertising.
gueries. Meanwhile, incoming top-search queries are posed

to the query engine module, which first tries to get the answefe- Problem Formulation

from in-memory contents. If the answer Could not be found in Our prob|em in th|S paper can be defined as f0||ows:
memory, e.g., less thah items are found, then this query is

considered anissand needs to check on disk contents to decideProblem Formulation: Given a setS of in-memory mi-
on its final answer. Going to the disk storage is an expensiveroblogs and a flushing budgé, find a subset of microblogs
process. Hence, the objective of our proposed flushing yolicC $ to flush to disk storage such that: (2)consumes at least
is to increase thenemory hit ratio which means reducing the B of main-memory, and (2) flushingmaximizes the memory
ratio of queries that need to access the disk. hit ratio for incoming basic top: search queries.

Figure 3 gives typical data structures for either in-memory
or disk contents. The data structure includes a raw data,stor
which is basically a container for complete microblogs rdso
as a raw data received from the input stream. The data steuctu

also includes an attribute (e.g., keyword) index, which is . . .
: : more frequently as the memory will be filled faster. Perfargni
basically a hash inverted table where each keyword entry hag flushir?g opgration every f)éw seconds is not acceptable

a list of microblog IDs of those microblogs that contain th|sfrom a system efficiency and scalability point of view. This

keyword. Mlcroblogs IDs are pointers to the raw data Storewould involve expensive disk access that possibly causes
where complete microblog records reside.

system slowdown and limit its scalability. Thus, guaraimge
_ a minimum amount of flushed memory prevents filling the
B. Queries main-memory every few seconds and reduce the total number
Our focus is supporting basic search queries on miOf flushing operations to sustain system scalability.
croblogs [5, 16, 19, 28]. Such queries retrieve individual i
microblogs that are associated with certain key value(g), e '
keywords or user IDs. With excessive numbers of microblogs This section introduces our proposédFlushing policy.
that could satisfy any query predicate, basic search cuerikFlushingis triggered once the main-memory is full to decide
are always considered as tépgqueries that return onlyt  on which microblogs to flush from memory to didlushing
microblogs, ranked based on certain ranking funcfignvhere  flushes a specifie®® percentage of memory contents to ensure
k is a reasonable number for human users to navigate, e.ga, minimum amount of free memory, and hence continuity
k=20. Formally, a basic search query is defined as follows: of digesting incoming data without re-invoking the flushing
process frequenthkFlushingis composed of three consecutive
Basic Search Query: Given a search criteria4, integer k, phases, namelyegular flushing(Section 1lI-A), aggressive
and a ranking functionF’, a microblog basic search query flushing (Section IlI-B), andforced flushing(Section 11I-C).
finds k individual microblogs such that: (1) Thie microblogs  Each phase is invoked only if its preceding phase(s) cannot

The problem formulation imposes a minimum memory
amount B to flush. If the amount of flushed data is not
constrained, it may happen that few microblogs are flushed to
disk. This means that the flushing procedure will be trigdere

kFlushingPoLicy




Arrival Kevword kmicroblogi @Trim at they .has more thah=5 microblog_s. In this case, thegular
Time | "YW IDs , phase flushingphase removes from the index all microblogs that are
2103 lobama l—= T T T T 1 1] beyond the most recerit in obamaand nba If a removed
2245 | mba | +——[ [ [T I - microblog is not referenced in other index entries, it isoged
[72:02_]_coly [ . ! from the raw data store as well and flushed to disk right
| 08:22 | locia | ! away. Otherwise, it remains in the raw data store until all it
[ 09:48 [ prinky [J—[ [} references are removed from the index.
R > (@ Flush at phase 2 k=5 Algorithm . Incoming data is continuously digested in the
main-memory data store and index described in Section Il. On
Fig. 4. Flushing Example arrival of a new microbloghM, it is stored in the data store

with an auxiliary attributelM.pcount initialized to the number

of M’s keywords. Then) is inserted in the keyword index
flush enough memory to meet the budget For ease of i each entry that corresponds to any of its keywords. If dny o
illustration and without loss of generality, we describe pto-  js's keywordskw has more thak microblogs, a pointer téw
posed flushing policy considering basic search queries avhelindex entry is added to a list. The list L maintains pointers
the_ search cnte_naﬁ is on keywords and the ranklng function g keyword index entries that have more thamicroblogs,
F'is temporal (i.e., we return most receltmicroblogs). In je. have useless data. Practically speaking, due to e hi
Section IV, we discuss the implications of changing thed®ar skewness in keyword distribution in microblogs,is a very

criteria and/or the ranking function. short list as few keywords manipulate the memory contents.
Maintaining L saves significant efforts of iterating over all
A. Phase 1: Regular Flushing keywords when Phase 1 is invoked.
Motivation. Regular flushingis motivated by the large On full memory, Phase 1 is invoked. For each keyword in-

amounts of under utilized memory under temporal flushingdex entryl in the list L, W contains more thak microblogs.
scheme, that is currently used in microblogs systems [5]Then, Phase 1 shrinké” to contain onlyk microblog ids and
As described in Figure 1(a), the frequency distribution oftrims the rest of its microblogs from the index. A trimmed
keywords in microblogs is very skewed. Thus, few keywordsmicroblog A/ would be removed from the index entiy all
have very high frequency, much more thanwhile the rest together and itsM.pcount would be decreased by one. In
of keywords have low frequency, below For incoming top- caseM.pcount > 0, this means thad/ is still referenced by

k queries, microblogs that are beyokdn any keyword are other index entries. Hence, in that cad€s id is removed
useless microblogs as they would not contribute to any querfrom list of microblog ids inW, while it is still kept in the
answer. Such useless microblogs are observed to be 75% of th&in-memory data store as other index entries may need to
memory contents, fok=20, in real Twitter data. This means retrieve it. This means that/ data record is still physically
that only one quarter of the available memory is utilized. in-memory, however)! id is not associated withl” anymore.
WheneverM .pcount reaches zero, this means tht is no
longer referenced by any index entry, and he¢eentry in
the data store is flushed as well. All flushed data are coliecte
in a temporary main-memory buffer before writing them to

only a single keyword, thed/ is removed from both index g This is mainly to reduce the number of 1/O operations.
and raw data store and flushed to disk right away. In ddse The list L is wiped out after the completion of Phase 1.
has more than one keyword, then Phase 1 removes it only

from keyword index entries in whicd/ is not among topk It is important to note that shrinking an index entry
microblogs. Yet,M data record might remain in the raw data does not disturb continuous digestion of incoming micrgblo
store if it is still referenced by other index entry. This €as within the same index entry. This is mainly because incoming
would mean thatV/ is still among topk microblogs in other microblog IDs are added to the list head while the trimmed
in-memory index entries. Whenevadd is not referenced by IDs are removed from the list tail. The separation between
any in-memory index entry, its record is removed from theinsertion and deletion positions allows Phase 1 to be invdke
raw data store and it is flushed to disk right away. a separate thread without causing contention on indexesntri
This ensures continuous digestion of incoming microblags i
real time with high rates as shown in our experiments.

Main idea. The main idea of theegular flushingphase is
to trim extra useless microblogs that are abovekthiereshold
line in Figure 1(a). For a trimmed microblod/, if M has

By removing useless microblogs, we clear significant mem
ory space that can be utilized in a better way for low-freqyen
keywords to increase the memory hit ratio for incoming top-
k search queries. Optimally, we aim to reach a memonB. Phase 2: Aggressive Flushing
shapshot that looks like Figure 1(b), where all keywordsehav
appeared in exacth microblogs, i.e., there are no extra
useless microblogs and no shortage to retrieve from disk.

Motivation . Figure 5(a) shows the effect of employing only
Phase 1rggular flushing on memory consumption over time.
The horizontal axis is a time line while the vertical axis is

Example. Figure 4 gives an example of a simple hashthe percentage of memory consumption. In the beginning, it
index that contains five entries. Each entry has: (1) a kegwor takes about 10 time units to fill 200%of the memory. The
(2) the latest arrival time for any microblog that includég t first execution of Phase 1 flushes 60% of memory contents,
keyword (to be used in Phase 2), and (3) a list of microblogeaving only 40% of memory consumed. It then takes only
IDs that include the keyword, ordered by their arrival time.six time units to fill the memory again. Then, on a second
Two keywords ¢bamaand nba) are considered popular as call to Phase 1, there are less microblogs beyondktogad



100

g:/ g 100 WheneverM .pcount reaches zera)/ data record is removed
g 80 5 80 from the raw data store and flushed to the disk right away.
% 60 Saturatiort Point § 60 This repeats until we flush total of the requested budget
S 40 s . . .
2 2 0 Example. Following on the example in Figure 4, after
g % g Phase 1, keyword®bama and nba have k=5 microblogs,
= 0 5 1015202530 9540 4550 - 0 5 10 15 20 25 30 35 40 45 50 coly and prinky have two microblogs each, anidcia has
Timeline Timeline one microblog. Since the first two keywords have exaétly
(a) With only Phase 1 (b) With Phase 1 and Phase 2 microblogs, they are not considered by Phase 2. Assuming
that Phase 2 needs to flush three more microblogs to rBach
Fig. 5. Memory consumption behavior we select the three microblogs that are associated hadia

and prinky as they have the least arrival timestamps.

hence only 45% of memory contents are flushed. As time goes Algorithm . A straight forward implementation of Phase 2
by, memory is filled much faster, and the amount of flusheds to sort the list of in-memory keywords based on their last
memory becomes much less. This is because Phase 1 tur@sival time. Then, we flush keywords from the top of the list
the memory contents to make more keywords have exactlyill we reach our targef. That takesO(nlogn), wheren is
k items, and hence, there is not much microblogs to flushthe number of in-memory keywords. That is still expensive
Continuing like this will reach to a saturation point, where given the large number of keyword entries in memory, which
there are only few microblogs each time, which would be veryis in terms of millions. Hence, we employ a smarter algorithm
costly to invoke a flushing process very frequently. that is onlyO(n). The main idea is to traverse all keywords
Overall, Figure 5(a) shows that we cannot rely solely Onthat have less thah m|croplogs while maintaining on—thg-go
Phase 1 for flushing in-memory contents. Ultimately, we woul buffer of keywords so that: (1) Total memory consumption of
like to have a memory behavior similar to Figure 5(b), Wherebu"hfer.ed keywords at_least equal_s th? target(2) The l_)uffer
in a steady state, a fixed percentage, e.g., 20%, of the memoﬁ?ntﬂps fklsywordds W'tr:j Iiast arrival time. We maintain a (rjnax
is flushed. This ensures that the flushing will be invoked in eap 0, eywords and their memory consumption, sorted on
regular intervals, and will end up in flushing a reasonabht pa keyword's arrival time. First, we ado! 6 the first traversed
of the memory every time, which eliminates the overhead O#eywordsdwhose m%mgry conhsum?tmn a?]ds up fo at llfaSt thg
running the flushing process very frequently. To achieve thi requ;aste_ rlnemory u %et. T en, for eac kremalgln% eywor
goal, if Phase 1 fails to flusk percent of memory contents, kw, If kw s less recent thail's most recent keyword, thew
we employ Phase 2ggressive flushing replaces the most recent keywc_)rdﬂh This is repeated until
all keywords are exhausted. With each keyword replacement,
Main idea. Triggering the execution of Phase 2 meansH keywords total memory consumption must equal or exceed
that all in-memory microblogs are useful as we have alreadyhe requested budget, otherwise, the new keyword is irkerte
trimmed all microblogs that do not participate in any fop- without removing H's most recent keyword. At the end]
list in Phase 1. In this case, keyword entries in the in-mgmor contains the final set of keywords to be flushed, along with
keyword index fall in one of these two categories: (1) keydgor their microblogs.
that have exactly: microblogs, and (2) keywords that have less ] .
than k& microblogs. Phase 2 only focuses on the keywords of For each keywordV in H, W's entry is removed all
the second category. The rationale is that queries that confggether from in-memory index. This includes removing
on a keyword in the second category would not find theirand tnmmmgall its as_somated microblog |qls from the index.
answers in memory anyway and would encounter expensivEor each trimmed microblog/, M.pcount is decreased by
disk access. Thus, flushing these microblogs would not caugdne. If M.pcount = 0, then M record is removed from the
additional disk access, and will not degrade the memory hitaw data store and flushed to disk Mf.pcount > 0, M record
ratio. Phase 2 flushes microblogs with keywords of the secontgmains in the raw data store until.pcount falls to zero. This
category till we reach our target memory budget Since, repeats for all timmed microblogs and keywords.
there may be many keywords in this category, we select a
subset of them that barely achieves the tar§etKeywords
are flushed in the order of theleast recently arrived So,

Phase 2 is executed in a separate thread so that it does
not noticeably interrupt the continuous digestion of indaogn

: : . ata. In particular, on selecting its victims, Phase 2 isaalee-

Keywords that did not receive any microblogs for the Iongesfjnly for Fc)Jata structures that gigest new data and does all its
time are flushed to disk first. These keywords are less I|kel)9 "
to accumulate: microblogs soon, and hence would have theC'2NJes to temporary data structures, e.g., liéai addition,
least effect on memory hit ratio, This flushing order comesdu”ng flushing its victims, Phase 2 does the minimal possibl

; : P : ; -interruption to the index. To illustrate, a new insertionyma
W|thhakl|ttle caverhﬁad r?f assigning a single tlmﬁscgamp_ Wlth%)me gn a keyword that is being removed at the same)mtime
each keyword rather than a timestamp per each data item . . . ) X ’
in traditional DBMS policies, e.g., LRU. This reduces both 0 avoid data inconsistency, each keyword's entry is moved

memory and CPU overheads of tracking flushing candidate:;rgmtégee'ggeﬁst?oiggénggrt?gt %%ﬁ;rié?oglg'nsglceagtg;n'i% dsetft%
as the experimental evaluation shows. Y y 9

at the same time. The entries are locked once at a time so that
For each flushed keyword in Phase 2, we remove its entrgtomicity overhead is negligible, especially with leastemt

all together from the in-memory index. This includes trimgni  entries that are less likely to receive new data at the time

all its microblog ids from the index. For each trimmed mi- of flushing. Thus, data integrity is preserved with minimal

croblog M, its reference count.pcount is decreased by one. overhead on data digestion.



C. Phase 3: Forced Flushing practical assumption as current platforms already inchaih

o . . . index str r n rs’ ID r r time lin r
Main idea. Triggering the execution of Phase 3 means that: dex structures on users” IDs to support user time lineciea

; ueries on the form:Find & microblogs that are posted b
(@) Both Phases 1 and 2 fa||ed.to. flush at ledgtercentage of 2 certain uset [28]. Meanwhile, rece%t research p:suggestyto
mgizor;yic?gE}ggft’oarnei\srﬁgethlé I;otgleo?g‘)lilsﬁ{nzhazr?n?)r?krbudsi dd spatial index structures to microblogging platformsaas
getB. (b) All keywords in memory have exactlymicroblogs, means of supporting spatial search queries on the foFind

h hot of the i K d | kk microblogs that are posted in certain locatioji9]. For the
WREre a snapshot of the In-memory Keyword ITeqUENCy 100Ky 45e of yser IDskFlushing aims to flush those microblogs

like Figure 1(b). As a result, Phase 3 has no option other tha at are not among the most recentposts from any user
removing keywords with exactly microblogs. Consequently, gjijarly, for the case of locationgFlushingaims to flush

any flushed data could reduce the memory hit ratio. To limi h : | h h sent
such reduction, we flush those microblogs that are Iessylikelt:crgrieergé%r?r?d%gseé grtezre not among the most re Sts

to be queried. This is accomplished by flushiegst recently
gueried microblogs, i.e., microblogs that are associated with  ThekFlushingalgorithm can actually be applied regardless
least recently queried keywords. With this preference mrde of the underlying index structure. In particular, Phase iniga
Phase 3 keeps recently popular keywords in main-memonkeeps track of pointers to index entries that contain data
This preference order is based on a previous study [17beyond topk answers. Such tracking can actually be used as is
that shows that real-time distribution of microblogs qasri within the insertion procedure of any index structure. Sleew
exhibits a strong temporal locality. So, recent queriesbil  inserting new items in any index cdll, e.g., a spatial index
predicts the near future effectively. Similar to its preogd cell or a user index celll’ is checked for having useless data.
phases, trimmed microblogs in this phase are removed frorin Phases 2 and 3, the algorithm mainly iterates over allxnde
the index, and their reference coupi®unt’s are decreased. entries to select their victims. This also has nothing djzem
A microblog M is removed from the data store and flusheddo with our hash index and can be used in any index structure.
to disk whenever itsM.pcount falls to zero. Like Phase 2,
the qush_ing order in Phase 3 comes with_ a little overheags Supporting Different Ranking Functions
that assigns a single timestamp to all microblogs that are
associated with each keyword. This reduces both memory and Throughout the paperkFlushing was discussed in the
CPU overhead of tracking flushing candidates. context of a temporal ranking function, i.e., queries aokiog
_ _ L for the most recent: microblogs that satisfy the query pred-

Algorithm . The algorithm of Phase 3 is similar to that of jcates. Though temporal ranking is the most widely used in
Phase 2 single pass algorithm except that: (a) flushed entrignicroplogs [5], microblogs queries can still use other ragk
are selected based on last querying time instead of armwel t  ,nctions. For example, a query may ask about tweets that are

and (2) all keywords are candidate.s for ﬂushing_ in§tead Otecent and posted by most popular users, where popularity is
only the low-frequency keywords. It is worth mentioningttha neasured by number of followers on Twitter. Other ranking

although the newly attached timestamp can be updated fromynctions include ranking functions that combine timegtam
multiple querying threads simultaneously, it does not neegi spatial attributes [19], combine timestamp with miziag

any concurrency controll oyerhead. Th(f; reason is that if tW‘bopuIarity and textual relevance [28], or combine timestam
queries try to update this timestamp simultaneously, béth oyith yser social graph and textual relevance [16].
them would be trying to assign it to the same value, which is

NOW. Thus, any race happens would not cause problems.  kFlushing can accommodate any ranking function either

based on one single attribute or multiple attributes, gitrext

the ranking score can be all computed upon the microblog

arrival. In this case, we already know the tépiems in
We have discussed theé-lushingpolicy assumingkeyword each index entry upon their arrival before any query comes.

search queries that retrievaost recentt microblogs. How-  Thus, we can order data inside each index cell, e.g., the list

ever, kFlushingis a generic flushing policy and is designed of microblogs IDs in the index structure of Figure 3, so that

to work for top# queries in general, regardless their searchtop-k items are quickly accessible. Hence, Phase 1 would still

attributes, ranking function, and/or valuefafAlso, kFlushing  keep only topk microblogs and trims the rest that are beyond

could support single-keyword and multiple keyword queries  top-k. Phases 2 and 3 have nothing to do with the underlying

this section, we discuss the extensibilitykéflushingfor other  ranking function, as they work only with the last arrival &§m

search attributes beyond theywordattribute (Section IV-A) and last query time, respectively.

and other ranking functions beyond thest recenbne (Sec-

tion IV-B). In add_ition, we discuss yhe possibili_ty of chamg C. Supporting Dynamié Values

the value ofk during run time (Section IV-C). Finally, we dis-

cuss supporting multiple-keyword queries througFushing kFlushing policy can easily adapt itself dynamically with

(Section IV-D). changing the value df in the middle of the system operations.

The only constraint is that thé should be fixed along all

phases of each single executionk#flushing This means that

if k is changed during the flushing operation, the change will
kFlushingis a generic concept that can be applied for anyactually take place in the next time the flushing procedutke wi

search attribute other than keyword attribute. Similarhie t be triggered. In casé is decreasedkFlushing can instantly

case of keyword index, we assume the existence of an indeadapt to the newk as existing in-memory data can still

structure for the search attribute in our tbmueries. This is a  fulfill new queries answers as they ask for less data. Exjstin

IV. EXTENSIBILITY OF kFlushing

A. Supporting Different Attributes
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Fig. 6. Example of Multiple-Keyword Extension &fFlushing

microblogs that are beyond newand below oldk are marked
to be flushed in the next flushing cycle. In cdsis increased,
kFlushing adaptation to the newvit will be lagged a bit. In
particular, as the new is greater than the old one, existing
in-memory data would not instantly fulfill incoming queries
with the new value of. However, as microblogs are arriving
with high rates, missed data will be caught up quickly.

D. Supporting Multiple-keyword Queries

memory misses. To illustrate, when an AND query comes
on two keywordsW; and W5, an answer microblog must
exist in bothIW; andW5. Thus, we retrieve in-memory index
entries ofW; and W5, scan their microblog ids list, and any
microblog that is associated with botf; and W5 is added

to a chronological ordered lidt,,. In most casesl.,,, will be
shorter than either lists, ak,, is represents the intersection
of the two lists. AskFlushingkeeps each list with maximum
length of k, then, in most cased,,, contains less thar
microblogs and causes memory miss.

To overcome this limitation and increase memory hit in
AND queries, we slightly extenklFlushingso that it allows (in
certain cases) to have more thlamicroblog ids in each index
entry. The main idea here is that microblogs that are allotwed
be indexed while they are beyond the tbpnicroblogs must
be potential candidateso increase memory hit ratio of AND
queries. The candidate microblog would be the one thatlis sti
ranked among the top-in other index entries. So, the extended
kFlushingkeeps a microblog in all index entries as long as it
is among topk microblogs in any of its keywords.

An illustration example is given in Figure 6. The example
shows a microblogM; with two keywords W; and W
in Figure 6(a).M; is outside topk microblogs in1/; and
among topk microblogs inWs,, and M;.pcount = 2. If the
original Phase 1 (Section Ill-A) is executed, thef id would

Our discussion up to this point considers queries thabe trimmed from index entry of¥; and kept inW,, and
search for a single keyword. In this section, we introduce am/, .pcount becomes 1. Now, assume an AND query comes

extension for the proposekiFlushing to effectively support

on Wy and Ws. The intersection of¥; and W, microblogs

queries that search for any number of keywords. This showgould not find/; in memory, because its id is not associated

the applicability ofkFlushingfor all practical scenarios with

with W, anymore. So, we have to visit in-disk entry @f;

minor tweaks. In our discussion, we consider both types ofo get M, in the answer, while actually/, is still physically

multiple-keywords queries that are supported in the majgls w
services: (i) OR queries that return a microblog if it has ahy
the keywords'{Find most recent k microblogs that contaamy

of the keyword$?; OR W, OR..JW,,”), and (ii) AND queries
that return a microblog only if it has all the keyword¥iad
most recent k microblogs that contaall the keywordsiV;
AND W, AND..W,,”). Both queries use the ranking function

in the main-memory data store as it is still referenced by at
least one in-memory keyword, i.elMf;.pcount > 0. On the
contrary, if we keepM; id associated withit; entry, M;
would satisfy the AND condition and appear in the answer
list without a need to access disk contents. This cali®es
entry to have more thak microblogs. Yet,M; would lead

to increase memory hit ratio, without significantly degrayli

F asmost recentFor the rest of this section, we refer to them memory utilization because it is a memory resident as long

asOR queriesand AND queries
OR queries kFlushingwork perfectly fine with OR queries

without any modifications. The reason is that in-memory

contents undekFlushingwould be enough to find all answers

as M, .pcount > 0. This extension affects the three phases of
kFlushingas follows.

In Phase 1, the flushing rule is extended so that a microblog
id M is trimmed from an index entryV if it satisfies two

that could exist in memory for OR queries. To illustrate, in conditions: (1)M is beyond topt microblogs inWW, and (2)M

order to answer an OR query with two keywondd§ and W5,
we retrieve the two index entries &f; andWW,, get the union
of their microblogs, in a chronological ordered Iist,. If both
keywords have: microblogs, soL,,, is guaranteed to contain

is not among tope microblogs in any other index entry. The
second condition is added to prevemt to be trimmed from
any index entry as long as it would remain in the in-memory
data store. This means that.pcount would not decrease

the £ answer microblogs and causes memory hit. If any of theuntil M is outside topt microblogs in all its keywords. Once

keywords has less thanmicroblogs, there is a possibility that

this happen,M.pcount would fall to zero in the following

L,, may not contain the final answer. This is mainly caused byexecution of Phase 1 and would be trimmed from all index

the low-frequency keywords that have less tthamicroblogs.
As kFlushinggoal is maintaink microblogs in each keyword,
thenkFlushingachieves maximum hit ratio for OR queries.

AND queries. The describe&Flushingpolicy has a lim-

itation to achieve the maximum possible memory hit ratio
for AND queries. The policy keeps with each index entry a

maximum ofk microblog ids. This leads many AND queries
answers to have less than microblogs from in-memory
contents, and hence obligates to visit disk contents ansesau

entries and from the in-memory data store. Continuing to the
example in Figure 6(a), when the extended Phase 1 is executed
it keepsM; in Wy as is, and then\/;.pcount = 2 remain
intact. Wheni{; becomes outside topfor both keywords as

in Figure 6(b), it is trimmed from all keywords, it¥/; .pcount

falls to zero, and it is flushed from the memory contents.

In Phase 2, the flushing rule is extended so that a microblog
M is trimmed from an index entryV if it satisfies three
conditions: (1) has less thak microblogs, (2 is selected



based oreast recently arrivearder, and (3)\/ does not exist memory budgets, and different flushing budgets. Unless men-
in any index entry that has k£ microblogs. The reason to add tioned otherwise, we use a default value of 20, main-
the third condition is that trimming@/ in that case may cause memory budget of 30 GB, and flushing budget of 10% of
a memory miss and causes an additional disk access, viplatinhe memory budget. We have collected 2+ Billion tweets
the assumption of the original Phase 2 (Section IlI-B) thatfrom public Twitter Streaming APIs over the course of more
flushing all microblogs of low-frequent keywords would not than a year. We run these real tweets with an arrival rate of
cause additional disk access. Elaboratinglénin Figure 6(a), 6,000 tweets/second, which matches the current Twitter. rat
assume that the extended Phase 2 is invoked#énib selected By default, the presented experiments are performed using
for flushing. Then, all¥, microblogs are trimmed excepty keywordattribute andmost recentanking function, where we
as it exists in the frequent keywoidl;. So, when AND query use hashtags, if available, as keywords. All results arecteld
comes onW; and W5, M; would appear in the in-memory only in the steady state, i.e., after filling the main-memioug-
answer list. This Phase 2 extension prevents low-frequencget and have multiple data flushes. Our performance measures
keywords to hurt memory hit ratio of frequent keywords if include memory hit ratio for incoming queries and flushing
they are involved in the same AND query. overhead in terms of memory overhead and effect on digestion
. . . . . rate of incoming data. All experiments are based on Java 7
Phase 3 is kept intact as described in Section lIl-C. Th&., o mentations for evaluated flushing policies and using a
reason is that the original assumption of Phase 3 is stiitlval Intel Core i7 machine with CPU 2.40GHz and 64GB RAM that

In _sp_ecific,_ Phase 3is execu;ed while reaching a saturatiolrhn Ubuntu 12.04. Synchronization between threads is lednd|
point in which all in-memory microblogs could cause memorythrough Java synchronization features

hit. Thus, Phase 3 already flushes microblogs that may heirt th
hit ratio, however, with minimal probability. This assurigst ~ Query workloads. In lack of standard query workload for
is still valid with the extended Phase 1 and Phase 2. Thaicroblogs keyword queries, we generate the following two
difference here is that when Phase 3 is executed, not all inwvorkloads out of our real Twitter dataset:

memory keywords would have exacttymicroblogs. Instead,
it might find keywords that has either more thlamicroblogs 1. Correlated Query Loada query workload where key-
(left by extended Phase 1) or less thamicroblogs (left by Wor_d queries are selected_ at random _from aII_ keywords as-
extended Phase 2). However, this does not affect Phase B as gpuated with our tweets without removing duplicates. Henc
these microblogs still could cause memory hit. Thus, Phase 8!€ Probability of a certain keyword to be queried equals its

would remain intact and consider all in-memory keywords foroccurrence probability in the dataset. This query workload
flushing inleast recently queriedrder. favors frequent keywords, which is a realistic assumptisn a

active topics are likely to be the ones being queried.
Although the proposed modifications do not guarantee }
that all multiple-keyword queries would be answered elytire 2. Uniform Query Loada query workload where keyword
from memory contents, they improve the memory hit ratiodueries are selected from the whole pool of possible keysvord
and utilization as shown in our experimental evaluatiorhwit With equal probability regardless of their frequency in the
various realistic query workloads. Also, applying thisemgion ~ coming data. Although such query workload does not simulate
slightly degrade the efficiency ¢ lushingphases as they are the actual behavior of real users, yet it is practically used
invoked in separate threads that keep minimal interactith w for testing the quality of performance for major systems, e.

real-time digestion thread, as described in Section IIl. Twitter, and major search engines, e.g., Google and Bing. Th
rationale here is that such systems measure their perfaenan
V. EXPERIMENTAL EVALUATION for extreme cases to guarantee a minimum level of quality of

This section provides experimental evaluationklush- service. In other words, the objective of such systems is not
only to make the query search faster on the average, but also

ing policy and its multi-key queries extension, denoted a . . e
kFlushing-MK that is described in Section I1V-D to show theirsto guarantee that 99% of their queries are answered within
reasonable latency [5].

effect in increasing the memory hit ratio without sacrifggin
the performance of the underlying index. We compare our Each of the two workloads consists of ten million queries.
proposed policy with two policies: (1) The default temporal Each workload has one third of single-keyword queries, 2-
flushing policy (denoted asIFO) used implicitly or explicitly  keyword AND queries, and 2-keyword OR queries. Queries
in all existing techniques for microblogs [5, 16, 28IFO  are posted as a stream of high rate of 25,000 query/second,
always flushes the oldest data and is implemented based @imilar to Twitter high query rates [26]. For extensibility

a temporally-segmented hash index that consists of meltiplexperiments, similar query workloads are generated fatiadpa
temporally disjoint segments. On full memory, the oldestand user attributes replacirigywordwith latitude/longitude
index segments are completely flushed out from memorycoordinatesand userid respectively. Yet, all queries omser

(2) The populadeast recently usegolicy (denoted adRU),  attribute are single-key queries as they are in practice.
implemented as H-Store anti-cache [8], where a global deubl
linked list is maintained to order microblogs lieast recently
usedorder. To reduce memory overhead, pointers of LRU lis

In the rest of this section, Section V-A analyzes a shapshot
{of memory contents. Sections V-B and V-C evaluates the
are embedded in the index entry of each microblog. H-Stor&’€mory hit ratio and the flushing overhead, respectively.
is selected as it is designed for fast data environmentslasim S€ction V-D evaluatekFlushingextensibility.
to microblogs environments. A. Snapshot of In-Memory Contents

Experimental setup. We comparekFlushing kFlushing-MK As was indicated earlier in Figure 1, the optimal scenario
FIFO, and LRU for different values ofk, different main- is to remove useless microblogs in a way that allows other
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Fig. 8. Hit Ratio on Correlated Query Load

keywords to accumulat® microblogs, and hence they would filled keywords in its worst cases, which shows superiority
not need a disk access if queried. Figure 7 gives the effeaver both policies. Finally, Figure 7(c) gives the number of
of runningFIFO, kFlushing kFlushing-MK andLRU policies  k-filled keywords when varying memory size from 10GB to
on the number of keywords that have accumulated at least 50GB. For 10GB memory, botkFlushing variations accu-
microblogs, in a steady state point. Queries on these kelsvor mulate ~13 times morek-filled keywords thanFIFO and
cause memory hit, and hence, the more of these keywords the50 times more thahRU. This ratio decreases with increasing
much better the flushing policy. Figure 7(a) gives the numbememory budget, afFIFO and LRU accumulate moré-filled

of k-filled keywords when varyingt from 5 to 100. With  keywords with having more memory space, whi€élushing
increasingk, the number ofk-filled keywords is noticeably gives consistent superior performance for different mgmor
decreasing for all policies as less keywords can accumulateudgets. This shows the robustneskBfushingto give high

k microblogs with largerk. However, for allk values, both performance in tight memory environmentRU still shows
kFlushing and kFlushing-MK outperforms bothFIFO and a kind of unpredictable pattern as a result for depending on
LRU. In specific,kFlushingaccumulatesat least7 timesk-  query distribution in real time, which is arbitrary.

filed keywords more tharFIFO and up to 3 times more . .

than LRU. kFlushing-MK always accumulates slightly lower B- Memory Hit Ratio

thankFlushingdue to intentionally overlooking potential posts |y this section, we evaluate the effectiveneskBlushing
and keeping them in memory, which reduces the amount gf; improving memory hit ratio i.e., the ratio of queries that
memory available for low-frequent keywords to accumulate  fing their & microblogs in memory contents. Amemory hit
Yet, kFlushing-MKstill outperforms the other two competitors. raig is heavily dependent on the incoming query workload,
This experiment can be translated that up to 700K querigs thgye perform our experiments twice, once for the correlated

could cause a memory hit witkFlushing variations, would  qyery workload (Figure 8) and another for the uniform query
miss their answers withRU, and similarly 1800K queries with \yorkload (Figure 9).

FIFO, which is a significant improvement over both policies.
Figure 8 gives memory hit ratio for correlated query

Figure 7(b) gives the number df-filled keywords when workload. For all parameterkFlushingvariations consistently
varying the flushing budget from 20 to 100% of allocatedachieves 12 to 20% higher hit ratio ovEIFO which repre-
memory. With increasing flushing budget, numberkefilled  sents 20 to 44% improvement, and 2 to 18% higher hit ratio
keywords is decreasing as memory looses more content. Ontyver LRU which represents 3 to 35% improvement. Thus, with
LRU shows a kind of unexpected behavior with varying 10 millions queries in our query loa#Flushingvariations hit
flushing budget, as it depends on incoming queries in rea tim1.2 to 2 million queries in main-memory that are not hit using
and does really follows a certain pattern. However, difiere FIFO, and 200 thousands to 1.8 million queries that are not
flushing budgets give 8 to 10 times moksefilled keywords  hit usingLRU, which is a significant improvement. In addition,
in kFlushing variations compared t&IFO and 2 to 9 times kFlushing-MKis always superior t&Flushingwith 7 to 9%
compared toLRU, so at least it doubles the number bf  increase in hit ratio which represents 9 to 15% improvement.
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to 100. With increasing:, hit ratio of all policies decrease as
gueries ask about more data. YkElushing-MKanswers 68
to 84% of all queries from in-memory contents, which is
higher than all other alternatives significantly, whikFéushing
achieves 61 to 77%l.RU achieves 50 to 74%, anBIFO
achieves 46 to 60%. The superiority kFlushingvariations
with large values of: shows the positive effect of accumulating
much morek-filled keywords that is shown in the previous
experiment. Figure 8(b) shows that with increasing flushin
budget, hit ratio of all policies are also decreasing as nigmo
loses more data. StiHFlushing-MKhas up to 20% increase in
hit ratio overFIFO andLRU. Finally, Figure 8(c) confirms the
superior performance dFlushing-MKandkFlushingover all
alternatives especially with tight memory budgeElushing-
MK always achieves-10% improvement ovekFlushing For
10 GB memorykFlushinggives 18% increase in hit ratio over
FIFO, where we go up from only 52% to 70%.

Figure 9 evaluates memory hit ratio on uniform query
workload. It is noticeable that the hit ratio of uniform wiw&d
is consistently low, below 9%, due to the low percentage o
frequent keywords in Twitter data. BotkFlushing-MK and
kFlushinggive almost similar performance for different param-
eters. However, for all parameters valukBlushingvariations
are superior and provide significarglative improvementn
memory hit ratio, which ranges from 100% to 330% compare
to FIFO and 26 to 240% compared tbRU. In specific,
Figure 9(a), atk=40, shows 0.42% hit ratio foFIFO and
1.41% for kFlushing which means 3.3 times more queries
answered from memory. Even with such low hit ratio, this
1% improvement, for 10 millions queries workload, gives
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Yweets arrive to the system as fast as it tolerates.

Figure 10 gives the flushing process overhead in terms of
indexing memory overhead (Figure 10(a)) and the effect en th
underlying index digestion rate (Figure 10(b)), when vagy.
Figure 10(a) shows that different policies give stable mgmo
overhead fork ranges from 5 to 100kFlushing overhead
decreases very slowly with increasing due to decrease
in total number of keyword entries in the index. Y&iRU
gives the highest overhead, 4.9GB, which is around 2 times
kFlushing-MKand 2.5 timeskFlushingoverhead, whild=IFO

pives the lowest overheady0.75GB for all ¥ values. This

is interpreted by the big overhead of LRU list that tracks
individual microblogs, whil&kFlushingvariations do not track
individual items. Instead, it uses the natural index grogpi
based on keyword, to track usage of microblogs in groups
hat significantly reduce the tracking overhead. Yet, dwrin
he flushing process, a large amount of temporary buffering
memory,~2GB, is needed to collect the scattered victim items
to flush to disk. InFIFO, this temporary buffer is not even
needed as the index is segmented based on arrival timestamp
and hence the oldest index segment is used as the buffer.

100,000 more queries answered from memory, which is a Figure 10(b) shows the effect of the flushing policies
significant improvement. Similar to the results on coredat on the digestion rate of incoming microblogs to underlying
workload, Figure 9(a) and Figure 9(b) show decreasing hifndex. For all values of;, FIFO allows its underlying index
ratio with increasing: and flushing budget, respectively, while to digest ~120K tweets/second. Due to its insertion and
Figure 9(c) shows increasing hit ratio with increasing memo pook keeping overhead, the two variations of dfushing
budget. This experiment also confirms efficiekitlushing  policy perform worse thaFIFO. This is mainly because of
performance in tight memory environments (10GB). accessing the index from two threads simultaneously, which

; includes a minimum level of concurrency control. However,
C. Flushing Overhead kFlushingcan still digest~100K tweets/second arkdFlushing-

In this section, we evaluate the overhead encountered by thdK digest ~80K tweets/second, for alk values. This is
flushing policy along with its effect on the system scalapili 13 to 17 times higher arrival rates than Twitter firehose; a
to digest incoming tweets with high rates. To do so, we do nostream that contains all Twitter data. This shows kisuhing
limit the arrival rate, instead we stress our system andhlet t policy could efficiently isolate its CPU overhead from the
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improves 15 to 100% ovefIFO and 30 to 138% ovetRU
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g ho o) LRUUN & LRU-Gorr < We omit the flushing overhead and digestion rate scalability
0 results for space limitations, however, the results aretbxa
10 20 30 40 50 1 20 30 40 50 the same as shown with keyword attribute.
Memory Budget (GB) Memory Budget (GB)
(@) Number of Memory-hit Keys (b) Hit Ratio Figure 12 evaluates memory hit on user attribute with
‘ ' _ different memory budgets. The figure shows pretty similar
Fig. 12. KkFlushingPerformance on User Attribute performance improvements like the drawn conclusions from

both keyword and spatial attributes. However, it is notidea

N o : that kFlushinggives much better improvement for correlated
underlying index and keeps its high performankElushing- query Workloga% in user attribute C(F))mpared to keyword and

MK consumes mtoref eﬁortz Im thde_ flusthlng tthregd:ihand sto Ypatial attribute. This reflects the more skewness of data
causes more contention and less digestion raté. LUn theepntr ,..,4ing to the user attribute. In other words, highlywacti

LRU encounters significant contention on the global LRU list :

; e - ! 'users, who tweet frequently, cause higher percentage te#asse
‘_’FVE.'CT. Itlr_nlts the d'g%St'on rate t?h 0”'&’ 29Ktrt]wteetysegond‘microblogs than popular keywords and popular spatial regio

is list is accessed by querying threads, so that receB8d U ponyise  the improvement patterns and conclusions are

tweets are moved to the head of the list, and insertion thre - e : :
: ' g retty much the saméFlushingstill gives scalable digestion
where new tweets are also inserted to the list head. In iraal-t ate of 100K microblog/second.

operation, both insertions and querying are running most o?
the time, and hence a significant contention is introducetl an  |n nutshell, extensibility experiments show the supetyori
limits index scalability. This shows the superiorityldflushing  of kFlushingon the three attributes, keyword, spatial, and user,
that significantly improves memory hit ovéRU, and also for different parameters and performance measures. Thigsh
sustains high digestion scalability. the generality and effectiveness kiflushing

D. kFlushingExtensibility V. R W
. ELATED WORK

This section shows the extensibility and effectiveness of

kFlushingpolicy when employed with different attributes. To  In this section, we highlight three areas related to our work
evaluatekFlushing extensibility, we use the commonly used DBMS buffer management and anti-cachingal-time mi-
microblogs attributes: spatial and user attributes. Thase croblogs data managemeandload shedding in data streams
attributes are used to support querigSnti most recentk
microblogs that are posted in a certain locatiofil9] and
“Find most recent: microblogs that are posted by a certain
user’ [28], respectively. For spatial attribute, we use a spatia

DBMS buffer management and anti-caching Evicting
data from main-memory has been studied in both buffer
management in database systems [9] and anti-caching ir main

grid index that is composed of equal-area spatial tilesh eacmemory databases [s' 15, .30]' Our problem.can_ be (_:onsidered
of 4 mile?. For user attribute, we use a hash index that® variation of the anti-caching problem, applied in micogs

has a similar structure to our keyword index (Figure 3),platforms rather than relational main-memory database:-H

however, it indexes user ids instead of keywords. In thisSVer €xisting techniques [8, 15, 30] have limitation to/sajur

section,kFlushing-MKis omitted because all user queries are'problem'. First, none of them addresses togueries, which
a major component of microblogs systems [5, 19, 28]. In

. . . . . IS
single-key queries and spatial queries have no AND queneé L S X
as they are semantically invalid in the spatial context.sThi addition. they suffer from significant overhead that lintie

is because AND queries look for a microblog that exits inscalability of microblogs systems. Specifically, Hekatds][

two spatial regions at the same time and each of our tweegeijends on offline processing which cannot scale for high

associated with only one point location. Therefdlushing-  Velocity data like microblogs. On the contrary, H-Store [8]
MK performs exactly akFlushingin all queries of this section. anti-cache is optimized for fast data environments. Thoiigh

still uses a traditional policy (LRU) that requires tradgginsage
Figure 11 evaluates memory hit on spatial attribute withof individual data items. This pose a significant overhead to

different memory budgets. Figure 11(a) shows the numbemaintain LRU-ordered list for all data items in the systet®][3

of keys, i.e., spatial tiles, that cause memory kFlushing  Unlike this work, kFlushing uses topk queries as a guide



to smartly select flushing victims with minimal overheadttha in tight memory environments and saves up to 75% of memory

does not limit system scalability.

Real-time microblogs data management Due to its
popularity and high application needs, managing real-time
microblogs has attracted several research efforts in tndus
and academia. However, the main focus was on either indexing!!
(e.g., [28, 29]), querying (e.g., keyword search [5, 6, 18], 2 2]
or location-based search [4, 19, 24]), analysis (e.g., teven
and trend detection [11, 22], news and topic extraction [14,[3]
23], or semantic and sentiment analysis [2]), or query lan-
guages [18, 21]. In all this work, it is assumed that queries
are all answered from in-memory contents. Thus, the main[4
performance measure is the query response time from in-
memory contents. Only our prior work [19, 20] have studied
the effect of having a flushing policy, in terms of the memory [5]
consumption. However, this work was tailored to a specific 6]
spatio-temporal queries and has nothing to do with any othe|l
attributes, ranking functions, or index structures. Tfarehis [7]
cannot fit in our vision to build a generic system [18]. Our
work in this paper is the first to propose a generic flushing
policy for microblogs. In addition, it is the first to address
increasing the memory hit ratio of incoming queries, ancclken
significantly increase the overall system quality.

8]

(9]

Load shedding in data streamsSelecting flushing victims  [10]
is similar in spirit to the idea of load shedding that was[!1]
extensively studied in data stream management systems (e.g
see [1, 12, 13]), where upon high system load, a portion & datj;
is dropped from memory so that queries quality is minimally
affected. However, these techniques cannot be applied to
flushing microblogs for two main reasons: (1) Selected wisti
are chosen to optimize the performance for a set of contsuoy; 4
gueries that are already registered in the system. Thigtighao
case for microblogs where the focus is not continuous gsierie
So, we are adjusting the memory contents so that any quef§®]
may arrive later. (2) Streaming load shedding is optimizad f 6]
guery accuracy as the removed data is just thrown away an[él
not moved to disk. On the contrary, in microblogs, flushe@dat [17]
is moved to disk, and hence the answers are always accurate.
Instead, we optimize for increasing the memory hit ratioiolth (18]
is not considered at all in load shedding techniques. [19]

VIl. CONCLUSION

[20]

This paper has studied the problem of main-memory flush-
ing in microblogs data management systems. Our study i1
motivated by existence of many useless data that is stored
in main-memory under existing flushing schemes. This datg2]
does not contribute to incoming queries, which mostly ask fo
only top+ microblogs, wherék is typically a small number. [23]
Thus, we exploit these characteristics to design effehish- (24]
ing rules for microblogging environments. In particulare w
have proposedkFlushing an effective and scalable flushing [25]
policy that works for topk search queries on microblogs. [26]
kFlushing policy frees the unutilized memory that are used
to store useless data. The freed memory is used to accumulgte,
more useful data so that much more queries can find thefpsg]
answers in memory. When all memory is utilizddslushing
flushes microblogs that are less likely to degrade memory hi®]
ratio. Using the same memory budg&Elushingis able to (30]
significantly boost memory hit ratio by 26-330% compared to
existing flushing schemes. In addition, it can work effidignt

resourceskFlushingis shown to be efficient and scalable in
digesting up to 100K microblog/second, which is an order of
magnitude higher rate than current Twitter firehose rate.
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