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1 Introduction

The following are well-known:
1. cos(m/1) = —1,

2. cos(m/2) =0,

3. cos(m/3) =1/

4. cos(m/4) = v/2/2, and
5. cos(m/6) = /3/2.

Note that cos(m/5) is missing. In Harold Boas’s paper [1]! he shows that

7 14+v5
COSs| — =
5 4

which is half the golden ratio. Note that all of these numbers are algebraic.

Convention 1.1

1. In this paper all variables a, b, c, ...,z range over {1,2,3...} unless otherwise noted.

The variable 6 ranges over R.

2. All polynomials have coefficients in Z unless otherwise noted.

3. We will be studying cos(vr/n) and sin(vr/n) where v/n is in lowest terms. Hence we
will usually have as a premise that v and n are co-prime. We may also denote this by

ged(v,n) = 1 when that notation is useful.

Definition 1.2 Let d > 1. Let o € C.

1. « is algebraic if there exists p € Z[z| such that p(a) = 0.

2. Let a be algebraic. The degree of « is the least d such that there exists a p € Z[z] of
degree d with p(a) = 0. We denote this by deg(«). Note that we could replace Z with

Q and the degree would be the same.

'Harold Boas’s paper was the inspiration for our paper.



Are numbers of the form cos(vm/n) always algebraic? Yes. These statements are well-
known. We will prove this for all v > 1, n > 2, 1 < v < n, and ged(v,n) = 1. All other
cases are either easy (e.g., v = 0) or can be derived from what we prove (e.g., v < —1). In
this paper we prove cos(vrm/n) is algebraic in two ways:

1. In Sections 2,3,4, and 5 we show cos(vm/n) is algebraic. As a corollary, we then show
sin(vr/n) is algebraic. The proof has the following properties:
(a) It only uses elementary techniques.
(b) It is self contained (with help from Appendices A and B).
)

(¢c) We obtain upper bounds on deg(cos(vr/n)) and deg(sin(vm/n)). The upper
bounds for deg(cos(vm/n)) are optimal although we do not prove that.

(d) The proof gives a way to obtain the explicit polynomials (which we do in Ap-
pendix D).

(e) The proof may be longer than you like.

2. In Section 7 we show cos(vm/n) is algebraic. We also show sin(vr/n) is algebraic but
not as a corollary of cos(vm/n) being algebraic. The proof has the following properties:

(a) It uses field theory. We state the needed concepts and theorems without proof.
(b) We obtain the exact values of deg(cos(vr/n)) and deg(sin(vr/n)) with proof.

(c¢) It would be difficult to use this proof to get explicit polynomials since that would
require exact arithmetic on real numbers.

(d) The proof is short.
To state our results we need the following well-known definition and theorem.
Definition 1.3 ¢(n)is|{v: 1 <v <n—1 and v and n are co-prime}|. This is often called
Euler’s Totient Function or the Euler’s ¢ function.
Theorem 1.4
1. If ged(ni, n2) = 1 then ¢(ninz) = ¢(n1)d(ns).
If p is a prime and a > 1 then ¢(p*) = p* — p

a—1

If n > 3 then ¢(n) is even.

H V;J and gcd(k,n)zl}’.

(To prove this use that ged(x, cd(n — x,n) and that f(x) =n — x is a bijection

n) =
from {1,..., |52} to {| %52 J+ n—l})

If n > 3 then
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This paper’s contents are as follows.

1.

10.

In Section 2, we define the Chebyshev polynomials of the first kind, 7,,, and state
the well-known theorem about them: cos(nz) = T,(cos(x)). We also state a theorem
about dividing Chebyshev polynomials by other polynomials. Both of these theorems
are proven in the appendix.

. In Section 3, we show that, for all v,n with 1 < v < n, deg(cos(vr/n)) < 2n + 1.

We also prove lemmas that are used in the next two sections to obtain better upper
bounds on deg(cos(vm/n)).

In Section 4, we show the following: For all v,n, nodd, 1 < v < n—1, and ged(v,n) = 1,
deg(cos(vm/n)) < ¢(n)/2. Our proof gives a construction of the needed polynomials.

. In Section 5, we show the following: For all v,n, n even, 1 <v <n-—1, and ged(v,n) =

1, deg(cos(vm/n)) < ¢(n). Our proof gives a construction of the needed polynomials.
In Section 6, we show the following:

(a) For all v,n, nodd 1 <v <n—1, and ged(v,n) = 1, deg(sin(vr/n)) < 2¢(n)
(b) For all v,n, neven 1 <v <n —1, and ged(v,n) = 1, deg(sin(vr/n)) < 4¢(n)
(c) We show that there is no proof that sin(vm/n) is algebraic that is similar to our

proof for cos(vm/n).

In Section 7 we prove the following using Field theory. (1) for all v,n, n odd, 1 <
v < n—1, and ged(v,n) = 1, deg(cos(vm/n)) = ¢(n)/2. (2) for all v,n, n even,
1<v<n-1,and ged(v,n) =1, deg(cos(vm/n)) = ¢(n).

BILL: FILL IN RESULTS FOR SIN ONCE I GET THEM- SO LATER

In Appendix A we prove that, for all n, cos(nz) = T,,(cos(z)). This is well-known and
proven here for the sake of completeness.

In Appendix B we prove that, if p € Z[z]| and all of the roots of p are also roots of T,
then T,,(z)/p(x) € Z[z]. This is surely known; however, we could not find a proof it it.

In Appendix C, we list the first 39 Chebyshev polynomials of the first kind. We need
these for the next Appendix.

In Appendix D, we give, for 1 < v < m < 21, ged(k,n) = 1, a polynomial p € Z[z]
such that p(cos(vr/n)) = 0. If n is odd then the polynomial has degree ¢(n)/2. If n
is even then the polynomial has degree ¢(n).



2 Chebyshev Polynomials of the First Kind

Definition 2.1 The Chebyshev polynomials of the first kind, T,,, n > 1, are defined by
2,
_ 2 1\k,n—-2k
T.(z) = E (Qk) (2 — 1)Fa" =",

k=0

We will need the next three theorems.
The following theorem is well-known; however, we provide a proof in Appendix A for
completeness.

Theorem 2.2  For all n, T, (cos(f)) = cos(nb).

The following is surely known; however, we could not find it anywhere. We provide a
prove in Appendix B (Theorem B.4).

Theorem 2.3 Letn > 1. Let p € Z[z]. If the set of roots of p is a subset of the set of roots
of T,, then T, (z)/p(x) € Z[z].

For the following theorem (1) the first two parts are obvious, and (2) the third part we
will prove in Lemma 3.1.

Theorem 2.4
1. The polynomial Ty (z) — x is identically 0, and hence has an infinite number of roots.
2. Forn > 2, T, is a polynomial of degree n.

3. T, has n distinct roots.

Since we called these Chebyshev polynomials of the first kind the reader may wonder if
there are Chebyshev polynomials of the second kind and, if so, what properties they have.
The Chebyshev polynomials of the second kind, U, have the following properties:

o U, € Zx],
e U, has degree n,
e U,(cosf)sinf = sin((n + 1)0).

We will not be using these polynomials.



3 deg(cos(vr/n)) <2n+1

Lemma 3.1

1. Letn>1. For all

VRS 2lm:kez U 2lmzkez,
n—1 n+1

cos(f) = cos(nB). (If n =1, then just use the second unionand.)

2. If n is odd and n > 3, then the n roots of T,,(z) — x are

cos 2km :ogkgn_l U < cos 2km :1§k§n_1.
n—1 2 n+1 2

3. If n is even and n > 2, then the n roots of T,,(x) — x are
cos 2km :ogkgn—_Q U < cos 2km 1<k < .

n—1 2 n+1
Proof:

1) For the first unionand notice that

2km 2km n2km
Cos = Cos + 2km | = cos .
n—1 n—1 n—1

For the second unionand notice that

2km 2km 2km n2km
CoS = cos| — = cos| 27k — = Cos )
n+1 n+1 n+1 n—+1
X =< cos 2kn :ogk:gn_l U < cos 2kn :1§k§n_1 )
n—1 2 n+1 2

By Theorem 2.2 and Part 1 we have that all of the elements in X are roots of T),(x) — z.
By algebra one can see that all of the angles mentioned in the definition of X are distinct
and in [0, 7]. Since cosine is injective on [0, 7], X contains n different numbers. Since n > 2,
by Theorem 2.4, T,,(z) — = has n roots. The elements of X are its n roots.

|3

2) Let

3) Similar to the proof of Part 2. |

Lemmas 3.1.2 and 3.1.3 imply many cosines are algebraic.

Example 3.2



We look at the first unionand in the n = 3,5, 7 cases of Lemma 3.1.2.

1. n=3. {cos(szﬂ) 0<k< 1} = {cos(0), cos(m) }
3. n=7
{COS(%TW> 0<k< 3} = {cos(0), cos(m/3), cos(2m/3), cos(m)}
Theorem 3.3

1. There exists a polynomial in Z[x] of degree 2n + 1 that has roots

()00}

2. Let v,n be such that n > 1 and 0 < v < n. Then deg(cos(vr/n)) < 2n+ 1. (This
follows from Part 1.)

Proof: By Lemma 3.1.2, applied to 2n+1 (since n > 1, 2n+ 1 > 3) and replacing v with

k, the elements of
2um 2n v
cos| — |:0<v<— ) =4qcos| — |:0<v<n,.
2n 2 n

are roots of Ty, 41(x) — z. Since the degree of Ty, 11 is 2n + 1, deg(cos(vn/n)) <2n+1. |1

4 If nis Odd Then deg (cos (vm/n)) < 1¢(n)

In this section:

1. We will prove that, for all 1 < v < 22, ged(v,27) = 1, deg(cos(vr/27)) < $¢(27) = 9.
We use 27 since it is the least odd number x such that both x and x —2 are not primes.
This is important since if x or x — 2 are primes then part of the proof is easy and
will not demonstrate aspects of the general theorem. The proof will use an inductive
assumption.

2. We will prove that, for all n, for all 1 < v < n—1, nodd, ged(v,n) = 1, deg(cos(vm/n)) <
2¢(n). The proof is by induction.



4.1 An Example: deg (cos (vm/27))

The general proof constructs two polynomials ¢, 1, and ¢, 2,, inductively on n. (¢ stands
for cosine, o stands for odd.) The union of the roots of ¢, 1, and ¢, 2, are

{COS(E>11§USH—1 and gcd(v,n)zl}.

n

As an example we will show how the induction step works to give ca7,01, c027,2 For
purposes of the example, we will assume we have ¢,y ,1 and ¢,y .2 for all 1 < n' < 26.
We show the following:

Every element of

COq7 = {cos(%) :1<v <26 and ged(v,27) = 1}=

(CO stands for cosine odd.)
has degree < ¢(27)/2 = 9.

We construct two polynomials cosr 1, coare € Z]x] of degree ¢(27)/2 = 9 such that the
following hold.

1. The roots of cogr; are all cos(vm/27) where 1 < v < 26, ged(v,27) = 1, and v is even.
Formally:

2
COg71 = {cos (%;T) 1<k <13 and ged(k,27) = 1}
B 2 47 8 107
= < cos 5 ) CoS 5 ) cos 5 ) cos 5
U 147 167 207 227 20m
cos > , COS > , COS o , COS > , COS > )

2. The roots of cogr 2 are all cos(vm/27) where 1 < v < 26, ged(v,27) = 1, and v is odd.
Formally:

27— 2
COg79 = {cos (%) 1<k <13 and ged(k,27) = 1}

B m 5_7r 7_7T 117 137
= < cos 5 ) CoS 5 ) cos 5 ) coS > ) cos >

U 177w 197 23 25T
Cos > ) cos > ) cos > ) cos > .
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1) We construct cog7; with an inductive assumption.
Assume that, for 3 < n’ < 25, n’ odd, there exists co, 1 € Z[z] of degree ¢p(n’)/2 whose
roots are

n

2k '—1
COpy = {cos(—/ﬂ> 1 <k< n 5 and ged(k,n') = 1}.

To construct cogr; we first take Tog(x) — 2. By Lemma 3.1.3 the roots of Tos(x) — x are
COS%—W :ogkg% U COS%—W :1§k§%
25 2 27 2
2km 2k
{005(25) O_k_IQ}U{cos<27> 1_k_13}

Note that C'Oq7; is a subset of the roots of Tos(z) — x. To remove the other roots we
will divide Tyg(x) — = by some polynomials. We will partition the roots cos(vm/n’) (with
v/n’ in lowest terms) that we want to get rid of into groups. Each group will have the same
n'. For example, one of the groups is {cos(27/5), cos(4w/5)}. For each group there will be a
polynomial that has exactly the elements of that group for roots

1. {cos(0m/25)} = {cos(0)} = {1}.

The polynomial x — 1 of degree 1 suffices.

2. {cos(2m/25), cos(4m/25), cos(6m/25), cos(87/25), cos(127/25)} U
{cos(14m/25), cos(167/25), cos(187/25), cos(22m/25), cos(24m/25) }

which is
{cos(2km/25): 1 <k <12 and gcd(k,25) = 1}.

By assumption with n’ = 25, there is a polynomial coys 1 € Z[x] of degree ¢(25)/2 = 10,
whose roots are this set.

3. {cos(107/25), cos(207/25)} = {cos(27/5), cos(4m/5)} which is

{cos(2kn/5): 1 <k <2 and gcd(k,5) =1}.

By assumption with n’ = 5, there is a polynomial cos; € Z[x] of degree ¢(5)/2 = 2,
whose roots are this set.

4. {cos(67/27),cos(127/27), cos(247/27)} = {cos(2m/9), cos(4m/9), cos(87/9)} which is

{cos(2km/9): 1 <k <4 and gcd(k,9) =1}.

By assumption with n’ = 9, there is a polynomial cog; € Z[x] of degree ¢(9)/2 = 3,
whose roots are this set.



5. {cos(187/27)} = {cos(27/3)} which is

{cos(2kn/3): 1 <k <1 and gcd(k,3) =1}.

By assumption with n’ = 3, there is a polynomial cos; € Z[x] of degree ¢(3) = 1,
whose roots are this set. (Since cos(27/3) = —1/2 we know that co(x) = 2z + 1;
however, by using the assumption this derivation of cos7; is similar to the proof of the
general theorem in the next subsection.)

The set of roots of Tys(x) — x that are not in C'Oy7; is the set of roots of one of the five
polynomials above. Hence we take

T26(1') — T

(x — 1)co9s1(x)cos1(x)cog 1c031(x)

0027’1 (I) =

coor1 € Z]x] by Theorem 2.3. The set of roots of cogr1(x) is COaz 1.
As a sanity check we calculate the degree of cos7 1 based on the degrees of the numerator
and denominator in the definition of cos7 ;. The degree of cos7; is

deg(Ths(z) — z) — deg(z — 1) — deg(coqs1) — deg(cos1) — deg(cog 1) — deg(cos 1)

=26—-1-10—-2-3-1=09.

This passes the sanity check since coer () is supposed to have 9 roots.

2) We construct the polynomial cogro € Z[x] by using cosr ;. Note that

Hence every element in C'Oq72 is the negation of an element in C'Oy7; and vice versa.
Hence we can take coar2(2) = coar1(—x). Clearly fa79 is of degree ¢(27)/2 = 9.
We have constructed cogr; and cos7 2 as promised.

4.2 General Theorem: If n is Odd Then deg (cos (vmw/n)) < 1¢(n)

Lemma 4.1 Letn > 3, n odd. Let

2k —1
COpq = {COS(TW) 1<k < n 5 and ged(k,n) = 1}.

Then CO,,; is a subset of the roots of T,,—1(x) — x.



Proof:  Since n is odd, n — 1 is even. By Lemma 3.1.2, applied to n — 1, the n — 1 roots
of T, 1(z) — x are

{COS( Qkﬁ)ogkgﬂ}u{cos(%_ﬂ->1§k§n—_l}
n—2 2 n 2

Clearly CO,,; is a subset of this set. |

Theorem 4.2 Letn > 3, n odd.

1. There is a polynomial co, 1 € Z]x] of degree ¢(n)/2 whose roots are

2 -1
COyq = {COS(%) 1<k < n and ged(k,n) = 1}.

2

2. There is a polynomial co, o € Z[z] of degree ¢(n)/2 whose roots are

Comz{cos(w)ﬂgkg”;l and gcd(k,n):l}.

n

3. Every element of

C’On:{cos(ﬁ>:1§v§n—1 and gcd(v,n)zl}

n
has degree < ¢(n)/2.

Proof:
1) We construct co,,; by induction on n.
Base Case: n = 3. Then CO;; = {cos(27/3)} = {—1/2}. Let cos1(x) = 2z + 1. Note that
oz, is of degree ¢(3)/2 = 1.
Induction Hypothesis Assume n > 5 is odd. Assume that, for all 1 < n’ < n, n odd,
there exists a polynomial co, ; € Z[x] of degree < ¢(n')/2 whose roots are

n —1

2 /
COp 1 = {COS (—klﬂ> 1 <k< 5 and ged(k,n') = 1}-
n

Induction Step To construct co,; we first take 7,,_1(z) — z. By Lemma 3.1.3 the n — 1
roots of T,,_1(x) — x are

cos 2kn :nggn_?’ U < cos %—W :1§k§n_1 )
n—2 2 n 2

By Lemma 4.1 CO,,; is a subset of the roots of T},,_1(x) —z. To remove the other roots we
will divide T,,_1(x) — = by some polynomials. We list sets of roots and the polynomial that
has exactly that set of roots. We also include degrees for a sanity check. For that purpose
we point out that the degree of T,,_1(x) — z is n — 1.
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1. {cos(0m/n)} = {cos(0)} = {1}.

The polynomial x — 1 of degree 1 suffices.

2. For all 3 <n’ <n — 2 such that n’ divides n — 2 let

n

2k ‘-1
COp 1 = {cos(—?) 1 <k< i 5 and ged(k,n') = 1}-

By the inductive hypothesis there is a polynomial co,s ; € Z[z] of degree ¢(n')/2 whose
roots are this set.

3. Let Q(n) be the product of all the co,; where 3 <n' <n — 2 and n’ divides n — 2.

4. For all 3 <n’ <n—1 such that n’ divides n we have:

n

2 -1
COpy = {cos(ﬁ) 1<k< o 5 and ged(k,n’) = 1}.

By the inductive hypothesis there is a polynomial co,s; € Z[z] of degree ¢(n')/2 whose
roots are this set.

5. Let R(n) be the product of all the co,; where 3 <n’ <n — 2 and n’ divides n.

The set of roots of Ths(2) —z that are not in CO,, ; is the set of roots of (z—1)Qy1(2) Ry 1 ().
Hence we take

T 1(x) —x
(l‘ - 1)Qn,1<x)Rn,l(x).

con1 € Z[z] by Theorem 2.3. The set of roots of co,1(z) is CO,, ;.
Since the roots of co, 1 are CO, 1, the degree of co,, ; is |CO, 1| = ¢(n)/2.

conq(x) =

2) We construct the polynomial co, > € Z[z] by using co, 1. Note that

Hence every element in C'O,, 5 is the negation of an element in CO,,; and vice versa.
Hence we can take cop2(z) = co,1(—x). Clearly f, is of degree ¢(n)/2.
We have constructed co,; and co,, 2 as promised.

3) It is easy to show that CO,, = CO,; UCO, 2. We leave this proof to the reader.
Since CO,, = CO,,; UCO,, 2 we have, for every element o € C'O,,, a polynomial of degree
¢(n)/2 with root a. i

11



Corollary 4.3 Let n > 3 be odd.

1. There exists a polynomial co,, € Z|x] of degree n — 1 whose roots are

{cos(lﬂ): 1 Svgn—l}.
n

2. There exists a polynomial s, € Z[x] of degree ¢p(n) such that

e The roots of s, are

{cos(vi):lgvgn—l and gcd(v,n)zl}.

n

e Every monomial of s, is of even degree. Hence there exists q, € Zlx| of degree
d(n)/2 such that s,(x) = q.(z?).

Proof:
Let co, 1 and co, 2 be as in Theorem 4.2.
1)

con(x) = H copr 1 (). H COn 1 ()

n’'>2n'In n’>3,n/|n,2in

2) su(x) = cop1(x)con2(x). The proof of Theorem 4.2 shows that the first two properties
hold . We prove the third property.

The roots of s, can be partitioned into ¢(n)/2 sets of size 2 as follows.

For 1 < v < n such that ged(v,n) = 1 we have part

o= o) s (527) ) = {24}

Let the roots be a1, —aq, ag, —aa, .. ., e, —a, where e = ¢(n)/2. Then there exists a € Q
such that

sp(x) =alz +a1)(z —ag) - (2 + ae)(z — ).

Clearly the monomials of s,, all have even degree. |

5 If n is Even Then deg (cos (vm/n)) < cos(n)

In this section:

12



1. We will prove that, for all 1 < v < 17, ged(v, 18) = 1, deg(cos(vr/18)) < ¢(18) = 6.
We use 18 since it is the least even number a that has an non-prime odd factor. This
is important since if a only has prime odd factors then part of the proof is easy and
will not demonstrate aspects of the general theorem. The proof will use an inductive
assumption.

2. We will prove that, for all n, for all 1 < v < n—1, neven, ged(v,n) = 1, deg(cos(vm/n)) <
¢(n). The proof is by induction.

5.1 An Example: deg (cos (vm/18))

We will do an example of the general proof which is in the next subsection. We will show
(given an inductive assumption) the following:
Every element of

CEg = {cos(%) :1<v <17 and ged(v,18) = 1}

Lo cos( T cos( T con( 2T Y cos 37 con( 17
= 4 COoS 13 , COS 13 , COS 13 , COS 13 , COS 13 , COS 13 ,

has degree < ¢(18) = 6.
(C'E stands for cosine even.)

We construct pig € Z[x] of degree ¢(18) = 6 whose roots are C'Ejs.

We construct p;g with an inductive assumption.
Assume that, for 2 < n’ < 16, n’ even, there exists p,, € Z[z] of degree ¢(n’) whose roots
are

CE, = {COS(@) t1<v<n' —1 and ged(v,n') = 1}-
n

To construct pig we first take T35(x) — 2. By Lemma 3.1.2 the roots of T35(z) — = are
2um 0 < <34 U 2um < <34
coS 3 ) 0Svs S cos g ) 1SvS 5
uT uT
= — |:0<0v <1 — 1 <v<1 .
{005(17) 0<v< 7}U{cos<18> <y < 7}

Note that C'E\g is a subset of the roots of T35(x) — . To remove the other roots we
will divide T35(x) — = by some polynomials. We will partition the roots cos(vr/n') (with
v/n’ in lowest terms) that we want to get rid of into groups. Each group will have the same
n’. For example, one of the groups is {cos(7/6),cos(57/6)}. For each group there will be a
polynomial that has exactly the elements of that group for roots

13



1. {cos(0m/17)} = {cos(0)} = {1}.

The polynomial x — 1 of degree 1 suffices.

2. {cos(17m/17)} = {cos(m)} = {—1}.
The polynomial x + 1 of degree 1 suffices.
3. {cos(km/17): 1 < k < 16}.

By Corollary 4.3.1 there is a polynomial ry; of degree 17 — 1 = 16 whose roots are this
set.

(In the general proof we will have a similar case where we look at {cos(kr/(n—1)): 1 <
k < mn —2}. There will be a polynomial that has exactly this set for its root. This will
also hold when n — 1 is not a prime. That is, the fact that 17 is a prime is not the
reason why this case worked out to use just one polynomial.)

4. {cos(m/9),cos(27/9), cos(4m/9), cos(bm/9), cos(7m/9), cos(87/9)}
which is {cos(k7/9): 1 <k <8 and gcd(k,9)=1}.
By Corollary 4.3.2 with n’ = 9, there is a polynomial sq € Z[z]| of degree ¢(9) = 6,
whose roots are this set.

5. {cos(m/6),cos(5m/6)}
which is {cos(kn/6): 1 <k <5 and gcd(k,6) =1}.
By assumption with n’ = 6, there is a polynomial ps € Z[z| of degree ¢(6) = 2, whose
roots are this set.

6. {cos(m/3),cos(2m/3)}.

By Corollary 4.3.2 with n’ = 3 there is a polynomial s3 € Z[z] of degree ¢(3) = 2
whose roots are this set.

7. {cos(m/2)}
which is {cos(kw/2): 1 <k <1 and ged(k,2)=1}.
By assumption with n’ = 2, there is a polynomial py € Z[z] of degree ¢(2) = 1, )hose
roots are this set. (Since cos(m/2) = 0 we know that py(x) = z; however, by using the
assumption this derivation of p;g is similar to the proof of the general theorem in the
next subsection.)

All of the roots of T35(2) —x that are not in C'E1g are roots of one of the seven polynomials
above. Hence we take

T35($) — X
x —1)(z 4+ 1)ri7(n)so(x)ps(2)s3(x)pa(z)
p1s € Z[z] by Theorem 2.3. The set of roots of pig(x) is CEis.

pis(x) = (

14



As a sanity check we calculate the degree of p;g based on the degrees of the numerator
and denominator in the definition of pis. The degree of pig(x) is

deg(Tss(x) — x) — deg(x — 1) — deg(w + 1) — deg(r17) — deg(sy) — deg(ps) — deg(ss) — deg(p2)

=35-1-1-16-6-2-2-1=6.

This passes the sanity check since pig(x) is supposed to have 6 roots.
We have constructed pig as promised.

5.2 General Theorem: If n is Even Then deg (cos (vmr/n)) < ¢(n)

Theorem 5.1 Letn > 2, n even. Let

C’En:{cos(ﬂ>:1§v§n—1 and gcd(v,n)zl},

n

1. There is a polynomial of degree ¢(n) whose roots are the elements of C'E,,.

2. Every element of CE,, has degree < ¢(n). (This follows from Part 1.)

Proof: = We construct ce,, € Z[z] of degree ¢(n) whose roots are C'E,,.
The construction is by induction on n.
Base Case: n =2. Then CE, = {cos(n/2)} = {0}. Let ces(z) = z. ces(x) has degree 1.

Induction Hypothesis Assume n is even and n > 4. Assume that, for 2 < n’ < n, n’ even,
there exists ce,, € Z[z] of degree ¢(n’) whose roots are

CE, = {COS<£) 11<v<n'—1 and ged(v,n) = 1}'

n

Induction Step
To construct ce,, we first take Ts,_1(x) — x. By Lemma 3.1.2 the roots of T, (z) — z

are
2um 0 < <2n—2 U 2um < <2n—2
cos 53 <v < 5 CosS o ) <v < 5
:{COS< mr):0§v§n—1}u{cos(vl>:1§v§n—1}.
n—1 n

Note that C'E,, is a subset of the roots of Ty, 1(x) — x. To remove the other roots we
will divide T35(z) — = by some polynomials. We list sets of roots and the polynomial that
has exactly that set of roots. We also include degrees for an attempt at a sanity check. For
that purpose we point out that the degree of Ty, 1(z) — x is 2n — 1.

15



1. {cos(0m/(n—1))} = {cos(0)} = {1}.

The polynomial x — 1 of degree 1 suffices.

2. {cos((n—1)7/(n—1))} = {cos(m)} = {—1}.
The polynomial x + 1 of degree 1 suffices.
3. {cos(km/(n—1)): 1 <k <n-—2}

By Corollary 4.3.1, there exists r,_1 € Z[x] of degree n — 1 whose roots are this set.

4. For all 2 < n’ <n — 2 such that n’ divides n we define:

COWI{COS(£>: l<v<n'—1 and gcd<v,n’>:1}'

n

There are two subcases:
(a) If n’ is odd then, by Corollary 4.3.2, there is a polynomial co,s € Z[z] of degree
¢(n') whose roots are CO,,.

(b) If n’ is even then, by the induction hypothesis, there is a polynomial ce,(x) € Z[x]
of degree ¢(n’) whose roots are CO,,.

For notational convenience we define two polynomials before defining ce,,.

1. ProdOdd,, is the product of all co,s such that 2 <n’ <n —1, n’|n, and n is odd.

2. ProdEven,, is the product of all ce,» such that 2 <n’ <n — 1, n’|n, and n is even.

All of the roots of Ty,_1(x) — = that are not in C'E,, are roots of either x — 1, = + 1,
ProdOdd,(z), or ProdEven, (z). Hence we take

Ton_1(x) —x
(x — 1)(x + 1)ry—1(x) ProodOdd,,(xz)ProdEven,,(x)
ce, € Z]x] by Theorem 2.3. The set of roots of ce, is CE,.
As an attempt at a sanity check we calculate the degree of ce, based on the degrees of

the numerator and denominator in the definition of ce,,.
To write down the degree of ce,, we note the following:

cen(r) =

1. deg(ProdOdd,,) is the sum over all n’ such that 2 < n' <n — 1, n’|n, and n is odd, of

¢(n').

2. deg(ProdEven,,) is the sum over all n’ such that 2 < n’ <n — 1, n|n, and m is even,

of ¢(n').

16



The degree of ce,, is

2n—1—1—1—(n—1)—deg(ProdEven,) — deg(ProdOdd,,) = n — 2 — deg(ProdEven,,) —
deg(ProdOdd,,).

We also know that the there are exactly ¢(n) roots of ce,. We can now view these two
expressions for the degree in two ways.

1. We have shown ¢(n) = n — 2 — deg(ProdEven,,) — deg(ProdOdd,,).

2. We would like to have an independent proof that ¢(n) = n — 2 — deg(ProdEven,,) —
deg(ProdOdd,,) as a sanity check.

We have constructed ce,, as promised. |

6 Upper Bounds on deg (sin (vw/n))

Are numbers of the form sin(vr/n) always algebraic? Yes. We can derive this from the
results about deg(cos(vm/n)). We will pay attention to the algebraic degree.

Lemma 6.1 Let o € C.
1. deg(a?) < deg(a).
2. deg(1 — a?) < deg(a).
3. deg(v1 —a?) < 2deg(a).
4. deg(a) < 2deg(a?).

Proof:
For parts 1,2,3 let p € Z[x] be a polynomial of degree d = deg(«) such that p(a) = 0.
1) Let ¢(x) = p(v/z)p(—+/x). Clearly g(a?) = 0. We need to show that ¢ € Z[z]. Once we
have that, clearly ¢ is of degree d.

Let p(x) = Z?:o a;xz’.

Then g(x) = p(v/2)p(—v/7) = 3y S5g(— 1V asasa )2

Let v be odd. The coefficient of 2*/% is >, (—1)"""a;a,_;. We show that this coefficient
is 0, which implies ¢ € Z[z].

Let j =v —1i to get

<
<

v

Z(—l)”_iaiav_i = (—l)jajav_j = Z(—l)iaiav_i.

i=0 5=0 i=0
We partition the sum into the 7 even and ¢ odd cases. We will see that they are negations
of each other, hence the total sum is 0.

/2

e To obtain the sum over 7 even we let i = 27: Zy):_ol) A2 y—2;.
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e To obtain the sum over ¢ odd we let ¢+ = 25 + 1: — 25.7’:_01)/2 2j4+10y—2j-1-
Let k = (v —2j — 1)/2. Then this sum is

(v—1)/2 (v—1)/2 (v—1)/2
- E Ay—2k A2k = — E A2k 0y—2k = — g 25 Qy—25-
k=0 k=0 j=0

2) By Part 1, deg(a?) < d via polynomial ¢ € Z[z]. Note that 1—a? is aroot of r(z) = ¢(1—x)
which is of degree < d.

3) By Part 2, 1 — o? is a root of degree < d via polynomial r € Z[z]. Note that /1 — a2 is
a root of s(z) = r(x?) which is of degree < 2d.

4) Let e = deg(a?). Let q(z) € Z[z] be the polynomial of degree e with g(a?) = 0. Clearly
q(()?) =0, so deg(a) < 2e.
|

Theorem 6.2 Let 1 <v <n—1 be such that gcd(v,n) = 1.
1. If n is odd then deg(sin(vm/n)) < 2¢(n).
2. If n is even then deg(sin(vm/n)) < 4¢(n).

Proof:
1) Assume n is odd. By Theorem 4.2 deg(cos(vm/n)) < ¢(n)/2. By trigonometry and
Lemma 6.1.3

deg(sin?(vr/n)) = deg(y/1 — cos2(vm/n)) < B(n).

By Lemma 6.1.4, deg(sin(vr/n)) < 2¢(n).

2) Assume n is even. By Theorem 5.1 deg(cos(vm/n)) < ¢(n). By trigonometry and
Lemma 6.1.3
deg(sin®(vm/n)) = deg(y/1 — cos?(vr/n) < 2¢(n).
By Lemma 6.1.4, deg(sin(vmr/n)) < 4¢(n).
|

Can we get better bounds on deg(sin(vr/n)) using a technique similar to what we used
for cos(km/n)? For that proof we needed the Chebyshev polynomials, T},, since they had the
following three properties:

o T, € Z[z].
o T, (cos(z)) = cos(nx).

Hence we would need polynomials S,, such that
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e S, €7z
e S,(sin(x)) = sin(nz).

The following is based on an anonymous post on math stack exchange that appeared

here:
https://math.stackexchange.com/questions/2941015/are-there-polynomials-px-such-that-j

Theorem 6.3 sin(20) cannot be written as a polynomial over R in sin(0).

Proof:  Assume, by way of contradiction, that there exists a polynomial p(z) € R[x] such
that sin(26) = p(sin(#)). Since sin(260) = 2 cos(f) sin(#) we have

2 cos(0) sin(f) = sin(260) = p(sin(0)).

Note that if @ = 0 then the left hand side is 0, so p(sin(0)) = 0. Hence p(0) = 0. Therefore
there exists ¢(z) € R[x] such that p(z) = zq(x). So

2 cos(#) sin(0) = p(sin(f)) = sin(0)q(sin(6)).

2 cos(0) = q(sin(0)).

(We divided by sin(#) so we needed to have 0 ¢ {nm: n € Z}.)
Square both sides and use cos?(f) = 1 — sin*(f) to get

4(1 — sin*(0)) = q(sin())%.

The two polynomials 4(1 — z?) and ¢(z)? agree for infinitely many x, namely sin(6) for
6 € [0,7). Hence they are equal. But ¢? is the square of a polynomial, and 4(1 — 2?) =
4(1 — z)(1 + z) is not. Contradiction. 1

7 deg(cos(vm/n)) & deg (sin (vw/n)): Field Theory

7.1 Background Needed

We state well known facts from field theory and use them to prove our results. All fields are
subsets of C.

Definition 7.1 Let F and E be fields. E is a field extension of F if
e FCE.

e The operations +, X in F are +, x in E restricted to F.
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Fact 7.2

1. IfE is a field extension of F then E is a vector space over F. We denote the dimension
of this vector space by [E : F|.

2. If D is a field extension of E and E is a field extension of F then [D : F] = [D : EJ[E : F].

Definition 7.3 Let F C C be a field and let « € C — F.

_ [ple), r] an o
F() = {49 g e Pl and gfa) 0},

Definition 7.4 Let E be a field extension of F. Let o € E. The degree of a over F is the
smallest d € N such that « is the root of a degree-d polynomial in F[x]. We denote this by
dege(a). If F = Q then we just use deg which matches the definition of deg we have been
using.

Fact 7.5 F(«a) is a field extension of F and [F(a) : F] = degg(a).

Proof:
Clearly F(«) is a field extension of F.
Let degp(a) = d.
We show that The set {1,a,a?,...,a% 1} forms a basis for [F(a) : F].

e Every element of F(«) is a polynomial in o with coefficients in F. Since degy(«) = d,
the polynomials can be made to be of degree < d.

e Let ag,...,aq—1 € F be such that Zf;ol a; = 0. Since degy(a) = d, all of the a; are
0.

Note 7.6 Lets say you prove that [Q(«a) : Q] = d, so deg(a) = d. Can Fact 7.5 help find a
polynomial of degree d that has a as a root. No. All you find out is that {1,q,...,a?} is
linearly dependent over Q, hence there exists such a polynomial. But the proof of Fact 7.5
does not say how to find the polynomial.
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BEGINNING OF COMMENTS TO AUGUSTE

(I DO NOT KNOW IF THE NOTE ABOVE IS CORRECT.)

We just proved [F(«) : F| = degg(a) but for us for now lets just consider [Q(«) : F] =
degq(a)

1) The proof is constructive in one direction: Given a we can get a basis, namely

{1,a,..., 0"},

(Note- not clear what given means since « is irrational.)

2) Can the following be done: Given « and d where one is told that there is a poly
p € Z]x] of degree d that has « as a root, find that poly?

Actually the answer is yes for a stupid way: enumerate all polys and test each one until
you find one. But even this is not really right since « is irrational so this would need perfect
real arithmetic.

It may be that for our case of cos(vm/n) this can be dealt with.

So the question is, is there a SANE algorithm.

3) In Lemma 7.10 below we prove the following:

Let 1 <v <n—1 be such that ged(v,n) = 1.

[Q(cos(2mv/n)) - Q] = ¢(n)/2.

Hence deg(cos(2mv/n)) = ¢(n)/2.

SO here are my questions:

From the proof of this one can one, given v, n (that is an input you CAN be given) find
poly p € Z[x] of degree ¢(n)/2 that has « as a root.

If so, then (a) is the algorithm SANE, and (b) does the algorithm need perfect arithmetic
for reals?

Much like Maya’s personal statement, I don’t want our final paper to dwell on this point.
I want to BRIEFLY talk about how the proof using Field theory can or cannot be used to
find he poly, and if yes then does or does not use real arithmetic. I will then also state this
as probably one of the CONS when I discuss PROS and CONS early in the paper
END OF COMMENTS TO AUGUSTE

Notation 7.7 (, = e>™/™. ({ is the Greek letter zeta.)

Definition 7.8 Let n € N. a is an nth root of unity if o™ = 1. « is a primitive root of unity
if (1) " = 1, and (2) for every n’ < n, o’ # 1.

Fact 7.9

1. There are n nth roots of unity: ¢}, ... ("

2. There are ¢p(n) primitive nth roots of unity: {(’: ged(v,n) = 1}.

3. If o is a primitive nth root of unity then deg(a) = ¢(n).
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7.2 deg(cos(vmw/n)) Via Field Theory
Lemma 7.10 Let 1 < v < n— 1 be such that ged(v,n) = 1.
1. [Q(G) : Q] = ¢(n).
2. If n > 3 then [Q(¢y) : Q(cos(2mv/n))] = 2.
3. [Q(cos(2mv/n)) : Q = ¢(n)/2.
J. deg(cos(2mv/n)) = b(n)/2.

Proof:
1) [Q(¢Y) : Q] = ¢(n) follows from Fact 7.5 and Fact 7.9.3.

2) [Q(Cg) : Q(COS(QTFU/”))] = degQ(cos(Zﬂ'v/n)) (C':) Hence we need to show degQ(cos(Zfrv/n))(C:z)) =
2.

a) We show degQ(cos(27rv/n)) (Cﬁ) <2

We derive a quadratic polynomial with coefficients in Q(cos(27v/n)) that has e>™/" as
a root. Then degQ(Cos(%v/n))(Cﬁ) < 2.

Let 8 = €2™/™. Recall that

eix + e—iz
2

cos(z) =

Hence

(27w) B+ %
cos = )
n 2

Hence we need a polynomial with coefficients in Q(f + 1/3) that has  as a root. The
polynomial

= (B+1/8)x+1=0

has 8 as a root. Hence we take the polynomial

x? — 2 cos(2um/n)x + 1.

b) We show degQ(cos(Qwv/n))(Cg) > 2.

Assume, by way of contradiction, that (! is the root of a linear polynomial with co-
efficients in Q(cos(2wv/n)). Then (¥ € Q(cos(2wv/n)) and hence (¥ € R. Since n > 3,
¢ € C—R. This is a contradiction.

3) By Fact 7.2.2
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[Q(¢) : Q] = [Q(G) : Q(eos(2mv/n))][Q(cos(2mv/n)) : Q]
By Part 1 and Part 2 we have

o(n) = 2[Q(cos(2mv/n)) : Q.
Hence [Q(cos(2mv/n)) : Q] = ¢(n)/2.

4) By Part 3 [Q(cos(2mv/n)) : Q] = ¢(n)/2. By Fact 7.5

deg(cos(2mv/n))) = [Q(cos(2mv/n)) : Q] = ¢(n)/2.
|

Theorem 7.11 Let 1 < v < n such that gcd(v,n) = 1.
1. If n is odd then deg(cos(vm/n)) = ¢(n)/2.
2. If n is even then deg(cos(vm/n)) = ¢(n).

Proof:
1) n is odd. There are two cases

Case 0: v is even. Then v = 2v'. Hence deg(cos(vm/n)) = deg(cos(2v'w/n)).
Since ged(v,n) = 1, ged(v',n) = 1. Hence, by Lemma 7.10.4, deg(cos(2v'm/n)) = ¢(n)/2,
so deg(cos(vm/n)) = ¢(n)/2.
Case 1: v is odd. Note that deg(cos(vm/n)) = deg(cos(2vm/2n)).
Since v is odd and ged(v, n) = 1, ged(v, 2n) = 1. Hence, by Lemma 7.10.4, deg(cos(2vm/2n)) =
®(2n)/2. Since n is odd, ¢(2n) = ¢(n) so deg(cos(vr/n)) = ¢(n)/2.

2) n is even. Note that deg(cos(vm/n)) = deg(cos(2vm/2n)).
Since n is even and ged (v, n) = 1, ged(v, 2n) = 1. Hence, by Lemma 7.10.4, deg(cos(2vm/2n)) =
®(2n)/2, Since n is even, ¢(2n) = 2¢(n) so deg(cos(vr/n)) = ¢p(n). 1

7.3 deg(sin(vm/n)) Via Field Theory

BILL- WILL PROB RE DO THIS ENTIRE SECTION, ON FIELD THEORY PROOF FOR
SINE. LATER

Lemma 7.12 Let 1 <v <n —1 be such that gcd(v,n) = 1. Let ¢, = e*™/",
1. [Q(Ga) : Q] = é(n).
2. [Q(sin(2vm/n), 1)) : Q(sin(2vm/n))] = 2.
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Proof:
1) By Fact 7.5 [Q((,) : Q] = deg((,). By Fact 7.9, deg(¢,) = ¢(n). Hence [Q((,) : Q] = ¢(n).

2) By Fact 7.5,

(Qsin(20m/n). ) : Q(sin(207/m)] = degignaummy ()]
Since i ¢ Q(sin(2vm/n)),

degQ(sin(Zmr/n)) (Z) > 2.
Since i is a root of % + 1,

degQ(sin(2v7r/n)) (’l) <2

Hence
degQ(sin(2vﬂ/n))<i) =2.

Lemma 7.13 Let 1 < v < n — 1 be such that n = 0 (mod 4) and ged(v,n) = 1. Let
Cn — e27ri/n’

1. If n is a power of 2 then [Q((,) : Q(sin(2vm/n,d))] = 1.
2. If n is not a power of 2 then [Q((,) : Q(sin(2vm/n,i))] = 2.

Proof:
|

Lemma 7.14 Let 1 < v < n — 1 be such that n = 0 (mod 4) and ged(v,n) = 1. Let
Cn _ 6271'7;/714.

1. If n is a power of 2 then deg(sin(2vm/n) = ¢(n)/2.
2. If n is not a power of 2 then deg(sin(2vm/n) = ¢(n)/4.

Proof:

)
[Q(G) = Q = [Q(G) = Qlsin(2vm/n), ))][Q(sin(2vm/n), 1)) : Q2vm/n)][Q(2v7 /n) = Q).
e By Lemma 7.12.1[Q(¢,) : Q] = ¢(n).

e By Lemma 7.15.1 [Q((,) : Q(sin(2vn/n,))] = 1.

BILL- ABOVE LEMMA IS IN THE FUTURE. FIX IF NEEDED- THIS SECTION
WILL PROB BE REDONE
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e By Lemma 7.13.2 [Q(sin(2vn/n, 1)) : Q(2uw/n)][Q(2vr/n) : Q] = 2.
Hence we have

d(n) =1x2x[Q(2ur/n): Q]
So

[Q(2vm/n) : Q] = é(n)/2.

2)
0 Q(¢,) : Q] = [Q(¢,) : Q(sin(2um/n, 1))][Q(sin(2vm /n, 1)) : Q(sin(2v7/n))][Q(sin(2vm/n)) :

e By Lemma 7.12.1]Q((,) : Q] = ¢(n).

e By Lemma 7.15.2 [Q((,) : Q(sin(2vn/n,))] = 2.

e By Lemma 7.13.2 [Q(sin(2vm/n, 1) : Q(sin(2vm/n))][Q(sin(2vm/n)) : Q] = 2.
Hence we have

d(n) =2 x 2 x [Q(sin(2vm/n)) : Q]
So

Q(sin(2v7/n)) : Q] = i(b(n).

Lemma 7.15 Let 0 < v < n such that ged(v,n) = 1.
1. Ifn is even then

(a) If n is a power of 2 then deg(sin(vm/n) = ¢(n).
(b) If n is not a power of 2 then deg(sin(vr/n) = ¢(n)/2.

2. If n is odd then BILL FILL IN. THIS SECTION WILL PROB BE REDONE
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Proof:
1) Since n = 0 (mod 4), 2n = 0 (mod 4). Since ged(v,n) = 1, v is odd, so ged(n,2n) = 1.
Note that

sin(vr/n) = sin(2v7/2n).

If n is a power of 2 then 2n is a power of 2 so, by Lemma 7.15.1,

deg(sin(vm/n)) = %gb(Zn).

a) Let n = 2. Then

S0(2n) = So(2) = 28 =241 = g(n).

If n is not a power of 2 then 2n is not a power of 2 so, by Lemma 7.15.2.
1
deg(sin(vm/n)) = Zgb(Zn).

b) Let n = 2*m where m is odd. Then

1

1 k+1 _ Ly — 9k—2
19(20) = 76024 1m) = 22"6(m) = 2 2(m)

1

= 227%6(m) = L0(24)0(m) = So(2'm) = o(n).

2)Isin(v7r/n) = sin(2 x 2v7/4n).

A Proof That cos(nz) = T,(cos(x)))

We prove Theorem 2.2, which we restate here:

Theorem A.1 Letn > 1. Let

Then cos(nx) = T,,(cos(z)).

The following proof is an expanded version of an anonymous post on math.stackexchange
so it is probably folklore. Here is the URL:
https://math.stackexchange.com/questions/125774/how-to-expand-cos-nx-with-cos-x
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Proof:
As usual, i = /—1.

We view e in two ways.

WAY ONE
e = (inz)? = il (nx) = i (nx)
O ST S
j=0 j=0 mod 2 Jj=1 mod 2

_ i (—1)j/2(nx)j+ i (—1)(G=D72) (ng)7

y y i
j=0 mod 2 J: j=1mod 2 J:
1) Sy (1) G2 ()
_ (()212)')+Z (=D _'()Z
k=0 ’ j=1 mod 2 J:
(1) G0 ()i
cos(nx) + Z 7 i
j=1mod 2
So the real part of ™ is cos(nz).
WAY TWO
e = ()" = (cos(x) + isin(z))" = (n) i/ sin? () cos™ ™/ (1),
- J
7=0

n

= Z (n) i sin? (z) cos™ 7 () + Z (n) i sin? (z) cos™ 7 (1) +
7=0mod 2,j<n J j=1mod 2,j<n J

n

_ Z <?>(—1)j/281nj(x)cosnj(x)—i— 3 <?)(—1)U1)/2sinj(a:)cos"j(x)z'

7=0mod 2,5<n j=1mod 2,j<n

:L:X/? (i)(—l)ksin%(x)cos”Qk(x)—i— 3 (7)10'1>/23m1(x)cos"ﬂ‘(x)z'

j=1mod 2,5<n J

/2]
_ Z (27;{;) (—1)k(sin2(3:))k COSn72k<x> + Z (n) 10-1/2 Sinj<x) cos™ I (Q})Z
Jj=1mod 2,j<n J

— Lnf <;€> (—1)*(1 = cos’(x))F cos™ H(z) + D (?) 1U=D2 gind (1) cos" 7 (2)i

j=1mod 2,5<n
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Ln/2]

_ ;; (2’2) (cos?(x) — D cos™ () + 3 (7)10‘1)/2 sind () cos™ (z)i

j=1mod 2,5<n J

WAY ONE gives that the real part of ¢ is cos(nz). WAY TWO gives that the real
part of € is Y=, o (x)"/2 (1) (cos? () — 1)* cos™ ()

By equating the real part of WAY ONE and the real part of WAY TWO we get the
theorem sought. |

B Lemmas on Polynomial Divisibility in Z[x]

Definition B.1 A polynomial in Z[x] is primitive if the ged of its coefficients is 1.

Lemma B.2
1. For alln > 1, the coefficient of z™ in T, (z) is 2" .
2. For alln > 1, n is even, T, has constant term (—1)"/2.
3. For alln > 1, n is odd, T, has linear term (—1)"~/2ng.

4. For allm > 1, T, is primitive.

Proof: Recall that

1) The part of the sum that contains z™ is

[n/2] n [n/2] n

2\k n—2k __ n _ on—1_n
E (Qk)(x Ve = E (Qk:)x = 2" ",
k=0 k=0

Hence the coefficient of 2" is 27~ 1.

2) The constant term is part of the summand when k& = n/2. This summand is

(TL) (ZE2 . 1)n/2xn—2(n/2) _ (I’2 . 1>n/2
n

Hence the constant term is (—1)"/2.
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3) The linear term is part of the summand when k£ = (n — 1)/2. This summand is

( n 1) (22 = )02 — (g2 — 1)m=D/2
n —

Hence the linear term is (—1)"~Y/2nz.

4) There are two cases.

e If n is even then the constant term is (—1)"/2, hence the ged of all the coefficients is 1.
Hence T, is primitive.

e If n is odd then the coefficient of x is (—1)™"1/2nz which is odd. The coefficient of
a™ is 2"71. Since the ged of an odd number and a power of 2 is 1, the ged of all the
coefficients is 1. Hence T, is primitive.

Lemma B.3 Let T,p € Z[z]| such that T is primitive.
1. If p divides T in Clx] then T'/p € Q[z].
2. If p divides T in Q[x] then T /p € Z|x].
3. If p divides T in Clx] then T'/p € Z]x]. (This follows from parts 1 and 2.)

Proof:
1) (This part does not use that 7" is primitive.) Let T'/p = ¢. Since T,p € Z[z] we know
that ¢(0),¢(1),... are all in Q.

Let ¢(z) = apa™ + - - - + ap. Then

(am : 7“0) ' (07 0, 1) - Q(O)
(am ,CL0> : (17 o 1 1) = (1)
(am ,CL()) ’ (211’ 7217 20) = Q(Z)
(ana : 7a0) : (3na 7317 30) = Q(3)

(an’ ... ,CL()) . (n"’ .. .no) — q(n)
(ag, . ..,ay) is the solution to n + 1 equations over Q. Hence ay, ..., a, € Q.

2) Let T'/p = q where ¢ € Q[z]. Then T' = pq. Since p € Z[x] there exists a € Z such that
p = ap' where p' € Z[z] is primitive. Since ¢ € Z[x] there exists b € Z such that ¢ = bq'
where ¢ € Z[z] is primitive. Hence we have

T = abp'qf

Since 7' is primitive ab = 1. Hence b € {1, —1} so ¢ € Z[z]. |

29



Theorem B.4 Let n > 1. Let p € Z[x]. If the set of roots of p are a subset of the set of

roots of T,, then 5&) € Z[z].

Proof: By Lemma B.2 T}, is primitive. Since the set of roots of p is a subset of the set of

roots of T),, p divides T,,. By Lemma B.3 z((;”)) €Z[z]. 1

C The First 39 Chebyshev Polynomials

In Section D we will list out the polynomials that have cos(vm/n) as roots forn =1,...,21,
1 <v<n-1,ged(v,n) = 1. For the odd n we need T,,_;. Hence we need T, Ts, ..., Ty.
For the even n we need T, ;. Hence we need T},T3,...,T39. In this section we list out
Ti,...,T5.
1. Ty(z) ==z
2. Ty(x) =22* — 1
3. Ty(x) = 42 — 3z
4. Ty(x) = 8z* — 822 + 1
5. Ts(x) = 16x° — 2023 + bz
6. Ty(x) = 3205 — 482* + 1822 — 1
7. Ty(x) = 642" — 1122° + 562 — Tx
8. Ty(x) = 1282% — 25625 + 1602% — 3222 + 1
9. Ty(z) = 2562° — 57627 + 4322° — 12023 + 9
10. Tyo(z) = 512210 — 12802° + 11202° — 400z + 5022 — 1
11. Ty (x) = 10242 — 28162° + 281627 — 12322° + 2202° — 11z
12. Tio(x) = 2048z — 614420 + 69122® — 35842° + 840x? — 7222 + 1
13. Ti3(z) = 40962 — 133122 + 166402 — 99842" + 29122° — 36423 + 13x
14. Tyy(x) = 81922 — 28672212 + 39424210 — 268802 + 940825 — 156821 + 98x2 — 1
15. Tis(x) = 16384x'° — 614402 4 921602 — 704002° 4 2880027 — 604825 + 56023 — 152

16. Ti6(x) = 3276820 — 13107221 + 212992212 — 180224210
+84480x% — 215042° + 2688z — 12822 + 1
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Ty7(z) = 65536217 — 278528x15 + 487424213 — 45260821
+2393602% — 7180827 + 114242° — 81623 + 17x

Tis(z) = 1310722 — 5898242 + 1105920z — 111820822
+658944210 — 2280962 + 443522° — 43202 + 1622* — 1

Tho(z) = 2621442 — 124518427 4 2490368x'% — 2723840213
+17704962" — 6955522 4+ 16051227 — 200642° + 114023 — 192

Too(x) = 5242882%° — 26214402 + 55705602'° — 655360024
+46592002'2? — 205004821% + 5491202% — 844802° + 6600x* — 20022 + 1

Ty1(z) = 10485762*! — 550502421 + 1238630427 — 15597568z 1°
+120422402'3 — 5870592zt + 179379227 — 32947227 + 3326425 — 154023 + 212

Tyo(x) = 2097152222 () — 1153433622 + 2739404825 — 3676569626
+30638080214 — 1640038422 + 5637632210 — 12080642
+1510082° — 96802+ + 24222 — 1

Ths (33) = 4194304223 — 24117248z%' + 602931202 — 85917696417
+76873728x1% — 448430083 + 171458562 — 42099202
463148827 — 52624x° + 202423 — 23z

Tou(z) = 83886087 — 50331648722 + 132120576220 — 1992294408
+1905131522'6 — 1203240962 + 5069209622 — 14057472210
+247104028 — 25625620 + 13728z* — 288z2 + 1

Tos(x) = 167772162% — 1048576002* + 2883584002%" — 458752000z
+466944000z'" — 317521920x'° + 146227200x'% — 452608002
+91520002° — 114400027 + 800802° — 260023 + 25z

Toe(z) = 3355443222 — 218103808x* + 627048448x?% — 10496245765%°
+11331174402'8 — 825556992216 + 4127784962 — 14121369622
+32361472x'° — 475904028 + 4164162° — 18928z* + 338z% — 1

Tyr(z) = 6710886427 — 4529848322% + 1358954496223 — 23876075522
+2724986880x'9— 211805798427 + 1143078912x"° — 428654592x'3
+109983744z' — 186700802 + 197683227 — 1179362° + 327623 — 27z
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28.

29.

30.

31.

32.

33.

34.

35.

Tog(z) = 134217728x% — 93952409622¢ + 2936012800224 — 540226355222
+649959833622° — 5369233408218 + 311171481626 — 127008768024
+361181184x'2 — 697016322 + 871270428 — 6522882° + 254802* — 39222 + 1

Tyo(x) = 2684354562 — 1946157056227 + 63250104322% — 121634816002
+15386804224x%! — 1346345369621 + 834148761627 — 3683254272217
+1151016960x'% — 249387008z + 36095488z — 3281408z

+1688962° — 4060z° + 29x

Tso(z) = 536870912230 — 4026531840x?® + 1358954496022 — 272629760002
+361758720002% — 334265057282 4 22052208640x'® — 104782233602'°
+3572121600x'* — 85995520022 + 141892608z — 1527552028

+990080x° — 33600z* + 45022 — 1

Ty (z) = 1073741824231 — 83214991362% + 2912524697627 — 6085096243222
+845152256002% — 822398156802% + 5756787097620 — 2929793433627
+10827497472215 — 287092736023 + 5331722242 — 666465282°

+52615682" — 2360962° + 49602 — 31z

Tyo(z) = 2147483648232 — 171798691842 + 622770257922% — 1352914698242
+1962934272002%* — 20065550336022% + 1485622476802%° — 8064807731228
+321332183042% — 9313976320z + 1926299648z1? — 27518566420
+257986562% — 14622722° + 435202* — 51222 + 1

Ts3(x) = 429496729623 — 3543348019223 + 1328755507202% — 2997081866242%"
+4534378168322% — 4858262323202%3 + 3793643110402*! — 218864025600z
+93564370944217 — 294554501122 + 6723526656213 — 108354355211
+118243840x° — 818611227 + 32313625 — 598423 + 33«

Tsy(x) = 858993459223 — 7301444403223 + 2829309706242 — 6616933990402
+104216710348822° — 1167945891840x** + 959384125440x** — 58629029888022°
+2677768192002'® — 9104411852821 4 2276102963224 — 409338675222
+511673344x'0 — 421708802® + 21085442 — 55488z* + 578x2 — 1

Ts5(z) = 171798691842% — 1503238553602% + 6012954214402 — 14562623488002

+238404239360022" — 2789329600512x° + 24045944832002% — 1551944908800z
+7544176640002' — 2756526080002 + 7497750937625 — 1491030016023
+2106890240x' — 2025856002 + 1240320027 — 4341122° + 714023 — 35z
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36.

37.

38.

39.

Ts6(z) = 34359738368236 — 309237645312231 + 1275605286912x3% — 3195455668224
+54297781862402%® — 6620826304512x?¢ + 59771348582402** — 40632739430402%2
+20951256268802%° — 8190820352008 + 240999137280x'¢ — 525816299522
+8307167232x'% — 916844544x'° + 669772802 — 297676825 + 6976821 — 64822 + 1

Ty7(z) = 687194767362%7 — 6356551598082 + 2701534429184 — 69922067578882x3!
+1231581872128022° — 156256950026242527 4+ 147435993169922% — 10531142369280x23
+574219616256022" — 2392581734400 4 7576508825607 — 1801407692801
+315246346242'3 — 39405793282 + 3365401602° — 183567362"

+573648x° — 84362 + 3Tx

Tss(z) = 1374389534722 —13056700579842°0+57123065036802>* —1526001880268822
1278270931107842° — 366811681914882%% 4- 361080249384962%6 — 2703941959680024
+1554766626816022% — 68802890956802%° 4 23343838003202'% — 6012806758402
+115630899200z'* — 1618832588812 4 15899248642 — 103690752x°

+41240642° — 866402* + 72222 — 1

Tyo(x) = 2748779069442 —2680059592704237+120602681671682° —332215720345602>3
+62646392979456231 — 856781551042562% + 878417448796162%" — 6882243851059222°
+416264749056002%% — 195027743539202% + 70613493350402'% — 196021223424027
+4114025676802 — 639012864002 + 71204290562 — 5439216642°

+266048642" — 74692815 + 988023 — 39x
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D Table of Polynomials

In the first column, if we have a number like 7/4 we mean cos(m/4).

Roots Polynomial

/2 r—1

/3 —2z +1

27/3 20 +1

| w/4,3m/4 [ 227 — 1 |
7/5,37/5 4o — 2r — 1

27 /5,47 /5 4a? + 2z — 1

| 7/6,57/6 | 42% -3 |

w/7,3m /7,577

—8x3 + 4 +4x — 1

27 /7,47 /7,677

rd + 4da? —4x — 1

| 7/8,3m/8,5m /8, Tm /8 | 8z —8a” +1 |
7/9,57/9, 7 /9, —82% + 6x + 1
27/9,4m /9,87 /9 83 — 6 + 1

| /10, 37 /10, 7w /10, 97 /10

162* — 2022 + 5

7/11, 37 /11, 57 /11, 7 /11, 9 /11

—322° + 162* + 322° — 1222 — 62 + 1

27 /11, 47 /11, 67 /11, 87 /11, 107 /11

322° + 162* — 322° — 1222 + 62 + 1

| w/12,57 /12, T /12,117 /12

162* — 1622 + 1

|

7/13,3mw /13,57 /13,77 /13,97 /13,117 /13

6425 — 322° — 80z + 3223 + 242% — 62 — 1

27 /13,47 /13,67 /13,87 /13,107 /13,127 /13

642° + 322° — 80x* — 3223 + 2422 + 62 — 1

| m/14,3m /14,57 /14,97 /14,117 /14,137 /14 |

642° + 1122* — 5622 + 7

7 /15, 7 /15,117 /15, 137 /15

16x* + 82% — 1622 — 8x + 1

27 /15,47 /15,87 /15, 147 /15

16x* — 823 — 1622 +8x + 1

[ 7/16,37/16,57/16, 7 /16,97/16 . ..

12828 — 2562° + 160z* — 3222 + 1

/17,37 /17,57 /17, . ..

25628 — 12827 — 4485 + 1922°
+240x* — 8023 — 4022 + 8x + 1

27 /17,47 /17,67 /17, 147 . ..

256a° + 12827 — 448x% — 1922
+2402* + 80x% — 4022 — 8x + 1

| m/18, 37 /18,57 /18, T /18,97 /18 .. .

—642% + 962* — 3622 + 3

7/19,37/19, 57 /19, . ..

—51229 + 2562° + 102427 — 4482° — 6722°
+2402* + 1602 — 4022 — 10z + 1

27/19,47 /19,67 /19,87 /19. ..

51227 + 25628 — 102427 — 4482% + 6722°
+240x* — 1602° — 4022 + 10x + 1

[ 7/20, 37 /20, 5720, 7 /20,9720 . . .

2562° — 51225 + 304x* — 4822 + 1

w/21,57/21, 7 /21, . ..

6425 + 322° — 962* — 4823 + 3222 + 162 + 1

27 /21, 47 /21,67 /21, 87 /21 . ..

642° — 322° — 96x* + 4823 4+ 3222 — 162 + 1
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