
The Muffin Problem

William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz-University of MD

Daniel Smolyak- University of MD

Who is Not Here

1. Rishi on zoom

2. Dylan on zoom

3. Faye hopefully on zoom

4. Ilya maybe on zoom

5. Fikur could not make it.

How it Began

A Recreational Math Conference
(Gathering for Gardner)

May 2016
I found a pamphlet:

The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?

5 Muffins, 3 Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3

Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?
Work on it with your neighbor

5 Muffins, 3 People–Proc by Picture

YES WE CAN!

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12

Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?
Work on it with your neighbor

5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases. (Henceforth: All muffins cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12

5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases. (Henceforth: All muffins cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12

5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases. (Henceforth: All muffins cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12

What Else Was in the Pamphlet?

The pamphlet also had asked about

1. 4 muffins, 7 students.

2. 12 muffins, 11 students.

3. a few others

This seemed like a nice exercise and it was.

There can’t be much more to this.

What Else Was in the Pamphlet?

The pamphlet also had asked about

1. 4 muffins, 7 students.

2. 12 muffins, 11 students.

3. a few others

This seemed like a nice exercise and it was.

There can’t be much more to this.

What Else Was in the Pamphlet?

The pamphlet also had asked about

1. 4 muffins, 7 students.

2. 12 muffins, 11 students.

3. a few others

This seemed like a nice exercise and it was.

There can’t be much more to this.

If there is not much more to this then how come

https://www.amazon.com/

Mathematical-Muffin-Morsels-Problem-Mathematics/dp/

9811215170

The following happened:

I Find a technique that solves many problems (e.g.,
Floor-Ceiling).

I Come across a problem where the techniques do not work.

I Find a new technique which was interesting.

I Lather, Rinse, Repeat.

https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

If there is not much more to this then how come

https://www.amazon.com/

Mathematical-Muffin-Morsels-Problem-Mathematics/dp/

9811215170

The following happened:

I Find a technique that solves many problems (e.g.,
Floor-Ceiling).

I Come across a problem where the techniques do not work.

I Find a new technique which was interesting.

I Lather, Rinse, Repeat.

https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

If there is not much more to this then how come

https://www.amazon.com/

Mathematical-Muffin-Morsels-Problem-Mathematics/dp/

9811215170

The following happened:

I Find a technique that solves many problems (e.g.,
Floor-Ceiling).

I Come across a problem where the techniques do not work.

I Find a new technique which was interesting.

I Lather, Rinse, Repeat.

https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

If there is not much more to this then how come

https://www.amazon.com/

Mathematical-Muffin-Morsels-Problem-Mathematics/dp/

9811215170

The following happened:

I Find a technique that solves many problems (e.g.,
Floor-Ceiling).

I Come across a problem where the techniques do not work.

I Find a new technique which was interesting.

I Lather, Rinse, Repeat.

https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

If there is not much more to this then how come

https://www.amazon.com/

Mathematical-Muffin-Morsels-Problem-Mathematics/dp/

9811215170

The following happened:

I Find a technique that solves many problems (e.g.,
Floor-Ceiling).

I Come across a problem where the techniques do not work.

I Find a new technique which was interesting.

I Lather, Rinse, Repeat.

https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

If there is not much more to this then how come

https://www.amazon.com/

Mathematical-Muffin-Morsels-Problem-Mathematics/dp/

9811215170

The following happened:

I Find a technique that solves many problems (e.g.,
Floor-Ceiling).

I Come across a problem where the techniques do not work.

I Find a new technique which was interesting.

I Lather, Rinse, Repeat.

https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170
https://www.amazon.com/Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

General Problem

f (m, s) be the smallest piece in the best procedure (best in that
the smallest piece is maximized) to divide m muffins among s
students so that everyone gets m

s .

We have shown f (5, 3) = 5
12 here.

We have shown f (m, s) exists, is rational, and is computable using
a Mixed Int Program.

This was a case of a Theorem in Applied Math being used to
prove a Theorem in Pure Math.

General Problem

f (m, s) be the smallest piece in the best procedure (best in that
the smallest piece is maximized) to divide m muffins among s
students so that everyone gets m

s .

We have shown f (5, 3) = 5
12 here.

We have shown f (m, s) exists, is rational, and is computable using
a Mixed Int Program.
This was a case of a Theorem in Applied Math being used to
prove a Theorem in Pure Math.

Amazing Results!/Amazing Theorems!

1. f (43, 33) = 91
264 .

2. f (52, 11) = 83
176 .

3. f (35, 13) = 64
143 .

All done by hand, no use of a computer
by Co-author Erik Metz is a muffin savant !

Have General Theorems from which upper bounds follow.
Have General Procedures from which lower bounds follow.

Amazing Results!/Amazing Theorems!

1. f (43, 33) = 91
264 .

2. f (52, 11) = 83
176 .

3. f (35, 13) = 64
143 .

All done by hand, no use of a computer

by Co-author Erik Metz is a muffin savant !

Have General Theorems from which upper bounds follow.
Have General Procedures from which lower bounds follow.

Amazing Results!/Amazing Theorems!

1. f (43, 33) = 91
264 .

2. f (52, 11) = 83
176 .

3. f (35, 13) = 64
143 .

All done by hand, no use of a computer
by Co-author Erik Metz is a muffin savant !

Have General Theorems from which upper bounds follow.
Have General Procedures from which lower bounds follow.

Amazing Results!/Amazing Theorems!

1. f (43, 33) = 91
264 .

2. f (52, 11) = 83
176 .

3. f (35, 13) = 64
143 .

All done by hand, no use of a computer
by Co-author Erik Metz is a muffin savant !

Have General Theorems from which upper bounds follow.
Have General Procedures from which lower bounds follow.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

Conventions

Duality Theorem: f (m, s) = m
s f (s,m).

We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 1
2 ’s

4. If assuming f (m, s) > α > 1
3 , assume all muffin in ≤ 2 pcs.

5. f (m, s) > α > 1
3 , so exactly 2 pcs, is common case.

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

FC Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1 − m
sb2m/sc .

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).
FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).
FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).
FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).
FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).
FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).

FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).
FC-Conjecture: For all m, s with m ≥ s, f (m, s) = FC(m, s).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.

Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).

What About FIVE students, ELEVEN muffins?

f (11, 5) ≤ max

{
1

3
,min

{
11

5 d22/5e
, 1− 11

5 b22/5c

}}
=

11

25
.

We tried to find a protocol to divide 11 muffins for 5 people, each
gets 11

5 , and smallest piece is size 11
25 = 0.44.

We found a protocol with smallest piece 13
30 = 0.4333

1. Divide 1 muffin (1530 ,
15
30).

2. Divide 2 muffins (1430 ,
16
30).

3. Divide 8 muffins (1330 ,
17
30).

4. Give 2 students [1330 ,
13
30 ,

13
30 ,

13
30 ,

14
30]

5. Give 1 students [1630 ,
16
30 ,

17
30 ,

17
30]

6. Give 2 students [1530 ,
17
30 ,

17
30 ,

17
30]

What About FIVE students, ELEVEN muffins?

f (11, 5) ≤ max

{
1

3
,min

{
11

5 d22/5e
, 1− 11

5 b22/5c

}}
=

11

25
.

We tried to find a protocol to divide 11 muffins for 5 people, each
gets 11

5 , and smallest piece is size 11
25 = 0.44.

We found a protocol with smallest piece 13
30 = 0.4333

1. Divide 1 muffin (1530 ,
15
30).

2. Divide 2 muffins (1430 ,
16
30).

3. Divide 8 muffins (1330 ,
17
30).

4. Give 2 students [1330 ,
13
30 ,

13
30 ,

13
30 ,

14
30]

5. Give 1 students [1630 ,
16
30 ,

17
30 ,

17
30]

6. Give 2 students [1530 ,
17
30 ,

17
30 ,

17
30]

What About FIVE students, ELEVEN muffins?

f (11, 5) ≤ max

{
1

3
,min

{
11

5 d22/5e
, 1− 11

5 b22/5c

}}
=

11

25
.

We tried to find a protocol to divide 11 muffins for 5 people, each
gets 11

5 , and smallest piece is size 11
25 = 0.44.

We found a protocol with smallest piece 13
30 = 0.4333

1. Divide 1 muffin (1530 ,
15
30).

2. Divide 2 muffins (1430 ,
16
30).

3. Divide 8 muffins (1330 ,
17
30).

4. Give 2 students [1330 ,
13
30 ,

13
30 ,

13
30 ,

14
30]

5. Give 1 students [1630 ,
16
30 ,

17
30 ,

17
30]

6. Give 2 students [1530 ,
17
30 ,

17
30 ,

17
30]

So Now What?

We have:

13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Options:

1. f (11, 5) = 11
25 . Need to find procedure.

2. f (11, 5) = 13
30 . Need to find new technique for upper bounds.

3. f (11, 5) in between. Need to find both.

4. f (11, 5) unknown to science!

Vote WE SHOW: f(11, 5) = 13
30 . Exciting new technique!

So Now What?

We have:

13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Options:

1. f (11, 5) = 11
25 . Need to find procedure.

2. f (11, 5) = 13
30 . Need to find new technique for upper bounds.

3. f (11, 5) in between. Need to find both.

4. f (11, 5) unknown to science!

Vote

WE SHOW: f(11, 5) = 13
30 . Exciting new technique!

So Now What?

We have:

13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Options:

1. f (11, 5) = 11
25 . Need to find procedure.

2. f (11, 5) = 13
30 . Need to find new technique for upper bounds.

3. f (11, 5) in between. Need to find both.

4. f (11, 5) unknown to science!

Vote WE SHOW: f(11, 5) = 13
30 . Exciting new technique!

Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M.
The other piece from muffin M is the buddy of x .

Note that the buddy of x is of size

1− x .

f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 <

13
30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)

f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 <

13
30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)

f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.

f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.

f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.

f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.

f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.

f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w ≤ x ≤ y ≤ z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

z ≥ 17

10
× 1

3
=

17

30

Look at buddy of z .

B(z) ≤ 1− z = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!

f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w ≤ x ≤ y ≤ z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

z ≥ 17

10
× 1

3
=

17

30

Look at buddy of z .

B(z) ≤ 1− z = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!

f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w ≤ x ≤ y ≤ z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

z ≥ 17

10
× 1

3
=

17

30

Look at buddy of z .

B(z) ≤ 1− z = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!

f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w ≤ x ≤ y ≤ z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

z ≥ 17

10
× 1

3
=

17

30

Look at buddy of z .

B(z) ≤ 1− z = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!

f (11, 5) = 13
30

, Fun Cases

Case 4.2: All 4-shares are > 1
2 . There are 4s4 = 12 4-shares.

There are ≥ 12 pieces > 1
2 . Can’t occur.

INT Method

Proof that f (11, 5) ≤ 13
30 was an example of the HALF method.

FC or HALF worked on everything with s = 3, 4, 5, . . . , 23.

Then we found a case where neither FC nor HALF worked.

We found a new method: INT.

INT Method

Proof that f (11, 5) ≤ 13
30 was an example of the HALF method.

FC or HALF worked on everything with s = 3, 4, 5, . . . , 23.

Then we found a case where neither FC nor HALF worked.

We found a new method: INT.

INT Method

Proof that f (11, 5) ≤ 13
30 was an example of the HALF method.

FC or HALF worked on everything with s = 3, 4, 5, . . . , 23.

Then we found a case where neither FC nor HALF worked.

We found a new method: INT.

INT Method

Proof that f (11, 5) ≤ 13
30 was an example of the HALF method.

FC or HALF worked on everything with s = 3, 4, 5, . . . , 23.

Then we found a case where neither FC nor HALF worked.

We found a new method: INT.

More Sophisticated INT: f (24, 11) ≤ 19
44

Assume (24, 11)-procedure with smallest piece > 19
44 .

Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ 19

44 .

Case 1: A student gets ≥ 6 shares. Some piece ≤ 24
11×6 <

19
44 .

Case 2: A student gets ≤ 3 shares. Some piece ≥ 24
11×3 = 8

11 .

Buddy of that piece ≤ 1− 8
11 ≤

3
11 <

19
44 .

Case 3: Every muffin is cut in 2 pieces and every student gets
either 4 or 5 shares. Total number of shares is 48.

More Sophisticated INT: f (24, 11) ≤ 19
44

Assume (24, 11)-procedure with smallest piece > 19
44 .

Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ 19

44 .

Case 1: A student gets ≥ 6 shares. Some piece ≤ 24
11×6 <

19
44 .

Case 2: A student gets ≤ 3 shares. Some piece ≥ 24
11×3 = 8

11 .

Buddy of that piece ≤ 1− 8
11 ≤

3
11 <

19
44 .

Case 3: Every muffin is cut in 2 pieces and every student gets
either 4 or 5 shares. Total number of shares is 48.

More Sophisticated INT: f (24, 11) ≤ 19
44

Assume (24, 11)-procedure with smallest piece > 19
44 .

Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ 19

44 .

Case 1: A student gets ≥ 6 shares. Some piece ≤ 24
11×6 <

19
44 .

Case 2: A student gets ≤ 3 shares. Some piece ≥ 24
11×3 = 8

11 .

Buddy of that piece ≤ 1− 8
11 ≤

3
11 <

19
44 .

Case 3: Every muffin is cut in 2 pieces and every student gets
either 4 or 5 shares. Total number of shares is 48.

More Sophisticated INT: f (24, 11) ≤ 19
44

Assume (24, 11)-procedure with smallest piece > 19
44 .

Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ 19

44 .

Case 1: A student gets ≥ 6 shares. Some piece ≤ 24
11×6 <

19
44 .

Case 2: A student gets ≤ 3 shares. Some piece ≥ 24
11×3 = 8

11 .

Buddy of that piece ≤ 1− 8
11 ≤

3
11 <

19
44 .

Case 3: Every muffin is cut in 2 pieces and every student gets
either 4 or 5 shares. Total number of shares is 48.

How many students get 4? 5? Where are Shares?

4-students: a student who gets 4 shares. s4 is the number of them.
5-students: a student who gets 5 shares. s5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

4s4 + 5s5 = 48
s4 + s5 = 11

s4 = 7. Hence there are 4s4 = 4× 7 = 28 4-shares.
s5 = 4. Hence there are 5s5 = 5× 4 = 20 5-shares.

How many students get 4? 5? Where are Shares?

4-students: a student who gets 4 shares. s4 is the number of them.
5-students: a student who gets 5 shares. s5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

4s4 + 5s5 = 48
s4 + s5 = 11

s4 = 7. Hence there are 4s4 = 4× 7 = 28 4-shares.
s5 = 4. Hence there are 5s5 = 5× 4 = 20 5-shares.

How many students get 4? 5? Where are Shares?

4-students: a student who gets 4 shares. s4 is the number of them.
5-students: a student who gets 5 shares. s5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

4s4 + 5s5 = 48
s4 + s5 = 11

s4 = 7. Hence there are 4s4 = 4× 7 = 28 4-shares.
s5 = 4. Hence there are 5s5 = 5× 4 = 20 5-shares.

How many students get 4? 5? Where are Shares?

4-students: a student who gets 4 shares. s4 is the number of them.
5-students: a student who gets 5 shares. s5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

4s4 + 5s5 = 48
s4 + s5 = 11

s4 = 7. Hence there are 4s4 = 4× 7 = 28 4-shares.
s5 = 4. Hence there are 5s5 = 5× 4 = 20 5-shares.

Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: There is a share ≥ 25
44 . Then its buddy is

≤ 1− 25

44
=

19

44

Case 3.2: There is a share ≤ 19
44 . Duh.

Henceforth assume that all shares are in(
19

44
,

25

44

)
()
19
44

25
44

Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: There is a share ≥ 25
44 . Then its buddy is

≤ 1− 25

44
=

19

44

Case 3.2: There is a share ≤ 19
44 . Duh.

Henceforth assume that all shares are in(
19

44
,

25

44

)
()
19
44

25
44

Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: There is a share ≥ 25
44 . Then its buddy is

≤ 1− 25

44
=

19

44

Case 3.2: There is a share ≤ 19
44 . Duh.

Henceforth assume that all shares are in(
19

44
,

25

44

)
()
19
44

25
44

Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: There is a share ≥ 25
44 . Then its buddy is

≤ 1− 25

44
=

19

44

Case 3.2: There is a share ≤ 19
44 . Duh.

Henceforth assume that all shares are in(
19

44
,

25

44

)
()
19
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.
Claim: If some 5-shares is ≥ 20

44 then some share ≤ 19
44 .

Proof: Assume Alice has v ≤ w ≤ x ≤ y ≤ z and z ≥ 20
44 .

Since v + w + x + y + z = 24
11 and z ≥ 20

44

v + w + x + y ≤ 24

11
− 20

44
=

76

44

v ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in

(
19
44 ,

20
44

)
.

Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[)
19
44

20
44

25
44

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.4: Some 4-shares ≤ 21
44

4-share: a share that a 4-student who gets.
Claim: If some 4-shares is ≤ 21

44 then some share ≤ 19
44 .

Proof: Assume Alice has w ≤ x ≤ y ≤ z ≤ and w ≤ 21
44 .

Since w + x + y + z = 24
11 and w ≤ 21

44

x + y + z ≥ 24

11
− 21

44
=

75

44

z ≥ 75

44
× 1

3
=

25

44

The buddy of z is of size

≤ 1− 25

44
=

19

44

Henceforth we assume all 4-shares are in(
21

44
,

25

44

)
.

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44]. QED.

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44]. QED.

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44]. QED.

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44]. QED.

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

More Refined Picture of What is Going On

(20 5-shs)[0 shs](28 4-shs)
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44].

If there was such a share then buddy is in [2044 ,
21
44]. QED.

The following picture captures what we know so far.

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.
There are s4 = 7 4-students.
Hence there are ≥ 21 L4-shares. But there are only 20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.
There are s4 = 7 4-students.
Hence there are ≥ 21 L4-shares. But there are only 20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.
There are s4 = 7 4-students.
Hence there are ≥ 21 L4-shares. But there are only 20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.

There are s4 = 7 4-students.
Hence there are ≥ 21 L4-shares. But there are only 20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.
There are s4 = 7 4-students.

Hence there are ≥ 21 L4-shares. But there are only 20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.
There are s4 = 7 4-students.
Hence there are ≥ 21 L4-shares.

But there are only 20.

Diagram

(20 5-shs)[0](8 S4-shs)[0](20 L4-shs)
19
44

20
44

21
44

23
44

24
44

25
44

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares.
There are s4 = 7 4-students.
Hence there are ≥ 21 L4-shares. But there are only 20.

GAPS Method

Proof that f (24, 11) ≤ 19
44 was an example of the INT method.

FC or HALF or INT worked on everything with s = 3, 4, 5, . . . , 30.

Then we found a case where neither FC nor HALF nor INT worked.

We found a new method: GAP.

GAPS Method

Proof that f (24, 11) ≤ 19
44 was an example of the INT method.

FC or HALF or INT worked on everything with s = 3, 4, 5, . . . , 30.

Then we found a case where neither FC nor HALF nor INT worked.

We found a new method: GAP.

GAPS Method

Proof that f (24, 11) ≤ 19
44 was an example of the INT method.

FC or HALF or INT worked on everything with s = 3, 4, 5, . . . , 30.

Then we found a case where neither FC nor HALF nor INT worked.

We found a new method: GAP.

GAPS Method

Proof that f (24, 11) ≤ 19
44 was an example of the INT method.

FC or HALF or INT worked on everything with s = 3, 4, 5, . . . , 30.

Then we found a case where neither FC nor HALF nor INT worked.

We found a new method: GAP.

Example of GAPS Technique: f (31, 19) ≤ 54
133

We show f (31, 19) ≤ 54
133 .

Assume (31, 19)-procedure with smallest piece > 54
133 .

By INT-technique methods obtain:
s3 = 14, s4 = 5.

(20 4-shs)[0](22 S3 shs)[0](20 L3-shs)
54
133

55
133

59
133

74
133

78
133

79
133

We just look at the 3-shares:

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

Example of GAPS Technique: f (31, 19) ≤ 54
133

We show f (31, 19) ≤ 54
133 .

Assume (31, 19)-procedure with smallest piece > 54
133 .

By INT-technique methods obtain:
s3 = 14, s4 = 5.

(20 4-shs)[0](22 S3 shs)[0](20 L3-shs)
54
133

55
133

59
133

74
133

78
133

79
133

We just look at the 3-shares:

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

Example of GAPS Technique: f (31, 19) ≤ 54
133

We show f (31, 19) ≤ 54
133 .

Assume (31, 19)-procedure with smallest piece > 54
133 .

By INT-technique methods obtain:
s3 = 14, s4 = 5.

(20 4-shs)[0](22 S3 shs)[0](20 L3-shs)
54
133

55
133

59
133

74
133

78
133

79
133

We just look at the 3-shares:

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

GAPS Technique: f (31, 19) ≤ 54
133

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Notation: An e(1, 1, 3) students is a student who has
a J1-share, a J1-share, and a J3-share.

Generalize to e(i , j , k) easily.
I”LL STOP THE PROOF HERE. I”VE MADE THE POINT
THAT THE ARGUMENTS ARE COMPLICATED.
THE SLIDES HAVE THE REST OF THE PROOF, BUT I
WILL SKIP THAT.

GAPS Technique: f (31, 19) ≤ 54
133

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Notation: An e(1, 1, 3) students is a student who has
a J1-share, a J1-share, and a J3-share.

Generalize to e(i , j , k) easily.
I”LL STOP THE PROOF HERE. I”VE MADE THE POINT
THAT THE ARGUMENTS ARE COMPLICATED.
THE SLIDES HAVE THE REST OF THE PROOF, BUT I
WILL SKIP THAT.

GAPS Technique: f (31, 19) ≤ 54
133

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Notation: An e(1, 1, 3) students is a student who has
a J1-share, a J1-share, and a J3-share.

Generalize to e(i , j , k) easily.

I”LL STOP THE PROOF HERE. I”VE MADE THE POINT
THAT THE ARGUMENTS ARE COMPLICATED.
THE SLIDES HAVE THE REST OF THE PROOF, BUT I
WILL SKIP THAT.

GAPS Technique: f (31, 19) ≤ 54
133

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Notation: An e(1, 1, 3) students is a student who has
a J1-share, a J1-share, and a J3-share.

Generalize to e(i , j , k) easily.
I”LL STOP THE PROOF HERE.

I”VE MADE THE POINT
THAT THE ARGUMENTS ARE COMPLICATED.
THE SLIDES HAVE THE REST OF THE PROOF, BUT I
WILL SKIP THAT.

GAPS Technique: f (31, 19) ≤ 54
133

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Notation: An e(1, 1, 3) students is a student who has
a J1-share, a J1-share, and a J3-share.

Generalize to e(i , j , k) easily.
I”LL STOP THE PROOF HERE. I”VE MADE THE POINT
THAT THE ARGUMENTS ARE COMPLICATED.

THE SLIDES HAVE THE REST OF THE PROOF, BUT I
WILL SKIP THAT.

GAPS Technique: f (31, 19) ≤ 54
133

(22 S3 shs)[0](20 L3-shs)
59
133

74
133

78
133

79
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

Notation: An e(1, 1, 3) students is a student who has
a J1-share, a J1-share, and a J3-share.

Generalize to e(i , j , k) easily.
I”LL STOP THE PROOF HERE. I”VE MADE THE POINT
THAT THE ARGUMENTS ARE COMPLICATED.
THE SLIDES HAVE THE REST OF THE PROOF, BUT I
WILL SKIP THAT.

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

1) Only students allowed: e(1, 2, 3), e(1, 3, 3), e(2, 2, 2), e(2, 2, 3).
All others have either < 31

19 or > 31
19 .

2) No shares in [61
133 ,

64
133]. Look at J1-shares:

An e(1, 2, 3)-student has J1-share > 31
19 −

74
133 −

79
133 = 64

133 .
An e(1, 3, 3)-student has J1-share < 31

19 − 2× 78
133 = 61

133 .

3) No shares in [69
133 ,

72
133]: x ∈ [69

133 ,
72
133] =⇒ 1− x ∈ [61

133 ,
64
133].

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

1) Only students allowed: e(1, 2, 3), e(1, 3, 3), e(2, 2, 2), e(2, 2, 3).
All others have either < 31

19 or > 31
19 .

2) No shares in [61
133 ,

64
133]. Look at J1-shares:

An e(1, 2, 3)-student has J1-share > 31
19 −

74
133 −

79
133 = 64

133 .
An e(1, 3, 3)-student has J1-share < 31

19 − 2× 78
133 = 61

133 .

3) No shares in [69
133 ,

72
133]: x ∈ [69

133 ,
72
133] =⇒ 1− x ∈ [61

133 ,
64
133].

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

1) Only students allowed: e(1, 2, 3), e(1, 3, 3), e(2, 2, 2), e(2, 2, 3).
All others have either < 31

19 or > 31
19 .

2) No shares in [61
133 ,

64
133]. Look at J1-shares:

An e(1, 2, 3)-student has J1-share > 31
19 −

74
133 −

79
133 = 64

133 .
An e(1, 3, 3)-student has J1-share < 31

19 − 2× 78
133 = 61

133 .

3) No shares in [69
133 ,

72
133]: x ∈ [69

133 ,
72
133] =⇒ 1− x ∈ [61

133 ,
64
133].

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

66.5
133)

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)

3. J3 = (78
133 ,

79
133) (|J3| = 20)

1) Only students allowed: e(1, 2, 3), e(1, 3, 3), e(2, 2, 2), e(2, 2, 3).
All others have either < 31

19 or > 31
19 .

2) No shares in [61
133 ,

64
133]. Look at J1-shares:

An e(1, 2, 3)-student has J1-share > 31
19 −

74
133 −

79
133 = 64

133 .
An e(1, 3, 3)-student has J1-share < 31

19 − 2× 78
133 = 61

133 .

3) No shares in [69
133 ,

72
133]: x ∈ [69

133 ,
72
133] =⇒ 1− x ∈ [61

133 ,
64
133].

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

61
133)

2. J2 = (64
133 ,

66.5
133)

3. J3 = (66.5133 ,
69
133) (|J2| = |J3|)

4. J4 = (72
133 ,

74
133) (|J1| = |J4|)

5. J5 = (78
133 ,

79
133) (|J5| = 20)

The following are the only students who are allowed.
e(1, 5, 5).
e(2, 4, 5),
e(3, 4, 5).
e(4, 4, 4).

GAPS Technique: f (31, 19) ≤ 54
133

1. J1 = (59
133 ,

61
133)

2. J2 = (64
133 ,

66.5
133)

3. J3 = (66.5133 ,
69
133) (|J2| = |J3|)

4. J4 = (72
133 ,

74
133) (|J1| = |J4|)

5. J5 = (78
133 ,

79
133) (|J5| = 20)

The following are the only students who are allowed.
e(1, 5, 5).
e(2, 4, 5),
e(3, 4, 5).
e(4, 4, 4).

GAPS Technique: f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .

1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.

GAPS Technique: f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.

GAPS Technique: f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.

GAPS Technique: f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique: f (5, 3) ≥ 5
12

Want proc for f (5, 3) ≥ 5
12 .

1) Guess that the only piece sizes are 5
12 ,

6
12 ,

7
12

2) Muffin=pieces add to 1: { 6
12 ,

6
12}, {

5
12 ,

7
12}. Vectors

{ 6
12 ,

6
12} is (0, 2, 0), m1 muffins of this type.

{ 5
12 ,

7
12} is (1, 0, 1), m2 muffins of this type.

3) Student=pieces add to 5
3

{ 6
12 ,

7
12 ,

7
12} is (0, 1, 2), s1 students of this type.

{ 5
12 ,

5
12 ,

5
12 ,

5
12} is (4, 0, 0), s2 students of this type.

4) Set up equations:
m1(0, 2, 0) + m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0)
m1 + m2 = 5
s1 + s2 = 3

Natural Number Solution: m1 = 1, m2 = 4, s1 = 2, s2 = 1

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique

Want proc for f (m, s) ≥ a
b .

1) Guess that the only piece sizes are a
b , . . . ,

b−a
b

2) Muffin=pieces add to 1: Vectors ~vi . x types.
mi muffins of type ~vi

3) Student=pieces add to m
s : Vectors ~uj . y types.

sj students of type ~uj

4) Set up equations:
m1~v1 + · · ·+ mx~vx = s1~u1 + · · ·+ sy ~uy
m1 + · · ·+ mx = m
s1 + · · ·+ sy = s

5) Look for Nat Numb sol. If find can translate into procedure.

Later Results by Other People

1. In Fall 2018 Scott Huddleston had code for an algorithm that,
on input m, s, found f (m, s) and the procedure is REALLY
FAST.

2. Jacob and Erik Understand WHAT his algorithm does and
Jacob coded it up to make sure he understood it. Jacob’s
code is also REALLY FAST.

3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott’s
algorithm was fast (linear in m, s).

4. Richard Chatwin independently came up with the same
algorithm; however, he also has a proof that it works. Its on
arXiv. The algorithm is likely linear time, but neither Chatwin
nor Huddleton think in those terms.

5. One corollary of the work: f (m, s) only depends on m/s.

Later Results by Other People

1. In Fall 2018 Scott Huddleston had code for an algorithm that,
on input m, s, found f (m, s) and the procedure is REALLY
FAST.

2. Jacob and Erik Understand WHAT his algorithm does and
Jacob coded it up to make sure he understood it. Jacob’s
code is also REALLY FAST.

3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott’s
algorithm was fast (linear in m, s).

4. Richard Chatwin independently came up with the same
algorithm; however, he also has a proof that it works. Its on
arXiv. The algorithm is likely linear time, but neither Chatwin
nor Huddleton think in those terms.

5. One corollary of the work: f (m, s) only depends on m/s.

Later Results by Other People

1. In Fall 2018 Scott Huddleston had code for an algorithm that,
on input m, s, found f (m, s) and the procedure is REALLY
FAST.

2. Jacob and Erik Understand WHAT his algorithm does and
Jacob coded it up to make sure he understood it. Jacob’s
code is also REALLY FAST.

3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott’s
algorithm was fast (linear in m, s).

4. Richard Chatwin independently came up with the same
algorithm; however, he also has a proof that it works. Its on
arXiv. The algorithm is likely linear time, but neither Chatwin
nor Huddleton think in those terms.

5. One corollary of the work: f (m, s) only depends on m/s.

Later Results by Other People

1. In Fall 2018 Scott Huddleston had code for an algorithm that,
on input m, s, found f (m, s) and the procedure is REALLY
FAST.

2. Jacob and Erik Understand WHAT his algorithm does and
Jacob coded it up to make sure he understood it. Jacob’s
code is also REALLY FAST.

3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott’s
algorithm was fast (linear in m, s).

4. Richard Chatwin independently came up with the same
algorithm; however, he also has a proof that it works. Its on
arXiv. The algorithm is likely linear time, but neither Chatwin
nor Huddleton think in those terms.

5. One corollary of the work: f (m, s) only depends on m/s.

Later Results by Other People

1. In Fall 2018 Scott Huddleston had code for an algorithm that,
on input m, s, found f (m, s) and the procedure is REALLY
FAST.

2. Jacob and Erik Understand WHAT his algorithm does and
Jacob coded it up to make sure he understood it. Jacob’s
code is also REALLY FAST.

3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott’s
algorithm was fast (linear in m, s).

4. Richard Chatwin independently came up with the same
algorithm; however, he also has a proof that it works. Its on
arXiv. The algorithm is likely linear time, but neither Chatwin
nor Huddleton think in those terms.

5. One corollary of the work: f (m, s) only depends on m/s.

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys

They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

TV Show Leverage and Our Book

The TV show Leverage has the slogan
Sometimes bad guys make the best good guys
They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

2. Parker: A Thief (First or last name? Nobody knows!)

3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

2. Jacob and Daniel: Programmers (codes up techniques)

3. Bill: The Mastermind (guides the work and writes it up)

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:

Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling,

Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half,

Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,

Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint,

Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,

Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match,

Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match,

Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

How it worked

We kept increasing s.

1. Bill tells Erik the least case we can’t do.

2. Erik solves and sends Bill a 1-page sketch.

3. Bill fills in the details and obtains general technique.

4. Jacob & Daniel code up technique and find least case that
can’t be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:
Floor Ceiling, Half, Int,
Midpoint, Gaps,
Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H’s method.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.

First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!

Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!

Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

I meet Alan Frank!

I emailed Alan Frank, the creator of the Muffin Problem and we
planned to meet at the MIT combinatorics seminar where I was
scheduled to give a talk.

I He was delighted that his innocent problem, that he viewed as
recreational, has lead to so much math of interest.

I He brought to the seminar 11 muffins:
1 cut (1530 ,

15
30), 2 cut (1430 ,

16
30), 8 cut (1330 ,

17
30).

The five us of took pieces so we each got 11
5 muffins.

I He does a Bike-For-Food Charity. I asked him if I should give
$40.00 a year OR my Royalties. He chose the $40.00.
First Year Royalties: $40.00. The break-even point!
Second Year Royalties: $50.00. I’m up by $10.00. Wow!
Third Year Royalties: The royalties did not cover the cost of
the muffins you are enjoying.

