The Muffin Problem

William Gasarch - University of MD Erik Metz - University of MD Jacob Prinz-University of MD Daniel Smolyak- University of MD

Who is Not Here

- 1. Rishi on zoom
- 2. Dylan on zoom
- 3. Faye hopefully on zoom
- 4. Ilya maybe on zoom
- 5. Fikur could not make it.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

How it Began

A Recreational Math Conference (Gathering for Gardner) May 2016

I found a pamphlet:

The Julia Robinson Mathematics Festival: A Sample of Mathematical Puzzles Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?

化白豆 化固定 化医反应 医下颌

5 Muffins, 3 Students, Proc by Picture

Person	Color	What they Get
Alice	RED	$1 + \frac{2}{3} = \frac{5}{3}$
Bob	BLUE	$1 + \frac{2}{3} = \frac{5}{3}$
Carol	GREEN	$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$

Smallest Piece: $\frac{1}{3}$

イロト 不得 トイヨト イヨト

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

5 Muffins, 3 People–Proc by Picture

YES WE CAN!

Person	Color	What they Get
Alice	RED	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Bob	BLUE	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Carol	GREEN	$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$

Smallest Piece: $\frac{5}{12}$

イロト 不得 トイヨト イヨト

э

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

5 Muffins, 3 People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece *N*. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases. (Henceforth: All muffins cut into ≥ 2 pieces.)

5 Muffins, 3 People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece *N*. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases. (Henceforth: All muffins cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (**Henceforth:** All muffins cut into 2 pieces.)

5 Muffins, 3 People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece *N*. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases. (Henceforth: All muffins cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (**Henceforth:** All muffins cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: **Someone** gets \geq 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12} \qquad \text{Great to see } \frac{5}{12}$$

What Else Was in the Pamphlet?

The pamphlet also had asked about

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- 1. 4 muffins, 7 students.
- 2. 12 muffins, 11 students.
- 3. a few others

What Else Was in the Pamphlet?

The pamphlet also had asked about

- 1. 4 muffins, 7 students.
- 2. 12 muffins, 11 students.
- 3. a few others

This seemed like a nice exercise and it was.

What Else Was in the Pamphlet?

The pamphlet also had asked about

- 1. 4 muffins, 7 students.
- 2. 12 muffins, 11 students.
- 3. a few others

This seemed like a nice exercise and it was.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

There can't be much more to this.

https://www.amazon.com/ Mathematical-Muffin-Morsels-Problem-Mathematics/dp/ 9811215170

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

https://www.amazon.com/ Mathematical-Muffin-Morsels-Problem-Mathematics/dp/ 9811215170

The following happened:

https://www.amazon.com/ Mathematical-Muffin-Morsels-Problem-Mathematics/dp/ 9811215170

The following happened:

 Find a technique that solves many problems (e.g., Floor-Ceiling).

https://www.amazon.com/ Mathematical-Muffin-Morsels-Problem-Mathematics/dp/ 9811215170

The following happened:

- Find a technique that solves many problems (e.g., Floor-Ceiling).
- Come across a problem where the techniques do not work.

ション ふゆ アメリア メリア しょうくしゃ

https://www.amazon.com/ Mathematical-Muffin-Morsels-Problem-Mathematics/dp/ 9811215170

The following happened:

- Find a technique that solves many problems (e.g., Floor-Ceiling).
- Come across a problem where the techniques do not work.

ション ふゆ アメリア メリア しょうくしゃ

Find a new technique which was interesting.

https://www.amazon.com/ Mathematical-Muffin-Morsels-Problem-Mathematics/dp/ 9811215170

The following happened:

- Find a technique that solves many problems (e.g., Floor-Ceiling).
- Come across a problem where the techniques do not work.

ション ふゆ アメリア メリア しょうくしゃ

- Find a new technique which was interesting.
- Lather, Rinse, Repeat.

General Problem

f(m, s) be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide *m* muffins among *s* students so that everyone gets $\frac{m}{s}$.

We have shown $f(5,3) = \frac{5}{12}$ here.

We have shown f(m, s) exists, is rational, and is computable using a **Mixed Int Program**.

ション ふゆ アメリア メリア しょうくしゃ

General Problem

f(m, s) be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide *m* muffins among *s* students so that everyone gets $\frac{m}{s}$.

We have shown $f(5,3) = \frac{5}{12}$ here.

We have shown f(m, s) exists, is rational, and is computable using a **Mixed Int Program**.

This was a case of a Theorem in **Applied Math** being used to prove a Theorem in **Pure Math**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1.
$$f(43, 33) = \frac{91}{264}$$
.
2. $f(52, 11) = \frac{83}{176}$.
3. $f(35, 13) = \frac{64}{143}$.

1.
$$f(43, 33) = \frac{91}{264}$$
.
2. $f(52, 11) = \frac{83}{176}$.
3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

1.
$$f(43, 33) = \frac{91}{264}$$
.
2. $f(52, 11) = \frac{83}{176}$.
3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant !

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1.
$$f(43, 33) = \frac{91}{264}$$
.
2. $f(52, 11) = \frac{83}{176}$.
3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant !

Have **General Theorems** from which **upper bounds** follow. Have **General Procedures** from which **lower bounds** follow.

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$. We know and use the following:

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$. We know and use the following:

1. By Duality Theorem can assume m > s

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$. We know and use the following:

1. By Duality Theorem can assume m > s

2. By REASONS we can assume m, s are relatively prime.

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$. We know and use the following:

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume m, s are relatively prime.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with $2\frac{1}{2}$'s

ション ふゆ アメリア メリア しょうくしゃ

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$. We know and use the following:

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume *m*, *s* are relatively prime.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with $2\frac{1}{2}$'s

4. If assuming $f(m,s) > \alpha > \frac{1}{3}$, assume all muffin in ≤ 2 pcs.

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$. We know and use the following:

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume m, s are relatively prime.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with $2\frac{1}{2}$'s

- 4. If assuming $f(m,s) > \alpha > \frac{1}{3}$, assume all muffin in ≤ 2 pcs.
- 5. $f(m,s) > \alpha > \frac{1}{3}$, so exactly 2 pcs, is common case.

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1-\frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1-\frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

ション ふゆ アメリア メリア しょうくしゃ

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1-\frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

ション ふぼう メリン メリン しょうくしゃ

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2*m* pieces.

FC Thm Generalizes $f(5,3) \leq \frac{5}{12}$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1-\frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2*m* pieces.

Someone gets $\geq \lfloor \frac{2m}{s} \rfloor$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor}$.

FC Thm Generalizes $f(5,3) \leq \frac{5}{12}$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1-\frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$. Someone gets $\leq \lfloor \frac{2m}{s} \rfloor$ pieces. \exists piece $\geq \frac{m}{s} \frac{1}{\lvert 2m/s \rvert} = \frac{m}{s \lvert 2m/s \rvert}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

FC Thm Generalizes $f(5,3) \leq \frac{5}{12}$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s \lceil 2m/s \rceil}, 1-\frac{m}{s \lfloor 2m/s \rfloor}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\left\lceil \frac{2m}{s} \right\rceil} = \frac{m}{s \left\lceil \frac{2m}{s} \right\rceil}$.

Someone gets $\leq \lfloor \frac{2m}{s} \rfloor$ pieces. \exists piece $\geq \frac{m}{s} \frac{1}{\lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor}$. The other piece from that muffin is of size $\leq 1 - \frac{m}{s \lfloor 2m/s \rfloor}$.

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

CLEVERNESS, COMP PROGS for the procedure.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

FC Theorem for optimality.

 $f(1,3) = \frac{1}{3}$

CLEVERNESS, COMP PROGS for the procedure.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FC Theorem for optimality.

 $f(1,3)=\tfrac{1}{3}$

f(3k, 3) = 1.

CLEVERNESS, COMP PROGS for the procedure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

FC Theorem for optimality.

 $f(1,3) = \frac{1}{3}$ f(3k,3) = 1. $f(3k+1,3) = \frac{3k-1}{6k}, \ k \ge 1.$

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

 $f(1,3) = \frac{1}{3}$ f(3k,3) = 1. $f(3k+1,3) = \frac{3k-1}{6k}, k \ge 1.$ $f(3k+2,3) = \frac{3k+2}{6k+6}.$

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

 $f(1,3) = \frac{1}{3}$ f(3k,3) = 1. $f(3k+1,3) = \frac{3k-1}{6k}, k \ge 1.$ $f(3k+2,3) = \frac{3k+2}{6k+6}.$

Note: A Mod 3 Pattern. **Theorem:** For all $m \ge 3$, f(m,3) = FC(m,3).

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f(4k, 4) = 1 (easy)

CLEVERNESS, COMP PROGS for procedures.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

FC Theorem for optimality.

f(4k, 4) = 1 (easy)

 $f(1,4) = \frac{1}{4} \text{ (easy)}$

CLEVERNESS, COMP PROGS for procedures.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

FC Theorem for optimality.

f(4k,4) = 1 (easy) $f(1,4) = \frac{1}{4} \text{ (easy)}$ $f(4k+1,4) = \frac{4k-1}{8k}, \ k \ge 1.$

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f(4k, 4) = 1 (easy) $f(1, 4) = \frac{1}{4} \text{ (easy)}$ $f(4k + 1, 4) = \frac{4k-1}{8k}, \ k \ge 1.$ $f(4k + 2, 4) = \frac{1}{2}.$

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f(4k, 4) = 1 (easy) $f(1, 4) = \frac{1}{4} \text{ (easy)}$ $f(4k + 1, 4) = \frac{4k - 1}{8k}, \ k \ge 1.$ $f(4k + 2, 4) = \frac{1}{2}.$ $f(4k + 3, 4) = \frac{4k + 1}{8k + 4}.$

Note: A Mod 4 Pattern. **Theorem:** For all $m \ge 4$, f(m, 4) = FC(m, 4).

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f(4k, 4) = 1 (easy) $f(1, 4) = \frac{1}{4} \text{ (easy)}$ $f(4k + 1, 4) = \frac{4k - 1}{8k}, \ k \ge 1.$ $f(4k + 2, 4) = \frac{1}{2}.$ $f(4k + 3, 4) = \frac{4k + 1}{8k + 4}.$

Note: A Mod 4 Pattern. **Theorem:** For all $m \ge 4$, f(m, 4) = FC(m, 4). **FC-Conjecture:** For all m, s with $m \ge s$, f(m, s) = FC(m, s).

・ロト・西・・日・・日・・日・

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1.

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1.

For k = 1 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. f(11, 5)?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1. For k = 1 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. f(11, 5)? For $k \ge 2$, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7, 5) = FC(7, 5) = \frac{1}{3}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1. For k = 1 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. f(11, 5)? For $k \ge 2$, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7, 5) = FC(7, 5) = \frac{1}{3}$ For $k \ge 1$, $f(5k + 3, 5) = \frac{5k+3}{10k+10}$

A D > A P > A E > A E > A D > A Q A

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1. For k = 1 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. f(11, 5)? For $k \ge 2$, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7, 5) = FC(7, 5) = \frac{1}{3}$ For $k \ge 1$, $f(5k + 3, 5) = \frac{5k+3}{10k+10}$ For $k \ge 1$, $f(5k + 4, 5) = \frac{5k+1}{10k+5}$

Note: A Mod 5 Pattern.

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1. For k = 1 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. f(11, 5)? For $k \ge 2$, $f(5k+2,5) = \frac{5k-2}{10k}$. $f(7,5) = FC(7,5) = \frac{1}{3}$ For $k \ge 1$, $f(5k+3,5) = \frac{5k+3}{10k+10}$ For $k \ge 1$, $f(5k + 4, 5) = \frac{5k+1}{10k+5}$ Note: A Mod 5 Pattern. **Theorem:** For all m > 5 except m=11, f(m,5) = FC(m,5).

(日本本語を本語を表示を)

What About FIVE students, ELEVEN muffins?

$$f(11,5) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{11}{5 \lceil 22/5 \rceil}, 1 - \frac{11}{5 \lfloor 22/5 \rfloor}\right\}\right\} = \frac{11}{25}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

What About FIVE students, ELEVEN muffins?

$$f(11,5) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{11}{5\lceil 22/5\rceil}, 1-\frac{11}{5\lfloor 22/5\rfloor}\right\}\right\} = \frac{11}{25}.$$

We tried to find a protocol to divide 11 muffins for 5 people, each gets $\frac{11}{5}$, and smallest piece is size $\frac{11}{25} = 0.44$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

What About FIVE students, ELEVEN muffins?

$$f(11,5) \leq \max\left\{rac{1}{3},\min\left\{rac{11}{5\left\lceil 22/5
ight
ceil},1-rac{11}{5\left\lfloor 22/5
ight
ceil}
ight\}
ight\}=rac{11}{25}.$$

We tried to find a protocol to divide 11 muffins for 5 people, each gets $\frac{11}{5}$, and smallest piece is size $\frac{11}{25} = 0.44$. We found a protocol with smallest piece $\frac{13}{30} = 0.4333...$

- 1. Divide 1 muffin $(\frac{15}{30}, \frac{15}{30})$.
- 2. Divide 2 muffins $(\frac{14}{30}, \frac{16}{30})$.
- 3. Divide 8 muffins $(\frac{13}{30}, \frac{17}{30})$.
- 4. Give 2 students $\left[\frac{13}{30}, \frac{13}{30}, \frac{13}{30}, \frac{13}{30}, \frac{14}{30}\right]$
- 5. Give 1 students $\left[\frac{16}{30}, \frac{16}{30}, \frac{17}{30}, \frac{17}{30}\right]$
- 6. Give 2 students $\left[\frac{15}{30}, \frac{17}{30}, \frac{17}{30}, \frac{17}{30}\right]$

So Now What?

We have:

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25} \quad \text{Diff} = 0.006666\dots$$

So Now What?

We have:

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25} \quad \text{Diff}=0.006666\dots$$

Options:

- 1. $f(11, 5) = \frac{11}{25}$. Need to find procedure.
- 2. $f(11,5) = \frac{13}{30}$. Need to find new technique for upper bounds.

ション ふゆ アメリア メリア しょうくしゃ

- 3. f(11,5) in between. Need to find both.
- 4. f(11,5) unknown to science!

Vote

So Now What?

We have:

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25} \quad \text{Diff}=0.006666\dots$$

Options:

- 1. $f(11,5) = \frac{11}{25}$. Need to find procedure.
- 2. $f(11,5) = \frac{13}{30}$. Need to find new technique for upper bounds.

- 3. f(11, 5) in between. Need to find both.
- 4. f(11,5) unknown to science!

Vote WE SHOW: $f(11,5) = \frac{13}{30}$. **Exciting** new technique!

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M. The other piece from muffin M is the buddy of x.

Note that the buddy of x is of size

1 - x.

$f(11, 5) = \frac{13}{30}$, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece *N*. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

$f(11, 5) = \frac{13}{30}$, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece *N*. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. $N \leq \frac{1}{3} < \frac{13}{30}$.

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)

$f(11, 5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \le \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

$f(11, 5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces. One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}$$

$f(11, 5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \leq rac{11}{5} imes rac{1}{6} = rac{11}{30} < rac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces. One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}$$

Look at the muffin it came from to find a piece that is

$$\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$f(11,5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \leq rac{11}{5} imes rac{1}{6} = rac{11}{30} < rac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces. One of the pieces is

$$\geq rac{11}{5} imes rac{1}{3} = rac{11}{15}$$

Look at the muffin it came from to find a piece that is

$$\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}$$

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

・ロト・日本・日本・日本・日本・日本

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- ▶ *s*₄ is number of students who get 4 pieces
- ▶ *s*₅ is number of students who get 5 pieces

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- ▶ *s*₄ is number of students who get 4 pieces
- ▶ *s*₅ is number of students who get 5 pieces

$$\begin{array}{rrr} 4s_4 + 5s_5 &= 22 \\ s_4 + s_5 &= 5 \end{array}$$

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- ▶ *s*₄ is number of students who get 4 pieces
- ▶ *s*₅ is number of students who get 5 pieces

$$\begin{array}{rrr} 4s_4 + 5s_5 &= 22 \\ s_4 + s_5 &= 5 \end{array}$$

ション ふゆ アメビア メロア しょうくり

 $s_4 = 3$: There are 3 students who have 4 shares. $s_5 = 2$: There are 2 students who have 5 shares.

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- ▶ *s*₄ is number of students who get 4 pieces
- ▶ *s*₅ is number of students who get 5 pieces

$$\begin{array}{rrr} 4s_4 + 5s_5 &= 22\\ s_4 + s_5 &= 5 \end{array}$$

 $s_4 = 3$: There are 3 students who have 4 shares. $s_5 = 2$: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a **4-share**. We call a share that goes to a person who gets 5 shares a **5-share**.

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$ $x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$ $x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$ $z \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$ $x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$ $z \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}$

Look at **buddy** of z.

$$B(z) \le 1 - z = 1 - \frac{17}{30} = \frac{13}{30}$$

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$ $x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$ $z \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}$

Look at **buddy** of z.

$$B(z) \leq 1-z = 1-rac{17}{30}=rac{13}{30}$$
GREAT! This is where $rac{13}{30}$ comes from!

ション ふぼう メリン メリン しょうくしゃ

Case 4.2: All 4-shares are $> \frac{1}{2}$. There are $4s_4 = 12$ 4-shares. There are ≥ 12 pieces $> \frac{1}{2}$. Can't occur.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

INT Method

Proof that $f(11,5) \leq \frac{13}{30}$ was an example of the HALF method.

(ロト (個) (E) (E) (E) (E) のへの

Proof that $f(11,5) \le \frac{13}{30}$ was an example of the HALF method. FC or HALF worked on everything with s = 3, 4, 5, ..., 23.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

INT Method

Proof that $f(11,5) \le \frac{13}{30}$ was an example of the HALF method. FC or HALF worked on everything with $s = 3, 4, 5, \dots, 23$. Then we found a case where neither FC nor HALF worked.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof that $f(11,5) \le \frac{13}{30}$ was an example of the HALF method. FC or HALF worked on everything with s = 3, 4, 5, ..., 23. Then we found a case where neither FC nor HALF worked. We found a new method: INT.

Assume (24, 11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets ≥ 2 shares. We show that there is a piece $\le \frac{19}{44}$.

Assume (24, 11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets ≥ 2 shares. We show that there is a piece $\le \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Assume (24, 11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets ≥ 2 shares. We show that there is a piece $\le \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Case 2: A student gets ≤ 3 shares. Some piece $\geq \frac{24}{11 \times 3} = \frac{8}{11}$. Buddy of that piece $\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}$.

Assume (24, 11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets ≥ 2 shares. We show that there is a piece $\le \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Case 2: A student gets ≤ 3 shares. Some piece $\geq \frac{24}{11 \times 3} = \frac{8}{11}$. Buddy of that piece $\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}$.

Case 3: Every muffin is cut in 2 pieces and every student gets either 4 or 5 shares. Total number of shares is 48.

4-students: a student who gets 4 shares. s_4 is the number of them. *5-students:* a student who gets 5 shares. s_5 is the number of them.

4-students: a student who gets 4 shares. s_4 is the number of them. *5-students:* a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

4-students: a student who gets 4 shares. s_4 is the number of them. *5-students:* a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

$$\begin{array}{rl} 4s_4 + 5s_5 &= 48 \\ s_4 + s_5 &= 11 \end{array}$$

4-students: a student who gets 4 shares. s_4 is the number of them. *5-students:* a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

$$\begin{array}{rrr} 4s_4 + 5s_5 &= 48 \\ s_4 + s_5 &= 11 \end{array}$$

 $s_4 = 7$. Hence there are $4s_4 = 4 \times 7 = 28$ 4-shares. $s_5 = 4$. Hence there are $5s_5 = 5 \times 4 = 20$ 5-shares.

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Case 3.2: There is a share $\leq \frac{19}{44}$. Duh.

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.2: There is a share $\leq \frac{19}{44}$. Duh. Henceforth assume that all shares are in

$$\begin{pmatrix} \frac{19}{44}, \frac{25}{44} \\ \\ \frac{19}{44}, \frac{25}{44} \end{pmatrix}$$

5-share: a share that a 5-student who gets. Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

5-share: a share that a 5-student who gets. Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. Proof: Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

5-share: a share that a 5-student who gets. **Claim:** If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$. Since $v + w + x + y + z = \frac{24}{11}$ and $z \geq \frac{20}{44}$.

5-share: a share that a 5-student who gets. **Claim:** If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$. Since $v + w + x + y + z = \frac{24}{11}$ and $z \geq \frac{20}{44}$.

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

5-share: a share that a 5-student who gets. **Claim:** If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$. Since $v + w + x + y + z = \frac{24}{11}$ and $z \geq \frac{20}{44}$.

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

$$v \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

5-share: a share that a 5-student who gets. **Claim:** If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$. Since $v + w + x + y + z = \frac{24}{11}$ and $z \geq \frac{20}{44}$.

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

$$v \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

Henceforth we assume all 5-shares are in $\left(\frac{19}{44}, \frac{20}{44}\right)$.

5-share: a share that a 5-student who gets. **Claim:** If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$. Since $v + w + x + y + z = \frac{24}{11}$ and $z \geq \frac{20}{44}$.

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

 $v \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$ Henceforth we assume all 5-shares are in $\left(\frac{19}{44}, \frac{20}{44}\right)$. **Recall:** there are $5s_5 = 5 \times 4 = 20$ 5-shares.

$$\begin{array}{ccc} (& 20 \ 5\text{-shs} &)[& &) \\ \frac{19}{44} & & \frac{20}{44} & & \frac{25}{44} \end{array}$$

5-share: a share that a 5-student who gets. **Claim:** If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$. Since $v + w + x + y + z = \frac{24}{11}$ and $z \geq \frac{20}{44}$.

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

 $v \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$ Henceforth we assume all 5-shares are in $\left(\frac{19}{44}, \frac{20}{44}\right)$. **Recall:** there are $5s_5 = 5 \times 4 = 20$ 5-shares.

$$\begin{array}{ccc} (& 20 \ 5\text{-shs} &)[& &) \\ \frac{19}{44} & & \frac{20}{44} & & \frac{25}{44} \end{array}$$

4-share: a share that a 4-student who gets. Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$.

4-share: a share that a 4-student who gets. **Claim:** If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$. Since $w + x + y + z = \frac{24}{11}$ and $w \leq \frac{21}{44}$.

ション ふゆ アメリア メリア しょうくしゃ

4-share: a share that a 4-student who gets. **Claim:** If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$. Since $w + x + y + z = \frac{24}{11}$ and $w \leq \frac{21}{44}$.

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

ション ふゆ アメリア メリア しょうくしゃ

4-share: a share that a 4-student who gets. **Claim:** If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$. Since $w + x + y + z = \frac{24}{11}$ and $w \leq \frac{21}{44}$.

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

$$z\geq \frac{75}{44}\times \frac{1}{3}=\frac{25}{44}$$

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q Q

4-share: a share that a 4-student who gets. **Claim:** If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$. Since $w + x + y + z = \frac{24}{11}$ and $w \leq \frac{21}{44}$.

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

$$z\geq \frac{75}{44}\times \frac{1}{3}=\frac{25}{44}$$

The buddy of z is of size

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

ション ふゆ アメリア メリア しょうくしゃ

4-share: a share that a 4-student who gets. **Claim:** If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$. Since $w + x + y + z = \frac{24}{11}$ and $w \leq \frac{21}{44}$.

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

$$z\geq \frac{75}{44}\times \frac{1}{3}=\frac{25}{44}$$

The buddy of z is of size

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Henceforth we assume all 4-shares are in

$$\left(\frac{21}{44},\frac{25}{44}\right)$$

ション ふぼう メリン メリン しょうくしゃ

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in $(\frac{21}{44}, \frac{25}{44})$, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in $\left(\frac{21}{44}, \frac{25}{44}\right)$, 5-shares in $\left(\frac{19}{44}, \frac{20}{44}\right)$. **Recall:** there are $4s_4 = 4 \times 7 = 28$ 4-shares. **Recall:** there are $5s_5 = 5 \times 4 = 20$ 5-shares.

ション ふゆ アメリア メリア しょうくしゃ

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in $(\frac{21}{44}, \frac{25}{44})$, 5-shares in $(\frac{19}{44}, \frac{20}{44})$. **Recall:** there are $4s_4 = 4 \times 7 = 28$ 4-shares. **Recall:** there are $5s_5 = 5 \times 4 = 20$ 5-shares.

ション ふゆ アメビア メロア しょうくり

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

$$\begin{array}{cccc} (& 20 \ \text{5-shs} &)[& 0 \ \text{shs} &](& 28 \ \text{4-shs} &) \\ \frac{19}{44} & \frac{20}{44} & \frac{21}{44} & \frac{25}{44} \\ \end{array}$$
Claim 1: There are no shares $x \in [\frac{23}{44}, \frac{24}{44}].$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$\begin{array}{ccc} (& 20 \ \text{5-shs} &)[& 0 \ \text{shs} &](& 28 \ \text{4-shs} &) \\ \frac{19}{44} & & \frac{20}{44} & & \frac{21}{44} & & \frac{25}{44} \\ \end{array}$$
Claim 1: There are no shares $x \in [\frac{23}{44}, \frac{24}{44}].$

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. QED.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{array}{cccc} (& 20 \ \text{5-shs} &)[& 0 \ \text{shs} &](& 28 \ \text{4-shs} &) \\ \frac{19}{44} & & \frac{20}{44} & & \frac{21}{44} & & \frac{25}{44} \\ \end{array}$$
Claim 1: There are no shares $x \in [\frac{23}{44}, \frac{24}{44}]$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. QED. The following picture captures what we know so far.

$$\begin{array}{cccc} (& 20 \ \text{5-shs} &)[& 0 \ \text{shs} &](& 28 \ \text{4-shs} &) \\ \frac{19}{44} & & \frac{20}{44} & & \frac{21}{44} & & \frac{25}{44} \\ \end{array}$$
Claim 1: There are no shares $x \in [\frac{23}{44}, \frac{24}{44}]$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. QED. The following picture captures what we know so far.

S4= Small 4-shares L4= Large 4-shares. L4 shares, 5-share: **buddies**, so |L4|=20.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$\begin{pmatrix} 20 \ 5\text{-shs} \end{pmatrix} \begin{bmatrix} 0 \\ 44 \end{pmatrix} \begin{bmatrix} 0 \\ 21 \\ 44 \end{pmatrix} \begin{pmatrix} 8 \ 54\text{-shs} \end{pmatrix} \begin{bmatrix} 0 \\ 23 \\ 44 \end{pmatrix} \begin{pmatrix} 20 \ L4\text{-shs} \end{pmatrix} \\ \begin{pmatrix} 20 \ L4\text{-shs} \end{pmatrix} \\ \begin{pmatrix} 25 \\ 44 \end{pmatrix} \\ \begin{pmatrix} 25$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Claim 2: Every 4-student has at least 3 L4 shares.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

$$< 2 \times \left(\frac{23}{44}\right) + 2 \times \left(\frac{25}{44}\right) = \frac{24}{11}.$$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

$$< 2 \times \left(\frac{23}{44}\right) + 2 \times \left(\frac{25}{44}\right) = \frac{24}{11}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contradiction: Each 4-student gets \geq 3 L4 shares.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

$$< 2 imes \left(rac{23}{44}
ight) + 2 imes \left(rac{25}{44}
ight) = rac{24}{11}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Contradiction: Each 4-student gets \geq 3 L4 shares. There are $s_4 = 7$ 4-students.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

$$< 2 imes \left(rac{23}{44}
ight) + 2 imes \left(rac{25}{44}
ight) = rac{24}{11}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Contradiction: Each 4-student gets \geq 3 L4 shares. There are $s_4 = 7$ 4-students. Hence there are \geq 21 L4-shares.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

$$< 2 imes \left(rac{23}{44}
ight) + 2 imes \left(rac{25}{44}
ight) = rac{24}{11}$$

Contradiction: Each 4-student gets \geq 3 L4 shares. There are $s_4 = 7$ 4-students. Hence there are \geq 21 L4-shares. But there are only 20.

・ロト・西ト・モート ヨー シタク

GAPS Method

Proof that $f(24, 11) \leq \frac{19}{44}$ was an example of the INT method.

+ロト 4 個 ト 4 国 ト 4 国 ト 1 の 4 で

Proof that $f(24, 11) \le \frac{19}{44}$ was an example of the INT method. FC or HALF or INT worked on everything with s = 3, 4, 5, ..., 30.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof that $f(24, 11) \leq \frac{19}{44}$ was an example of the INT method. FC or HALF or INT worked on everything with $s = 3, 4, 5, \dots, 30$. Then we found a case where neither FC nor HALF nor INT worked.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof that $f(24, 11) \leq \frac{19}{44}$ was an example of the INT method. FC or HALF or INT worked on everything with s = 3, 4, 5, ..., 30. Then we found a case where neither FC nor HALF nor INT worked. We found a new method: GAP.

Example of GAPS Technique: $f(31, 19) \leq \frac{54}{133}$

We show $f(31, 19) \le \frac{54}{133}$. Assume (31, 19)-procedure with smallest piece $> \frac{54}{133}$.

Example of GAPS Technique: $f(31, 19) \leq \frac{54}{133}$

We show $f(31, 19) \leq \frac{54}{133}$. Assume (31, 19)-procedure with smallest piece $> \frac{54}{133}$. By INT-technique methods obtain: $s_3 = 14$, $s_4 = 5$.

ション ふゆ アメビア メロア しょうくり

We just look at the 3-shares:

Example of GAPS Technique: $f(31, 19) \leq \frac{54}{133}$

We show $f(31, 19) \leq \frac{54}{133}$. Assume (31, 19)-procedure with smallest piece $> \frac{54}{133}$. By INT-technique methods obtain: $s_3 = 14$, $s_4 = 5$.

$$\begin{pmatrix} 20 \text{ 4-shs} \end{pmatrix} \begin{bmatrix} 0 \\ 133 \end{pmatrix} \begin{bmatrix} 22 \text{ S3 shs} \end{pmatrix} \begin{bmatrix} 0 \\ 133 \end{bmatrix} \begin{pmatrix} 20 \text{ L3-shs} \end{pmatrix} \\ \frac{54}{133} \end{pmatrix} \begin{bmatrix} \frac{55}{133} \\ \frac{59}{133} \end{pmatrix} \begin{bmatrix} \frac{72}{133} \\ \frac{78}{133} \end{bmatrix} \begin{bmatrix} 20 \text{ L3-shs} \end{pmatrix} \\ \frac{79}{133} \end{bmatrix}$$

We just look at the 3-shares:

$$\begin{pmatrix} 22 \ S3 \ shs \end{pmatrix} \begin{bmatrix} 0 \ 2 & \frac{74}{133} & \frac{78}{133} & \frac{79}{133} \end{pmatrix}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ ・ 日 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

1.
$$J_1 = (\frac{59}{133}, \frac{66.5}{133})$$

2. $J_2 = (\frac{66.5}{133}, \frac{74}{133}) (|J_1| = |J_2|)$
3. $J_3 = (\frac{78}{133}, \frac{79}{133}) (|J_3| = 20)$

$$\begin{pmatrix} 22 \ S3 \ shs \end{pmatrix} \begin{bmatrix} 0 \\ 74 \end{bmatrix} \begin{pmatrix} 20 \ L3-shs \end{pmatrix} \\ \hline 133 \end{bmatrix} \begin{pmatrix} 74 \\ 133 \end{pmatrix} \begin{bmatrix} 78 \\ 133 \end{bmatrix} \begin{pmatrix} 79 \\ 133 \end{pmatrix}$$

1.
$$J_1 = \left(\frac{59}{133}, \frac{60.5}{33}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

Notation: An e(1, 1, 3) students is a student who has a J_1 -share, a J_1 -share, and a J_3 -share. Generalize to e(i, j, k) easily.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

Notation: An e(1, 1, 3) students is a student who has a J_1 -share, a J_1 -share, and a J_3 -share. Generalize to e(i, j, k) easily.

I"LL STOP THE PROOF HERE.

$$\begin{pmatrix} 22 \ S3 \ shs \end{pmatrix} \begin{bmatrix} 0 \\ 133 \end{pmatrix} \begin{pmatrix} 20 \ L3-shs \end{pmatrix} \\ \hline 133 \end{pmatrix} \begin{bmatrix} 74 \\ 133 \end{pmatrix} \begin{bmatrix} 78 \\ 133 \end{pmatrix} \begin{bmatrix} 79 \\ 133 \end{pmatrix}$$

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

Notation: An e(1, 1, 3) students is a student who has

a J_1 -share, a J_1 -share, and a J_3 -share.

Generalize to e(i, j, k) easily.

I"LL STOP THE PROOF HERE. I"VE MADE THE POINT THAT THE ARGUMENTS ARE COMPLICATED.

ション ふゆ アメビア メロア しょうくり

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

Notation: An e(1, 1, 3) students is a student who has

a J_1 -share, a J_1 -share, and a J_3 -share.

Generalize to e(i, j, k) easily.

I"LL STOP THE PROOF HERE. I"VE MADE THE POINT THAT THE ARGUMENTS ARE COMPLICATED. THE SLIDES HAVE THE REST OF THE PROOF, BUT I WILL SKIP THAT.

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

1) Only students allowed: e(1,2,3), e(1,3,3), e(2,2,2), e(2,2,3). All others have either $<\frac{31}{19}$ or $>\frac{31}{19}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

1) Only students allowed: e(1, 2, 3), e(1, 3, 3), e(2, 2, 2), e(2, 2, 3). All others have either $<\frac{31}{19}$ or $>\frac{31}{19}$.

ション ふゆ アメビア メロア しょうくり

2) No shares in $[\frac{61}{133}, \frac{64}{133}]$. Look at J_1 -shares: An e(1, 2, 3)-student has J_1 -share $> \frac{31}{19} - \frac{74}{133} - \frac{79}{133} = \frac{64}{133}$. An e(1, 3, 3)-student has J_1 -share $< \frac{31}{19} - 2 \times \frac{78}{133} = \frac{61}{133}$.

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2. $J_2 = \left(\frac{66.5}{133}, \frac{74}{133}\right) \left(|J_1| = |J_2|\right)$
3. $J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$

1) Only students allowed: e(1,2,3), e(1,3,3), e(2,2,2), e(2,2,3). All others have either $<\frac{31}{19}$ or $>\frac{31}{19}$.

2) No shares in $\left[\frac{61}{133}, \frac{64}{133}\right]$. Look at J_1 -shares: An e(1, 2, 3)-student has J_1 -share $> \frac{31}{19} - \frac{74}{133} - \frac{79}{133} = \frac{64}{133}$. An e(1, 3, 3)-student has J_1 -share $< \frac{31}{19} - 2 \times \frac{78}{133} = \frac{61}{133}$. 3) No shares in $\left[\frac{69}{133}, \frac{72}{133}\right]$: $x \in \left[\frac{69}{133}, \frac{72}{133}\right] \implies 1 - x \in \left[\frac{61}{133}, \frac{64}{133}\right]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆

1.
$$J_1 = \left(\frac{59}{133}, \frac{61}{133}\right)$$

2. $J_2 = \left(\frac{64}{133}, \frac{66.5}{133}\right)$
3. $J_3 = \left(\frac{66.5}{133}, \frac{69}{133}\right) (|J_2| = |J_3|)$
4. $J_4 = \left(\frac{72}{133}, \frac{74}{133}\right) (|J_1| = |J_4|)$
5. $J_5 = \left(\frac{78}{133}, \frac{79}{133}\right) (|J_5| = 20)$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

1.
$$J_1 = (\frac{59}{133}, \frac{61}{133})$$

2. $J_2 = (\frac{64}{133}, \frac{66.5}{133})$
3. $J_3 = (\frac{66.5}{133}, \frac{69}{133}) (|J_2| = |J_3|)$
4. $J_4 = (\frac{72}{133}, \frac{74}{133}) (|J_1| = |J_4|)$
5. $J_5 = (\frac{78}{133}, \frac{79}{133}) (|J_5| = 20)$

The following are the only students who are allowed.

e(1, 5, 5).e(2, 4, 5),e(3, 4, 5).e(4, 4, 4).

e(1,5,5). Let the number of such students be xe(2,4,5). Let the number of such students be y_1 e(3,4,5). Let the number of such students be y_2 . e(4,4,4). Let the number of such students be z.

e(1,5,5). Let the number of such students be xe(2,4,5). Let the number of such students be y_1 e(3,4,5). Let the number of such students be y_2 . e(4,4,4). Let the number of such students be z. 1) $|J_2| = |J_3|$, only students using J_2 are e(2,4,5) – they use one share each,

only students using J_2 are e(2, 4, 5) – they use one share each, only students using J_3 are e(3, 4, 5) – they use one share each. Hence $y_1 = y_2$. We call them both y.

e(1,5,5). Let the number of such students be xe(2,4,5). Let the number of such students be y_1 e(3,4,5). Let the number of such students be y_2 . e(4,4,4). Let the number of such students be z. 1) $|J_2| = |J_3|$, only students using J_2 are e(2,4,5) – they use one share each,

only students using J_2 are e(2, 4, 5) – they use one share each, only students using J_3 are e(3, 4, 5) – they use one share each. Hence $y_1 = y_2$. We call them both y.

2) Since
$$|J_1| = |J_4|$$
, $x = 2y + 3z$.

e(1,5,5). Let the number of such students be xe(2,4,5). Let the number of such students be y_1 e(3,4,5). Let the number of such students be y_2 . e(4,4,4). Let the number of such students be z. 1) $|J_2| = |J_3|$, only students using J_2 are e(2,4,5) – they use one share each,

only students using J_3 are e(3,4,5) – they use one share each. Hence $y_1 = y_2$. We call them both y.

2) Since
$$|J_1| = |J_4|$$
, $x = 2y + 3z$.
3) Since $s_3 = 14$, $x + 2y + z = 14$.
 $(2y + 3z) + 2y + z = 14 \implies 4(y + z) = 14 \implies y + z = \frac{7}{2}$.
Contradiction.

Want proc for $f(5,3) \geq \frac{5}{12}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Want proc for $f(5,3) \geq \frac{5}{12}$.

1) Guess that the only piece sizes are $\frac{5}{12}, \frac{6}{12}, \frac{7}{12}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Want proc for $f(5,3) \geq \frac{5}{12}$.

1) Guess that the only piece sizes are $\frac{5}{12}, \frac{6}{12}, \frac{7}{12}$

2) **Muffin**=pieces add to 1: $\{\frac{6}{12}, \frac{6}{12}\}$, $\{\frac{5}{12}, \frac{7}{12}\}$. Vectors $\{\frac{6}{12}, \frac{6}{12}\}$ is (0,2,0), m_1 muffins of this type. $\{\frac{5}{12}, \frac{7}{12}\}$ is (1,0,1), m_2 muffins of this type.

ション ふゆ アメリア メリア しょうくしゃ

Want proc for $f(5,3) \geq \frac{5}{12}$.

1) Guess that the only piece sizes are $\frac{5}{12}, \frac{6}{12}, \frac{7}{12}$

2) **Muffin**=pieces add to 1: $\{\frac{6}{12}, \frac{6}{12}\}, \{\frac{5}{12}, \frac{7}{12}\}$. Vectors $\{\frac{6}{12}, \frac{6}{12}\}$ is (0,2,0), m_1 muffins of this type. $\{\frac{5}{12}, \frac{7}{12}\}$ is (1,0,1), m_2 muffins of this type.

ション ふゆ アメリア メリア しょうくしゃ

3) **Student**=pieces add to $\frac{5}{3}$ $\{\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\}$ is (0, 1, 2), s_1 students of this type. $\{\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\}$ is (4, 0, 0), s_2 students of this type.

Want proc for $f(5,3) \geq \frac{5}{12}$.

1) Guess that the only piece sizes are $\frac{5}{12}, \frac{6}{12}, \frac{7}{12}$

2) **Muffin**=pieces add to 1: $\{\frac{6}{12}, \frac{6}{12}\}$, $\{\frac{5}{12}, \frac{7}{12}\}$. Vectors $\{\frac{6}{12}, \frac{6}{12}\}$ is (0,2,0), m_1 muffins of this type. $\{\frac{5}{12}, \frac{7}{12}\}$ is (1,0,1), m_2 muffins of this type.

3) **Student**=pieces add to $\frac{5}{3}$ $\{\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\}$ is (0, 1, 2), s_1 students of this type. $\{\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\}$ is (4, 0, 0), s_2 students of this type.

4) Set up equations:

 $m_1(0,2,0) + m_2(1,0,1) = s_1(0,1,2) + s_2(4,0,0)$ $m_1 + m_2 = 5$ $s_1 + s_2 = 3$

ション ふゆ アメリア メリア しょうくしゃ

Want proc for $f(5,3) \geq \frac{5}{12}$.

1) Guess that the only piece sizes are $\frac{5}{12}, \frac{6}{12}, \frac{7}{12}$

2) **Muffin**=pieces add to 1: $\{\frac{6}{12}, \frac{6}{12}\}$, $\{\frac{5}{12}, \frac{7}{12}\}$. Vectors $\{\frac{6}{12}, \frac{6}{12}\}$ is (0,2,0), m_1 muffins of this type. $\{\frac{5}{12}, \frac{7}{12}\}$ is (1,0,1), m_2 muffins of this type.

3) **Student**=pieces add to $\frac{5}{3}$ $\{\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\}$ is (0, 1, 2), s_1 students of this type. $\{\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\}$ is (4, 0, 0), s_2 students of this type.

4) Set up equations: $m_1(0,2,0) + m_2(1,0,1) = s_1(0,1,2) + s_2(4,0,0)$ $m_1 + m_2 = 5$ $s_1 + s_2 = 3$

Natural Number Solution: $m_1 = 1$, $m_2 = 4$, $s_1 = 2$, $s_2 = 1$

Want proc for $f(m, s) \geq \frac{a}{b}$.

Want proc for $f(m, s) \geq \frac{a}{b}$.

1) **Guess** that the only piece sizes are $\frac{a}{b}, \ldots, \frac{b-a}{b}$

Want proc for $f(m, s) \geq \frac{a}{b}$.

1) Guess that the only piece sizes are $\frac{a}{b}, \ldots, \frac{b-a}{b}$

2) **Muffin**=pieces add to 1: Vectors $\vec{v_i}$. *x* types. m_i muffins of type $\vec{v_i}$

Want proc for $f(m, s) \geq \frac{a}{b}$.

1) Guess that the only piece sizes are $\frac{a}{b}, \ldots, \frac{b-a}{b}$

2) **Muffin**=pieces add to 1: Vectors $\vec{v_i}$. *x* types. m_i muffins of type $\vec{v_i}$

3) **Student**=pieces add to $\frac{m}{s}$: Vectors $\vec{u_j}$. *y* types. s_j students of type $\vec{u_j}$

Want proc for $f(m, s) \geq \frac{a}{b}$.

1) Guess that the only piece sizes are $\frac{a}{b}, \ldots, \frac{b-a}{b}$

2) **Muffin**=pieces add to 1: Vectors $\vec{v_i}$. *x* types. m_i muffins of type $\vec{v_i}$

3) **Student**=pieces add to $\frac{m}{s}$: Vectors $\vec{u_j}$. *y* types. s_j students of type $\vec{u_j}$

4) Set up equations: $m_1 \vec{v}_1 + \dots + m_x \vec{v}_x = s_1 \vec{u}_1 + \dots + s_y \vec{u}_y$ $m_1 + \dots + m_x = m$ $s_1 + \dots + s_y = s$

Want proc for $f(m, s) \geq \frac{a}{b}$.

1) Guess that the only piece sizes are $\frac{a}{b}, \ldots, \frac{b-a}{b}$

2) **Muffin**=pieces add to 1: Vectors $\vec{v_i}$. *x* types. m_i muffins of type $\vec{v_i}$

3) **Student**=pieces add to $\frac{m}{s}$: Vectors $\vec{u_j}$. *y* types. s_j students of type $\vec{u_j}$

4) Set up equations: $m_1 \vec{v}_1 + \dots + m_x \vec{v}_x = s_1 \vec{u}_1 + \dots + s_y \vec{u}_y$ $m_1 + \dots + m_x = m$ $s_1 + \dots + s_y = s$

5) Look for Nat Numb sol. If find can translate into procedure.

1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure is REALLY FAST.

1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure is REALLY FAST.

ション ふゆ アメリア メリア しょうくしゃ

2. Jacob and Erik Understand WHAT his algorithm does and Jacob coded it up to make sure he understood it. Jacob's code is also REALLY FAST.

- 1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure is REALLY FAST.
- Jacob and Erik Understand WHAT his algorithm does and Jacob coded it up to make sure he understood it. Jacob's code is also REALLY FAST.
- 3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott's algorithm was fast (linear in *m*, *s*).

ション ふゆ アメリア メリア しょうくしゃ

- 1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure is REALLY FAST.
- Jacob and Erik Understand WHAT his algorithm does and Jacob coded it up to make sure he understood it. Jacob's code is also REALLY FAST.
- 3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott's algorithm was fast (linear in *m*, *s*).
- 4. Richard Chatwin independently came up with the same algorithm; however, he also has a proof that it works. Its on arXiv. The algorithm is likely linear time, but neither Chatwin nor Huddleton think in those terms.

- 1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure is REALLY FAST.
- Jacob and Erik Understand WHAT his algorithm does and Jacob coded it up to make sure he understood it. Jacob's code is also REALLY FAST.
- 3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott's algorithm was fast (linear in *m*, *s*).
- 4. Richard Chatwin independently came up with the same algorithm; however, he also has a proof that it works. Its on arXiv. The algorithm is likely linear time, but neither Chatwin nor Huddleton think in those terms.

5. One corollary of the work: f(m, s) only depends on m/s.

The TV show Leverage has the slogan Sometimes bad guys make the best good guys

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

1. Sophie Devereiux : A Con Artist. (Not her real name.)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)

4. Eliot Spencer: A Hitter (beats people up)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)
- 4. Eliot Spencer: A Hitter (beats people up)
- 5. Nate Ford: The Mastermind (comes up with the plan)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)

ション ふゆ アメリア メリア しょうくしゃ

- 4. Eliot Spencer: A Hitter (beats people up)
- 5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)

ション ふゆ アメリア メリア しょうくしゃ

- 4. Eliot Spencer: A Hitter (beats people up)
- 5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- 2. Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)

- 4. Eliot Spencer: A Hitter (beats people up)
- 5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

1. Erik: A Math Genius (solves muffin problems)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)
- 4. Eliot Spencer: A Hitter (beats people up)
- 5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

- 1. Erik: A Math Genius (solves muffin problems)
- 2. Jacob and Daniel: Programmers (codes up techniques)

The TV show Leverage has the slogan Sometimes bad guys make the best good guys They are a team that people come to for help. They are

- 1. Sophie Devereiux : A Con Artist. (Not her real name.)
- Parker: A Thief (First or last name? Nobody knows!)
- 3. Alec Hardison: A Hacker (breaks into computer systems)
- 4. Eliot Spencer: A Hitter (beats people up)
- 5. Nate Ford: The Mastermind (comes up with the plan)

Our book did not need a thief or a hitter, but we did have

- 1. Erik: A Math Genius (solves muffin problems)
- 2. Jacob and Daniel: Programmers (codes up techniques)
- 3. Bill: The Mastermind (guides the work and writes it up)

We kept increasing s.

We kept increasing s.

1. Bill tells Erik the least case we can't do.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

5. Goto Step 1.

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called:

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int, Midpoint,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int, Midpoint, Gaps,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int, Midpoint, Gaps, Easy Buddy-Match,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

ション ふゆ アメリア メリア しょうくしゃ

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int, Midpoint, Gaps, Easy Buddy-Match, Hard buddy-Match,

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

ション ふゆ アメリア メリア しょうくしゃ

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int, Midpoint, Gaps, Easy Buddy-Match, Hard buddy-Match, Train

We kept increasing s.

- 1. Bill tells Erik the least case we can't do.
- 2. Erik solves and sends Bill a 1-page sketch.
- 3. Bill fills in the details and obtains general technique.
- 4. Jacob & Daniel code up technique and find least case that can't be done. Send to Bill to check.

5. Goto Step 1.

This happened 7 times leading to techniques now called: Floor Ceiling, Half, Int, Midpoint, Gaps, Easy Buddy-Match, Hard buddy-Match, Train

Also a chapter that sketched out Scott H's method.

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.

ション ふぼう メリン メリン しょうくしゃ

He brought to the seminar 11 muffins: 1 cut (¹⁵/₃₀, ¹⁵/₃₀), 2 cut (¹⁴/₃₀, ¹⁶/₃₀), 8 cut (¹³/₃₀, ¹⁷/₃₀).

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.

▶ He brought to the seminar 11 muffins: 1 cut $(\frac{15}{30}, \frac{15}{30})$, 2 cut $(\frac{14}{30}, \frac{16}{30})$, 8 cut $(\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

- He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- He brought to the seminar 11 muffins: 1 cut $(\frac{15}{30}, \frac{15}{30})$, 2 cut $(\frac{14}{30}, \frac{16}{30})$, 8 cut $(\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00.

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

- He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: 1 cut $(\frac{15}{30}, \frac{15}{30})$, 2 cut $(\frac{14}{30}, \frac{16}{30})$, 8 cut $(\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00. First Year Royalties: \$40.00. The break-even point!

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

- He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: 1 cut $(\frac{15}{30}, \frac{15}{30})$, 2 cut $(\frac{14}{30}, \frac{16}{30})$, 8 cut $(\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00. First Year Royalties: \$40.00. The break-even point! Second Year Royalties: \$50.00. I'm up by \$10.00. Wow!

I emailed **Alan Frank**, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

- He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- He brought to the seminar 11 muffins: 1 cut $(\frac{15}{30}, \frac{15}{30})$, 2 cut $(\frac{14}{30}, \frac{16}{30})$, 8 cut $(\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00. First Year Royalties: \$40.00. The break-even point! Second Year Royalties: \$50.00. I'm up by \$10.00. Wow! Third Year Royalties: The royalties did not cover the cost of the muffins you are enjoying.