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Outline

1. We describe what qubits are mathematically and how they
can be used. We ignore the Physics. Physicists really can
create qubits that behave as we describe.

2. We describe what entangled qubits are mathematically and
how they can be used. We ignore the Physics. Physicists
really can create entangled qubits that behave as we describe.

3. We describe the CHSH game.

4. We give a strategy for the CHSH game where (1) the 2 players
are classical, and (2) the prob of winning is 0.75. We note
that one can prove this is the best two players can do.

5. We give a strategy for the CHSH game where (1) the 2
players have qubits that are entangled, and (2) the prob of
winning is larger than 0.75.
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Math Needed

Def

1. Let L be the following function on vectors of complex
numbers: L(α, β) = |α|2 + |β|2. Note that L(α, β) is the
square of length of the vector (α, β).

For the rest of these slides we will assume that L is applied to
pairs of reals. We note that the use of complex numbers is
very important for quantum mechanics.

2. A 2× 2 matrix M is unitary if when, for all v , L(Mv) = L(v).
So M preserves length.

Example Let 0 ≤ θ ≤ 2π. The following matrix is unitary.

Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
This matrix rotates vectors by θ.
On next slide we show that Mθ is unitary.
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Proof that Mθ is Unitary

Let v = (α, β) be a vector. We show N(Mθ(v)) = N(v).(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
α
β

)
=

(
cos(θ)α− sin(θ)β
sin(θ)α + cos(θ)β

)

N(cos(θ)α− sin(θ)β, sin(θ)α + cos(θ)β)

= cos2(θ)α2 + sin2(θ)β2 + sin2(θ)α2 + cos2(θ)β2

= cos2(θ)α2 + sin2(θ)α2 + sin2(θ)β2 + cos2(θ)β2

= (cos2(θ) + sin2(θ))α2 + (cos2(θ) + sin2(θ))β2

= α2 + β2
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Quantum Bits

Def A qubit is something in physics that has a state. The state is
an ordered pair (α, β) such that α2 + β2 = 1. If a qubit is in state
(α, β) then, when the qubit is measured, the prob that the bit is 0
is α2 and the prob the bit is 1 is β2.

Caveat A qubit can be measured in many ways:
1) Measuring the qubit in the st. basis.
2) Measure the qubit in a different basis. We multiply the
state by a unitary matrix and measure the qubit in this new state.
So we say

We measure Mθ(v).
where v was the original state.
We will elaborate on this on the next slide.



Quantum Bits

Def A qubit is something in physics that has a state. The state is
an ordered pair (α, β) such that α2 + β2 = 1. If a qubit is in state
(α, β) then, when the qubit is measured, the prob that the bit is 0
is α2 and the prob the bit is 1 is β2.

Caveat A qubit can be measured in many ways:

1) Measuring the qubit in the st. basis.
2) Measure the qubit in a different basis. We multiply the
state by a unitary matrix and measure the qubit in this new state.
So we say

We measure Mθ(v).
where v was the original state.
We will elaborate on this on the next slide.



Quantum Bits

Def A qubit is something in physics that has a state. The state is
an ordered pair (α, β) such that α2 + β2 = 1. If a qubit is in state
(α, β) then, when the qubit is measured, the prob that the bit is 0
is α2 and the prob the bit is 1 is β2.

Caveat A qubit can be measured in many ways:
1) Measuring the qubit in the st. basis.

2) Measure the qubit in a different basis. We multiply the
state by a unitary matrix and measure the qubit in this new state.
So we say

We measure Mθ(v).
where v was the original state.
We will elaborate on this on the next slide.



Quantum Bits

Def A qubit is something in physics that has a state. The state is
an ordered pair (α, β) such that α2 + β2 = 1. If a qubit is in state
(α, β) then, when the qubit is measured, the prob that the bit is 0
is α2 and the prob the bit is 1 is β2.

Caveat A qubit can be measured in many ways:
1) Measuring the qubit in the st. basis.
2) Measure the qubit in a different basis. We multiply the
state by a unitary matrix and measure the qubit in this new state.
So we say

We measure Mθ(v).
where v was the original state.

We will elaborate on this on the next slide.



Quantum Bits

Def A qubit is something in physics that has a state. The state is
an ordered pair (α, β) such that α2 + β2 = 1. If a qubit is in state
(α, β) then, when the qubit is measured, the prob that the bit is 0
is α2 and the prob the bit is 1 is β2.

Caveat A qubit can be measured in many ways:
1) Measuring the qubit in the st. basis.
2) Measure the qubit in a different basis. We multiply the
state by a unitary matrix and measure the qubit in this new state.
So we say

We measure Mθ(v).
where v was the original state.
We will elaborate on this on the next slide.



Measuring a Quantum Bit

If Alice has a qubit in states v = (α, β) she could do the following

1) Measure it in the st. basis. This means that (1) she will get
0 with prob α2 and (2) she will get 1 with prob β2.

2) Measure it in basis θ First compute Mθ(v) = w = (γ, δ)
where γ2 + δ2 = 1. Now measure w . She will get 0 with prob γ2

and 1 with prob δ2

So she changes the state of the qubit before measuring it.
This is referred to as measuring the qubit in a different basis or
in a different frame.



Measuring a Quantum Bit

If Alice has a qubit in states v = (α, β) she could do the following

1) Measure it in the st. basis. This means that (1) she will get
0 with prob α2 and (2) she will get 1 with prob β2.

2) Measure it in basis θ First compute Mθ(v) = w = (γ, δ)
where γ2 + δ2 = 1. Now measure w . She will get 0 with prob γ2

and 1 with prob δ2

So she changes the state of the qubit before measuring it.
This is referred to as measuring the qubit in a different basis or
in a different frame.



Measuring a Quantum Bit

If Alice has a qubit in states v = (α, β) she could do the following

1) Measure it in the st. basis. This means that (1) she will get
0 with prob α2 and (2) she will get 1 with prob β2.

2) Measure it in basis θ First compute Mθ(v) = w = (γ, δ)
where γ2 + δ2 = 1. Now measure w . She will get 0 with prob γ2

and 1 with prob δ2

So she changes the state of the qubit before measuring it.

This is referred to as measuring the qubit in a different basis or
in a different frame.



Measuring a Quantum Bit

If Alice has a qubit in states v = (α, β) she could do the following

1) Measure it in the st. basis. This means that (1) she will get
0 with prob α2 and (2) she will get 1 with prob β2.

2) Measure it in basis θ First compute Mθ(v) = w = (γ, δ)
where γ2 + δ2 = 1. Now measure w . She will get 0 with prob γ2

and 1 with prob δ2

So she changes the state of the qubit before measuring it.
This is referred to as measuring the qubit in a different basis or
in a different frame.



Example

Alice has a qubit in state v = (α, β) = ( 1√
2
, 1√

2
).

1) She measures the quibt in the st. basis.
she will get 0 with prob 1

2 , and
she will get 1 with prob 1

2

2) If instead she measures Mπ
6

(v) then we’ll see what happens.

Next two slides have the first and second coordinate of Mπ
6

(v)
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Example (cont)

First coordinate of Mπ
6

(v) is

cos(θ)α− sin(θ)β = cos(π6 ) 1√
2
− sin(π6 ) 1√

2
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√
3
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2
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√
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2
√
2
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(√

3−1
2
√
2

)2
= 4−2

√
3

8 ∼ 0.067

Second coordinate of Mπ
6

(v) is

sin(θ)α + cos(θ)β = sin(π6 ) 1√
2

+ cos(π6 ) 1√
2

= 1
2

1√
2

+
√
3
2

1√
2

= 1+
√
3

2
√
2
.
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(
1+
√
3

2
√
2

)2
= 4+2

√
3

8 ∼ 0.933
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Upshot of Example

Alice has qubit in state v = (α, β) = ( 1√
2
, 1√

2
).

1. If she measures the qubit in the st. basis then
I Pr(0) = 1

2
I Pr(1) = 1

2 .

2. If instead she measures the qubit in bases π
6 then she

computes w = Mπ
6

(v) then

I Pr(0) ∼ 0.067.
I Pr(1) ∼ 0.933.

A rotation of 0 gave Pr(0) = 0.5, whereas a rotation of π
6 made

Pr(0) = 0.067 which is much smaller. How does θ affect Pr(0)?
as 0 ≤ θ ≤ π

4 , Pr(0) goes from 1
2 to 0.

The next few slides investigate this issue further.
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How Does θ Affect Pr(0)?

Alice has a qubit in state v = ( 1√
2
, 1√

2
).

She is going to measure the qubit in bases θ. Let w = Mθ(v)
θ = 0 : Pr(0) = 1

2 .
θ = π/60: Pr(0) = 0.448, close to 1

2 .

As θ gets bigger what happens?

1. For 0 ≤ θ ≤ π
4 , Pr(0) goes from 1

2 to 0.

2. For π
4 ≤ θ ≤

π
2 , Pr(0) goes from 0 to 1

2 .

3. For π
2 ≤ θ ≤

3π
4 , Pr(0) goes from 1

2 to 1.

4. For 3π
4 ≤ θ ≤ π, Pr(0) goes from 1 to 1

2 .

The next few slides give actual numbers.
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0 ≤ θ ≤ π
4

θ α β Pr(0) = α2 Pr(1) = β2

0 +0.707 +0.707 0.5 0.5
π/60 +0.669 +0.743 0.448 0.552

2π/60 +0.629 +0.777 0.396 0.604
3π/60 +0.588 +0.809 0.345 0.655
4π/60 +0.545 +0.839 0.297 0.703
5π/60 +0.500 +0.866 0.250 0.750
6π/60 +0.454 +0.891 0.206 0.794
7π/60 +0.407 +0.914 0.165 0.835
8π/60 +0.358 +0.934 0.128 0.872
9π/60 +0.309 +0.951 0.095 0.905

10π/60 +0.259 +0.966 0.067 0.933
11π/60 +0.208 +0.978 0.043 0.957
12π/60 +0.156 +0.988 0.024 0.976
13π/60 +0.105 +0.995 0.011 0.989
14π/60 +0.052 +0.999 0.003 0.997
15π/60 +0.000 +1.000 0.000 1.000



π
4
≤ θ ≤ π

2

θ α β Pr(0) = α2 Pr(1) = β2

15π/60 +0.000 +1.000 0.000 1.000
16π/60 −0.052 +0.999 0.003 0.997
17π/60 −0.105 +0.995 0.011 0.989
18π/60 −0.156 +0.988 0.024 0.976
19π/60 −0.208 +0.978 0.043 0.957
20π/60 −0.259 +0.966 0.067 0.933
21π/60 −0.309 +0.951 0.095 0.905
22π/60 −0.358 +0.934 0.128 0.872
23π/60 −0.407 +0.914 0.165 0.835
24π/60 −0.454 +0.891 0.206 0.794
25π/60 −0.500 +0.866 0.250 0.750
26π/60 −0.545 +0.839 0.297 0.703
27π/60 −0.588 +0.809 0.345 0.655
28π/60 −0.629 +0.777 0.396 0.604
29π/60 −0.669 +0.743 0.448 0.552
30π/60 −0.707 +0.707 0.500 0.500



π
2
≤ θ ≤ 3π

4

θ α β Pr(0) = α2 Pr(1) = β2

30π/60 −0.707 +0.707 0.500 0.500
31π/60 −0.743 +0.669 0.552 0.448
32π/60 −0.777 +0.629 0.604 0.396
33π/60 −0.809 +0.588 0.655 0.345
34π/60 −0.839 +0.545 0.703 0.297
35π/60 −0.866 +0.500 0.750 0.250
36π/60 −0.891 +0.454 0.794 0.206
37π/60 −0.914 +0.407 0.835 0.165
38π/60 −0.934 +0.358 0.872 0.128
39π/60 −0.951 +0.309 0.905 0.095
40π/60 −0.966 +0.259 0.933 0.067
41π/60 −0.978 +0.208 0.957 0.043
42π/60 −0.988 +0.156 0.976 0.024
43π/60 −0.995 +0.105 0.989 0.011
44π/60 −0.999 +0.052 0.997 0.003
45π/60 −1.000 +0.000 1.000 0.000



3π
4
≤ θ ≤ π

θ α β Pr(0) = α2 Pr(1) = β2

45π/60 −1.000 +0.000 1.000 0.000
46π/60 −0.999 −0.052 0.997 0.003
47π/60 −0.995 −0.105 0.989 0.011
48π/60 −0.988 −0.156 0.976 0.024
49π/60 −0.978 −0.208 0.957 0.043
50π/60 −0.966 −0.259 0.933 0.067
51π/60 −0.951 −0.309 0.905 0.095
52π/60 −0.934 −0.358 0.872 0.128
53π/60 −0.914 −0.407 0.835 0.165
54π/60 −0.891 −0.454 0.794 0.206
55π/60 −0.866 −0.500 0.750 0.250
56π/60 −0.839 −0.545 0.703 0.297
57π/60 −0.809 −0.588 0.655 0.345
58π/60 −0.777 −0.629 0.604 0.396
59π/60 −0.743 −0.669 0.552 0.448
60π/60 −0.707 −0.707 0.500 0.500
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Measuring a Qubit Twice in the Standard Basis

Alice has a qubit in state v = (α, β).

1) Alice measures it in the st. basis and gets bit b.
2) Alice then measures the qubit in the st. basis again.
She will get b. She cannot get anything else.

This is not weird. Here is a classical analog:

Alice has a box that has a coin in it with sides labelled 0 and 1.
She opens it and sees a b face up.
She closes it. She opens it again. She still sees a b.
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Measuring a Qubit in Standard Basis and
Non-Standard Basis

1) Alice measures a qubit in st. basis, gets bit b. Use v .
2) Alice then measures the qubit in basis θ. Use w = Mθ(v).
The prob that she gets that same b again is cos2(θ).
Why cos2(θ)? We will explain that on two later slide titled:
Why cos2(θ)?: Collapsing and
Why cos2(θ)?: The Math.
3) Next slide generalizes this.
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Measuring a Qubit in Two Different Basis

Alice has a qubit in state v = (α, β).

1) Alice measures the qubit in basis θ1, so in state w = Mθ1(v),
and gets bit b.
2) Alice then measures the qubit in basis θ2, so in state
w ′ = Mθ2(w).
The prob that she gets that same b again is cos2(θ1 − θ2).
Why cos2(θ1 − θ2)? We will explain that on two slide titled
Why cos2(θ)?: Collapsing and
Why cos2(θ)?: The Math.
EVAN AND BILL- MIGHT PUT PICTURE HERE.
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2 People Measure a Qubit in Two Different Basis

Alice has a qubit in state v = (α, β).

1) Alice measures it in basis θ1, so in state w = Mθ1(v), and gets
bit b.
2) Alice gives qubit to Bob. Bob measures the qubit in basis θ2, so
in state w ′ = Mθ2(w).
The prob that he gets that b is cos2(θ1 − θ2).
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1) Alice measures the qubit in the st. basis and gets 0.

2) Bob then measures the qubit in basis π
6 , so in state

w = Mπ
6

(v).

Pr(0) = Prob that Bob and Alice agree = cos2(0− π
6 ) = 0.75.

Pr(1) = 1− Pr(0) = 0.25.
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Why cos2(θ) : Collapsing

Measuring qubits is not passive.

Alice has qubit in state v = ( 1√
2
, 1√

2
).

Alice measures the qubit in the st. basis and gets 0.
Key Point State changes. State is now (1, 0).
Terminology The state collapses to (1, 0).
That is why when Bob then measures v in the st. basis he will get
0.
We will discuss what happens if Bob then measures in basis θ.

Similarly if Alice measures v in the st. basis and gets 1 then v
collapses to (0, 1).
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Why cos2(θ): The Math

Alice has a qubit in state v = ( 1√
2
, 1√

2
).

Case 1 Alice measures the qubit and gets 0. State collapses to
(1, 0).
Bob then measures in basis θ. But note that state is now (1, 0).
Mθ(v) = (cos(θ), sin(θ)).
Prob that Bob and Alice will agree is Pr(0) = cos2(θ).
Case 2 Alice measures v in st. basis and gets 1. state collapses to
(0, 1).
Bob then measures in θ basis. But note that state is now (0, 1).
Mθ(v) = (− sin(θ), cos(θ)).
Prob that Bob and Alice will agree is Pr(1) = cos2(θ).

In Both Cases The Prob that Alice and Bob Agree is cos2(θ)
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Alice and Bob Like to Share

We say what Alice and Bob can do if they have qubits that are
entangled in a certain way.

We first describe four scenarios without quantum entanglement to
later contrast the case of qubits that are entangled to other cases,
both classical and quantum.
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Two Scenarios That are Not Weird

1) Charles picks b ∈ {0, 1} uniformly at random. Charles gives
Alice a box with b in it, and Bob a box with the b in it.

If Alice opens the box and sees b, she knows that Bob’s box also
has b.

2) Charles gives Alice and Bob each a qubit in state (α, β). Alice
& Bob both know α & β. Alice measures in the st. basis and gets
a 1.

Alice knows the prob that Bob gets a 1 is α2, but she knew this
before she measured.
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Two More Scenarios That are Not Weird

3) Alice has a qubit. Alice measures it in the st. basis and gets 0.
Hence the state is now (1, 0). Alice gives the qubit to Bob. He
measures it in the st. basis.

Alice knows that he will get a 0.
4) Alice has a qubit. Alice measures it in the st. basis and gets 0.
The state is now (1, 0). Alice gives the qubit to Bob. He rotates
the qubit state by π

6 (so multiplies its state by Mπ
6

). The qubit is
now in state (cos(π6 ), sin(π6 )). He measures the qubit.
Pr(0) = cos2(0− π

6 )2 = 0.75, Pr(1) = 0.25.

Alice thinks Bob has prob 0.75 of getting a 0. She is correct.

In the four scenarios above the qubits were not connected. We will
now discuss Quantum Entanglement where the qubits are
connected.
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Alice and Bob Have Entangled Qubits

Alice has a qubit in state vA = (α, β).

Bob has a qubit in state vB = (α, β).

There are several ways that vA and vB can be entangled, which
intuitively means that measurements made of one of them affects
the other even if they are very far apart.

We will only deal with the case where vA and vB are an EPR pair
(EPR stands for Einstein, Podolsky, Rosen) which is the simplest
case of Entanglement. EPR pairs are also called Bell Pairs.

We will define properties of EPR pairs on the next slide.
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EPR Pairs

We will state properties of EPR pairs.

Alice and Bob Share an EPR pair if
1) Alice has qubit in state vA = ( 1√

2
, 1√

2
).

2) Bob has qubit in state vB = ( 1√
2
, 1√

2
).

2) If Alice measures her qubit (in any basis) then both vA and vB
are instantly changed in the same way by that measurement.
Example if Alice measures in the st. basis and gets a 0 then Alice’s
qubit collapsed to (1, 0) but Bob’s qubit’s state also collapsed to
(1,0). Since vA and vB may be far apart, this is weird.

3) If Alice measures MθA(vA) and Bob measures MθB (vB) then the
probability that they get the same answer is cos2(θA − θB). For
example, if θA − θB is close to 0 then the probability that they get
the same answer is close to 1.
Note This is weird. The two entangled qubits are different and
may be far apart yet they are instantaneously linked together.
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(1,0). Since vA and vB may be far apart, this is weird.

3) If Alice measures MθA(vA) and Bob measures MθB (vB) then the
probability that they get the same answer is cos2(θA − θB). For
example, if θA − θB is close to 0 then the probability that they get
the same answer is close to 1.
Note This is weird. The two entangled qubits are different and
may be far apart yet they are instantaneously linked together.
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Contrast Independent Pairs and EPR pairs
Alice has a qubit vA = ( 1√

2
, 1√

2
).

Bob has a qubit vB = ( 1√
2
, 1√

2
).

1) Alice measures her qubit in the st. basis and gets 0.

2) Then Bob measures his qubit in basis π
6 , so the state is Mπ

6
(vB).

2a) If vA and vB are independent of each other

Pr(Bob gets 0) = 0.5 Pr(Bob gets 1) = 0.5.

2b) If vA and vB are an EPR pair then

Pr(Bob gets 0) = Pr(Alice & Bob agree) = cos2
(
π

6
− 0

)
= 0.75.

Pr(Bob gets 1) = Pr(Alice & Bob disagree) = 1−cos2
(
π

6
−0

)
= 0.25.
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The CHSH Game

(CHSH stands for the authors of the paper this appeared in:
John Clauser, Michael Horne, Abner Shimony, Richard Holt.)

1. Charles sends Alice a bit x and Bob a bit y . Both x and y
were chosen uniformly at random.

2. Alice sends Charles a bit a. Bob sends Charles a bit b.

3. If x ∧ y = a⊕ b then Alice and Bob win. Else they lose.
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Classic Strategies

On the next few slides we discuss strategies with an eye towards
asking how often they win.



All 0 Strategy

Since x ∧ y is mostly 0, make a⊕ b always 0, so a strong strategy
is for Alice and Bob to both send 0.

x y a b x ∧ y a⊕ b Wins?

0 0 0 0 0 0 Y
0 1 0 0 0 0 Y
1 0 0 0 0 0 Y
1 1 0 0 1 0 N

Alice and Bob win with probability 0.75.
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Mostly 0 Strategy

Since x ∧ y is mostly 0 but not all the time we want Alice to
sometimes send a 1.

If Alice sees a 1 then with prob p (to be determined) she sends a 1.
Bob still always sends a 0

Alice will flip a coin with sides 0 and 1, prob p of getting a 1.

Next slide analyzes the prob that they win.
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Analyzing the Mostly 0 Strategy

x y coin a b x ∧ y a⊕ b Wins?
0 0 0 0 0 0 0 Y
0 0 1 0 0 0 0 Y
0 1 0 0 0 0 0 Y
0 1 1 0 0 0 0 Y
1 0 0 0 0 0 0 Y
1 0 1 1 0 0 1 N
1 1 0 0 0 1 0 N
1 1 1 1 0 1 1 Y

In the first four rows the coin flip is irrelevant.
If (x , y) = (1, 0) then they win if the coin is 0, so prob 1− p.
If (x , y) = (1, 1) then they win if the coin is 1, so prob p.

Hence they win when any of the following happen:

1) (x , y) ∈ {(0, 0), (0, 1)}. Thats prob 1
2 .

2) (x , y) = (1, 0) and the coin is 0. Thats prob 1
4 × (1− p).

3) (x , y) = (1, 1) and the coin is 1. Thats prob 1
4 × p.

So the prob of winning is 1
2 + 1−p

4 + p
4 = 3

4 = 0.75. No better.
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Is There a Better Strategy?

The following are known:

1. There is no deterministic strategy that can win with
probability more than 0.75.

2. There is no randomized strategy that can win with probability
more than 0.75.
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If Alice and Bob Share an EPR Pair . . .

We will show on the next two slides that if Alice and Bob share an
EPR pair,

then Alice and Bob have a strategy that wins the CHSH game with
probability 13

16 = 0.8125 > 0.75.
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If Alice and Bob Share an EPR Pair . . .

Alice and Bob share an EPR pair. Alice’s (Bob’s) qubit is in state
vA (vB).

Alice gets x , Bob gets y .

1. x = 0: Alice measures Mπ
3

(vA). a is result.

2. x = 1: Alice measures vA in the st. basis. a is result.

3. y = 0: Bob measures Mπ
6

(vB). b is result.

4. y = 1: Bob measures Mπ
2

(vB). b is result.

We analyze all four cases (x , y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
on the next slides.
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Each Scenario

1. (x , y) = (0, 0). Alice: π
3 . Bob: π

6 . Prob they agree:

cos2(π3 −
π
6 ) = cos2(π6 ) = (

√
3
2 )2 = 3

4 .

2. (x , y) = (0, 1). Alice: π
3 . Bob: π

2 . Prob they agree:

cos2(π3 −
π
2 ) = cos2(−π

6 ) = (
√
3
2 )2 = 3

4 .

3. (x , y) = (1, 0). Alice: 0. Bob: π
6 . Prob they agree:

cos2(π6 − 0) = cos2(π6 ) = 3
4 .

4. (x , y) = (1, 1). Alice: 0. Bob: π
2 . Prob they agree:

cos2(π2 − 0) = cos2(π2 ) = 0.
So prob they do not agree is 1.

Hence the prob of a win is
1
4 ×

3
4 + 1

4 ×
3
4 + 1

4 ×
3
4 + 1

4 × 1 = 13
16 = 0.8125.
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What Does This Mean?

1. Physicists have actually done this in the lab.

2. This is evidence that quantum mechanics is correct.

3. There are things we can do better in the quantum world than
in the classical world.
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Can We Do Better?

We have shown the following:
If Alice and Bob share an EPR pair then Alice and Bob have
a strategy that wins the CHSH game with Prob 0.8125

Assume Alice and Bob share an EPR pair.

Vote Which of the following is true:

1. Alice and Bob have a strategy that wins the CHSH game with
Prob p > 0.8125 and this is known.

2. The best Alice and . . . can do is 0.8125 and this is known.

3. The question of if Alice and Bob can do better than 0.8125 is
Unknown to Science.

Answer on the next slide.
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Alice and Bob Can Do Better than 0.8125

Alice and Bob share an EPR pair.

Alice gets x , Bob gets y .

1. x = 0: Alice measures Mπ
4

(vA). a is result.

2. x = 1: Alice measures vA in the st. basis. a is result.

3. y = 0: Bob measures Mπ
8

(vB). b is result.

4. y = 1: Bob measures M 3π
8

(vB). b is result.

We analyze all four cases (x , y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
on the next slides.
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Each Scenario

Alice and Bob share an EPR pair.

1. (x , y) = (0, 0). Alice: π
4 . Bob: π

8 . Prob they agree:
cos2(π4 −

π
8 ) = cos2(π8 ) ∼ 0.853.

2. (x , y) = (0, 1). Alice: π
4 . Bob: 3π

8 . Prob they agree:
cos2(3π8 −

π
4 ) = cos2(π8 ) ∼ 0.853.

3. (x , y) = (1, 0). Alice: 0. Bob: π
8 . Prob they agree:

cos2(π8 − 0) = cos2(π8 ) ∼ 0.853.

4. (x , y) = (1, 1). Alice: 0. Bob: 3π/8. Prob they agree:
cos2(3π8 − 0) = cos2(3π8 ) = 1− cos2(π8 ).
So prob they do not agree is
1− (1− cos2(π8 )) = cos2(π8 ) ∼ 0.853.

(x , y) ∈ {(0, 0), (0, 1), (1, 0)} =⇒ Pr(WIN) = Pr(a = b) ∼ 0.853.
(x , y) = (1, 1) =⇒ Pr(WIN) = Pr(a = b) ∼ 0.853.
So
Pr(WIN) ∼ 3

4(0.853) + 1
4(0.853) = 0.853 > 0.8125.

The exact prob of winning is cos2(π8 ).
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Can Alice and Bob Do Better?

Assume Alice and Bob share an EPR pair.

Vote Which of the following is true:

1. Alice and Bob have a strategy that wins the CHSH game with
Prob p > cos2(π8 ) and this is known.

2. The best prob of winning that Alice and Bob can achieve is
cos2(π8 ) and this is known.

3. The question of if Alice and Bob can do better than cos2(π8 is
Unknown to Science.

Answer to a particular part of this problem on the Next Page
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Can Alice and Bob Do Better With a Diff Choice of
Angles?

Recall

1. First Strategy:
Alice used π

3 and 0,
Bob used π

6 and π
2 ,

and got prob of winning 0.8125.

2. Second Strategy:
Alice used π

4 and 0,
Bob used π

8 and 3π
8 ,

and got prob of winning cos2(π8 ) ∼ 0.853.

Can Alice and Bob obtain a higher prob of winning with a different
choice of angles?
Answer on the Next Page.
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Can Alice and Bob Do Better With a Diff Choice of
Angles?

No.

This can be proven solving maximizing

cos2(x0 − y0) + cos2(x0 − y1) + cos2(x1 − y0) + cos2(x1 − y1).

EVAN AND BILL- BILL ESP- CHECK ON THIS- VERIFY THIS
IS WHAT YOU NEED TO MAXIMIZE AND FIND THE MAX.
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Can Alice and Bob Do Better With a Diff
Approach? More EPR-Pairs?

In 1980 Tsirelson proved the following:
Even allowing Alice and Bob to share many EPR pairs, there
is no strategy that gives a prob of winning > cos2(π8 ).
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Final Thoughts

1. Classically: There is a strategy for CHSH that has prob of
winning 0.75 and it is known you cannot do better than that.

2. If Alice and Bob share an EPR pair then there is a strategy
that has prob of winning cos2(π8 ) ∼ 0.853.

3. I am amazed that with a shared EPR pair Alice and Bob can
do better.

4. I am amazed that with a shared EPR pair Alice and Bob can
do so much better. I would have have thought something
like 0.75 + ε.

5. Even with many EPR pairs and any kind of strategy Alice and
Bob cannot do better than cos2(π8 ). I am not amazed this is
true, but I am amazed its been proven. (Proof is hard.)
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