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Abstract

We consider schemes for enacting task share changes—a process called reweighting—on real-time multiprocessor platforms. Our
particular focus is reweighting schemes that are deployed in environments in which tasks may frequently request significant share
changes. Prior work has shown that fair scheduling algorithms are capable of reweighting tasks with minimal allocation error; this
source of error is defined by comparing to an ideal allocation scheme. However, such algorithms do so at the expense of potentially
high task-migration overheads. While in theoretical research it is common to ignore migration overheads, they actually constitute an
additional source of error. With frequent and significant share changes, task migrations cannot be entirely prevented, if reasonable
allocation error is desired. However, partitioning-based schemes that allow occasional reassignments of tasks to processors have
the potential of significantly reducing migration costs. On the other hand, such schemes cannot match fair schemes with respect to
allocation error, because under partitioning, some share allocations may not be possible. In this paper, we consider the question of
whether the lower migration costs of partitioning-based schemes are sufficient to compensate for their greater allocation error. We show
that allocation error in such schemes is influenced by several factors. We suggest several approaches for dealing with these factors
and compare one of the resulting schemes to a prior fair scheme. Our conclusion is that partitioning-based schemes are capable of
providing significantly lower overall error (due to both allocation inaccuracies and migration costs) than fair schemes in the average
case. However, partitioning-based schemes are incapable of providing comparable fairness and real-time guarantees.
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1 Introduction

Real-time systems that are adaptive in nature have received con-
siderable recent attention [3, 7, 8]. In addition, multiprocessor
platforms are of growing importance, due to both hardware trends
such as the emergence of multicore technologies, and also to the
prevalence of computationally-intensive applications for which
single-processor designs are not sufficient. In a prior paper [3],
we considered the use of fair scheduling algorithms to sched-
ule highly-adaptive workloads on (tightly-coupled) multiproces-
sor platforms. Such workloads are characterized by the need to
change the processor shares of tasks frequently and to a signif-
icant extent. Fair scheduling techniques have the advantage of
ensuring good accuracy in enacting share changes, but do so at
the expense of potentially frequent task migrations among pro-
cessors. Thus, other scheduling approaches that may be less ac-
curate, but migrate tasks less frequently, may still be of interest.
In this paper, we consider the use of such approaches and consider
the tradeoff between accuracy and migration costs in detail. Our
specific focus is partitioning approaches that forbid task migra-
tions (in the absence of share changes). This focus is justified by
the wide-spread use of such approaches on multiprocessor plat-
forms. The key issue we seek to address is whether the lower
migration overheads in less migration-prone schemes is sufficient
to compensate for their lower accuracy.

Whisper. To motivate the need for this work, we consider two
example applications. The first of these is the Whisper tracking
system, which was designed at the University of North Carolina
to perform full-body tracking in virtual environments [9]. Whis-
per tracks users via an array of wall- and ceiling-mounted mi-
crophones that detect white noise emitted from speakers attached
to each user’s hands, feet, and head. Like many tracking sys-
tems, Whisper uses predictive techniques to track objects. The
workload on Whisper is intensive enough to necessitate a multi-
processor design. Furthermore, adaptation is required because the
computational cost of making the “next” prediction in tracking an
object depends on the accuracy of the previous one, as an inaccu-
rate prediction requires a larger space to be searched. Thus, the
processor shares of the tasks that are deployed to implement these
tracking functions will vary with time. In fact, the variance can
be as much as two orders of magnitude. Moreover, adaptations
must be enacted within time scales as short as 10 ms.

ASTA. Another application with similar requirements under de-
velopment at the University of North Carolina, is the DARPA-
funded ASTA video-enhancement system [2]. ASTA is capable
of improving the quality of an underexposed video feed so that
objects that are indistinguishable from the background become
clear and in full color. In ASTA, darker objects require more
computation to correct. Thus, as dark objects move in the video,
the processor shares of the tasks assigned to process different ar-
eas of the video will change. ASTA will eventually be deployed
in a military-grade full-color night vision system, so tasks will
need to change shares as fast as a soldier’s head can turn. In the
planned configuration, a 10-processor multicore platform will be
used.
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system, where M is the number of processors and X is the weight of
the heaviest task. The PAS entries are tight in the sense that in any par-
titioned scheme, there exists a system that can cause a processor to be
over-utilized by W , and in any EEVDF-based algorithm where dead-
lines can be missed by at most one quantum (like in EEVDF), drift can
be as high as REQ.

Summary of results. While the terms “share,” “weight,” and
“utilization” are often used interchangeably, we use weight to
denote a task’s desired utilization, and share to denote its ac-
tual guaranteed utilization. In each scheduling scheme we con-
sider, a task’s share is determined by its weight; in some of these
schemes, the two are always equal, while in others, they may
differ.1 We refer to the process of enacting task weight/share
changes as reweighting. Two reweighting-capable scheduling al-
gorithms are considered: a previous fair algorithm developed by
us called called PD2-OF [3], which is a derivative of the PD2 Pfair
algorithm [1]; and a new algorithm called partitioned-adaptive
scheduling (PAS), which is a derivative of Stoica et al.’s earliest-
eligible-virtual-deadline-first (EEVDF) algorithm [8]. PAS is pro-
posed herein as a good candidate partitioned algorithm.

Our results are summarized in Table 1, which lists the accu-
racy and migration cost of both schemes. Accuracy is assessed
per reweighting event in terms of two quantities, “drift” and “over-
load error,” which are measured in terms of the system’s schedul-
ing quantum size. Drift is the error, in comparison to an ideal
allocation, that results due to a reweighting event [3]. (Under
an ideal allocation, tasks are reweighted instantaneously, which
is not possible in practice.) Overload error is the error that re-
sults from a scheduler’s inability to give a task a share equal to its
desired weight. This may happen under partitioning due to pro-
cessor overloads. For example, it is impossible to assign a share
of 2/3 to each of three tasks executing on two processors. One
possibility is to assign two of the tasks to the same processor, giv-
ing each a share of 1/2. In this case, the difference between the
weight and share of these tasks would be 2/3− 1/2 = 1/6. (The
method by which we “distribute” any overload among tasks is a
non-trivial issue, which we discuss in detail in Sec. 2.) Note that
overload error is potentially more detrimental than drift: while
drift is a one-time error assessed per reweighting event, overload
error accumulates over time. As the example above suggests, un-
der partitioned schemes, we cannot guarantee nonzero overload
error, because of inevitable connections to bin-packing that arise.
Another consequence of these connections is that, even under par-
titioning, migrations can happen. This is because some reweight-
ing events may necessitate reassigning tasks to processors.

1In the proportional-share algorithm [8] that is basis of the new scheme we
propose, weights are allowed to be arbitrary rational values. For consistency, we
will always require them to range over [0, 1].
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In Table 1, REQ denotes the maximum amount of computa-
tion requested at one time by any task, and W denotes the de-
sired processor share of the (M · �1/X� + 1)st “heaviest” task
(by weight), where M is the number of processors and X is the
weight of the heaviest task. Table 1 shows that algorithms that
allow more frequent migrations, like the Pfair-based PD2-OF al-
gorithm, produce little drift and no overload error, and algorithms
that restrict the frequency of migrations can produce substantial
amounts of drift and overload error.

Pfair-based algorithms achieve the above properties by break-
ing the workload to be scheduled into quantum-length segments
called subtasks, each of which is assigned a release time and a
deadline. That is, the granularity of scheduling is much finer than
is the case when arbitrary jobs are to be scheduled. Subtasks are
scheduled on an earliest-deadline-first basis. Furthermore, dif-
ferent subtasks of a task may execute on different processors,
i.e., task migration is allowed. Accurate reweighting is possible
within such a scheduling scheme because weight changes can be
enacted in a fine-grained way by changing future subtask releases
and deadlines. (It is worth pointing out that various subtleties
arise in devising correct reweighting rules—see [3].)

Contributions. Our theoretical contributions include devising
the PAS algorithm and associated reweighting rules, and estab-
lishing the error bounds for PAS in Table 1. The question that
then remains is: for PAS and PD2-OF, how do drift and over-
load error compare to any error due to migration costs? We at-
tempt to answer this question via extensive simulation studies of
Whisper and ASTA. In these studies, real migration costs were
assumed based on actual measured values. These studies con-
firm the expectation that, if migration costs are high, then PAS
performs well in the average case; however, PD2-OF provides
stronger real-time and fairness guarantees. Given our belief that
PAS is a good candidate partitioned scheme, we conclude from
this that, in applications where migration costs are low or high
allocation accuracy is required, Pfair-based schemes are superior
to other less migration-prone approaches. (As explained later,
Whisper is such an application.) However, when average-case
performance is more important or migration costs are high, a par-
titioned scheme may be the best choice. (As we explain later,
ASTA is such an application.)

The rest of this paper is organized as follows. We begin in
Sec. 2 by discussing the PAS algorithm in greater detail, and by
establishing the properties mentioned above. Our experimental
evaluation is then presented in Sec. 3. We conclude in Sec. 4.

2 Partitioning-Based Reweighting

In this section, we more thoroughly examine the issue of reweight-
ing in partitioned systems. Because there cannot exist an optimal
scheduling algorithm under partitioning, we focus our attention
on different heuristic tradeoffs that can minimize different sources
of error. Before we discuss these tradeoffs in detail, we first con-
sider a fundamental limitation of all partitioning algorithms.

2.1 Limitations of Partitioning Schemes

Under any partitioning scheme, there exist feasible task systems
that are not schedulable, even in the absence of weight changes.
A commonly-cited example of this, mentioned earlier, is a two-
processor system with three identical periodic tasks with an ex-
ecution cost of 2.0 and a period of 3.0. Two of the initial jobs
must execute on the same processor, thus over-utilizing it. There
are two approaches for handling this problem. First, we could cap
the total utilization of all tasks in the system. Unfortunately, un-
der any M -processor partitioning scheme, a cap of approximately
M/2 is required in the worst case [4], which means that as much
as half the system’s processing capacity could be lost. The other
approach is to assign some tasks shares that are less than their de-
sired weights so that no processor is over-utilized. Although this
approach may not be able to guarantee each task its weight, the
system’s overall capacity does not have to be restricted, which is
a significant advantage in computationally-intensive systems like
Whisper and ASTA. Moreover, allowing task shares to be some-
what malleable circumvents any bin-packing-like intractabilities
that might otherwise arise—with frequent weight changes, such
intractabilities would have to be dealt with frequently at run-time.
Note that we are still able to offer some service guarantees (al-
beit weaker than PD2-OF) with this approach, as discussed later
in Sec. 2.2. (In particular, for applications where W in Table 1
is low, the resulting share guarantees may be acceptable.) For
these reasons, we use this approach in the schemes we propose.
To the best of our knowledge, we are the first to suggest us-
ing such an approach to schedule dynamically-changing multi-
processor workloads. The fundamental limitation of partitioned
schemes noted above is formalized below.

Theorem 1. For any partitioned scheduling algorithm, any value
ε, where 0 < ε < 0.5, and any integers M and k such that M ≥ 2
and k ≥ M + 1, there exists an M -processor task system τ with
k tasks such that at least one processor must be initially assigned
tasks with total weight at least 1 + W − ε, where W is the weight
of the

(
M · ⌊ 1

X

⌋
+ 1

)st
heaviest task and X is the weight of the

heaviest task.2

Proof. Let the M heaviest tasks have weight X = 1 − ε, and let
the (M+1)st heaviest task have weight W = min(M ·ε−δ, 1−ε),
where δ < ε. Let the total weight of the remaining k − (M + 1)
tasks be δ. (For example, if ε = 1/3, k = 3, and M = 2,
then the system consists of three tasks of weight 2/3.) At least
one processor is initially assigned two tasks with total weight at
least 1 − ε + W , and thus is over-utilized by W − ε. Since ε <
0.5, M · ⌊

1
X

⌋
+ 1 = M + 1. Hence, W is the weight of the

(M · ⌊ 1
X

⌋
+ 1)st heaviest task, as required.

2.2 Elements of Repartitioning

In the remainder of this section, we develop the PAS algorithm.
PAS is a derivative of the earliest-eligible-virtual-deadline-first
(EEVDF) algorithm of Stoica et al. [8], with three major differ-
ences. First, PAS is designed for multiprocessor systems. Second,

2This theorem can be easily extended to the case where ε ≥ 0.5; however, due
to space constraints we omit this extension and its proof.
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PAS can enact weight changes with constant drift. (EEVDF can
do so only by severely limiting the situations under which tasks
may reweight.) Third, PAS can be employed along with any of
several approaches for minimizing overall overload error.

Under PAS, a task T requests processing time of an arbitrary
size. The size of the ith request of task T is denoted req(T, i).
A task is considered active if it has an unsatisfied request, and is
passive, otherwise. The set of active tasks at time t is denoted
A(t). PAS schedules the tasks on each processor on an earliest-
deadline-first basis. Moreover, when a task is scheduled under
PAS, it is guaranteed at least q units of computation time, where q
denotes the scheduling quantum size; however, a task may relin-
quish its processor within a quantum thus allowing another task
to execute. Since we allow a task’s weight to vary with time, we
denote the weight of a task T at time t as wt(T, t). A task T
reweights at time t if wt(T, t − ε) �= wt(T, t) where ε → 0+.
Furthermore, a task T ’s weight at time t is required to satisfy the
following property.

(∀T, t :: 0 < minwt(T ) ≤ wt(T, t) ≤ maxwt(T ) ≤ 1) (1)

In this expression, minwt(T ) and maxwt(T ) denote, respectively,
the minimum and maximum allowable weight of T (while active).
As a shorthand, we use the notion T :[x, y] to denote a task T with
minwt(T ) = x and maxwt(T ) = y, and T :z to denote a task T
with minwt(T ) = maxwt(T ) = z.

Any partitioned-based reweighting scheme must address four
concerns: (i) assigning tasks to processors; (ii) determining the
processor share of each task; (iii) determining the conditions that
necessitate a repartitioning; and (iv) scheduling tasks in accor-
dance with their assigned shares. We consider each in turn.

Assigning tasks to processors. The problem of assigning tasks
to processors is equivalent to the NP-hard bin-packing problem.
Given that reweighting events may be frequent, an optimal assign-
ment of tasks to processors is not realistic to maintain. In PAS, we
partition N tasks onto M processors in O(M +N log N) time by
first sorting them by weight from heaviest to lightest, and by then
placing each on the processor that is the “best fit” (this partition-
ing method is called descending best-fit). We chose this method
because it falls within a class of bin-packing heuristics called rea-
sonable allocation decreasing, which has been shown by Lopez
et al. to produce better packings than other types of heuristics [6].
Most importantly, the “descending best-fit” strategy can guaran-
tee that no processor is over-utilized by more than W , where W

is the weight of the
(
M · ⌊ 1

X

⌋
+ 1

)st
“heaviest” task and X is

the weight of the “heaviest” task, which is the same limit stated
in Thm. 1. Also, under this strategy no processor is over-utilized
by more than the weight of the lightest task assigned to it.

Determining task shares. We now consider the problem of de-
termining task shares on over-utilized processors. As mentioned
earlier, we have chosen to restrict the shares of such tasks rather
than rejecting tasks from the system. However, it is not immedi-
ately obvious how to best assess the overall error that results from
overload. (Note that the notion of “overload error” is the same as
defined earlier. The issue here is how to assess the overall impact
of the various overload errors experienced by different tasks.) We

consider four different metrics for doing this, and for each, we
define a method for determining task shares based on that metric.
As a shorthand, we use sh(T, t) to denote task T ’s share at time
t. A summary of the four metrics is given in Table 2. In describ-
ing these metrics, we assume that P is an over-utilized processor
at time t, T is a task assigned to it at t, and n is the number of
such tasks. Many of the claims that are stated below are true only
if P is not over-utilized by more than the weight of its lightest
assigned task, so we assume this as well. (However, such claims
can be easily adjusted to accommodate P being over-utilized by
more than the weight of its lightest task.)

The first two metrics are based on absolute differences be-
tween weights and shares. The maximal absolute overall error
(MAOE) is given by max{wt(T, t)− sh(T, t)}. To minimize this
metric, the expressed difference should be the same for every task.
For example, if five tasks are assigned to a processor that is over
utilized by 0.2, then each task’s share should be 0.2/5 less than its
weight. The other absolute metric, the average absolute overall
error (AAOE), is given by

∑
T (wt(T, t) − sh(T, t))/n. It is easy

to show that this metric is minimized whenever all task shares
sum to one. Since this would be ensured by any reasonable share-
assignment strategy, this metric is not interesting.

The next two metrics are based on relative differences be-
tween weights and shares. The maximal relative overall error
(MROE) is given by max{(wt(T, t) − sh(T, t))/wt(T, t)}. This
metric is minimized when all task shares are scaled by the same
value. For example, if a set of tasks over-utilizes a processor
by 0.2, then each task’s share would be 1/1.2 times its weight.
This scaling is the same as the proportional-share scaling used in
EEVDF [8]. The final metric is the average relative overall error
(AROE), which is given by [

∑
T (wt(T, t)−sh(T, t))/wt(T, t)]/n.

This metric is minimized when the heaviest task’s share is less
than its weight by the amount by which P is over-utilized, and
the share of every other task equals its weight. For example, if
four tasks A, B, C, and D with weights 0.5, 0.2, 0.2, and 0.2,
respectively, are assigned to a processor, then A’s share would be
0.5− 0.1 (the processor is over-utilized by 0.1), and B, C, and D
would each have a share of 0.2.

If task shares are chosen to minimize the MROE metric, then
the AROE metric can be shown to be within (

√
n · wt(T, t) −

1)2/(n · wt(T, t)) of the optimal value stated for it, where T is
the heaviest task. Additionally, if task shares are chosen to min-
imize the AROE metric, then the MROE metric can be shown to
be within (n · wt(T, t) − 1)(n − 1)/(n · wt(T, t)) of its optimal
value, where T is the heaviest task. (Due to page limitations,
these formulas are derived only in the full version of this paper.)

In the share-calculation methods described so far, the loss to
system utility is measured solely based on the difference (be it ab-
solute or relative) between a task’s weight and share. However, in
some applications, such a value may not truly capture the loss of
utility. For example, suppose that Whisper were implemented so
that when hand and feet positions cannot be precisely calculated
in time, these positions can be estimated based on the position
of the user’s head. Then, there could be a great loss of utility
if the tasks monitoring the head receive insufficient shares, but
much less loss if the tasks monitoring the hands and feet do. In
such a case, it may be desirable for the application developer to
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Metric Name Metric Formula Optimal Share Assignment
MAOE max{T on P : wt(T, t) − sh(T, t)} sh(T, t) = wt(T, t) − ω(P, t)/n
AAOE

∑
T on P (wt(T, t) − sh(T, t))/n

∑
T on P sh(T, t) = 1

MROE max
{

T on P : wt(T, t)−sh(T, t)
wt(T, t)

}
sh(T, t) = wt(T, t)

P
K∈P wt(K, t)

AROE
∑

T on P

(
wt(T, t)−sh(T, t)

wt(T, t)

)
/n sh(T, t) =

{
ω(P, t) if T is the heaviest task on P at t
wt(T, t) otherwise

Table 2: Four metrics for assessing overload-based error. ω(P, t) denotes
`P

T on P wt(T, t)
´ − 1, and n is the number of tasks assigned to P at

time t. The optimal share assignments apply if P is over-utilized at t, and is not over-utilized by more than the weight of the lightest task on P .

formalize the utility loss as a function of the weight and share of
each task. This formalization could potentially be used to deter-
mine shares by solving an optimization problem. As we will see
shortly, PAS is flexible enough to be able to use such share values
(though a few subtle issues do arise in this case).

Repartitioning. As tasks are reweighted, the likelihood of pro-
cessors becoming substantially over-utilized increases dramati-
cally, creating significant overall error (however assessed) on these
processors. The extent of overall error can be controlled by repar-
titioning the system. In order to give the user control over migra-
tion overhead, we introduce two methods of repartitioning: (i) α-
partitioning and (ii) k-task-partitioning; α and k are user-defined
values, as discussed below. Both alternatives function in a similar
manner: if some tasks reweight and this causes some user-defined
condition to be violated, then the system is reset. When the sys-
tem is reset, the set of tasks is repartitioned (using the descending
best-fit method described earlier) and all active tasks issue a new
request. Under α-partitioning, the system is reset if any processor
is over-utilized by at least α. Under k-task-partitioning, the sys-
tem is reset if a processor is over-utilized by at least the weight
of the kth lightest task on that processor. Note that if some tasks
accumulate too much overall error over time, then it may be de-
sirable to trigger a reset, and when the system is repartitioned, use
a slightly modified descending best-fit algorithm that discourages
the assignment of these tasks to over-utilized processors.

2.3 Scheduling and Reweighting

In this section, we describe how PAS schedules and reweights
tasks. To simplify the discussion, we assume that task shares are
determined by the MROE metric; later, we explain the adjust-
ments necessary to determine task shares by any metric. Recall
that under the MROE metric the share of a task T on a over-
utilized processor P at time t is given by

sh(T, t) =
wt(T, t)∑

K∈A(t,P ) wt(K, t)
, (2)

where A(t, P ) is the set of tasks that are active at t on P . PAS
schedules tasks in accordance with (2) even when P is under-
utilized. Thus, PAS will fully utilize any processor to which a task
has been assigned. Such a property is advantageous in systems
like Whisper and ASTA, which can use more processor time to

refine computations. To assess allocation accuracy, we consider
the true ideal allocation of a task T up to time t, given by

true ideal(T, t) =
∫ t

0

sh(T, u)du. (3)

As a shorthand we denote the true ideal allocations of the ith re-
quest of task T up to time t as true ideal(T, t, i), which is for-
mally defined as

∫ t

r(T,i)
sh(T, u)du, where r(T, i) is the release

time of the ith request of task T , formally defined below. We de-
note the actual allocation of T up to time t by S(T, t), and use
S(T, t, i) to represent the amount of T ’s ith request completed by
time t.

Before continuing, we introduce an additional notion of weight
that is useful when reweighting tasks. When a task changes weight,
there can be a difference between when it initiates the change and
when the change is enacted. The time at which a weight change
is initiated is a user-defined time; the time at which the change
is enacted is dictated by a set of conditions discussed shortly. If
these points in time differ, the old weight is used in between. So
that we can distinguish a task’s desired weight from that actu-
ally used in such an interval, we define the scheduling weight of a
task T at time t, denoted swt(T, t), as wt(T, u), where u is the last
time at or before t that a weight change was enacted for T . We
define the scheduling(-weight-based) ideal allocation of a task T

up to time t as sched ideal(T, t) =
∫ t

0

swt(T, u)
P

K∈A(u,P )swt(K,u)
du.

As a shorthand we denote the scheduling ideal allocation of the
ith request of task T up to time t as sched ideal(T, t, i), which is

formally defined as
∫ t

r(T,i)

swt(T, u)
P

K∈A(u,P )swt(K,u)
du.

Releases and deadlines. Under PAS, it is possible for the dead-
line of a request to vary with time. Hence, we denote the deadline
of the ith request of task T at time t as d(T, i, t), and as a short-
hand, we use d(T, i) to denote the time u such that u = d(T, i, u).
The release r(T, i) and deadline d(T, i, t) (at time t) of the ith

request of task T are derived as follows, where ar(T ) is the
arrival time of the first request of T and id rem(T, t, i) is the
remaining computation of the ith request of task T at t in the
scheduling ideal system, defined as id rem(T, t, i) = req(T, i) −
sched ideal(T, t, i).

r(T, 1) = ar(T ) (4)
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d(T, i, t) = t +

∑
K∈A(t,P ) swt(K, t)

swt(T, t)
· id rem(T, t, i) (5)

r(T, i + 1) = d(T, i) (6)

In the expression added to t to determine d(T, i, t), the first term
is a scaling factor, which is the reciprocal of T ’s share, computed
using scheduling weights.

Reweighting. We now introduce two new PAS reweighting rules
that are PAS extensions of the PD2-OF reweighting rules pre-
sented by us previously [3]. These rules work by modifying future
release times and deadlines and are quite different from reweight-
ing rules considered perviously for EEVDF-based schemes.

Suppose that task T initiates a weight change from weight
w to weight v at time tc. Let i be the request of T satisfying
r(T, i) ≤ tc < d(T, i). If req(T, i) − S(T, t, i) > 0, then let
ac rem(T, t, i) = req(T, i)−S(T, t, i); otherwise, ac rem(T, t, i)
= req(T, i + 1). Note that ac rem(T, t, i) denotes the actual re-
maining computation in T ’s current request or the size of T ’s
next request if the current request has been completed. The lag
of the ith request of task T at time t is defined as lag(T, t, i) =
sched ideal(T, t, i)−S(T, t, i). T ’s lag is positive (negative) if its
actual allocation is behind (ahead) its scheduling ideal allocation.
The choice of which rule to apply depends on T ’s lag at time tc.
We say that task T is positive changeable at time tc from weight w
to v if lag(T, tc, i) ≥ 0, and negative changeable at time tc from
weight w to v, otherwise. Because T initiates its weight change at
tc, wt(T, tc) = v holds; however, T ’s scheduling weight does not
change until the weight change has been enacted, as specified in
the rules below. Note that if tc occurs between the initiation and
enaction of a previous reweighting event of T , then the previous
event is skipped, i.e., treated as if it had not occurred. As we will
shortly discuss, any “error” associated with skipping a reweight-
ing event like this is accounted for when determining drift.

Rule P: If T is positive-changeable at time tc from w to v,
then one of the two actions is taken: (i) if ac rem(T, tc, i)/v ≤
id rem(T, tc, i)/w, then T ’s current request i is halted, its weight
change is enacted, and a new request of size ac rem(T, tc, i) is
issued for it with a release time of tc; (ii) otherwise, no action is
taken until time d(T, i), at which point the weight change is en-
acted (i.e., the scheduling weight does not change until the end of
the current request).

Rule N: If T is negative-changeable at time tc from w to v, then
one of two actions is taken: (i) if v > w, then T ’s current request
is halted, its weight change is enacted, and a new request of size
ac rem(T, tc, i) is issued for it with a release time equal to the
time t at which lag(T, t, i) = 0 holds; (ii) otherwise, the weight
change is enacted at time d(T, i).

Intuitively, Rule P changes a task’s weight by halting its cur-
rent request and issuing a new request of size ac rem(T, tc, i)
with the new weight, if doing so would improve its scheduling
priority. Note that at time t the ith request of task T has a higher

scheduling priority than the jth request of task K if
id rem(T, t, i)

swt(T, t)

≤ id rem(K, t, j)
swt(K, t) . Hence, if

ac rem(T, tc, i)
v ≤ id rem(T, tc, i)

w ,

then halting T ’s current request and issuing a new request of
size ac rem(T, tc, i) will either improve or maintain T ’s schedul-
ing priority. A (one-processor) example of a positive-changeable
task is given in Fig. 1(a). The depicted example consists of four
tasks: T :1/2, which leaves the system at time 2, K:1/6, W :1/6,
and V , with an initial weight of 1/6 that increases to 4/6 at time
2. Note that, since K, W , and V have the same deadline, we
have arbitrarily chosen V to have the lowest priority. In inset
(a), V is positive-changeable since at time 2 it has not yet been
scheduled. Note that halting V ’s current request and issuing a
new request of size one improves V ’s scheduling priority, i.e.,
ac rem(V, 2, 1)

4/6 = 6
4 < 4 = id rem(V, 2, 1)

1/6 . Notice that the sec-

ond request of V is issued 6/4 quanta after time 2. This spacing
is in keeping with a new request of weight 4/6 issued at time 2.

Rule N changes the weight of a task by one of two approaches:
(i) if a task increases its weight, then Rule N adjusts the release
time of its next request so that it is commensurate with the new
weight; (ii) if a task decreases its weight, then Rule N waits un-
til the end of its current request and then issues the next request
with a deadline that is commensurate with the new weight. A
(one-processor) example of a negative-changeable task that in-
creases its weight is given in Fig. 1(b). The depicted example
consists of the same tasks as in (a), except that we have chosen
V to have the highest priority. Notice that the second request of
V is issued at time 3, which is the time such that lag(V, 3, 1) =∫ 3

0

swt(V, u)
P

K∈A(u,p) swt(K,u)du − S(V, 3, 1) = 1 − 1 = 0. Note that

by (5) and (6) the deadline (release time) of the ith ((i + 1)st ) re-
quest of a task T is given by r(T, i)+req(T, i)/(swt(T, r(T, i))),
assuming all scheduling weights sum to 1.0. Hence, if a task
of weight v were to issue a request of size id rem(T, tc, i) at
time tc, then the release time of its next request would be tc +
id rem(T, tc, i)/v. (Note that if the scheduling weights do not
sum to 1.0, then the deadline must be adjusted accordingly.) A
(one-processor) example of a negative-changeable task that de-
creases its weight is given in Fig. 1(c). The depicted example
consists of the same four tasks except that V has an initial weight
of 4/6 and decreases its weight at time 1, and T joins the system
as soon as V ’s weight change is enacted.

Theorem 2. Let d(T, i) be the deadline of the ith request of a task
T in a PAS-scheduled system with a quantum size of q where tasks
are reweighted by Rules P and N. Then, this request is fulfilled by
time d(T, i) + q.3

Proof Sketch. Barring reweighting events that force migration,
PAS is used independently on each processor. When migrations
do occur, the system introduces tasks onto each processor in a
manner in keeping with a valid uniprocessor PAS schedule. Hence,
we can reduce the correctness of multiprocessor PAS to that of
uniprocessor PAS. Since PAS is an EEVDF-derived algorithm,

3Deadline tardiness is acceptable, as long as tardiness bounds are reasonably
small in comparison to the expected interval length between reweighting events.
Otherwise, a task could be repeatedly reweighted before getting a chance to exe-
cute with its old weight, which is clearly problematic. Fortunately, in most sys-
tems, the quantum size is a settable parameter.
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Figure 1: A one-processor system consisting of four tasks, T :[0, 1/2], K:1/6, W :1/6, and V :[1/6, 4/6]. The dotted lines represent the interval
up to V ’s next deadline, which due to reweighting has been changed (as indicated by the solid arrow). The drift and true ideal allocation for V are
labeled as a function of time across the top. (a) The PAS schedule for the scenario where T is in the system initially and leaves at time 2, V has an
initial weight of 1/6 and increases to 4/6 at time 2, and V has a lower priority than both K and W . Since V is not scheduled by time 2, it has positive
lag and changes its weight via Rule P, causing the deadline of its current task to become 9/2 and its drift to become 2/6. (b) The same scenario as in
(a) except that V has higher priority than both K and W . Since V has been scheduled by time 2, it has negative lag and changes its weight via Rule
N, causing its next request to have a release time of 3 while maintaining a drift of zero. (c) T joins the system at time 6/4 and V has an initial weight
of 4/6 that decreases to 1/6 at time 1. Since V has negative lag at time 1, it is changed via Rule N, causing V ’s next request to have a deadline of 15/2
and V to have a drift of −3/12. Note that all requests are of size one.

we can thus use the same proof techniques that Stoica et al. [8]
used to show that the request of task T under a PAS-scheduled
system fulfills its request by q + d(T, i).

Drift. We now turn our attention to the issue of measuring “drift”
under PAS. For most real-time scheduling algorithms, the dif-
ference between the true ideal and actual allocation a task re-
ceives lies within some bounded range centered at zero. For ex-
ample, under PAS (without reweighting), the difference between
true ideal(T, t) and S(T, t) lies within (−REQ ,REQ). When
a weight change occurs, the same bounds are maintained, except
that they may be centered at a different value. For example, con-
sider again Fig. 1. In inset (a), V ’s releases and deadlines are
commensurate with its new weight starting at time 7/2. Its actual
allocation up to this time is 1.0, while its true ideal allocation is
8/6. Thus, 2/6 of its true ideal allocation has been permanently
“lost.” This lost allocation is called its drift. Given this loss,
barring further reweighting events, the difference between T ’s
true ideal and actual allocations will henceforth be maintained be-
tween −4/6 and 8/6 (assuming a maximum request size of one).
In general, a task’s drift per reweighting event will be nonneg-
ative (nonpositive) if it increases (decreases) its weight. Under
PAS, the drift of a task T at time t is formally defined as

drift(T, t) = true ideal(T, u) − S(T, u), (7)

where u is the earliest time at which T may issue a new request
at or after its most recent weight change.

Theorem 3. The absolute value of per-event drift under PAS is
less than REQ, where system resets (i.e., repartitionings) are con-
sidered reweighting events.

Proof Sketch. We first show that the absolute value of drift is less
than REQ drift on a uniprocessor (where obviously no system
resets occur). If a task T changes its weight at time tc via Rule P,

then when this weight change is enacted at time te (i.e., at tc under
case (i), or at d(T, i) under case (ii)), it is as though an amount
of computation equal to true ideal(T, te, i)−S(T, te, i) is “lost,”
resulting in drift. (For example, in Fig. 1(a), true ideal(T, 2, 1)−
S(T, 2, 1) = 2/6, thus that computation is “lost” causing V to
drift by 2/6.) Since this value (per reweighting event) is always
less than REQ, the absolute value of drift is less than REQ.

If a task T , during its ith request, changes its weight at time
tc via Rule N and T decreases its weight (case (ii)), then it is
as though T leaves with its old weight and rejoins with its new
weight at d(T, i). (Stoica, et al. proved that a task can leave at
a time t if it has equal scheduling ideal and actual allocations.)
If T increases its weight (case (i)), then it incurs zero drift since
it immediately changes the eligibility time of its next request in
a manner that is consistent with its new weight. Either way, the
absolute value of the drift incurred by this reweighting event is
less than REQ . (Notice that in Fig. 1(b), V ’s drift is 0, while in
(c), it is −3/12.)

On a multiprocessor, the key is to show that each system reset
induces per-task drift in the range (−REQ ,REQ). If the first
reweighting event is a reset, then each task’s drift is bounded
by its lag at that time, which lies in the range (−REQ ,REQ).
The drift due to resets that follow other reweighting events can be
calculated similarly, after first accounting for drift introduced by
those prior events.

Unexpected over-utilization. Recall that, according to rules P
and N, a reweighting event may be initiated and enacted at differ-
ent times. It is not difficult to show that this delay is inherent in
any reweighting scheme with bounded deadline tardiness. Such
delays are particularly problematic when multiple tasks initiate
reweighting events simultaneously and weight decreases are nec-
essary to offset weight increases. Consider, for example, Fig. 2,
which depicts a one-processor PAS schedule consisting of five
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Figure 2: A one-processor system consisting of five tasks, T :[0, 1/3], K:1/6, W :1/6, X:1/6, and V :[1/6, 1/2]; T has an initial weight of 1/3 and
V has an initial weight of 1/6. At time 1, task T initiates a weight decrease, and task V would like to increase its weight to 1/2. (a) Task V does
not initiate its weight increase until T has enacted its weight decrease (at time 3). (b) Task V initiates its weight increase at time 1, thus reducing
the processor share of every other task in the system. The first part of this inset depicts the schedule before time 1, and the second part depicts the
schedule at and after time 1. The period of over-utilization is marked for both insets. Notice that in inset (a) tasks K, W , and X receive more
allocations over the range [0, 7] than in inset (b); however task V receives more allocations over the range [0, 7] in (b) than in (a). Also, sum of
weights in the system is never more than one, yet the system is over-utilized with respect to all reweighting events not yet enacted of the range [2, 3]
in inset (a) and [2, 11/3] in (b).

tasks: T with a weight 1/3 that initiates a weight decrease to zero
at time 1; K, W , and X with weight 1/6; and V with an initial
weight of 1/6 that attempts to increase its weight to 1/2 at time 1.
Note that, by rule P, T cannot enact its weight decrease immedi-
ately; hence, if V is allowed to increase its weight, the system
will be over-utilized even though all weights sum to one. In these
situations, we have two options: (i) delay initiating a weight in-
crease until enough weight decreases have been enacted to com-
pensate for the increase (as illustrated in Fig. 2(a)); or (ii) let the
system become temporarily over-utilized and reduce the share of
each task in proportion to its weight (as illustrated in Fig. 2(b)).
Note that method (ii) will initiate weight increases sooner than
(i); however, method (ii) will take longer than method (i) to enact
weight decreases and during this time all tasks that do not change
their weight will be penalized. Because of these tradeoffs, neither
method is inherently superior, and the choice of which method to
use in an implementation depends on the target application.

Adjusting PAS for use with any metric. In order to allow PAS
to determine task shares via any non-MROE metric, we must
make some small changes to the algorithm. Before we continue,
note that following property holds for the MROE metric:

QS (queue stability): At any reweighting event on a processor
P , the share of each non-reweighting task assigned to P
changes by the same multiple: old

new , where old (new) is the
total weight of all tasks assigned to P immediately before
(after) the reweighting event.

Recall that rules P and N function by changing the future releases
and deadlines of a reweighted task. Such a task must be reinserted
into the scheduler’s priority queue. Since QS guarantees that the
shares of all non-reweighted tasks change by the same multiple,
these tasks already appear in the queue in the correct order, so
they do not have to be reinserted into the priority queue via a rule
like P or N. (Moreover, if the concept of virtual time is introduced,
then the deadlines of such tasks do not have to be recomputed [8].)

For example, suppose that four tasks A, B, C, and D with
weights 0.5, 0.2, 0.2, and 0.2, respectively, are assigned to a pro-
cessor, and at some time, D changes its weight to 0.3. Under
the MROE metric, D’s weight change causes A’s share to change
from 0.5/1.1 to 0.5/1.2, and the share of both B and C to change
from 0.2/1.1 to 0.2/1.2. Thus the shares of A, B, and C all
change by the same factor, 1.1/1.2 (the old total weight divided
by the new total weight).

Under metrics that are not equivalent to MROE, QS does not
hold. Consider the same example as above except that the AROE
metric is used. Then, A’s share changes from 0.5−(1.1−1) = 0.4
to 0.5−(1.2−1) = 0.3, while the shares of both B and C remain
at 0.2. Thus, A and B (as well as A and C) change shares by a
different multiple. As a result, A (or both B and C) must change
its (their) share by a rule (i.e., P or N) that reinserts it (them) into
the scheduler’s priority queue. Due to page limitations, we refer
the reader to the full version of this paper for a detailed explana-
tion of how rules P and N can be adapted to explicitly change the
share of a task that does not change its weight.

One important consequence of explicitly having to update the
share of a non-reweighted task (via rule P or N) is that such a
task can incur drift. This problem is not unique to PAS. Indeed,
under any reweighting scheme, if non-reweighted tasks require
share changes by different multiples, then some such tasks will
incur drift. (This statement can be justified by extending our prior
work [3], which illustrated that drift is fundamental on Pfair-
scheduled systems.) Hence, the MROE metric has an inherent
advantage since, in the absence of system resets, it can guarantee
that the only tasks that incur drift are those that change weight.

Complications with partitioned scheduling. A major compli-
cation with the way we have defined partitioned scheduling is
handling tasks that require share guarantees—we call such tasks
hard tasks. As discussed earlier, the only way to provide such
guarantees is to limit the total weight of all tasks in the sys-
tem. However, this brings up the question: what if only a hand-
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ful of tasks require share guarantees? If the total utilization of
all hard tasks is less than M/4, where M is the number of pro-
cessors, then we can guarantee shares for these hard tasks and
maintain a utilization cap of M by using the following modified
bin-packing algorithm. First, we assign the hard tasks to as few
processors as possible without over-utilizing any processor using
a “descending first-fit” strategy. Second, we assign the remain-
ing tasks to processors using a “descending best-fit” strategy with
one modification—processors that contain hard tasks cannot be
over-utilized. With this change, processors that do not contain
hard tasks may be over-utilized by more than the weight of their
lightest task. However, since the descending first-fit algorithm
will assign hard tasks to at most M/2 processors, none of the re-
maining M/2 processors will be over-utilized by more than the
combined weight of its two lightest tasks. Furthermore, if we
know the weight of the heaviest hard task, then we can construct
a more permissive bound based on the weight of the heaviest task
that can guarantee the share of every hard task and allow the total
weight of all hard tasks to exceed M/4. (Due to page limitations,
we present this bound in the full paper.)

Time complexity. As noted earlier, the time complexity for PAS
to partition N tasks onto M processors is O(M + N log N). If
we were to implement PAS using binomial heaps, then the time
complexity to make a scheduling decision on a processor P is
O(log n), where n is the number of tasks assigned to P . Recall
that when a task changes its weight using either rule P or N, it is
reinserted into its processor’s priority queue. Thus, O(log n) time
is required to change a task’s weight via rule P or N.

As a final comment regarding PAS, we are not claiming that
it be viewed as the final word regarding partitioned reweighting
schemes. However, we have tried hard to devise reasonable ap-
proaches for dealing with the fundamental limitation discussed
earlier to which such schemes are subject. Thus, we believe that
PAS is a good candidate partitioning approach, as claimed ear-
lier.

3 Experimental Results

The results of this paper are part of a longer-term project on
adaptive real-time allocation in which both the human-tracking
system, Whisper, and the video-enhancement system, ASTA, de-
scribed in the introduction, will be used as test applications. In
this section, we provide extensive simulations of Whisper and
ASTA as scheduled by both PD2-OF and PAS.

Whisper. As noted earlier, Whisper tracks users via speakers
that emit white noise attached to each user’s hands, feet, and
head. Microphones located on the wall or ceiling receive these
signals and a tracking computer calculates each speaker’s distance
from each microphone by measuring the associated signal delay.
Whisper is able to compute the time-shift between the transmit-
ted and received versions of the sound by performing a correla-
tion calculation on the most recent set of samples. By varying the
number of samples, Whisper can trade measurement accuracy for
computation—with more samples, the more accurate and more

computationally intensive the calculation. As a signal becomes
weaker, the number of samples is increased to maintain the same
level of accuracy. As the distance between a speaker and mi-
crophone increases, the signal strength decreases. This behavior
(along with the use of predictive techniques mentioned in the in-
troduction) can cause task shares changes of up to two orders of
magnitude every 10 ms. Since Whisper continuously performs
calculations on incoming data, at any point in time, it does not
have a significant amount of “useful” data stored in cache. As
a result, migration costs in Whisper are fairly small (at least, on
a tightly-coupled system, as assumed here, where the main cost
of a migration is a loss of cache affinity). In addition, fairness
and real-time guarantees are important due to the inherent “tight
coupling” among tasks that is required to accurately perform tri-
angulation calculations.

ASTA system. Before describing ASTA in detail, we review
some basics of videography. All video is a collection of still
images called frames. Associated with each frame is an expo-
sure time, which denotes the amount of time the camera’s shutter
was open while taking that frame. Frames with faster exposure
times capture moving objects with more detail, while frames with
slower exposure times are brighter. If a frame is underexposed
(i.e., the exposure time is too fast), then the image can be too dark
to discern any object. The ASTA system can correct underex-
posed video while maintaining the detail captured by faster expo-
sure times by combining the information of multiple frames. To
intuitively understand how ASTA achieves this behavior, consider
the following example. If a camera, A, has an exposure time of
1/30th of a second, and a second camera, B, has an exposure time
of 1/15th of a second, then for every two frames shot by camera
A the shutter is open for the same time as one frame shot by B.
ASTA is capable of exploiting this observation in order to allow
camera A to shoot frames with the detail of 1/30th of a second
exposure time but the brightness of 1/15th of a second exposure
time. As noted earlier, darker objects require more computation
than lighter objects to correct. Thus, as dark objects move in the
video, the processor shares of tasks assigned to process different
areas of the video will change. As a result, tasks will need to
adjust their weights as quickly as an object can move across the
screen. Since ASTA continuously performs calculations based on
previous frames, it performs best when a substantial amount of
“useful” data is stored in the cache. As a result, migration costs
in ASTA are fairly high. In addition, while strong real-time and
fairness guarantees would be desirable in ASTA, they are not as
important here as in Whisper, because tasks can function some-
what independently in ASTA.

Experimental system set up. Unfortunately, at this point in
time, it is not feasible to produce experiments involving a real
implementation of either Whisper or ASTA, for several reasons.
First, both the existing Whisper and ASTA systems are single-
threaded (and non-adaptive) and consist of several thousands of
lines of code. All of this code has to be re-implemented as a
multi-threaded system, which is a nontrivial task. Indeed, be-
cause of this, it is essential that we first understand the schedul-
ing and resource-allocation trade-offs involved. The development
of PD2-OF and PAS can be seen as an attempt to articulate these
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tradeoffs. Additionally, the focus of this paper is on scheduling
methods that facilitate adaptation—we have not addressed the is-
sue of devising mechanisms for determining how and when the
system should adapt. Such mechanisms will be based on issues
involving virtually-reality and multimedia systems that are well
beyond the scope of this paper. For these reasons, we have cho-
sen to evaluate the schemes discussed in this paper via simula-
tions of Whisper and ASTA. While just simulations, most of the
parameters used here were obtained by implementing and tim-
ing the scheduling algorithms discussed in this paper and some
of the signal-processing and video-enhancement code in Whisper
and ASTA, respectively, on a real multiprocessor testbed. Thus,
the behaviors in these simulations should fairly accurately reflect
what one would see in a real Whisper or ASTA implementation.

For both Whisper and ASTA, the simulated platform was as-
sumed to be a shared-memory multiprocessor, with four 2.7-GHz
processors and a 1-ms quantum. All simulations were run 61
times. Both systems were simulated for 10 secs. We implemented
and timed each scheduling scheme considered in our simulations
on an actual testbed that is the same as that assumed in our sim-
ulations, and found that all scheduling and reweighting computa-
tions could be completed within 5 µs. We considered this value to
be negligible in comparison to a 1-ms quantum and thus did not
consider scheduling overheads in our simulations. We assumed
that all preemption and migration costs were the same and cor-
responded to a loss of cache affinity. We ignored the issue of
bus contention, since in prior work, Holman and Anderson have
shown that bus contention can be virtually eliminated in Pfair-
scheduled systems by staggering quantum allocations on differ-
ent processors [5]. Staggering would be trivial to apply in PAS as
well, since in PAS, processors run nearly independently of each
other. Based on measurements taken on our testbed system, we
estimated Whisper’s migration cost as 2 µs–10 µs, and ASTA’s
as 50 µs–60 µs. While we believe that these costs may be typi-
cal for a wide range of systems, in our experiments we vary the
migration cost over a slightly larger range.

While the ultimate metric for determining the efficacy of both
systems would be user perception, this metric is not currently
available, for reasons discussed earlier. Therefore, we compared
each of the tested schemes by comparing against the true ideal
allocation—all references to the “ideal” system in this section re-
fer to this notion of ideal allocation. In particular, we measured
the average amount each task is behind its ideal allocation (this
value is defined to be nonnegative, i.e., for a task that is not be-
hind its ideal, this value is zero), the maximum amount any task in
a task set is behind its ideal, and each task set’s “fairness factor.”
The fairness factor of a task set is the largest deviance from the
ideal between any two tasks (e.g., if a system has three tasks, one
that deviates from its ideal by −10, another by 20, and the third
by 50, then the fairness factor is 50 − (−10) = 60). The fair-
ness factor is a good indication of how fairly a scheme allocates
processing capacity. A lower fairness factor means the system is
more fair. These metrics should provide us with a reasonable im-
pression of how well the tested schemes will perform when Whis-
per and ASTA are fully re-implemented. Due to page limitations
we are not able to present the results from every possible combi-
nation of the methods we presented in Sec. 2. Therefore, we limit

our discussion to variants of PAS that use the AROE and MROE
metrics, α-partitioning, and handle “unexpected over-utilization”
by delaying the initiation of reweighting events.

Profiling the system. PAS can be competitive with PD2-OF if
an appropriate α-value and request size are chosen. To do this, the
system must be profiled. We profiled each system by running PAS
(for both MROE and AROE) and varying the α-value, request
size, and migration cost. Due to space constraints, we will simply
state the α-value and request size determined to be the “best” for
each simulation, and refer the reader to the full version of the
paper for a more in-depth examination of profiling issues.

Whisper experiments. In our Whisper experiments, we sim-
ulated three speakers (one per object) revolving around pole in
a 1m × 1m room with a microphone in each corner, as shown in
Fig. 3. The pole creates potential occlusions. One task is required
for each speaker-microphone pair, for a total of 12 tasks. In each
simulation, the speakers were evenly distributed around the pole
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Figure 3: The simulated Whisper system.

at an equal dis-
tance from the
pole, and ro-
tated around the
pole at the same
speed. The
starting posi-
tion for each
speaker was set
randomly. As
mentioned above,
as the distance between a speaker and microphone changes, so
does the amount of computation necessary to correctly track the
speaker. This distance is (obviously) impacted by a speaker’s
movement, but is also lengthened when an occlusion is caused
by the pole. The range of weights of each task was determined
(as a function of a tracked object’s position) by implementing
and timing the basic computation of the correlation algorithm (an
accumulate-and-multiply operation) on our testbed system.

In the Whisper simulations, we made several simplifying as-
sumptions. First, all objects are moving in only two dimensions.
Second, there is no ambient noise in the room. Third, no speaker
can interfere with any other speaker. Fourth, all objects move at a
constant rate. Fifth, the weight of each task changes only once for
every 5 cm of distance between its associated speaker and micro-
phone. Sixth, all speakers and microphones are omnidirectional.
Finally, all tasks have a minimum weight based on measurements
from our testbed system and a maximum weight of 1.0. A task’s
current weight at any time lies between these two extremes and
depends on the corresponding speaker’s current position. Even
with theses assumptions, frequent share adaptations are required.

We conducted Whisper experiments in which the tracked ob-
jects were sampled at a rate of 1,000 Hz, the distance of each
object from the room’s center was set at 50 cm, the speed of each
object was set at 5 m/sec. (such a speed is within the speed of
human motion), and the α-value, request size, and migration cost
were varied. However, due to page limitations, the graphs below
present only a representative sampling our collected data.

9



 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

A
ve

ra
ge

 B
eh

in
d 

Id
ea

l i
n 

m
ill

is
ec

on
ds

Migration Cost in microseconds 

Average Behind Ideal for Whisper

PAS-AROE
PAS-MROE

PD2-OF

Whisper
(a)

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100

M
ax

im
um

 B
eh

in
d 

Id
ea

l i
n 

m
ill

is
ec

on
ds

Migration Cost in microseconds 

Maximum Behind Ideal for Whisper

PAS-AROE
PAS-MROE

PD2-OF

Whisper
(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0  20  40  60  80  100

F
ai

rn
es

s 
F

ac
to

r 
in

 m
ill

is
ec

on
ds

Migration Cost in microseconds 

Fairness Factor for Whisper

PAS-AROE
PAS-MROE

PD2-OF

Whisper
(c)

Figure 4: The (a) average and (b) maximum amount a task is behind its ideal allocation and the (c) fairness factor for Whisper as scheduled by PAS
using MROE, PAS using AROE, and PD2-OF. For PAS, the request size is 7 ms and the α-value is 0.1. 98% confidence intervals are shown.

The graphs in Fig. 4 show the results of the Whisper simula-
tions conducted to compare PAS using AROE, PAS using MROE,
and PD2-OF. For both versions of PAS, we used an α-value of
0.075 and a request size of 7 ms. In these experiments, the mi-
gration cost was varied from 0 to 100 µs. Insets (a), (b), and (c)
depict, respectively, the average and maximum amount by which
tasks trail behind their ideal allocations, and the fairness factor,
for each scheme, as a function of migration cost. There are four
things worth noting here. First, while the performance of each
scheme degrades with an increase in migration cost, PD2-OF de-
grades much faster. Second, for migrations costs in the range
[2 µs, 10 µs], the expected range for Whisper, PAS and PD2-OF
exhibit similar average-case performance, but PD2-OF is superior
in terms of maximum-case error. In addition, the fairness factor
of PD2-OF is substantially better. Third, the confidence intervals
for the PAS variants in insets (b) and (c) are substantially larger
than those for PD2-OF. This indicates that PD2-OF’s results vary
over a much smaller range. Fourth, PAS using MROE performs
slightly better than PAS using AROE. This behavior stems from
the fact that, under non-MROE metrics, tasks can incur drift even
when they do not change their weight and the system is not reset.
As a result, under PAS using AROE, more tasks incur drift than
in PAS under MROE.

ASTA experiments. In our ASTA experiments, we simulated
a 640 × 640-pixel video feed where a grey square that is 160 ×
160 pixels moves around in a circle with a radius of 160 pixels
on a white background. This is illustrated in Fig. 5. The grey
square makes one complete rotation every ten seconds. The po-
sition of the grey square on the circle is random. Each frame

Square’s Path

640 pixel

64
0 

pi
xe

l

Grey Square

Figure 5: The simulated ASTA system.

is divided into
sixteen 160 ×
160-pixel regi-
ons; each of
these regions
is corrected by
a different task.
A task’s weight
is determined
by whether the
grey square cov-
ers its region.
By analyzing

ASTA’s code, we determined that the grey square takes three
times more processing time to correct than the white background.
Hence, if the grey square completely covers a task’s region, then
its weight is three times larger than that of a task with an all-white
region. The video is shot at a rate of 25 frames per second, and as
a result, each frame has an exposure time of 40 ms.

The graphs for this set of experiments are shown in Fig. 6.
The same information is shown here as for Whisper, with the ex-
ception that 0.075 is the α-value for PAS using MROE. There are
four things worth noting here. First, as before, while the accu-
racy of each scheme degrades with an increase in migration cost,
PD2-OF degrades much faster. Second, for migrations costs in the
range [50 µs, 60 µs], the expected range for ASTA, both versions
of PAS perform substantially better than PD2-OF with respect to
the average and maximum metrics. However, PD2-OF still has
a substantially better fairness factor. Third, as with Whisper, the
confidence intervals for the PAS variants in insets (b) and (c) are
substantially larger than for PD2-OF. This implies that PD2-OF’s
results vary over a much smaller range than those of PAS. Fourth,
PAS using MROE performs slightly better than PAS using AROE,
except in terms of the fairness factor. PAS using AROE has a bet-
ter fairness factor because PAS using MROE has a slightly lower
α-value and as a result the system is reset more often.

These experiments suggest that PAS using MROE is superior
to PAS using AROE in terms of both average and maximum er-
ror. Furthermore, this behavior will likely be true for any system
in which tasks are continually changing weight. However, for
systems in which tasks change their weight infrequently, AROE
will likely provide better performance in the average case, since
the provably superior average case performance of AROE (with
static weights) will offset the additional drift that tasks incur. Also
note that these experiments suggest that there exist many different
scenarios under which PAS and PD2-OF are each of value. PAS
is of value in systems where migration costs are high or where
strong real-time and fairness guarantees are not strictly required.
However, it has two major drawbacks. First, PAS requires the
system to be “profiled” before use. Indeed, if we had chosen an
“incorrect” α-value or request size, it is possible that PD2-OF
would have outperformed PAS for any reasonable migration cost.
Thus, if the system cannot be profiled beforehand, it is difficult to
make any guarantees under PAS. The other drawback of PAS is
that, even if both schemes perform well in the average case, the
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Figure 6: The (a) average and (b) maximum amount a task is behind its ideal allocation and the (c) fairness factor for ASTA as scheduled by PAS
using MROE, PAS using AROE, and PD2-OF. For PAS using AROE, the request size is 7 ms and the α-value is 0.1; for PAS using MROE, the request
size is 7 ms and the α-value is 0.075. 98% confidence intervals are shown.

amount by which any one task can deviate from its desired allo-
cation is much harder to predict. On the other hand, in the case
of ASTA, PD2-OF’s performance is so poor, it simply is not a vi-
able option, despite its superior real-time and fairness properties.
ASTA is a good example of a system for which it is reasonable to
trade weaker guarantees for superior performance.

4 Concluding Remarks

We have presented a new multiprocessor reweighting scheme,
PAS, which reduces migration costs at the expense of greater al-
location error. We have also presented both analytical and experi-
mental comparisons of this scheme with a more accurate but more
migration-prone scheme, PD2-OF. These results suggest that when
migration and preemption costs are high, PAS may be the best
choice. However, strong real-time and fairness guarantees are not
possible under any partitioning-based scheme. Thus, for systems
like Whisper, where fairness and timeliness are important and mi-
gration costs are low, PD2-OF is the best choice. However, for
systems like ASTA, where migration costs are high and fairness
and timeliness are less important, PAS is the best choice.

While our focus in this paper has been on scheduling tech-
niques that facilitate fine-grained adaptations, techniques for de-
termining how and when to adapt are equally important. Such
techniques can either be application-specific (e.g., adaptation poli-
cies unique to a tracking system like Whisper) or more generic
(e.g., feedback-control mechanisms incorporated within schedul-
ing algorithms [7]). Both kinds of techniques warrant further
study, especially in the domain of multiprocessor platforms.
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