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ABSTRACT

This work introduces techniques to facilitate large-scale Aug-
mented Reality (AR) experiences in unprepared outdoor environ-
ments. We develop a shape-based object detection framework that
works with limited texture and can robustly handle extreme illu-
mination and occlusion issues. The contribution of this work is
a purely geometric approach for detecting marker-like objects un-
der difficult and realistic outdoor conditions. We demonstrate these
techniques for mobile AR experiences by detecting and tracking
star-shaped pentagrams embedded in the Hollywood Walk of Fame
at 30Hz on a Nokia N900 phone.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

1 INTRODUCTION

The goal of this work is to deploy a large-scale mobile AR experi-
ence that exploits outdoor urban landmarks. We use the pentagram-
shaped markers in Hollywood as an example that is difficult for
existing methods [9]. Being on the floor, millions of people walk
over them causing wear and appearance changes. Lighting varia-
tion with shadows, time of day, glare, and specular highlights pose
challenges for appearance-based feature tracking. Detection and
tracking in crowded urban streets must deal with extreme occlu-
sion. Appearance-based descriptors like SIFT [8] are insufficient to
describe the star shape because of its symmetry and lack of texture.
With over 2000 different stars, storing templates for matching is
clearly not feasible. Figure 1 shows a result of our detection method
with virtual content overlays at the Hollywood Walk of Fame.

We make a number of contributions. At a high level, we are moti-
vated by the challenge of quickly making AR markers and outdoor
visual tags from existing landmarks. The preponderance of com-
mercial logos and facility signs in urban scenes make them good
candidates as tracking targets. A key design choice was to avoid
pixel-based comparisons and use purely geometric methods for de-
tection. Edge segments are extracted and robustly chained to build
structural features from an image. These features called k-chains
capture salient geometric structures. A novelty of our work is the
direct use of these features to identify perceptual properties such
as symmetry and connectedness. We introduce a hypothesize-and-
test procedure that infers the object from a minimal set of k-chains
based on the shape model. This makes the detection process signif-
icantly more efficient for AR than matching to a database of tem-
plates. We have built and demonstrated a star tracker using these
techniques on a Nokia N900 phone.

Existing fiducial based tracking is reliant on easily thresholded
images [6, 5]. Despite its simplicity and moderate robustness, the
environment needs to be instrumented. Wagner [9] and Klein [7]
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Figure 1: (a) The Walk of Fame is a popular tourist landmark in Hol-
lywood with over 2000 star-shaped markers embedded on the side-
walk. (b) An example result of our marker detection method on a
moderately difficult image.

demonstrated simplified Natural Feature Tracking (NFT) on a mo-
bile phone for AR applications. Lack of texture and symmetric
patterns can confuse these algorithms. Shape-based methods [4]
that use edges alone can be sensitive to occlusion. There is a rich
literature in Computer Vision on wide-baseline image matching us-
ing edge and line signatures [1]. Recently, perceptual grouping of
line segments has been used successfully in object recognition and
detection [3]. These are based on properties such as connectedness,
convexity, parallelism, and proximity. Our work is most inspired
by Ferrari et al. [3] which used groups of adjacent boundary seg-
ments for image matching. They proposed a family of scale invari-
ant local shape features called k adjacent segments (kAS) formed
by chains of k connected, roughly straight contour segments. This
paper demonstrates techniques to efficiently assemble such features
into model shapes for AR.

2 IMAGE PROCESSING

Our shape recognition algorithm relies on grouping edges in the
image to form a known shape. Two complementary schemes for
line segment detection are detailed below. The first method is the
Burns line segment extraction algorithm [2] that runs in linear time.
The detected segments are robust to lighting variations and cast
shadows. Approximately 400-500 lines are detected from a typi-
cal 640×480 image in our dataset (Fig. 2a).

A more efficient but less stable alternative is color-based seg-
mentation. Although sensitive to illumination and shadow effects,
our shape recovery method can tolerate a large amount of noise in
the initial processing stage. A 2-color Gaussian mixture model is
constructed from manually labeled pixels within and outside the re-
gion of interest. The line segments are extracted from the mask by
connected components grouping followed by polygon approxima-
tion. These resulting points form a polygonal chain; each consecu-
tive set of points is then treated as an individual line segment. The
next section describes the process of extracting structural features
from the line segments to detect a known shape.

3 SHAPE DETECTION WITH CHAINED EDGE SEGMENTS

Let M(x) be the model shape with parameters x. Under perspective
imaging, the shape S = (p1, p2, ..., pn) is observed as a polygonal
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Figure 2: Image processing methods: (a) An input image and the
result of line detection; (b) Lines detected by polygon approximation
on a binary mask obtained through a simple and fast color segmen-
tation. Our robust shape recovery techniques can tolerate several
false positives in the image processing stage. We also avoid prun-
ing or thresholding out potential lines early in the pipeline in order to
pass on as much information as possible into the grouping stages.

chain or series of line segments that connect vertices pi. Shape
inference involves determining the sequence of points pi under var-
ious projective deformations, occlusions, and lighting conditions.
The point p1 is fixed as the origin and associated with some unique
geometric property that allows pose recovery. In our example of the
Hollywood stars, the internal corner closest to the circular icon on
the star is labeled as the origin.

Ferrari et al. [3] proposed short chains of extracted line segments
called k adjacent segments (kAS) as structural features and match
images based on their overall geometric arrangement. A group of k
segments is a kAS iff they can be ordered so that the i-th segment is
connected in the network to the (i+1)-th segment for i∈ {1,k−1}.
As k grows, kAS can form increasingly complex shape structures:
individual segments for k = 1; L and T shapes for k = 2 and so
on. To distinguish our features from [3], we denote them as k-
chains. Rather than establishing correspondences between k-chains
detected in two images, we attempt to directly assemble these fea-
tures into the target object. The model M guides this process. We
argue that this scheme is more efficient for AR applications where
the marker is known beforehand.

Chaining two line segments is driven by local constraints. A
compatibility function V (li, l j) for two neighboring segments is true
if and only if one of the endpoints of li passes near an endpoint of l j
and the lines are directed towards each other. We define a distance
metric D(li, l j) which returns the Manhattan distance between the
two closest endpoints of li and l j if V is true and ∞ otherwise. V can
be tuned with additional knowledge of shape, but we avoid enforc-
ing constraints too early in the pipeline. k is the number of turns
taken when all the line segments are chained together.

Constructing the k-chain is similar to path planning algorithms.
We use a best first graph traversal that treats each line segment as
the vertex of a graph. Chaining is initiated from a node until the
number of turns taken exceed k. Similar to the results in [3], we
have found that pairs of line segment chains with k = 2 makes the
best compromise between discriminative ability and repeatability;
low values of k also keeps the detection process efficient. There-
fore, all 2-chains are extracted from the image. Since these features
might be composed of several segments (chaining two collinear
segments will not increase k), we simplify them to form a descriptor
of it’s three endpoints c1,c2,c3. The middle point c2 is the intersec-
tion point of the two uniquely oriented line segments in the 2-chain.
While most descriptors encode the appearance of pixels around the

feature, this descriptor encodes local geometric structure of the line
segments in the image.

Model fitting is an iterative process and uses a hypothesize-and-
test scheme. Given N k-chains extracted from the image, each itera-
tion randomly selects the minimum set of k-chains K = k1,k2, ..,km
required to determine hypothetical model parameters x. For ob-
jects exhibiting geometric symmetry, m is likely to be low and in
our experiments N is typically 25-30 even from several hundred
line segments. The parameters of the model are estimated from this
minimal set of k-chains and tested for validity. If valid, the approxi-
mate model is refined using all the observed line segments extracted
around the model shape. The pentagram, for example, is defined by
5 self-intersecting lines for which m = 3 2-chains would constitute
a minimum set. This technique is similar to methods like RANSAC
which iteratively fits a model to observed data with outliers. The
combination of top-down shape knowledge and bottom-up geomet-
ric features make the detection robust. Using the star as an example,
the next section describes some effective methods for fitting model
shapes to k-chain features.

4 STAR DETECTION

The pentagram or 5-pointed star is the simplest regular star poly-
gon. It contains ten points (the five external points of the star, and
the five vertices of the inner pentagon) and can be constructed by
connecting alternate vertices of a pentagon. It can also be con-
structed by extending the 5 edges of an internal pentagon until the
lines intersect. We exploit both of these properties for shape fitting.
For pose, we estimate the location of the 10 corners and make cor-
respondences with “ideal” corners from a fronto-parallel view. Due
to symmetry, a unique orientation is determined by labeling the in-
ternal corner closest to the circular icon as p1 and the remaining 9
corners p2, ..., p9 in anti-clockwise sequence.

Figure 3: Reconstructing a star from 2-chains. Three such features
with 5 unique directions are required to reconstruct the pentagram
geometry. Similar to RANSAC-based feature matching, we sample
from the list of k-chains and check for the star configuration. The thick
red, green, and blue lines show a specific example of three 2-chains
that adhere to the geometry. The thinner lines show the k-chains
extended to infinity (only one direction plotted for clarity) and their
intersections are plotted as squares.

Given an input image, we extract a set of line segments and
detect 2-chains as described above. Each 2-chain consists of two
unique directions with its midpoint c2 being the intersection of
these lines. This bottom-up process results in a number of simple
but distinctive structural features; a subset of them must be assem-
bled together by a top-down technique to form the outline of the
star.

For 5 unique directions, a minimal sample size of m = 3 k-chains
are required. During each iteration, we pick three k-chains and
check that there are only 5 unique directions. For every valid set,



Figure 4: Augmentations on the recognized star.

we compute the intersection Ii of all pairs of these line. Figure 3
shows an example of three valid k-chains plotted in thick lines col-
ored red, green, and blue. The colored squares are intersections
of these line segments when extended to infinity; we check that
they have reasonable bounds (parallel lines might stretch to infinity
in which case this is not a star). Intersections are required to fall
within a rectangular boundary centered on the image and twice its
dimensions.

An efficient way to check for the star configuration is to first take
the convex hull of intersection points in I. For valid sets, the convex
hull should result in a pentagon connecting the 5 external corners
of the star. We then verify that a putative line from the sampled 2-
chains connects every other corner of the resulting pentagon. If so,
the line intersections and connections adhere to the basic geometry
of the star. The five lines Li that form the pentagram are constructed
by connecting every alternate vertex of the convex hull. The provi-
sional star corners p∗1, .., p∗9 can then be computed and ordered by
intersecting each of the 5 lines to determine internal corners.

A final geometric verification validates that the connections
do indeed form a star-shaped pentagram. We avoid threshold-
ing on lengths and angles which are inherently brittle under non-
orthogonal views. The cross ratio is an important projective invari-
ant of an ordered 4-tuple of points on a projective line. Given Li,
let a, b, c, and d be the 4 points of intersection on the line. Thus
a and d are the external corners, while b and c form the internal
points on the edge. The cross-ratio for these 4 collinear points is
defined as |ac||bd|

|bc||ad| . For pentagrams, the cross ratio of these points
is equal to the golden ratio φ ≈ 1.618 and is an important property
derived from its symmetric shape. Being invariant to perspective
viewpoints, our test confirms that the intersections along each of
the five lines Li have the correct ratios. To tolerate noise in the
sampling procedure, we threshold the ratio to be between 1.5 and
1.7. Once the 10 corners are confirmed to belong to a star, we use
all line segments detected along the boundary of the shape to re-
estimate Li. The corners p1, .., p9 are recomputed by intersecting
the refined edges.

The final step for pose estimation is to establish correspondences
between the estimated corners and a template shape description.
Being symmetric, the location of the circular icon is used to identify
the origin. We again exploit our chaining technique described in
Section 3. Line detection results in several short edge segments on
the boundary of the circular arc. Given a series of line segments,
we measure the likelihood of it belonging to a circle by determining
the length of segments that can be chained together such that turns
are taken in only one direction (clockwise or anti-clockwise). For
each internal corner, we hypothesize a possible location of the icon
as a circle centered on the midpoint of the line joining the internal
corner and the star centroid. We then return the origin as the corner
with the Maximum Likelihood estimate of containing circular arcs.

4.1 Name Recognition
There are over 2000 stars at the Walk of Fame. While shape detec-
tion is able to correctly determine camera pose from the currently
viewed star, contextual information is augmented by identifying the
name engraved on it. We adopted a simple template matching ap-
proach to correlate the cropped text region from the rectified star
shape to a database of names. The detected star shape is first recti-
fied and scaled to a fixed size; a 256x56 pixel region around the
text is cropped. The resulting color image is projected into the
Green channel which has higher contrast between the pink mar-
ble and gold metal plate. We discovered that the background and
foreground text can be approximated as two Gaussian distributions;
k-means was used to recover their parameters and produce a binary
segmentation of text and non-text pixels. Due to the small size of
our database, a template matching approach was sufficient to cor-
rectly identify the star. The template matching score is aggregated
over individual letters instead of correlating the entire segmented
region. Figure 4 shows augmentations performed after name recog-
nition.

5 EXPERIMENTS AND RESULTS

We test our star detection algorithm on several videos captured at
the Hollywood Walk of Fame using the Nokia N900 phone. The
dataset contains sequences of multiple stars taken on different days
under a range of conditions. We also tested our algorithms in in-
door settings on a custom-built star plaque made of polished mar-
ble. Figure 5 gives a synopsis view of star detection and pose es-
timation under challenging conditions. Mixed and Augmented Re-
ality experiences in outdoor settings must be able to address such
unpredictable variation in visibility, image noise, lighting, and cast
shadows. Our results demonstrate how a combination of bottom-
up image processing combined with top-down semantic knowledge
can address these issues.

Table 1 shows quantitative results on different videos. Recogni-
tion performance is measured as the percentage of frames in which
both star boundary and orientation were correctly detected. We get
over 90% detection rate on most of the sequences. The Shape col-
umn shows the percentage of frames in which the star boundary was
detected correctly (based on manual inspection). The Icon column
shows the percentage of frames where both boundary and orienta-
tion (location of the emblem) were determined correctly. Note that
these results are independently estimated for each image to mea-
sure detection performance. During on-line operation, estimation
of the icon can be made robust by temporal smoothing. This signif-
icantly improves overall detection rate. Finally, among the total of
659 frames in this dataset, there were only 3 false positives.

Our ideas are built on the premise that “if a human can detect the
star, the algorithm can”. This is possible by exploiting symmetry.
As long as any part of the 5 lines are visible in an image, a human
can infer the corners of the star. A novelty of the k-chain technique
is that it can efficiently identify these 5 lines from several hundred
line segments. The average number of line segments detected from
our data was Nl = 475 and the average number of k-chains extracted
was Nk = 28. Exhaustively testing Nl choose 5 lines to test for a
star shape is not tractable. When picking a minimal sample of k-
chains for star building, an exhaustive test would require at most
Nk choose 3 combinations. There is a high probability of finding a
good configuration early.

We bench-marked and tested our implementation on the Nokia
N900 phone running the Maemo operating system. The N900 is
equipped with a 600 MHz ARM Cortex-A8 CPU and 256MB of
DDR RAM. Our detection algorithm was integrated into a Mixed
Reality Framework (MRF) developed in-house. The framework is
developed using the Qt library and enables overlaying virtual con-
tent on images streamed from the camera. Image pixels captured
by the MRF are at 400x240 pixel resolution. We use binary mask



Figure 5: Results of star detection and pose estimation on several example images from our dataset. The results demonstrate robustness
to various issues encountered outdoors – shadows, occlusion, and changing illumination. Our approach fits a model star shape to bottom-up
features extracted by chaining pairs of adjacent line segments. The symmetric property of the star allows us to infer occluded or noisy edges.

Sequence Difficulty Frames Shape (%) Icon (%)
Eddie Murphy P 100 95.0 95.0
Wesley Snipes PO 143 95.8 90.9
Monroe PO 32 100.0 96.8
Drew Carey OSL 60 95.0 87.0
Vincent Price A OSG 59 96.6 91.5
Vincent Price B SLG 152 96.0 95.4
N900 sequence I POLG 59 94.9 88.1
N900 sequence II POLG 54 87.0 85.1

Table 1: Detection rate for star shape and icon location on different
sequences. The tests are performed on frames extracted every 0.5
seconds from the sequence. Each letter in the Difficulty column indi-
cates the following characteristics of the sequence: large perspective
changes (P), occlusion (O), shadows(S), changing illumination (L),
and specular highlights or glare (G).

segmentation followed by polygon approximation to extract edge
segments. Figure 6 shows example results of the detected shape and
pose for images captured by MRF on the device. Table 1 also shows
detection accuracy for two sequences captured from the N900. Our
algorithm achieved a frame rate of 30 Hz on the device.

6 CONCLUSION

We have described a robust, efficient, edge-based system for de-
tecting markers in outdoor environments. Simple features that cap-
ture structural properties of image edges are extracted from the
image. They are assembled into a model shape using an efficient
hypothesize-and-test framework. The algorithm achieves over 90%
detection rate on challenging images while running at 30Hz on a
mobile device. Future work involves addressing issues of pose sta-
bility, efficiency, and generalization to different markers.

Figure 6: Detected star and estimated pose for images captured by
the Mixed Reality Framework running on the Nokia N900. Our algo-
rithm already runs at 30Hz on the N900.

REFERENCES

[1] H. Bay, V. Ferrari, and L. V. Gool. Wide-baseline stereo matching with
line segments. In Proc. CVPR, 2005.

[2] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight
lines. IEEE Trans. Pattern Anal. Mach. Intell., 8:425–455, 1986.

[3] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent
contour segments for object detection. IEEE Trans. on Pattern Anal. &
Mach. Intell., 30:36–51, 2008.

[4] V. Ferrari, T. Tuytelaars, and L. V. Gool. Markerless augmented reality
with a real-time affine region tracker. In Procs. of ISMAR, 2001.

[5] M. Fiala. Artag, a fiducial marker system using digital techniques. In
CVPR, 2005.

[6] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for
a video-based augmented reality conferencing system. In Proc. of IS-
MAR, 1999.

[7] G. Klein and D. Murray. Parallel tracking and mapping on a camera
phone. In Proc. of ISMAR, 2009.

[8] D. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[9] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose tracking from natural features on mobile phones. In ISMAR,
2008.


