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Flow Field Modulation
Bo Ren, Chen-Feng Li, Ming Lin, Theodore Kim, and Shi-Min Hu

Abstract

The nonlinear and non-stationary nature of Navier-Stokes equations produces fluid flows that can be noticeably
different in appearance with subtle changes. In this paper we introduce a method that can analyze the intrinsic multiscale
features of flow fields from a decomposition point of view, by using the Hilbert-Huang transform method on 3D fluid
simulation. We show how this method can provide insights to flow styles and help modulate the fluid simulation with its
internal physical information. We provide easy-to-implement algorithms that can be integrated with standard grid-based fluid
simulation methods, and demonstrate how this approach can modulate the flow field and guide the simulation with different
flow styles. The modulation is straightforward and relates directly to the flow’s visual effect, with moderate computational
overhead.
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Flow Field Modulation

1 INTRODUCTION

Over the last decade, tremendous success has been
achieved in solving the nonlinear Navier-Stokes equa-
tions for realistic and stunning visual effects of fluid
flows. It is well known that practical fluid flows have in-
trinsic multiscale structures, especially when turbulence
occurs. Although it can be understood intuitively that
different levels of flow features, e.g. large and small
eddies in a smoke plume, should be related to their
different frequency ranges over the space, standard data
analysis tools such as Fourier and wavelet decomposi-
tion cannot effectively catch the frequency information
because the flow field is highly nonlinear and non-
stationary. We address this issue and provide a tool
to analyze and adjust multiscale features of flow fields
during simulation.

In this paper, we present a method that can pro-
vide, during the simulation process, information for the
intrinsic multiscale features of flow fields which can
then be analyzed, manipulated and integrated into the
physical simulation. We also define the concept of flow
styles, and demonstrate how to achieve flexible feature
enhancement and stabilization over all scales. To do this,
the complete spatial Hilbert-Huang transform (SHHT)
method is introduced. The first part of SHHT is the
empirical mode decomposition (EMD), through which
the fluid velocity field is decomposed into a series of
components with a natural frequency-separating feature.
The second part of SHHT is the Hilbert transform of
these natural components, which provides the frequency
information explicitly. These lead to our main contribu-
tions listed as below:

1) Introduce the complete SHHT method to extract
intrinsic frequency information of flow fields.

2) Define quantitatively the concept of flow styles.
3) Achieve controllable flow field modulation to en-

hance and stabilize intrinsic multiscale flow fea-
tures.

4) Propose an easy-to-implement modulation frame-
work that can be readily integrated into existing
grid-based fluid solvers.

2 PREVIOUS WORKS

Grid-based fluid simulation has been popular in the
graphics community since Jos Stam’s unconditionally
stable solver [1]. Many different techniques have been
introduced to handle problems encountered in solving
Navier-Stokes equations under limited resolution. Vor-
ticity methods such as [2] and [3] use the vorticity
confinement technique to prevent rapid dissipation of
vortices. For dissipation in the advection step Zhu et
al. [4] introduced FLIP. Higher order advection methods

including BFECC [5], QUICK [6] and semi-Lagrangian
MacCormack [7] were also developed through the years.
For explosion effects, Feldman et al. [8] introduced arti-
ficial divergence sources.

There are also various approaches, both physical and
non-physical, that dedicate to add richer details to fluid
simulation. The octree method [9] includes an adaptive-
grid scheme to save computation in some regions and
provide more details in other regions. Many researchers
investigated artificial turbulence. Different methods [10],
[11], [12], [13] have been proposed using random noises
to construct divergence-free velocity fields that have
more turbulence details than the original field. Artifi-
cial noises were also used in [14], [15], [16], [17], [18]
to generate turbulence, but they added the generated
turbulence field to the up-sampled low-resolution field
or added artificial forces into the simulation, influencing
the original velocity field indirectly.

Fluid control was first introduced in [19]. References
[20], [21], [22] used key frames whereas references [23],
[24], [25] used target shapes to obtain desired shapes
of fluid. These methods adopt extra forces or velocity
constraints to form the desired shape. Rasmussen et
al. [26] presented a particle-based method that applies
soft or hard control on liquids, and Thurey et al. [27]
preserved small-scale flow details using control particles.
Mihalef et al. [28] combined 2D artworks with full 3D
fluid simulation to get featured breaking waves. Several
approaches are concerned with consistency of fluid ap-
pearances between high-resolution and low-resolution
simulations; these methods are related to ours in that
natural generation of features in fluid simulation is
emphasized. Nielsen el al. [29] improved the corre-
spondence between low and high resolutions in smoke
simulations by solving an optimization problem. Nielsen
el al. [30] guided the high resolution liquid simulations
by its low resolution version to ensure consistency. Yuan
el al. [31] used the Lagrangian coherent structure to
achieve controllable pattern regulation of fluids.

The Hilbert-Huang transform [32] was first used for
signal processing. In computer graphics, references [33],
[34], [35] used the EMD method in image and texture
synthesis. Subr et al. [36] combined EMD decomposi-
tion with morphological image filters to achieve edge-
preserving image decomposition. The space filling curve
technique was introduced into 3D fluid simulations in
[37] recently along with some brief explanation and
analysis. None of the aforementioned works applied
the Hilbert transform or performed frequency analysis
except for [35], which used it to compare the deviation
between sample and result.

In a wider context, this study is also relevant to spec-
tral methods in computational fluid dynamics, where
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(a) (b) (c)
Fig. 1. Example 1, smoke passing through mountains, style modulation. (a) The original; (b) modulation with low-
frequency motion boosted by α = 0.1, the flow is more energetic showing significant global transformations; (c)
modulation with mid-frequency motion boosted by α = 0.5, the flow now has a wrinkled appearance but the intrinsic
shape is retained.

Fourier series have been used to solve homogeneous
flows in the early days [38], Gaussian filters are used
in large eddy simulations to reduce the range of length
scales of the solution [39], and orthogonal polynomi-
als are increasingly employed to achieve high accuracy
for locally-smooth flows [40]. However, none of these
techniques addresses the problem targeted in this study,
which is to extract the intrinsic spatial frequency infor-
mation from turbulent flows and modulate the corre-
sponding multiscale flow features to create different flow
styles.

3 BACKGROUND

In this section we first describe our initiative of flow
field modulation, and then summarize the background
knowledge needed for the algorithm development.

3.1 Introduction to Flow Field Modulation
Modulation methods have proven to be very effec-
tive in different scientific fields. In computer graphics,
transforming 2D images into the frequency domain and
applying the inverse transform after modulation is a
common practice in image processing. Such different
effects as edge-sharpening, feature extraction and image
compression etc. can be achieved. The power of mod-
ulation relies on the fact that there are different levels
of details stored in the original signal and they occupy
different parts of the frequency domain. The multiscale
nature of turbulent flow can be easily observed in real
life, e.g. a solitary wave approaching from the distance
and breaking into spray on the shore. It is desirable to
be able to modulate the flow field’s intrinsic multiscale
structures for different visual effects, such as feature
enhancement and stabilization.

There have been many methods developed to add or
even design artificial features in fluid simulation, but
there is no method available to analyze and modulate
the intrinsic multiscale structural features generated by

the flow field. This is largely due to the lack of a
mathematical representation of the multiscale structure
of turbulent flow, which relies on an effective decom-
position method for the nonlinear and non-stationary
flow field. Therefore, we aim to introduce such a method
that can help analyze why one flow appearance differs
from another, i.e. the concept of “flow style”, and allow
flexible frequency-based changing to the decomposed
velocity fields. The associated modulation approach is
expected to share the common benefits as in other sci-
entific areas.

A trivial attempt is to apply standard data analysis
methods, e.g. Fourier decomposition or wavelet decom-
position, on the flow field. Unfortunately, the conven-
tional methods do not perform well because (1) the
flow field is highly nonlinear and non-stationary, thus
unsuitable for traditional methods that feature fixed
base functions and constant amplitudes for individual
frequency components and (2) traditional decomposition
methods cannot reveal the information of “instanta-
neous frequency and amplitude”, which is more im-
portant in non-stationary data sets compared to pre-
determined frequency domains. Test examples and more
detailed discussions are given in §5.2. Because of these
limitations, we introduce the Hilbert-Huang transform
(HHT) for our purpose. The Hilbert-Huang transform
was initially designed to analyze time series that are
non-stationary and nonlinear, which are unsuitable for
Fourier, wavelet or Gaussian pyramid transforms in
nature, and it has a natural generalization to higher
dimensional spaces. Unlike conventional data analysis
methods, instantaneous frequency and amplitude are
well defined in HHT. We call the technique of using
HHT spatially as the spatial Hilbert-Huang transform
(SHHT), and will show later that the 3D SHHT can be
approximated by a 1D HHT, which allow compression
of 3D velocity data into 1D arrays for analysis and
amplitude modulation, resulting in significant benefits
in computational efficiency. The SHHT composes of two
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main steps, namely the empirical mode decomposition
(EMD) and the Hilbert transform. The 1D case and its
advantage over traditional decomposition methods for
nonlinear and non-stationary data sets were thoroughly
discussed in Huang’s original paper [32]. Here we briefly
explain this method in the next two subsections.

3.2 Empirical Mode Decomposition
The purpose of EMD is to decompose an arbitrary data
set into a finite number of so-called “intrinsic mode func-
tions”(IMF) that are suitable for the Hilbert transform.
The IMFs can be roughly considered as the counter-part
of “frequency components” in traditional decomposition
methods. The first fundamental difference is that the
EMD does not have pre-defined base functions. Indeed,
the concept of “base functions” is not important for EMD
because its decomposition is self-adaptive to the data.
Secondly, instead of working in the frequency domain,
the IMFs are still in the signal domain, thus each IMF
can be treated as a sub-data set that carries part of the
original signal’s information. It so happens that in the
EMD progress, IMFs are extracted in the order of their
frequency ranges, i.e. IMFs with higher frequency ranges
are extracted first. Thus the decomposition result is self-
arranged and can represent features on different scales.

Symbol Meaning
Γ,Γ′ n-dimensional space coordinate
F original n-dimensional signal
cj j-th IMF in the result
rj (temporary) j-th residual after cj is got
hk k-th intermedian signal while calculating cj

Emax,Emin upper and lower envelope of the intermedian signal
γk ,γ′k the k-th dimension coordinate
X ,Y ,Z n-dimensional signal functions
a instantaneous amplitude
θ instantaneous phase
Ω instantaneous frequency
τ 1D mapped index of 3D data
ω instantaneous frequency value in sampled MHS
s(ω) the style function

s(ω),s∗(ω) the guiding and target style function
u vector velocity field value
u component-wise scalar velocity field value
α,β controllable strength factors in a single modulation
γ mixing weight in consistency guiding
q abstract symbol to represent possible physical values
t time

g,ρ,p external force, density, pressure in the flow field
N size of signal data set
δ,ε constants used in EMD stopping criterion

TABLE 1
Chart of the appeared symbols

Let F (Γ) denote an n-dimensional signal defined on
space D, the EMD decomposition of F (Γ) is:

F (Γ) =
∑J

j=1
cj(Γ) + rJ(Γ), (1)

where cj(Γ), j = 1, .., J are IMFs, and rJ(Γ) the
residual. The EMD progress is defined by a double-loop
“sifting” algorithm that sequentially extracts the IMFs as
follows:

1) Initialization r0 = F , j = 1
2) Compute the j-th IMF, cj

a) Initialization h0 = rj−1, k = 1
b) Build the upper envelope Emax,k−1, and build

the lower envelope Emin,k−1 of the data set
hk−1

c) Compute the mean of the upper and lower en-
velopes, Emean,k−1 = 1

2 (Emin,k−1 + Emax,k−1)
d) hk = hk−1 − Emean,k−1

e) If the IMF stopping criterion is satisfied, then
cj = hk, else k = k + 1 and go to step 2(b)

3) rj = rj−1 − cj
4) If rj is monotonic, the decomposition stops, else

j = j + 1 and go to step 2
In the above decomposition progress the value of F (Γ)

can be scalar or vector. If the signal is vector valued,
the sifting processes are performed on each of its scalar
component, and this is a common practice in mathe-
matics and physics for generalization to vector-valued
fields especially in Cartesian coordinates. For example,
Laplace operator is thus generalized to vector Laplace
operator, as well as the gradient operator. A similar
component-wise decomposition of a vector-valued field
can be found in [41]. In principle, different methods can
be adopted to build the upper and lower envelopes, and
we will introduce a practical one in §3.4. The stopping
criterion in step 2(e) will be discussed later in §4.6. The
above EMD algorithm has been widely used in signal
processing, and it always converges in practice.

3.3 Hilbert Transform
Applying the Hilbert transform to the sub-data sets IMFs
can provide the instantaneous frequency spectrum of
the original signal. A brief introduction of the Hilbert
transform is given below, and we refer to [42] for further
reading.

The Hilbert transform on an n-dimensional function
X(Γ) is

Y (Γ) =
1
πn
P.V.

∫ +∞

−∞

X(Γ′)∏n
k=1(γk − γ′k)

dΓ′ (2)

where Y (Γ) is the result after transformation, γk is the
k-th component of Γ, and P.V. indicates the integration
result is the Cauchy principal value of the improper
integral. Using the Hilbert transform, the instantaneous
frequency of X(Γ) can be computed as:

1) Define the complex signal from X(Γ) and Y (Γ)

Z(Γ) = X(Γ) + iY (Γ) = a(Γ)eiθ(Γ) (3)

where a(Γ) is instantaneous amplitude and θ(Γ)
instantaneous phase

a(Γ) = [X2(Γ) + Y 2(Γ)]
1
2 , (4)

θ(Γ) = arctan

(
Y (Γ)
X(Γ)

)
. (5)
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2) Define the instantaneous frequency Ω(Γ) as the
total derivative of the instantaneous phase θ(Γ)
over Γ

Ω(Γ) · dΓ = dθ(Γ). (6)

Thus, after applying the Hilbert transform on each IMF,
the original signal F (Γ) can be written as

F (Γ) = Re

(∑J+1

j=1
aj(Γ)ei

∫
Ωj(Γ)·dΓ

)
(7)

where the J + 1-th term in the above equation corre-
sponds to the residual. The Hilbert amplitude spectrum
is the distribution of a(Γ) over Ω(Γ) and Γ, denoted as
H(Ω,Γ). Then, the marginal Hilbert spectrum (MHS) is
defined as

h(Ω) =
∫
D

H(Ω,Γ)dΓ. (8)

Similar to the EMD process, if X(Γ) is vector valued,
the computation is performed on each of its scalar
component.

As IMFs represent sub-data sets, the integration in
Eqn. (8) can be performed on a single IMF, and to
compute the MHS of the original signal, one only has
to add together the individual IMF results. The MHS
describes the global property of the signal, and it can be
considered as an unnormalized probability distribution
of instantaneous frequencies over the whole data range.
A higher value of MHS at a certain frequency means
the probability that this instantaneous frequency appears
somewhere in the original signal is higher.

3.4 Hilbert-Huang Transform for 3D Flow Fields

The Hilbert-Huang transform fits particularly well the
nonlinear and non-stationary flow field data. After HHT,
each data position is related to multiple instantaneous
frequencies collected from the IMFs, and when applying
to 3D fluid velocity fields, this gives an intuitive phys-
ical indication. For the spatially varying velocity field,
we automatically obtain self-adaptive spatial frequency
information grouped at each single point, corresponding
to the multi-level features of the flow field.

We use the space-filling curve technique to calculate
3D envelopes of the flow field data in the EMD algorithm
to reduce the high computational cost. First a 3D Hilbert
space-filling curve sufficiently large to cover the whole
simulation domain is built, and moving along the curve,
the current grid cell is sequentially assigned with an
index if and only if it is located within the simulation
domain. Then, according to this index template, the
data stored in 3D grids are mapped into an ordered
1D signal array. Finally, after finding all local maxima
and minima of each neighboring three entries in the 1D
signal array, the approximate upper and lower envelopes
are constructed by connecting separately the maxima
and minima with two cubic splines. This approach is
extremely fast with the same computational efficiency
as Huang’s original algorithm. We refer the readers to

the appendix in the supplemental material for more
explanations and examples on usage of this technique.

We also adopt the space-filling curve technique to
perform the 1D Hilbert transform on each mapped IMF,
which is much faster than directly carrying out 3D
Hilbert transform. It should be noted that the instan-
taneous frequency of a velocity component is a vector-
valued function calculated in Eqn. (6) as the total deriva-
tive of the instantaneous phase over Γ, while in the pro-
posed approach, this is approximated with a directional
derivative along the space-filling curve resulting in a
sampled MHS. This simplification is justified in practice
because: (1) the vector-valued instantaneous frequency
is only introduced to measure the local variation of the
data set (please refer to [42] for more discussion) and
(2) the scalar result obtained using a space-filling curve
can be viewed as a semi-random sampling of the total
derivative with a directional derivative along a smooth
path (except for limited corner points), and it still reflects
to a large extent the local variation of the original data
over space.

4 MODULATING FLOW FIELDS

Based on the mathematical tools described above, we
first propose in this section a quantitative description
of flow style, a concept that reveals intrinsic structural
information of the flow field. Then, three modulation
methods are introduced, providing flexible modulation
over the flow style and its evolvement during simula-
tion. Finally, we provide a simple and integrated im-
plementation compatible with standard grid-based fluid
solvers. For all algorithms in this section, velocity data
are mapped from the 3D grid to 1D arrays, and we adopt
the 1D version of the formulas introduced in §3.

4.1 Flow Style
Following the intuitions of “flow style” concept dis-
cussed in §3.1, a rational quantitative definition should
take into account both the global trend of flow fields as
well as different levels of local details. Recall the MHS
defined in Eqn. (8), which is a probability distribution
that contains global information over the spatial di-
mension and quantifies the distribution of instantaneous
frequencies corresponding to different length scales. In
addition, during the calculation of MHS each data el-
ement is related to several instantaneous frequencies
collected from the IMFs, which correspond to different
levels of local variations. For these reasons we propose
to define “flow style” based on the sampled marginal
Hilbert spectrum (MHS) described in §3.3 and §3.4. In
our experiments we have found interesting properties of
this MHS of flow fields, which we now show to provide
a precise definition of “flow style”.

Fig. 2(a) shows two flow fields of similar visual styles:
the left figure is a single plume rising due to buoyancy
forces and the right one shows multiple plumes develop-
ing in the same environmental condition. Fig. 2(e) shows
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Fig. 2. Flow style and style function. (a) shows two flow fields of similar styles, and (b–d) show respectively their
MHSs and style functions. (e) shows two flow fields of different styles, and (f–h) show respectively their MHSs and
style functions. (enlarge to view the details)

two different visual styles: to the left is a smoke ball
rising under buoyancy forces and to the right is the same
ball developing in a blast environment. The MHS of
these flow fields are plotted in Figs. 2(b-c) and 2(f-g), in
double logarithmic coordinates. The MHS curves exhibit
a clear linear relation under the logarithmic coordinate.
This linear property are observed for all flow fields
in our experiments, and the exponential index varies
around −1 in the MHS distribution. Thus, it is more
convenient to examine the deviation of MHS from the
log-linear trend. Taking the difference between the MHS
and its linear regression yields an oscillating deviation
function around zero, as shown in Figs. 2(d) and 2(h).
In Fig. 2(d) the deviation functions are computed from
the flow fields in Fig. 2(a) which are of similar styles,
and it can be seen that the two deviation functions are
largely identical following exactly the same trend. In Fig.
2(h), the deviation functions are computed from the flow
fields in Fig. 2(e) which are of different styles, and it
can be seen that the associated deviation functions are
also very different both in the global shape and in local
characteristics. Therefore, let ω denote the instantaneous
frequency computed from the flatten 1D flow field data,
the style function s(ω) for a flow field is computed as
follows:

1) Calculate the MHS of the velocity field.
2) Translate the MHS into its log-diagram.
3) Fit this diagram linearly.
4) Take the residual as the style function s(ω) of the

flow.
The information lying in s(ω) is directly inherited from

the MHS, and it reflects the actual flow field in several
ways. First, the instantaneous frequency corresponds
directly to the flow field’s multi-level structural features
such that frequency values from low to high indicates
respectively large-scale transformations, medium-scale
motions, and small eddies and other fine-scale details.
Second, for a fixed frequency ω0, an positive value of

s(ω0) indicates there is a higher-than-average existence
of this instantaneous frequency in the flow field, which
means that there are relatively more features of the
corresponding scale in the flow; and vice versa. Third,
the style function is completely determined by the fre-
quency information of the flow field, which is geometry
independent, and therefore one can compare flow styles
between any two flows even for those evolved in com-
pletely different scenes.

4.2 Style Modulation

As the flow style measured by the style function s(ω) is
essentially determined by the MHS of the velocity field,
modulating flow style, i.e. to change a flow style from
s(ω) to s∗(ω) is essentially to modulate the velocity field
so that its MHS can meet the target. Following Eqn. (7),
let

u(τ) =
∑J+1

j=1
uj(τ) = Re

(∑J+1

j=1
aj(τ)e

i
∫
ωj(τ)dτ

)
(9)

denote the original velocity field whose MHS is h(ω).
The velocity field is vector-valued, but for simplicity rea-
sons the scalar representation is adopted here to indicate
the operation is applied independently to each velocity
component. In Eqn. (9), uj(τ) denotes the j-th IMF of the
velocity field, aj(τ) the instantaneous amplitude, ωj(τ)
the instantaneous frequency, and the variable τ indicates
the spatial index in the SHHT method. To modulate the
signal so that its MHS becomes h∗(ω), one only needs to
modify the amplitude

a∗j (τ) =
h∗(ωj(τ))
h(ωj(τ))

aj(τ). (10)

It is easy to verify that the transformed signal

u∗(τ) =
J+1∑
j=1

u∗j (τ) = Re

J+1∑
j=1

a∗j (τ)e
i
∫
ωj(τ)dτ

 (11)
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has an MHS as h∗(ω). Eqn. (11) represents a pure am-
plitude modulation because the instantaneous frequency
ωj(τ) remains the same as in the original signal. Accord-
ing to Eqns. (9) and (11), the relationship between new
and old velocity values due to amplitude modulation
can be written as

u∗j (τ)
uj(τ)

=
a∗j (τ)
aj(τ)

. (12)

Let s(ω) denote the guiding style function, we define
the target style function s∗(ω) as

s∗(ω) = s(ω) + α(s(ω)− s(ω)) (13)

where α ∈ (0, 1) is a constant tuning factor to adjust
how much impact the guiding style is having on the
target style. Defining the target style using Eqn. (13)
instead of directly specifying s∗(ω) allows the strength
and the variation to be modulated separately, giving
more flexibility to the user. As style functions s(ω) and
s∗(ω) are defined in logarithmic coordinates, the relation
between new and old MHSs can be written as the
following exponential form:

h∗(ω)
h(ω)

= e(s
∗(ω)−s(ω)) = eα(s(ω)−s(ω)). (14)

Combining Eqn. (10), (12) and (14) yields

u∗j (τ) = uj (τ) eα(s(ωj(τ))−s(ωj(τ))). (15)

This is the final modulation equation applied to each
IMF, and summing together the results as Eqn. (11)
completes the modulation process on the flow field. Note
that the modulation is not applied to the total velocity,
and instead it is applied to each IMF (as well as the
residual).

4.3 Direct IMF Modulation

The EMD method sequentially extracts IMFs from
higher-frequency range to lower-frequency range. Al-
though every IMF has a varying instantaneous frequency
distribution, the central frequency bands of different
IMFs are roughly detached with relatively small over-
laps. This observation inspires us to modulate the flow
field by simply scaling each IMF (and the residual) as a
whole, i.e.

u∗(τ) =
∑J+1

j=1
βjuj(τ) (16)

where βj > 0 are constant weight factors. To boost
fine-scale features and suppress large-scale motions, one
can simply choose larger β values for IMFs with smaller
indices and smaller β values for IMFs with larger indices;
and vice versa. As IMFs have band overlaps in their
frequency distributions, this simple modulation method
is not accurate, but for some simple style modulations,
this approach is faster than the accurate amplitude
modulation (15) since it does not require the Hilbert
transform.

4.4 Consistency Guiding
Decomposition of the velocity field can bring other
benefits. It is observed in our experiments that, the IMFs
with lower frequencies contribute mainly to the global
motion of the fluid flow while the higher-frequency
IMFs contribute mainly to fine-scale details, an intuitive
phenomenon that can be expected from the properties
of IMFs. Thus, we propose a simple method to solve the
consistency guiding problem, which concerns retaining
in a high-resolution simulation the global appearance of
the flow field simulated on a low-resolution grid.

It is assumed that the simulation on the low-resolution
grid is completed and the fluid velocity data after each
add-force step have been saved. While simulating on
the high-resolution grid, both the current velocity field
obtained on the high-resolution grid and the up-sampled
low-resolution data are decomposed into the same num-
ber of IMFs and a residual, denoted respectively with
uHj (τ) and uLj (τ). Then, to obtain the guided result u∗(τ),
one just need to mix the IMFs such that high-resolution
results have higher weights for high-frequency IMFs
while low-resolution results have higher weights for
low-frequency IMFs and the residual. That is

u∗(τ) =
∑J+1

j=1

(
γju

L
j (τ) + (1− γj)uHj (τ)

)
(17)

where the mixing weights γj ∈ (0, 1) can be adjusted
to give different balance between the high-resolution and
low-resolution results.

Based on velocity decomposition, this simple approach
avoids tedious adjustment of artificial forces and sup-
ports direct manipulation of the intrinsic multiscale
structure of a flow field.

4.5 Algorithm Framework
In graphics applications, fluids are often assumed as
inviscid and incompressible. Thus, the general Navier-
Stokes equations become incompressible Euler equa-
tions, which are often solved via the following three
steps:

Dq

Dt
= 0 (18)

∂u
∂t

= g (19)

∂u
∂t

+
1
ρ
∇p = 0 s.t. ∇ · u = 0 (20)

where q denotes the physical value to be advected, t
time, u velocity field, g body force, ρ density of fluid
and p pressure. Eqns. (18–20) are called the advection,
add-force, and projection steps.

The flow field modulation described in §4.1-§4.4 in-
volves a decomposition of the fluid velocity field, an
analyzing and modulation process on the decomposed
velocity components, and a summing step that combines
the modulated components to form the destination ve-
locity field. These operations can be applied at any time
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during the simulation, and we put them just before the
projection step to form a simple algorithm framework:

1) Advection, following Eqn. (18).
2) Add force, following Eqn. (19).
3) Modulation, applied separately to individual IMFs,
§4.2–§4.4.

4) Projection, following Eqn. (20).
After the add-force step in standard simulations, the

velocity field is decomposed using the EMD algorithm
described in §3.2, then individual IMFs and the residual
can be modulated separately. The combined velocity
field is passed to the projection step, which retains the
divergence-free property after modulation.

4.6 Implementation Details
Our modulation algorithm is integrated into a standard
staggered grid-based fluid solver, and the simulation
process is only changed by adding a modulation step
before the projection step. We here focus on the imple-
mentation of the modulation step itself.

The complete modulation process is as follows. First,
each velocity component of the flow field is separately
mapped into a 1D array, for which three 3D-to-1D map-
pings (one for each scalar component) are pre-computed
following the technique in [37]. Then, the EMD is applied
independently to each 1D array as described in §3.2
and §3.4 resulting in J IMFs and a residual, i.e. uj(τ)
in Eqns. (9) and (15), after which the 1D version of
Hilbert transform (2) is applied on each IMF as well
as the residual. Next, following Eqns. (2-8), the MHS
of the original field is calculated, and J + 1 arrays are
created to store the instantaneous frequency values at
each data point. The style function s(ω) is obtained
from the MHS following the steps in §4.1, which will
be discussed later in more detail. Finally, after applying
Eqn. (15) to each IMF component (including the residual)
uj(τ) and summing together the results u∗j (τ) as Eqn.
(11), the modulated total velocity u∗(τ) is mapped to the
3D space. For the modulation methods described in §4.3
and §4.4, it is sufficient to directly manipulate each IMF
component uj(τ), with no need of the Hilbert transform
or the instantaneous frequency calculation.

In the EMD algorithm the stopping criterion (step 2(f))
has much influence over both the decomposition result
and the computing time. We use a stopping criterion
similar to [43]. In the EMD sifting procedure, the enve-
lope mean is defined as Emean = (Emin +Emax)/2, and
the envelope amplitude is defined as Eamp = (Emax −
Emin)/2. The sifting process is terminated if one of the
following two conditions is satisfied:

1) At each data point i,

Emean(i) < ε1Eamp(i). (21)

2) Mean of the boolean array Emean(i)
Eamp(i) > ε2 is smaller

than a tolerance value δ, i.e.∑N

i=1

(
Emean(i)
Eamp(i)

> ε2

)
< Nδ. (22)

Here ε1, ε2 and δ are constants, and N is the size of
the data set. We set ε1 = 0.5, ε2 = 0.05 and δ = 0.35
in our implementation. We also set an upper bound
for the total number of inner iterations in the EMD
algorithm. As the inner iteration usually converges to
a good approximation between 10 to 30 iterations, the
upper bound is set as 40.

The computation steps of the style function s(ω) are
explained in §4.1, and s(ω) values are stored in a float
array of size 400, in ascending order of the spatial
frequency ω. To reduce sampling noise introduced in
the Hilbert transform step, for each MHS data set, a
median filtering is applied to reduce its fluctuation.
The filter window at the low-frequency range is 3 and
it increases linearly to 10 at the high-frequency range.
In the linear fitting, the standard least-squares linear
regression usually produces a large deviation at the low-
frequency band due to the much higher point density
in the high-frequency band. To avoid this undesirable
bias, we force the fitting result to go through the point
corresponding to the lowest frequency. The guiding style
function s(ω) in Eqn. (13) is similarly stored in a float
array of size 400.

In the velocity decomposition, the initial values of
those positions that are occupied by a solid obstacle
are set as the obstacle’s velocity. Same as the standard
simulation, we leave the no-stick boundary condition to
be enforced in the projection step, which for grid-based
solvers provides a better approximation of the rapid
local velocity change [44].

4.7 Modulation Effects on the Flow Field
As the outcome of some sophisticated derivations in
§3 and §4, the modulating operation in Eqn. (15) is
rather simple to implement and the frequency-based
modulation relates directly to the flow’s visual effects.
Eqn. (15) acts as an equalizer on the velocity field, where
the scaling factor at a certain frequency is determined by
the difference between the guiding style and the current
style. Thus, an equalizer-like interface can be provided to
end users, and the flow field modulation can be carried
out similarly to audio equalization. In our practice, this
is done by turning up/down the corresponding entries
in the s(ω) array (of size 400), which effectively changes
the guiding style. Many desirable visual effects can be
directly achieved, and we list below some typical effects
that will be demonstrated in §5.

Energizing Flow: Boosting low frequencies, i.e. boost-
ing fore entries of the s(ω) array will make the intrinsic
main flow more energetic and violent.

Stabilizing Flow: Cutting fore entries of the s(ω) array
will suppress eddy generation, leaving a simple and
steady main flow.

Adding Patterns: Boosting middle frequencies, i.e.
boosting median entries of the s(ω) array can add wrin-
kling features to the original smooth field.

Detail Enhancing: Boosting high frequencies, i.e.
boosting rear entries of the s(ω) array will bring chaotic
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small turbulence to the flow and add to the splitting
trend of the flow front.

Other parameters such as α in Eqn. (15) and β in
Eqn. (16) are global constants. They offer control on
how fast the modulation takes effect. A smaller α will
directly reduce the scaling factor for all frequencies, so
that the modulation effect gradually becomes visible in
longer time. To the opposite, larger α will bring strong
modulations, in which case the effect will become visible
within several simulation steps.

5 RESULTS AND DISCUSSION

5.1 Results

(a) (b) (c)
Fig. 3. Example 2, single plume case, style modulation.
(a) The original; (b) low-frequency suppression with α =
0.5, the eddy-like global structures are largely removed re-
sulting in a straight skeleton of plume; (c) high-frequency
boost with α = 0.4, splitting trend and chaotic fine features
are enhanced while retaining the global motion.

(a) (b) (c)
Fig. 5. Example 4, cylinder obstacle case, style mod-
ulation. (a) The original; (b) mid-frequency suppression
with α = 0.5; (c) mid-frequency boost with α = 0.1. Mid-
frequency modulation affects to some extent both global
flow motions and fine-scale details.

Style Modulation: Examples 1–4 are designed to ex-
amine the performance of style modulation described in
§4.2. The flow field is modulated following Eqn. (15).
Example 1 (Fig. 1) demonstrates a complicated flow
field in a mountainous environment. Fig. 1(a) shows the
original simulation without modulation. Fig. 1(b) is the
result of low-frequency boost by setting the strength
factor α = 0.1, the first 200 entries of the guiding
style array s(ω) as 0.5 and the rest entries as 0. The
low-frequency motions are the main energy carrier, and
Fig. 1(b) looks much more energetic, showing significant
global transformations, but the intrinsic shape of the

flow field is largely retained. Fig. 1(c) is the result of
mid-frequency boost by setting α = 0.5, the middle 200
entries in the s(ω) array as 0.5 and the rest entries as
0. Comparing with Fig. 1(a), Fig. 1(c) has a wrinkled
appearance, and as the mid-frequency motions do not
carry as much energy as the low-frequency motion,
the flow field stays even closer to the original shape
comparing with Fig. 1(b).

Example 2 (Fig. 3) is a plume of smoke rising from
the ground due to buoyancy. Fig. 3(a) shows the result
obtained from the standard simulation without modu-
lation, which contains clear eddy-like global structures
as well as some irregular fine-scale features. Fig. 3(b)
shows a low-frequency suppression result, obtained by
setting the strength factor α = 0.5, the first 200 entries
of the guiding style array s(ω) as −0.5 and the rest
entries as 0. It can be seen that the eddy-like global
structures are largely removed such that the skeleton of
the plume becomes a simple straight column, and as a
result the irregular fine-scale features become relatively
more visible. Fig. 3(c) shows the effect of high-frequency
boost, obtained by setting α = 0.4, the last 200 entries in
the s(ω) array as 0.5 and the rest as 0. It can be seen that
the splitting trend and chaotic whirls are significantly
enhanced while retaining the global motion.

Example 3 (Fig. 4) mimics gas explosion. Fig. 4(a)
is the original result without modulation. Fig. 4(b–d)
are low-frequency boost results obtained by setting the
strength factor α as 0.1, 0.2 and 0.3 respectively, setting
the first 200 entries in the s(ω) array as 0.5 and setting
the rest entries as 0. In Figs. 4(b–d) the modulation is
only applied to velocity components for vertical and
depth directions, and therefore the global flow motion
along the horizontal direction is not affected. As a result
of low-frequency boost, the flow field becomes more
vibrant but does not look more noisy. Fig. 4(e) shows a
low-frequency boost modulation applied to all velocity
components with α = 0.1.

Example 4 (Fig. 5) tests mid-frequency modulation
with two obstacles inside the fluid domain. Fig. 5(a)
is the original result without modulation. Fig. 5(b) is
the mid-frequency suppression result with α = 0.5, the
middle 200 entries in the s(ω) array set as −0.5 and
the rest entries set as 0. Fig. 5(c) is the mid-frequency
boost result with α = 0.1, the middle 200 entries in
the s(ω) array set as 0.5 and the rest entries set as 0.
Comparing Figs. 5(a–c), it can be seen that the mid-
frequency modulation affects to some extent both global
flow motions and fine-scale details.

Direct IMF Modulation: Example 5 (Fig. 6) tests the
direct IMF modulation described in §4.3. For comparison
purposes, we repeat the simulation of example 2. In
order to better demonstrate the performance of direct
IMF modulation, we choose a further developed plume
from a later frame comparing with the snapshot in Fig.
3(a). The velocity field is decomposed into 8 IMFs plus
the residual, and following Eqn. (16), the flow field
is modulated by directly specifying the weight factors
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(a) (b) (c) (d) (e)
Fig. 4. Example 3, box explosion case, style modulation. (a) The original; (b–d) modulation with low-frequency motion
boosted respectively by α = 0.1, 0.2, 0.3 for vertical and depth directions; (e) modulation with low-frequency motion
boosted by α = 0.1 for all directions. Controlled by the strength factor α, the global motions are boosted to different
extents in (b–e).

Experiment Method Grid Resolution IMF Number Simulation (s/frame) Modulation (s/frame)
example 1 style modulation 128× 64× 128 8 + 1 5.28 5.20
example 2 style modulation 64× 128× 64 8 + 1 2.43 2.62
example 3 style modulation 128× 128× 128 8 + 1 10.58 (b–d) 7.20, (e) 10.79
example 4 style modulation 64× 64× 64 8 + 1 1.16 1.09
example 5 direct IMF modulation 64× 128× 64 8 + 1 2.43 1.68
example 6 consistency guiding 128× 256× 128 8 + 1 19.56 13.25× 2

TABLE 2
Simulation parameters and performance data.

(a) (b) (c)
Fig. 6. Example 5, direct IMF modulation. (a) The original;
(b) high-frequency suppression with βj = 0.9 (j =
1, · · · , 4) and βj = 0 (j = 5, · · · , 9); (c) high-frequency
boost with βj = 1.005 (j = 1, · · · , 4) and βj =
0 (j = 5, · · · , 9). The direct IMF modulation is fast and can
achieve some simple effects, but comparing with the full
style modulation, it does not provide the same accuracy
or freedom.

βj . Fig. 6(a) is the original result without modulation.
Fig. 6(b) shows a high-frequency suppression result,
obtained by setting βj = 0.9 (j = 1, · · · , 4) and
βj = 1 (j = 5, · · · , 9). It can be seen that the modulation
suppresses not only the fine-scale features but also the
eddy-like global motions, making the bottom of the
plume become a straight column. This is because each
IMF has a varying frequency distribution, and therefore
modulating any IMF will affect the flow features in a
frequency range rather than at a single frequency. Fig.
6(c) shows a high-frequency boost result, obtained by
setting βj = 1.005 (j = 1, · · · , 4) and βj = 1 (j =
5, · · · , 9). Again, as each IMF corresponds to a frequency
band, the boost modulation enhances both chaotic fine
features and regular global motions. The direct IMF
modulation is fast and can achieve some simple effects,
but comparing with the full style modulation, it does not

provide the same accuracy or freedom.

(a) (b) (c)
Fig. 7. Example 6, consistency guiding. (a) The low-
resolution result; (b) the guiding result with γj = 0 (j =
1, · · · , 8) and γ9 = 1; (c) the high-resolution result. The
example demonstrates the decomposition is able to suc-
cessfully remove and replace the large scales of a flow.

Consistency Guiding: Example 6 (Fig. 7) demon-
strates the effect of consistency guiding described in
§4.4. Fig. 7(a) is the simulation result obtained on a
64× 128× 64 grid, and Fig. 7(c) is the result obtained on
a 128× 256× 128 grid. Fig. 7(b) is the guided simulation
using Eqn. (17). The velocity field is decomposed into
8 IMFs plus a residual, and the guiding weights γj are
simply set as γj = 0 (j = 1, · · · , 8) and γ9 = 1. It is
demonstrated that the decomposition is able to success-
fully remove and replace the large scales of a flow. It
is seen that the guided result retains the same global
motion as obtained in the low-resolution simulation
while providing more fine-scale details. This simple and
intuitive consistency guiding approach operates directly
on the decomposed velocity field, and does not require
solving extra equations or introducing artificial forces.

We parallelized our algorithm and implemented and
tested on a quad-core computer. The simulation param-
eters and performance data for all examples are listed in
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Table 2. The velocity fields are decomposed into 8 IMFs
plus the residual in these examples. The style modula-
tion in examples 1–4 costs roughly the same amount
of CPU time as the simulation step. The direct IMF
modulation in example 5 costs relatively less, because
the computation of Hilbert transform is not required.
In example 6, the EMD operation is performed twice
for consistency guiding: one performed on the high-
resolution result, and the other on the low-resolution
result, which can be computed offline. The computa-
tional cost of our modulation approach is similar to the
standard simulation, and it increases proportionally with
the total grid number.

5.2 Comparison with Other Decomposition Methods

(a) (b) (c)
Fig. 8. Fourier modulation. (a) The original; (b) low-
frequency components scaled by 0.95, the total flow field
is reduced with expansion towards the surrounding; (c)
high-frequency components scaled by 1.05, noisy fine-
scale details are added causing the total flow field uni-
formly expanding to all directions.

(a) (b) (c)
Fig. 9. Wavelet modulation. (a) The last low-frequency
component is scaled by 1.1; (b) the last two low-frequency
components are scaled by 1.1; and (c) the last three low-
frequency components are scaled by 1.05. Some macro-
scale structures are smoothed out in (a), while significant
amount of unnatural motions are introduced in (b) and (c).

Traditional decomposition methods are also investi-
gated in our study. We found that they do not produce
satisfactory results for flow field modulation. Here we
discuss their difference and limitation in analyzing flow
fields. We selected the two most widely used decompo-
sition methods for fluid simulation, namely Fourier- and
wavelet-based methods, in this comparison.

A Fourier-based modulation approach can be devel-
oped by using Fourier transform to extract frequency
information from the velocity field and applying the

modulation to the Fourier components in a similar way
as §4.3. We tested a number of parameter configura-
tions on different scenes, varying the number of Fourier
components and the weight factors. A typical example
is shown in Fig. (8), where the same plume as in Fig.
(3) is modulated. Fig. (8a) demonstrates low-frequency
suppression by scaling the low-frequency components
with a factor of 0.95, and Fig. (8b) is the high-frequency
boost result obtained by scaling the high-frequency com-
ponents with a factor of 1.05. The Fourier modulation
failed in the low-frequency suppression case: instead
of suppressing only the large-scale fluid motions, the
total flow field is reduced with the plume expanding
towards the surrounding. For the high-frequency boost
case, some fine-scale details are added to the plume, but
they cause the total flow field uniformly expanding to
all directions. As Fourier decomposition relies on pre-
defined base functions with constant frequencies and
global support over the whole domain, it has funda-
mental difficulty in capturing the non-stationary multi-
scale local character of the flow field, and hence cannot
correctly guide the modulation of flow fields.

A wavelet-based modulation approach can be simi-
larly developed by replacing the SHHT with the wavelet
transform. We follows the wavelet implementation in
[14]. Although the wavelet approach is found in many
test cases to perform better than the Fourier approach,
it is still not suitable for general flow field modulation.
A group of test examples are shown in Fig. (9), where
the same fluid scene as in Fig. (1) is adopted. Fig. (9a)
is obtained by scaling the lowest frequency component
with a factor of 1.1; Fig. (9b) is obtained by scaling
the last two low-frequency components with a factor of
1.1; and Fig. (9c) is obtained by scaling the last three
low-frequency components with a factor of 1.05. None
of these trials succeeded in enhancing the macro-scale
fluid motion. Comparing to the original flow shown
in Fig. (1a), some macro-scale structures are smoothed
out in Fig. (9a) at the center of the mountain scene.
However, what we are doing here is to boost the features.
This failure is not due to the strength of boost, and
it shows wavelets unpredictable effects in modulating
low-frequency motions. Processing more low-frequency
components does not help, and significant amount of
unnatural motions are introduced into Figs. (9b-c) even
causing the flow field to diverge. In these examples,
the failure of the wavelet modulation is due to the
misrecognition of the low-frequency motion of the flow
field. The wavelet base functions feature local support
sets, and comparing to the Fourier basis they have a
better potential in coping with the non-stationarity of
turbulent flow. However, the wavelet transform still
relies on pre-defined base functions with a fixed set
of spatial frequencies. Hence, it cannot accurately rep-
resent the flow field’s “instantaneous frequencies and
amplitudes” which vary continuously through the fluid
domain. The misrepresentation is particularly worse for
the low-frequency range, where the wavelet frequencies
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are “sparse”.
In contrast to traditional data analysis tools, the SHHT

is self-adaptive to the data set, and can well define
instantaneous frequencies and amplitudes at any value
for the whole frequency range. It is this unique property
that allows the SHHT to correctly extract the intrin-
sic multi-scale features from the nonlinear and non-
stationary flow field and to be a general modulation
method for various flow types. For example, without
damaging the flow’s global shape, the SHHT modulation
can enhance separately intrinsic flow features at different
length scales (see e.g. Fig. (1)); besides boosting effects,
the SHHT modulation also allows suppression of multi-
scale flow features producing naturally stabilized results
(see e.g. Figs. (3) and (5)), which cannot be achieved by
turning up buoyancy or adding artificial forces.

6 CONCLUSION

We have introduced a novel method that uses Hilbert-
Huang transform to decompose flow fields from 3D fluid
simulation into a set of frequency components, which re-
veal the intrinsic multiscale structure and the associated
frequency information of the flow fields. Based on the
proposed spatial Hilbert-Huang transform, we define a
quantitative measure of flow style, describing intrinsic
flow features at different length scales as a function
of spatial frequencies of the flow field. The flow style
from a fluid simulation can be modulated by directly
modifying velocity fields at specific spatial frequencies.
Several modulation methods are proposed, and they
allow the multiscale flow features to be boosted and
suppressed independently. This modulation method is
very easy to implement, and can be readily integrated
into standard fluid solver within the existing algorithm
framework.

There are some limitations that deserve discussion.
The 3D-to-1D mapping technique affects the accuracy
of Hilbert transform by sampling the total derivatives
with directional derivatives, and theoretically it shares
common drawbacks of any sampling method in the
sense of information loss. Calculating derivatives along
the space-filling curve can cause false estimation at some
positions on the grid edge, where the space-filling curve
travels out of the grid for some while and comes back to
another nearby but not bordering position. Thus when
processing a flow with violent motions near the grid
edge, instantaneous frequency calculation can be unre-
liable at these positions. To overcome this problem, one
can extrapolate the velocity values or enlarge the grid
coverage, involving extra computational cost. Also, for a
neighborhood where a steady flow undergos a bare low-
frequency motion, sampling the total derivative semi-
randomly along the space-filling curve can potentially
introduce artificial medium-to-high frequency compo-
nents. When these frequency components are boosted,
fine-scale structures may be generated earlier than their
physical evolvement. Hence, extra caution must be taken

when boosting a plain flow field whose large-scale
structures have not yet broken to motivate small-scale
features.

As the modulation operates on the intrinsic flow
modes and intrinsic frequencies that are captured by the
current simulation grid, it cannot add fine-scale features
beyond the grid resolution. It is noted that practical
flows can have time-dependent features. However, al-
though the guiding style functions are not required to
remain the same during simulation, time variance of
the style curves is not taken into account yet. These
two important aspects will be investigated in our future
work.
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[27] N. Thürey, R. Keiser, M. Pauly, and U. Rüde,
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