Retractable and Speculative Contracts

Franco Barbanera!, Ivan Lanese?, and Ugo de’Liguoro®

! Dipartimento di Matematica e Informatica, University of Catania
barba@dmi.unict.it
2 Dipartimento di Informatica - Scienza e Ingegneria, University of Bologna/INRIA
ivan.lanese@gmail.com
3 Dipartimento di Informatica, University of Torino
ugo.deliguoro@unito.it

Abstract. Behavioral contracts are abstract descriptions of the commu-
nications that clients and servers perform. Behavioral contracts come
naturally equipped with a notion of compliance: when a client and a server
follow compliant contracts, their interaction is guaranteed to progress
or successfully complete. We study two extensions of contracts, dealing
respectively with backtracking and with speculative execution. We show
that the two extensions give rise to the same notion of compliance. As a
consequence, they also give rise to the same subcontract relation, which
determines when one server can be replaced by another preserving compli-
ance. Moreover, compliance and subcontract relation are both decidable
in polynomial time.

1 Introduction

Binary behavioral contracts [I3J26/14] and binary session types [21] are abstrac-
tions of programs used to statically ensure that a client and a server interact
successfully (see the survey in [23]). Along the years, the basic theory has been
extended to deal with many features of clients and servers, such as exceptions [I1],
time [§], and so on. We consider here two new features: backtracking, allowing one
to go back to previous stages of the interaction, and speculative execution [29],
allowing one to try different alternatives concurrently. These two features have
quite different origin and aims. Backtracking is used to avoid failures due to wrong
past decisions in a wide range of settings, from the undo button in web browsers,
to the execution model of Prolog, to techniques for rollback-recovery [I]. Specula-
tive execution is used for efficiency reasons in different areas, from simulation [12],
to thread-level optimization [30], to web services [15].

We present two extensions of binary contracts (Section: retractable contracts
capturing backtracking, and speculative contracts capturing speculative execution.
The two extensions are based on the same syntax, but naturally have different
semantics. Essentially, they add to the session contracts of [819] (called first-order
session behaviors in [3]) an operator of external choice among output operations.
The most interesting case is when an external choice among outputs and an
external choice among inputs interact. In the retractable semantics, the client
and the server agree on which option to explore, but they rollback and try a

different possibility if the computation gets stuck. In the speculative semantics
all the possibilities are explored concurrently, and it is enough for one of them to
succeed to guarentee the success of the whole computation.

This paper defines retractable and speculative contracts, and studies the
related theory, considering the notions of compliance (Section , guaranteeing
that the interaction progresses or successfully completes, subcontract relation
(Section , determining when a server (resp. client) can be replaced by another
server (resp. client) preserving compliance, and dual contract (Section 7 that is
the most general contract (in terms of the subcontract relation) compliant with
a given contract. Our analysis provides two main insights:

— Even if retractable contracts and speculative contracts have different se-
mantics and give rise to different client-server interactions, the relations of
compliance, subcontract and duality in the two settings do coincide. While
surprising at first sight, this can be explained by noticing that in both the
cases different alternatives are explored (sequentially for retractable contracts,
in parallel for speculative contracts) and the success of one of them guarantees
the success of the whole computation. In other terms, the two semantics
provide different implementations of angelic nondeterminism, first described
by Hoare [20)].

— While retractable/speculative contracts are strictly more expressive than
session contracts (indeed they are a conservative extension, see Section ,
their theory preserves the main good properties of the theory of session con-
tracts. In particular, compliance and subcontract relations are both decidable
(Section [3) in polynomial time (Section [5]), and the dual of a contract always
exists and has a simple syntactic characterization (Section .

To ensure the existence of the dual contract, one needs to introduce an operator
of internal choice among inputs. While this operator has limited practical impact,
it makes the model more symmetric and the mathematical treatment simpler.

The results above make us confident in the fact that our semantics correctly
captures the interaction patterns we are interested in. As further element sup-
porting this, we show (Section @ that the backtracking mechanism of retractable
contracts can be seen as an application to behavioral contracts of the general
theory proposed in [28] to define reversible extensions of process calculi.

A few preliminary results on the topic of this paper have been presented in a
workshop paper [7], which considers retractable session contracts, i.e., retractable
contracts without internal choice among inputs. The main result of [7] is the
decidability of the compliance relation (while we study here also the complexity),
which was obtained via an algorithm that we now know to be exponential. Here
we present a more refined, polynomial one (Figure [10)). In [7] the subcontract
relation and the dual contract were not studied, and indeed the dual contract
did not exist due to the absence of internal choice among inputs.

Proofs missing from the main part are collected in Appendix [A]

2 Contracts for Retractable and Speculative Interactions

We present below a uniform syntax for retractable and speculative contracts, with
two semantics. It can be obtained from the syntax of session contracts of [3[9]
(called first-order session behaviors in [3]), that we dub here SC, just adding
external retractable/speculative choice among outputs and internal choice among
inputs. As a matter of fact our contracts can also be seen as an extension of the
retractable session contracts of [7], that we dub here rC, simply adding internal
choice among inputs. As a reference, session contracts and retractable session
contracts are recalled in Appendix [A.1]

Definition 1 (Retractable/Speculative Contracts). Let N (set of names)
be some countable set of symbols and let N (set of conames) be {@ | a € N}, with
N NN = 0. The set rsC of retractable/speculative contracts is defined as the
set of the closed expressions generated by the following grammar,

o,p:=| 1 SUCCESS
> ie; @i-0; EXTERNAL INPUT CHOICE
> .c7@;.0; EXTERNAL OUTPUT CHOICE
@,c; @i-0i INTERNAL INPUT CHOICE
D, ;a;.0; INTERNAL OUTPUT CHOICE
x VARIABLE

recr.o RECURSION

where I is non-empty and finite, the names and the conames in choices are
pairwise distinct and o is not a variable in recx.o.

Recursion in rsC is guarded and hence contractive in the usual sense. We take an
equi-recursive view of recursion by equating rec z.c with ofrecx.0/xz]. We use «
to range over N'UN, with the convention @ = @ if « = a, and @ = a if o = @. We
write a1.01 + a2.09 for binary external input/output choice and ay.01 @ .09 for
binary internal input/output choice. They are both commutative by definition.
Also, a.o denotes both internal and external unary choice. This is not a source
of confusion since internal and external choices do coincide in the unary case.
We also write ay.op + o' for), ; aj.0; where k € I and o’ = Zie(l\{k}) 0;.0;
(and similarly for internal choices). When no ambiguity can arise, we call just
contracts the expressions in rsC. They are written by omitting all trailing 1’s.

We discuss below the two interpretations and the two semantics for our
contracts: the retractable one, and the speculative one.

2.1 Retractable semantics

The main novelty of the retractable semantics is that when an external choice
among outputs and an external choice among inputs interact, the client and the
server agree on which option to explore, but they rollback and try a different
possibility if the computation gets stuck.

In order to deal with rollbacks, we decorate contracts with their history, which
memorizes, for past choices, the alternatives that have been discharged and that
can be tried upon rollback. We use ‘o’ to stand for no-remaining-alternatives.

Definition 2 (Contracts with History). Let Histories be the expressions gen-
erated by the grammar H ::= () | H:o, where 0 € rsCU{o} and o & rsC. Histories
are hence stacks of contracts and o. Then the set of contracts with history is
defined by: rsCH = {Hxo | H € Histories,o € rsCU {o} }.

We write just op:---:0y for the stack (- (():01): -+) :0%.

As standard for contracts, the definition of the retractable semantics is in
two stages: we first define a labeled transition system (LTS) for contracts with
history (Definition [3), and then we use it to define a reduction semantics for
pairs of contracts representing one client and one server (Definition .

Definition 3 (Semantics of Contracts with History).

(+) Hxa.o + o' %5 H:o'xo (®) Hxa.o0 ® o' — Hxa.o
(@) Hx .o - H:oxo (rb)HZO'/IXO'r—b>HI><O'/

In the transition rule for external choice (+), the action « is executed, and the
discharged branches in ¢’ are memorized. In internal choice (), instead, the
selection of one branch is represented by a label 7, and the history H is unchanged.
When a single action is executed («), a ‘o’ is added to the history, meaning that
the only possible branch has been tried and no alternative is left. Rule (rb) pops
the contract at the top of the stack, replacing the current one with it.

The client/server interaction is modeled by the reduction of their parallel
composition, that can be either forward, consisting of CCS-style synchronizations
and single internal choices, or backward, only when there is no possible forward
reduction, and the client is not satisfied, i.e., it is different from 1.

Definition 4 (Semantics of Retractable Client/Server Pairs).
The following rules, plus the rule symmetric to (1) w.r.t. ||, define the relation
— over pairs of contracts with history:

(comm))
Hyixp -5 Hixp Hyxo — Hyxo' Hixp — Hyxp
Hixp || Hoxo — Hixp' || Hyxo’ Hixp || Hoxo — Hixp' || Hoxo
(rbk)
Hixp -2 Hyxp' Hoxo -2 Hyxo! p#1

Hixp || Hoxo — Hixp' || Hyxo'
Rule (rbk) applies only if neither (comm) nor (1) do.

The forward reduction — s is the relation generated by rules (7) and (comm).

Hixa.c+b.d || Hexa.c+ be agreement point

— Hi:a.exd || Ho:a.exe synchr. and state memorizations
- synchr. failure and
- Hixa.c | Haxae rollback to the last agreement point
etc.

Hixa.c+b.d || Hexacd® be normal interaction point
— Hixa.c+bd | Ha xb.e internal choice
— Hi:a.exd || Ha: o xE synchr. and client-state memorization
— Hixa.c || Haxo synchr. failure and rollback
. synchr. failure due to o, rollback continues

to the previous agreement point

Fig. 1. Role of o during rollbacks

FEzample 1. In order to get a better insight on the role of ‘o’ in the rollback
mechanism, observe that, for a client like a.c + b.d, rule (+) in Definition [3| forces
the memorization of a “rollback state” independently from the shape of the
server, which could be, for instance, @.¢ 4+ b.€ or a.¢ @ b.e. In the first case we
are in presence of an agreement point, hence the memorized state is the one the
client has to rollback to in case of a synchronization failure. In the second case,
instead, we are not in presence of an agreement point, since the server decides in
isolation which alternative to select, so a future synchronization failure must not
make the client roll back to this point. One could hence wonder whether rule (+)
could produce some rollback to states which are not agreement points. Indeed,
what happens is that, when such a state is reached, at least one of the partners
has ‘o’ as contract. Since ‘o’ cannot synchronize with anything, the client/server
pair is forced to recover an older past (if any). This is exemplified in Figure

Remark 1. The semantics defined above for retractable contracts can be seen
as an instantiation to contracts of the standard reversible semantics for process
calculi, see, e.g., [T6I28/24125]. In particular, by removing:
1. the fact that not all reductions are retractable, but only external choices;
2. the side condition p # 1 in rule (rbk), which disallows backtrack after success;
3. the fact that rule (rbk) can be applied only if no other rule applies, ensuring
that backtrack is performed only when forward computation is stuck;
4. the fact that in external choices the chosen path is not stored in the history,
avoiding to retry the same path multiple times;
the semantics would be a classic uncontrolled semantics according to the terminol-
ogy of [25]. The mechanisms above provide a semantic control of reversibility [25],
specifying which rollback steps are allowed, and when. We discuss in Remark 2] the
impact that removing the control mechanisms above would have on retractable
contracts and on their theory.

QoSday.(priceMed.ok
() X + pricelow.ok) | ()X 2 qos 0S.pricey .0k
+ QoSnight.priceLow.ok

O QoSnight.priceLow.ok I () 1 2 gos£qosaay QO0S PTiceg,s.ok
XpriceMed.ok + priceLow.ok X priceHigh.ok

— () X QoSnight.priceLow.ok | ()X 2 Qos£Qosday UOS-PTicey,s.0k

— ():ox priceLow.ok || <>: 7Zqos¢qosmy’u°snight QoS P Coges-ok
X priceLow.ok

— (>: 0:0 D(& H < > : ZQOS#QoSday,QoSnight QOS'PricerS‘Ok t o
X ok

N (y:o:o:oxl | () 2 qos£q05day, osnigne QOS-PTICeqeg.0k: 0 10

Fig. 2. An example of retractable interaction

Ezxample 2. Retractable contracts allow one to first try a preferred alternative,
but to accept also another alternative if the first one proves to be impossible to
obtain. In cloud computing settings, companies may hire virtual machines and
storing facilities from cloud providers with some agreed Quality of Service (QoS).
A company is willing to hire at some medium or low price a certain amount of
machines for online elaboration during day time, but, if the price is too high, it
is also willing to switch to offline night elaboration. In this last case it is only
willing to pay a low price.
A retractable contract with this behavior may be written as:
cloudClient = QoSday.(priceMed.ok + priceLow.ok) + QoSnight.pricelLow.ok
Notice that the contract does not specify which alternative the client prefers: this
aspect of the client behavior is abstracted away. A sample server is:
cloudServer = 3 ¢ se (qosday,qosnighs,... } 108 PTiceq,s.ok
A sample interaction is described in Figure 2| where we assume that
Priceg,gg.y = priceHigh and priceg,g;,,, = priceLow.

2.2 Speculative semantics

The main idea of the speculative semantics is that in an external output choice
all the options are tried concurrently: if at least one of them succeeds, then the
whole computation succeeds. In order to represent concurrent trials we need
runtime contracts featuring multiple threads.

Definition 5 (Contracts with Threads). Contracts with threads C, used
as runtime syntax for contracts, are parallel compositions of threads T. Fach
thread is a contract prefized by a sequence (possibly empty) of actions uniquely
identifying it.

C:=T|(C|T)|(T]|C) T:=0 | aQT
We assume the operator ‘|’ to be associative and commutative.

As for the retractable semantics, the definition of the speculative semantics is in
two stages: we first define an LTS for contracts with threads (Definition @, and
then we use it to define a reduction semantics for pairs of contracts with threads
representing one client and one server (Definition .

Definition 6 (Semantics of Contracts with Threads).

In the LTS below, we use as labels actions a ::= a | @, sequences of actions
B =« aB, and complex labels B, ::= 7 | 3,7T, where 7T is either the thread
T or nothing. Also, Q7T is nothing if 7T is nothing, QT otherwise.

(Fork) , (@) . (o) N
a.o+o 22 qQe a.oc Do — a.o a.0 — aQo
(@-a) (@-r) (ParL)
ﬁv?T,/ T ﬁﬂ' /
T — T T - T T-—-T
aar 22T o a@T L a@T T |C T | C

In the rule for external choice (Fork), when an action « is executed, its continu-
ation o is prefixed by it. The other branches ¢’ need to be executed in a freshly
spawned thread. Since such thread needs to be installed at top level, ¢’ is added
to the label, and the actual installation is performed at the level of speculative
client/server pairs (see rule (comm) in Definition [7)). The rule for internal choice
(@) simply selects one of the available options. A unary choice («) executes the
action « and prefixes with it the continuation o.

Because of rule (@-«), execution is allowed below an @ prefix. The prefix
itself is added to the label 8 and, if present, to the thread T”. Prefixes uniquely
identify threads, and ensure that each thread interacts only with the one with
dual prefix which is running on the communication partner. This is specified in
Definition [7| below. No prefix is added to 7 actions, propagated by rule (@Q-7).
Rule (ParL) simply allows components of a parallel composition to execute (a
symmetric rule is not needed thanks to the commutativity of |).

The interaction of a client with a server is modeled by the reduction of their
parallel composition.

Definition 7 (Semantics of Speculative Client/Server Pairs).

The following rules, plus the rule symmetric to () w.r.t. ||, define the relation
— over pairs of contracts with threads. In the LTS below, C |?T is C if 7T
is nothing, C | T otherwise. Also, the duality operator extends from actions to
sequences: @ = EB.

(comm,) ()
C B,?T o o B,7T" el C L) C’

c||c’—c T | Cc” 2T cjcr—c|c”

Rule (comm) allows threads performing dual sequences of actions to interact. This
implies that both the actual actions and the prefixes of the threads performing
them should be dual. Threads in the labels, if present, are installed in parallel.
Rule (7) simply propagates the 7 action.

Ezample 3. A server provides access to multiple algorithms for SAT solving [34].
A client first sends the problem instance to be solved, then selects the algorithm,
and finally sends the relevant parameters. The server computes the solution
according to the received commands, and sends it back. Since the most efficient
technique depends on the problem instance [33], the server supports speculative
execution, to allow one to try different algorithms at the same time (this is called
the portfolio approach). The server contract is described by:

SATserver = inst.), alg,. >, par;.sol
A simple client that tries both the DPLL approach and the walksat approach
can be modeled as follows:

SATclient = inst.(DPLL.par.sol + walksat.par.sol)

A sample computation proceeds as described in Figure [3| assuming that the
server supports both DPLL and walksat. To keep the example simple we drop
the choice of parameters. Let us see in more details how the creation of threads
is managed. The first reduction in Figure [3|is due to rule (comm), since

inst

inst.(DPLL.sol + walksat.sol) — inst@(DPLL.sol + walksat.sol)

and — _
inst. Y, alg;.s0l ——% inst@Y", alg,.s0l.

The second reduction is also due to rule (comm), since, on the client side
(Fork)

DPLL.sol + walksat.sol —w¥elieetool S5rT@sol

(@-a)

inst DPLL, inst@uwalksat.sol

inst@(DPLL.sol + walksat.sol) inst@DPLL@sol

whereas, on the server side,

— (FORK)
DPLL, Z{i\Ai#DFLL} alg;.sol

>, alg,.sol DPLL@sol

inst DPLL, inst@ Z{“A J #DPLL} alg; .sol
i

(@-a)
inst@DPLL@sol

inst@}". alg,.sol

3 Compliance

The compliance relation for session contracts [3J9] consists in requiring that,
whenever no reduction is possible, all client’s requests and offers have been
satisfied, i.e. the client is in the success state 1. For retractable contracts, thanks
to the retractable operational semantics taking care of forward and backward
reductions, we can adopt the same definition. We use — to denote the reflexive
and transitive closure of —, and —/ to specify that no — reduction exists.

Definition 8 (Retractable Compliance Relation).

inst.(DPLL.sol + walksat.sol) | inst.) alg,.sol
— inst@(DPLL.sol + walksat.sol) | inst@}) . alg,.sol
. inst@DPLL@sol I inst@DPLL@sol
| inst@ualksat.sol | inst@3 ;0. Lopiry 2lg;-s0l
i ___ inst@DPLL@sol
inst@DPLL@sol . —
— it | | inst@walksat@sol
| inst@walksat@sol inst@ —
| inst Z{z’\AﬁéDPLL,walksat} alg;.sol
THStADPIL@sol inst@DPLL@sol
ins so —
N it inst@walksat@sol@1
| inst@Qualksat@sol@1 I

| inst@ E{i\Ai;éDPLL,walksat} alg;.sol

Fig. 3. An example of speculative interaction

i) The relation 4R on contracts with history is defined by:
Hixp AR Haxo if, for each H,Hy,p' 0’ such that
Hixp || Hoxo —— Hixp' || Hyxo'—+, we have p' =1
ii) The relation HI® on contracts is defined by: p AR o if (yxp AR ()xo.

For speculative contracts we need to take into account the fact that the whole
computation succeeds if at least one of its branches succeeds.

Definition 9 (Speculative Compliance Relation -°).
The relation 15 on contracts is defined by:
p S o if foreach C,,C, such thatp| o — C,|| C, /=
there exist C,n, a1, ..., oy, such that C, = C | Q...Qq,Q1

We now provide a formal system characterizing compliance on both retractable
and speculative contracts.

Definition 10 (Formal System for Compliance >).

Judgments in the formal system > are expressions of the form I' > p o,
where the environment I is a finite set of expressions of the form § < vy, with
p,0,8,7 € rsC. Azioms and rules are as in Figure[].

The only non standard rule of system > is (+-+), which ensures compliance
of two external choices when they contain respectively (at least) one a and the
corresponding @, followed by compliant contracts. This contrasts with the rules
(®-+) and (+- @), where each a in an internal choice must have a corresponding
@ in the external choice, followed by compliant contracts. No rule is provided for
the case (@ - @) since two internal choices are compliant only if both of them
are unary choices. In such a case internal choice coincides with external choice,
thus this case is taken into account by the rules we already have. Notice that
rule (+ - 4) implicitly represents the fact that, in the decision procedure for two
contracts made of external choices, the possible synchronizing branches have to
be tried, until either a successful one is found or all fail. Looking at a derivation

10

(+-+)
(Ax) (Hyp) ' ’ "
e 140 oo > pAo Nap+p AdAaoc+o > pAo
> ap+pdaoc+d
(®-+)

Vhel. I'@ie @i-piA Y jerus®i-0i > prlon

I' > @e®i-piA Y jeru 05

(+-®)
Vhel Iy icruy @-pi Dicp@ioi > pron

I 3 ieus®piA @iy @ivoi

Fig. 4. System >

bottom-up, at each application of a rule, the considered pair of contracts is added
to the environment I'. In this way, if the same pair is reached again due to the
equi-recursive view of contracts, the derivation can be closed using rule (Hyr).
Rule (ax) instead closes the derivation when the client reaches the success state
1. We write > p o instead of I' > p o when I is empty.

Derivability in system ©> is decidable, since it is syntax-directed and proof
reconstruction does terminate. The procedure Prove in Figure [5] clearly im-
plements the formal system, namely it is straightforward to check the following

Fact 1 i) Prove(I'> po) # fail iff I'>p4o.
ii) Prove(I' > pA o) =D # fail implies D::I' > pAo.

Theorem 1. Derivability in the formal system > 1is decidable.

Proof. By Fact we only need to show that the procedure Prove always
terminates. Note that, in all recursive calls Prove(Il,p Ao > py A 0y) inside
Prove(I" > pv| o), the expressions py and oy, are subexpressions of, respectively,
p and o (because of the equi-recursive view of recursion they can also be p and
o). Since contract expressions generate regular trees, there are only finitely many
such subexpressions. This implies that the number of different calls of procedure
Prove is always finite. O

We can prove the soundness and the completeness of the formal system >
w.r.t. both the retractable and the speculative semantics (see Appendix for
the proofs).

Theorem 2 (Retractable Soundness and Completeness).
>pAdo iff pARo
Theorem 3 (Speculative Soundness and Completeness).

>pAo iff pAFo

11

Prove(I' > po) =

i - — (&)
if p=1 then Io>1d0

; - — ("HvP)
else if poel then T pdot pro

else if p=3 ,0ip ando=} ;@0
and exists k€ INJ s.t. D= Prove(l,po > ppox) # fail

D
then ——(+-4) else fail
I'>pAo

else if p=@,;aq.pi and o=3, ;.0
and for allk € I D, = Prove(l,po > pi o) # fail
Vkel Dy
then —(®-+)
I'>pAo
else if p=3,,,%.p; and 0 =P, ai.0i
and for allk € I Dy = Prove(l,po > py o) # fail
Vkel Dy

then —— (+-®) else fail
I'>pAo

else fail

Fig. 5. The procedure Prove.

We can now formally prove the client and server of Example [3| to be com-
pliant, i.e. inst.(DPLL.sol + walksat.sol) 1I° inst.) . alg;.sol, by providing a
derivation for > inst.(DPLL.sol +walksat.sol).inst.) . alg;.sol, as shown
in Figure [6]

By the soundness and completeness of system > w.r.t. both the relations
of retractable and speculative compliance, we immediately get that the two
compliance relations do coincide.

Corollary 1 (Retractable and Speculative Compliances Coincide).
4R = 4P

By the above, from now on we write -l instead of 4I® or P . So the following
also easily follows.

Corollary 2 (Compliance Decidability). The relation -l is decidable.

Remark 2. We now discuss the impact on the compliance relation of the four mech-
anisms for controlling reversibility in the semantics of retractable client/server
pairs (see Remark . In particular, we analyze what would happen by dropping
each one of them in isolation:

12

(Ax)
V1,772,773 > 141
(+-9)

Y1,7Y2 > solsol
71 > DPLL.sol + walksat.sol«|), alg,.sol

(+-+)
@ +)

> inst.(DPLL.sol + walksat.sol) | inst.) . alg;.sol

where 71 = inst.(DPLL.sol + walksat.sol) «{inst. . alg,.sol
72 = DPLL.sol + walksat.sol - > alg,.sol
v3 = sol | sol

and where, for some 4, alg, = walksat.

Fig. 6. A sample derivation in >

Drop “Not all reductions are retractable”: each reduction could be un-
done. From the compliance point of view, all the choices would be retractable.
Hence, retractable contracts would not be a conservative extension (see Sub-
sect. |3.1]) of session contracts any more. The case we consider is strictly more
general, since we allow for both retractable and unretractable choices.

Drop the side condition p # 1 in rule (rbk) of Definition [4t any forward
finite interaction would be followed by a rollback. In particular, most of
the client/server pairs without recursion (except a few trivial ones, like
()x1] (yxo) would end into ()X o || ()xo. Thus all these pairs of contracts
would not be compliant.

Drop “rule (rbk) can be applied only if no other rule applies”: interac-
tions could rollback before succeeding. As in the case above, most client/server
pairs (except a few trivial ones, but including recursive ones) could reduce to
()X o || (yxo. Again all these pairs of contracts would not be compliant.

Drop “in choices the chosen path is not memorized”: any client/server
pair that would not normally succeed with at least one retractable choice could
diverge by undoing and redoing the choice forever, thus trivially ensuring
compliance.

None of the last three scenarios provides a reasonable setting. The first one would
be reasonable, but the case we consider is strictly more general.

3.1 Conservativity Results

It is possible to show that all the relations on our retractable and speculative
contracts (rsC) are conservative extensions of corresponding notions on (first-
order) session contracts (SC) as defined in [3/9], and on the retractable session
contracts (rC) as defined in [7].

As previously said, it is not difficult to check that session contracts SC are
a subset of retractable session contracts rC, which, in turn, are a subset of the
contracts rsC we are presently investigating, namely: SC C rC C rsC. Obviously
the strict inclusion SC C rsC is not enough, by itself, to guarantee the retractable

13

and speculative operational semantics for rsC to be conservative extensions of the
operational semantics of SC. We prove that it is so in the following Proposition
E Informally, it states that both the forward retractable semantics — and the
speculative semantics — of pairs of contracts in SC are annotated versions of
their semantics in SC, which we recall in Appendix [A1]

Proposition 1 (Operational Semantics Conservativity). Let p,o € SC.
i) pllo—Sscp | o i Hixp | Haxo —; Hixg || Hyxo!
for some Hy, Ho, H} and H
i) pllo—scp |oiff pllo—>a@...a,@p |C, | ai@...@,Q0" | C,
for some n,a1,...,0,,C, and C,

where —>sc denotes the reduction relation on SC pairs in the theory of session
contracts.

Proof. See Appendix O

We do not take into account conservativity of the retractable operational
semantics for rsC over the one for rC because it is quite trivial, since the rules
in the two semantics are essentially the same. A conservativity result of the
speculative operational semantics for rsC over the one for rC would instead
consist in a rather cumbersome and uninteresting statement.

The conservativity result for the operational semantics is not enough, in itself,
to guarantee the theory of retractable compliance for rsC to be a conservative
extension of both the theory of compliance for rC and for SC. Also in this case,
however, we can prove it to be so, that is, the compliance relation for session
contracts SC is the restriction of the compliance relation -l for our contracts to
pairs of session contracts SC, and similarly for the restriction of -l to retractable
session contracts rC.

To prove the results above, let Hlsc and Hl,c be the compliance relations
on, respectively, session contracts and retractable session contracts. Also, let
> sc and > . be, respectively, the formal systems axiomatizing them (see
Appendix . We first show that the logical theories of >gc and >, are
conservative extensions of the logical theory > .

Proposition 2 (Formal Systems Conservativity).

i) Let p,oc € SC: Dscpo iff > pdo
it) Let pyo € rC: DycpAdo iff > pdo

Proof. See Appendix 0

From Proposition [2| and the soundness and completeness property of >sc
and Dyc (Theoremsm andin Appendix) we immediately get what follows.

Corollary 3 (Compliances Conservativity).

i) Let p,oc € SC: pHlsco iff pHo

14

ii) Let pyo €rC: pHyco iff pdo

A more direct proof of conservativity of -l over Hlsc, enabling to get
a better insight of the differences of the compliance relations for the different
formalisms, can be obtained by an analysis of the behaviors of reductions. Some
care is however needed in such a case, since reductions can modify the stack even
when we restrict ourselves to session contracts. This implies that, in a sequence
of reductions out of a client/server system ()xp || (yxo with p,o € SC, also
rollbacks can occur. In order to handle them, one has to show that, in a reduction
sequence like the above, only particular stacks are actually produced, such that
once a rollback procedure is started it necessarily goes on till a stuck state is
reached. Details can be found in Appendix

4 Duality and the Subcontract Relation

Unlike the retractable session contracts of [7], in the present setting it is possible
to get a natural notion of duality. The dual & of an element o of rsC is obtained,
as for session contracts, by interchanging any name a with @ and + with &.
Formally, we first define duality for (possibly open) contracts, that we dub
rsCo, and then we restrict such a definition to rsC (i.e., to closed expressions).

Definition 11 (Syntactic duality).

i) Let o € rsCo. The syntactic dual T of o is defined by the following clauses:
1=1 T==x reCT.0 = recz.0c
Zie] ;.0 = @ie] Q;.0; @iel Q.04 = Zie] Q.0

it) We define (-) : rsC — rsC as the restriction to rsC of the duality function
on rsCo, observing that @ € rsC iff o € rsC.

From now on, in order to avoid too cumbersome definitions, any time an
inductive definition on elements of rsC is provided, it will be tacitly assumed to
be actually the restriction to rsC of the corresponding inductive definition on rsCo.

A first relevant property of duality is the following:
Proposition 3. For any o € rsC, o -l G.

Proof. Since @ is obtained from ¢ by exchanging each o with @ and + with
@, it is easy to get a derivation of > & o. The thesis is then an immediate
consequence of soundness and completeness of > .

The notion of dual contract allows one to combine pairs of contracts in the
compliance relation, as follows:

Proposition 4. For any p,0,0’ € rsC, p 4l o and 7 -l o’ imply p Hl o’

Proof. See Appendix [A-4] 0

15

We will provide further properties of duality using the notion of subcontract
relation. Indeed, the notion of compliance naturally induces a substitutability
relation on servers, denoted <, that we call subcontract relation for servers. Such
a relation may be used for implementing contract-based query engines (see [27]
for a detailed discussion). An analogous subcontract relation, denoted <., can
be defined for clients.

Definition 12 (Subcontract Relations for Servers and for Clients).
Let 0,0’ € rsC . We define

Vp € rsC [p 4l o implies p 4l ']
Vp € rsC [o Hl p implies o’ Al p]

i) o <50

A
! A
i) 0.0 =

Using Proposition [f] we can characterize both < and <. in terms of duality
and compliance, relate them and getting their decidability.

Theorem 4. For any o,0’ € rsC:

i) ogs0 iff Ao
i) o .0 iff o AT
iii) 0 <s 0 iff o' <X.0
i) o X5 0’ and o K. o’ are decidable.

Proof. (=) By contraposition, assume that & Al ¢’. Since & -l ¢ by
Proposition |3 then by definition of <, we have o=({, o’.

(<) Let 4l ¢’. If p -l o, then from & -l o/, we get p 1l ¢’ by Proposition 4] and
therefore o <, o’ by definition.

(i) (=) By contraposition, assume that ¢’ 4 @. Since ¢ 4l @ by Proposition
then by definition of <. we have o<, o’.

(<) Let ¢’ 41 7. If o I p, then from o’ 41 7, we get o’ I p by Proposition [4] and
therefore o <. o’ by definition.

(iif) From Item (i) we have o <, o’ iff & -l ¢’. From Item we have 0/ <. T
iff & 4l o’. The thesis follows since o’ = ¢”.

(iv) From Items ({ij) and and decidability of & -l ¢’. O

By item above, from now on we can simply concentrate on the relation <.

Proposition 5 (Dual as a Least Element w.r.t. <;).
Let p € vrsC. Then p is a least element in the set of the servers of p, that is,
pAlp and (VYo ersC: p-lo implies p<s0)

Proof. Suppose that p -l o and take any contract 7 such that 7 -l 5. Since p = p,
by Proposition [we know that 7 4l o; hence p <5 o by definition. a

As done for the compliance relation, we characterize now the subcontract
relation for servers in terms of derivability in the following formal system, where
the symbol < is used as syntactical counterpart of the relation <.

(@ +-<s)
/ (HYP-X.) Ia.oy ®or < a.oy +0h » o1 <o}

No<do » ok
I » a.o1® o2 < .ol +oh

(+-+-<s)
VYhel. F,Zielai.o'i«ZjeluJOéj.U;’ > op L o),

’
I » Zielai'ai<<zjelu‘]aj'aj

(& &-<s)
Vhel I'N@,cp,0i-0) K D i-op » on Loy

/ /
I'» @jcr,0505 < Djicrioi

Fig. 7. The formal system »

Definition 13 (Formal System for Subcontract »). Judgments in the
formal system » are expressions of the form I' » p < o, where the environment
I is a finite set of expressions of the form § < ~, with p,o,d,v € rsC. Axioms
and rules are as in Figure[]

The rules in system B can be read as a translation of the rules in system
> via Theorem . Asfor >, in I' » p < 0 we may drop I" if empty.

Lemmal. I'bo<o iff ['>50
where I' = {o; € 0} }ier and I' = {G; | 0} }ier.

Proof. (=) By induction over the derivation of I' » 0 < o”.
(<) By induction over the derivation of I' > o «o’. O

System » is sound and complete for the subcontract relation <.
Theorem 5 (Soundness and Completeness of »). » oo’ iff o<xs0’

Proof. (=) Let » o < ¢’. By Lemmall] we get > &0’ and hence & -l o’ by
soundness of system > . The thesis now descends from Theorem [4

(<) Let o <, o’. By Theorem [4] we have that & I o’. By completeness of system
> we get > & o’. Now, by Lemma [T} we can obtain » o < o’ O

System » can be used to show that < is a partial order and hence, by
antisymmetry, p is also the minimum server of p: it is minimal, hence there is no
smaller server, and there is a unique minimal.

Proposition 6. < is a partial order A VpersC, p is the minimum server of p.

Proof (Sketch). We need to show =< to be reflexive, transitive and antisymmet-
ric. Reflexivity and transitivity immediately descend from the definition of <,
(Definition [12)).

For the antisymmetric property, instead, we cannot rely directly on the
definition of <, since from ¢ <, ¢’ and ¢’ <, o we can only infer that o and ¢’

17

a+b+c a+b+c
I NG P N
a+b a+c b+c a+b a+c b+c
| > > > <
a C a C
> < | > < |
adb adc bde a®b adc bdc
~ ~. |
adbdc adbdc

Fig. 8. Subcontract preorder: a sample

have the same set of clients. This does not trivially imply that ¢ = ¢”.

We can proceed, instead, roughly as follows. Let 0,0’ € rsC be such that ¢ <5 &
and ¢’ <, 0. By completeness of » we get » 0 < ¢’ and » ¢’ < 0. By having
such derivations, we can infer that in each of them no rule (& - +-<;) can be
present. Moreover, in each application of rule (+ - +-<;) or rule (& - ®-<;), we
have necessarily that J = (. Out of that we can infer o = o’.

For the second conjunct of the statement, suppose, towards a contradiction, that
there exists o # p such that p 4l 0 and o < p. By Proposition [5| we have p <5 0.
By antisymmetry we have o = p, against the hypothesis. a

/

The structure of the partial order is shown in Figure 8, where the relations
between terms with a unique choice among actions a, b, ¢, @, b and ¢ are pictured.

Remark 3. Analogously to what done in Subsect. [3.I] one can show the subcon-
tract relation <, to be a conservative extension of the corresponding notion in SC.
Moreover, the restriction of < to rC provides a suitable notion of subcontract
for rC (which has never been studied before).

5 Complexity Issues

The algorithm Prove in Figure [5 (and hence the decision procedure for com-
pliance) is simple, but, as it is, its complexity is strictly exponential, as shown
by the example below, where the exponential number of recursive calls of the
decision procedure is actually reached. The example is an adaptation of the one
presented in [I9](§11) concerning the subtyping relation for recursive arrow and
product types.

For each n € N we define two contracts p,, and ¢, by induction, as follows.

po=a+Db Pn+1 = recz.a.x + b.p,
09 = recx.a.r Opt1 = @.0, D recx.b.x

As for the example in [I9], the size of p,, and o, is linear in n, since p,, and o,
appear just once in the definitions of p,1 and 0,41, respectively. By complete
induction over n it is possible to prove that, for any n, p,, 1l o,,. The computation
of Prove(() > p,, | 0,,) builds a derivation for > p,, «| ¢, in an actual exponential

18

(+-+e0)
(AXoo) pAo
> 1Aq0
a.p+p Aa.o+o’
(B +o) (+ ®o)
Vh e l. py A on Yh e l. py A on
D,ci-pi A ZjeIuJaj'Uj EjeIuJaj'pj A Dy @i-0i

Fig. 9. The non-well founded system x

number of calls. Given n, the first part of the recursive-call tree looks as follows
(where we abbreviate “Prove” by “Pr”)

Pr(0 > pn o on)
Pr(In > pnA on—1) Pr(lo > pp_i on)
PI‘(F3 > pn A Jn_Q) PI‘(F4I>pn_1 “ O'n—l) PI‘(F5 > pPn—1v| Un—l) PI‘(FG > pPn—2 O'n)

...... etc.

where I'y = {pn A 0n, pnA On_1} # {pnl on,pn-1A on}t = Is. So, any call
of the shape Pr(I" > py 4 o1) produces two calls Pr(I” > pg_1 | ox—1) and
Pr(I" > prp_1 A op—1) with I'" £ I'; overall there are at least 2™ calls.

However, the complexity of the compliance decision procedure can be drasti-
cally reduced down to a polynomial complexity.

A polynomial decision algorithm. We first define a non-well founded version
of system > .

Definition 14 (The non-well founded system ©.,). We write >, po
whenever there exists a finite or infinite derivation tree formed by the rules in
Figure[9 having p o as conclusion, and such that each finite branch ends with
an instance of ariom (Axso).

Because all expressions in the premises are subexpressions of those in the conclu-
sion, and contracts are regular trees, in an infinite branch there must be at least
a judgment occurring infinitely many times.

Lemma 2 (Systems > and >, are equivalent). > poo iff >, poo

In Figure [10| we present a decision algorithm Decide |, based on the pro-
cedures P and PT. A run of the proof reconstruction algorithm resembles a
computation tree of an alternating Turing machine, where nodes corresponding
to rules (® - +o) and (+ - Boo) are universal, nodes corresponding to (+ - +o0)
are existential; P(A, F,L,b) attempts to prove all statements in its goal list L,
while PT (A, F, L, b) succeeds if at least one goal in L is satisfiable.

The procedure P is an adaptation of the concrete subtyping algorithm for
recursive arrow and product types of [19](§10) to the present, more complex

19

Decide (p A o)

in b=ok
where
P(A,F,[],b) = (A,F,b)
P(AF,(pA0):xs,b) =
-1- if p=1 then P(A F,xs,b)
-2- else if pyo €A then P(A F, xs,b)
-3- else if po€F then (A F, fail)
-4- else if p=3, ;aipi ando=3%, ;@;0;and INJ = {i1,... in}
-5- then let (Ao, Fo,bo) =PH(AU{pAc},F,[pi; A 04y ... pi,, A 0i,],b)
-6- in if bo=fail then (Ao,Fo,fail)
-7- else P (Ao, Fo,xs, bo)
-8- else if p=€P,.;@.pi and o=}, ;;.05and I CJand I={i1,...,in}
-9- then let (Ao, Fo,bo) =P(AU{pAc},F,[pi; A 04y ... pi, A 04,],b)
-10- in if bp=fail then (Ao, Fo,fail)
-11- else P(Ao,Fo,xs,bo)
-12- else if p=3%, ,@.p; and 0 =@, ,;a;.0;and 12 Jand J={ji,...,jn}
-13- then let (Ao, Fo,bo) =P(AU{pc},F,[pi, A cis ---pj, A 05,],b)
-14- in if bo=fail then (Ao,Fo,fail)
-15- else P(Ao,Fo,xs,bo)
-16- else if p=recz.p’ then P(AF, ({recx.p’'/x}p’ A0):xs,b)
-17- else if o =recz.0c’ then P(AF,(p{recx.0c’/x}c’):xs,b)
-18- else (A FU{p A o},fail)
and where

PH(A,F,[p0],b) = P(A,F,[p0],b)
P-’_(A7 F7 (pw\ 0') 1 XS, b):

-19-
-20-
_21-

let

(Ao, Fo,bo) = P(A,F,[p40],b) in
if bg = fail then P*(AUAO,FUFO,xs,ok)
else (A(),Fo,bo)

Fig. 10. The polynomial decision procedure for compliance.

20

context. It consists of a proof reconstruction procedure for . using a depth-first
technique. P accumulates in its first argument A all the judgments it encounters
during the search, in order to avoid looping over the same judgments (a role
similar to I" in system ©>). With respect to the algorithm in [19](§10) we have
two further parameters, F and b. The argument F accumulates the judgments
for which it has been found that no derivation exists. When a rule (+ - +) is
encountered, the algorithm proceeds by calling the procedure P which, in case
a premise is unprovable, goes on checking the other premises. The negative
information inferred about unprovable judgments is stored in F and it is carried
along by the procedure Pt (as well as the positive information stored in A) in
order not to duplicate work. The argument b, that can be either ok or fail, is
used to record whether the last call was successful or not, and it is used by Pt
to know whether it has to stop with success, or to check a new premise.

Let us note that, contrary to the previous treatment, while studying the
algorithm Decide_, we abandon the equi-recursive view of recursion, and we
represent a contract by a particular explicit (possibly) recursive expression.

Proposition 7 (Complexity of Deciding Compliance). Given two con-
tracts p,o € rsC, deciding whether p 4l o has a complexity O(n®), where n is the
mazimum size of p and o.

Proof. First, observe that:

(1) the recursive calls in lines -1-, -2-, -16-, -17-, -19- and, possibly, in lines -7-,
-11-, -15-, -20- do leave unaltered the arguments A and F;
(2) in the other recursive calls the cardinality of A U F strictly increases.

The number p of consecutive calls related to item [If cannot be greater than
the maximum branching of a node in the derivation tree we are trying to build,
and this is bounded by the size n of the input. That is p is O(n). The number ¢
of calls related to item [2] instead, is bounded by the cardinality of all the possible
pairs of the subterms p’ and o’ of, respectively, p and o, that is q is O(n?). This
means that the overall number of calls is bounded by pq, that is O(n?).

It remains to look at

— the complexity of checking whether, given p 4o and p’ o', the expression p

represents the same regular tree as p/, and o the same as o”;

— the complexity of checking the conditions p 4o € A and p+o € F.

The first one is O(n) as contracts are regular expressions. This implies that the
second one is O(n?). Since the above conditions are checked before each recursive
call, the overall complexity is polynomial, and in particular O(n?). a

Corollary 4 (Complexity of Deciding Subcontract). Given two contracts
p,o € rsC, deciding whether p <, o has a complezity in O(n®), where n is the
mazimum size of p and o.

Proof. It follows from Proposition [7] using Theorem [4] to reduce the checking of
subcontract to the checking of compliance. Note that building the dual of a given
contract takes linear time. a

21

Remark 4. The polynomial decision procedure Decidej applies also to the
formalism of retractable session contracts of [7]. In fact, the sound and complete
formal system ©>,c (and the corresponding procedure Prove) for Hl.c (see
Appendix is the restriction to elements of rC of the system in Figure
Obviously, when applied to elements of rC, the clauses -8- and -12- of Decide
do not need to take into account the possibility of internal input choices.

6 Retractable Contracts vs Reversible Computing

In this section we explore the relations between our retractable contracts and
calculi for reversible computation (see [25] for an overview). In [28], Phillips and
Ulidowski provide an automatic technique to derive, from the forward semantics
of a given calculus, its reversible semantics. In principle, we would like to start
from the forward calculus underlying our retractable contracts, that is from
retractable contracts equipped with the semantics obtained by replacing ¢ and @
with « in the semantics of session contracts (see Definition [20[in Appendix [A.1]).

Definition 15 (Retractable Contracts Underlying Semantics).

a.oc®o Sy aco a0 Sy o aoc+o -y 0
p—up oy o p—up o -5y 0
pllo—uvpllo pllo—uvpld pllo—wvp o

However, the technique in [28] requires the LTS of the forward semantics to
satisfy a number of conditions, and the LTS in Definition [15| does not satisfy
them. Thus, in order to apply the technique, we transform the syntax and the
semantics of our forward calculus as follows:

— we merge the two levels of syntax and semantics (contracts and client/server
pairs) into one;

— we transform internal choice into 7-prefixed external choice;

— we separate action prefixing from internal/external choice.

The syntax of the resulting calculus, that we dub TC (transformed contracts), is:

o:=a,.0 | Zai | | reczo | oo’ | 1
il
where ., denotes a, @ or T.

We use [-] to denote the translation of either a contract o or a client/server
pair ¢ || p into the syntax above.

Definition 16 (Translation function). The translation function [-] : rsCo U
rsCo x rsCo — TC is defined inductively as follows:
D icrai-oi] = > e i foi] [x] =« [recz.0] = recx.[o]

[Dicraicoil = Zier mai[oi] [1] =1 [o I Al = o] Il Te]

22

Transformed contracts are more general than our contracts, allowing for gen-
eral parallel composition and mixed choice, however the restriction of transformed
contracts to the translation of closed contracts via function [[-] is closed under
reduction, as shown by the semantics below. Thus, from now on we consider only
such transformed contracts.

Definition 17 (Semantics of Transformed Contracts).

o o 25 o
ar.0 -5 o -
o+p-—a
p—p p—p oo
plo—p o pllo—Tp" | o

Symmetric rules have been omitted.

It is easy to check that the LTS for transformed contracts and the LTS
underlying retractable contracts model the same client/server interactions.

Proposition 8. Let o,p,0’,p’ € rsC.
allp—vd |l iff lollel—1[|p]
Proof. By inspection of the rules. a

One can apply to the LTS in Definition [17| the technique in [28], obtaining
the LTS below. In order to simplify the treatment, we replaced the keys used
in [28] to annotate actions with an underline. While this is not correct in general,
this is correct in the image of our contracts, since keys are used to distinguish
interactions with different communication partners, but in our case for each
action there is at most one possible partner.

Definition 18 (Reversible Transformed Contracts: Forward Rules).

std(X) X 25 X/ X 2 X' std(Y)
ar X 5 a;. X a; X 25 a; X! X+Y X' 4+Y
X x X-5Xx vy Sy
Xy x|y X[|Yy->=X"|Y

Symmetric rules have been omitted, and std(X) holds if X does not contain
underlined prefizes.

Backward rules, denoted by arrow ~-, can be obtained simply by changing
the direction of the arrows in the rules above.

In Figure|11] we show an example of how a reduction sequence in our reversible
contract formalism does correspond to a reduction sequence for transformed
contracts. We formalize the correspondence hinted at in the example by providing
a definition of simulation between a contract with history and its encoding into
reversible transformed contracts:

23

[a.c 4+ b.d] = a.c +b.d [ac+b.(ed f)] =ac+b.(re+T.f)

Oxa.c+bd || (yxac+b.(ed f) a.c+bd | @ac+b.(red1.f)
— a.cxd || acxed f — a.c+bd | @ac+b(re+1.f)
— a.cxd || a@.cxe — a.c+bd | ac+b(re+1.f)
~ a.c+bd | ae+b(re+T.f)

SLN (yxa.c || (yxa.e ~ a.c+bd | ac+b(re+T.f)
— oxe || oxE — ac+bd | ac+b(re+r1.f)
— o:oxl || o:oxl — a.c+bd | @aec+b(re+1.f)

Fig. 11. Contracts with history vs transformed contracts: an example

Definition 19. Let R be a relation between contracts with history and reversible
transformed contracts. R is a simulation iff for each (Hxo, X) € R:

— ifHxo — H'xo’ with a forward move then X — X' and (H'xo’, X') € R;

+
— if Hxo — H'x0o’ with a backward move then X ~» X' and (H'xo’, X') €
R;

+
where ~ s the transitive closure of ~-.
Theorem 6. For each o € rsC there is a simulation R such that (()xo,[o]) € R.

Proof (Sketch). The definition of the relation R is quite convoluted, hence we
will not spell out it here, but we present the main ideas below. Essentially, one
starts from the inverse of the translation function [-], keeping into account that:

— underlined actions are dropped;

— for branches in choices where another branch contains underlined actions two
possibilities have to be considered: either the branch is dropped (corresponding
to paths that have been executed and discarded, or directly discarded by an
unretractable choice), or it is moved to the history (corresponding to paths
starting from a retractable choice which have not been tried yet).

It is easy to check that such a relation is a simulation. a

Note that the opposite of Theorem [f] cannot hold because of the mechanisms
to control reversibility discussed in Remark [1} Indeed, the technique in [28]
generates an uncontrolled semantics. A sample difference is that in transformed
contracts we can have an infinite reduction sequence persistently choosing the
right branch after the backward reduction, as follows.

ac+bd | ac+b(re+1.f) — ac+bd | ac+b(re+1.f)
~T ac+bd | aec+b.(re+7.f) — ac+bd || ac+b(re+T1.f)
~T ac+bd | ac+b(re+7.f) —7T ete.

It is easy to check, instead, that ()xa.c+b.d || ()x@.¢+b.(e® f) can perform
no infinite reduction sequence since the chosen branch is discarded upon rollback.

24

7 Related Work and Conclusion

We have presented two conservative extensions of the session contracts of [2/3J9],
a formalism interpreting session types [21] into a subset of contracts [I3I26/14].
One extension deals with backtracking and one with speculative execution. We
have shown that they both give rise to the same compliance relation, and, as a
consequence, to the same subcontract (both for servers and for clients) and duality
relations. For each of these relations we provided syntactic characterizations of
the semantic concepts, allowing for efficient ways of checking them.

We discussed in the Introduction the improvements w.r.t. the preliminary
results about retractable session contracts in [7]. Another closely related work
is [BU6], where a different form of contracts with rollback is presented. Our
retractable contracts depart from that model on three main aspects: (1) we use
rollback in a disciplined way to tolerate failures in the interaction (in [Bl6] it is
an internal decision of a partecipant), thus improving compliance; (2) we embed
checkpoints in the structure of contracts, avoiding explicit checkpoints; (3) we
keep a stack of “pasts”, instead of just a single past as in [5l6].

Reversibility, generalizing backtracking by allowing one to go back to any
past state, has also been studied in the setting of binary session types [31I32].
There however the emphasis is on defining the reversible engine, based on causal-
consistent reversibility [25], and not on studying compliance or subtyping (which
would correspond to our subcontract relation).

Similarly to our retractable contracts, long running transactions with com-
pensations, and in particular interacting transactions [I7], allow one to undo past
agreements. In interacting transactions, however, abort (which corresponds to
our backtracking) can occur at any time, not only when an agreement cannot be
found as in our case. Also, each transaction offers just two possibilities, and they
are sorted: first the normal execution, then the compensation. Finally, compliance
of interacting transactions has never been studied.

In [] a game-theoretical interpretation of the retractable session contracts of
[7] has been provided. Such an interpretation is likely to extend to the retractable
contracts presented here.

We plan also to investigate whether our approach can be extended to multi-
party sessions [22]. An investigation of multi-party sessions with rollbacks and
named checkpoints has been already undertaken in [I8]. In such a paper, however,
the cause of a rollback is not a synchronization failure, but it is completely
transparent to the calculus. Moreover, chosen branches are not discarded and
can be retried upon rollback.

Because of the relevance of higher-order features in type systems, and of
session delegation in type systems with sessions in particular, also higher-order
session contracts, i.e. session contracts with delegation, have been investigated
[3UT10]. It is hence worth studying the integration of backtracking (or speculative
execution) and session delegation.

A last line of future work is the study of how to extract retractable or
speculative contracts from actual software based on backtracking or on speculative
parallelism, and how to propagate the results on contracts to the original software.

25

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEFE Trans. Dep. Sec. Comput.,
1(1):11-33, 2004.

F. Barbanera and U. de’Liguoro. Two notions of sub-behaviour for session-based
client/server systems. In PPDP, pages 155-164. ACM Press, 2010.

F. Barbanera and U. de’Liguoro. Sub-behaviour relations for session-based
client/server systems. MSCS, 25(6):1339-1381, 2015.

F. Barbanera and U. de’Liguoro. A game interpretation of retractable contracts.
In COORDINATION, volume 9686 of LNCS. Springer, 2016.

. F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Compliance for reversible

client/server interactions. In BEAT, volume 162 of EPTCS, pages 35-42, 2014.

F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Reversible client/server
interactions. Formal Asp. Comput., 28(4):697-722, 2016.

F. Barbanera, M. Dezani-Ciancaglini, I. Lanese, and U. de’Liguoro. Retractable
contracts. In PLACES 2015, volume 203 of EPTCS, pages 61-72. Open Publishing
Association, 2016.

M. Bartoletti et al. Compliance and subtyping in timed session types. In FORTE,
volume 9039 of LNCS, pages 161-177. Springer, 2015.

G. T. Bernardi and M. Hennessy. Modelling session types using contracts. Mathe-
matical Structures in Computer Science, 26(3):510-560, 2016.

G. T. Bernardi and M. Hennessy. Using higher-order contracts to model session
types. Logical Methods in Computer Science, 12(2), 2016.

M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions in
session types. In CONCUR, volume 5201 of LNCS, pages 402-417. Springer, 2008.
C. D. Carothers, K. S. Perumalla, and R. Fujimoto. Efficient optimistic parallel
simulations using reverse computation. ACM Trans. Model. Comput. Simul.,
9(3):224-253, 1999.

S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of
contracts for Web Services. In WS-FM, number 4184 in LNCS, pages 148-162.
Springer, 2006.

G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services.
ACM Trans. on Prog. Lang. and Sys., 31(5):19:1-19:61, 20009.

M. Dalla Preda et al. Graceful interruption of request-response service interactions.
In ICSOC, volume 7084 of LNCS, pages 590—600. Springer, 2011.

V. Danos and J. Krivine. Reversible communicating systems. In CONCUR, volume
3170 of LNCS, pages 292-307. Springer, 2004.

E. de Vries, V. Koutavas, and M. Hennessy. Communicating transactions - (extended
abstract). In CONCUR, volume 6269 of LNCS, pages 569-583. Springer, 2010.
M. Dezani-Ciancaglini and P. Giannini. Reversible multiparty sessions with check-
points. In EXPRESS/S0S’16, volume 222 of EPTCS, pages 60-74, 2016.

V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive subtyping revealed. J. Funct.
Program., 12(6):511-548, 2002.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines
for structured communication-based programming. In ESOP, volume 1381 of LNCS,
pages 22—-138. Springer, 1998.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL, pages 273-284. ACM Press, 2008.

26

23. H. Hiittel et al. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1-3:36, 2016.

24. 1. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversibility in the higher-order
n-calculus. Theor. Comput. Sci., 625:25-84, 2016.

25. 1. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-consistent reversibility. Bulletin of
the EATCS, 114, 2014.

26. C. Laneve and L. Padovani. The must preorder revisited: An algebraic theory
for web services contracts. In CONCUR, volume 4703 of LNCS, pages 212-225.
Springer, 2007.

27. L. Padovani. Contract-based discovery of web services modulo simple orchestrators.
Theoretical Computer Science, 411:3328-3347, 2010.

28. 1. C. C. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. of Logic
and Alg. Progr., 73(1-2):70-96, 2007.

29. P. Prabhu, G. Ramalingam, and K. Vaswani. Safe programmable speculative
parallelism. In PLDI, pages 50-61. ACM, 2010.

30. C. G. Quinones et al. Mitosis compiler: An infrastructure for speculative threading
based on pre-computation slices. In PLDI, pages 269-279. ACM, 2005.

31. F. Tiezzi and N. Yoshida. Towards reversible sessions. In PLACES, volume 155 of
EPTCS, pages 17-24, 2014.

32. F. Tiezzi and N. Yoshida. Reversible session-based pi-calculus. J. Log. Algebr.
Meth. Program., 84(5):684-707, 2015.

33. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. (JAIR), 32:565-606, 2008.

34. L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
CAV, volume 2404 of LNCS, pages 17-36. Springer, 2002.

A Appendix: Proofs

A.1 Session Contracts and Retractable Session Contracts

Session contracts, a formalism interpreting session types [2I] into a subset of
contracts [I312614], have been introduced in [319].

The set SC of session contracts can be seen as the subset of elements in
rsC not containing external output choices and internal input choices, with the
following operational semantics.

Definition 20 (Semantics of Session Contracts).
_ ;) T _ a a
a.0 Do —sc a.o Q.0 —sc O a.0+0 —sc o
As done for rsC, we can look at session contracts up-to unfolding of recursion.

The next definitions introduce the LTS for client/server pairs of session
contracts, and the corresponding compliance relation.

Definition 21 (Semantics of Client/Server Pairs of Session Contracts).

T / T / « / @ 12
p—rscp 0 —sC O p —>sc p O —>sc O

pllo —sc pllo pllo —sc pllo’ pllo —sc p'lo’

27

(Ax) (Hyp)
I >sclAo I'pAo Dscpio
(®-+)

Vhel. T, @ie[ai‘pi “ Zje[u]aj‘aj >sc pn A oh

I' >sc @iejai-Pi - ZjEIUJaj'Uj

(+-®)
Vhel. I} i1 05-Pi A Dicr @i-0i BscpnAon

I >sc Y ierusi-piA Bicp @i-oi

Fig. 12. System >sc

Definition 22 (Compliance Relation -lsc for Session Contracts).
The relation Hlsc C SC x SC is defined by:
p lsc o if, for each p' 0" such that

pll o —=scp || o'+rsc we have p' =1
The sound and complete formal system >g¢ for Hlsc is recalled in Figure
Theorem 7. Let p,o € SC. p dlsc o iff >sc pAo

Proof. In [3] a formal system >y is devised which is sound and complete for
compliance of higher-order session contracts (HSC), that is

pupAo iff pdyo

The set SC can be looked at as the first-order restriction of HSC. It is easy to
show that, for p,o € SC,

Dupo iff D>scpo

It is also not difficult to show that, for p,o € SC,

pAdlsco iff pHlyo
From the above statement, the thesis descends immediately. a
Retractable session contracts were introduced in [7]. The set rC of retractable
session contracts can be seen as the subset of elements in rsC not containing
internal input choices. The operational semantics of retractable session contracts
is the restriction to elements in rC of the semantics defined in Definitions B and

The sound and complete formal system >, for -l is the restriction to
elements of rC of the system in Figure [4

Theorem 8 (From [7]). Let p,o € vC. p Hdlyc o iff Drcpo

28

A.2 Conservativity Proofs

Before proving that the operational semantics of retractable and speculative
contracts is a conservative extension of the operational semantics of session
contracts, we need a simple technical lemma and a fact.

Lemma 3. Let p € SC. Then either p = a.p1 & pa, or p = a.p’', or p = a.p1+ p2,
or p =1. Moreover,

i) @.p1 ® pa — @.py if and only if Hxa@.py @ py — HXa.p1;
i) o.p’ = p'if and only if Hxa.p' - H:o xp';
i) a.p1 + pa — p1 if and only if Hxa.py + py — H : paxpy
w) p =1 if and only if (Hxp—+ and Hxp—13).

Proof. Easy, by definition of session contract and by Definitions [and 20} O
Fact 2 Let p,o € SC. Hixp || Hoxo —¢ Hixp' || Hyxo' implies p',0’ € SC

Both the retractable operational semantics and the speculative operational
semantics of contracts are conservative extension of the operational semantics of
session contracts SC in the following sense:

Proposition Let p,o € SC.
i) pllo——scp || o iff Hixp| Hoxo —; Hixp' || Hyxo'
for some Hy, Ho, H} and H}
i) pllo—scp |0 iff p||loc " @...a,@ |C, | @@...a,Q0" | C,
for some n,ai,...,an,C, and C,

Proof. The inclusion SC C rsC holds by definition. Hence, given p,o € SC
we have p,o € rsC and H; Xp, Hyxo € rsCH.

(=) By induction on the length of the reduction sequence ——sc, using Defini-
tions [4] and [2I] and Lemma [3] to check all the possible cases for the reductions
of client/server pairs.

(<) Using Factwe first show that no pair of the form Hy xa.p;+p2 || HoX@.o1+
oy can ever appear inside the reduction sequence —s t- Then we proceed by
induction on the length of the reduction sequence —— ¢ using Deﬁnitions
and and Lemma [3| to check all the possible cases for the reductions of
client/server pairs with histories.

(i) By induction on the length of the derivation. The base case is trivial. Let us
consider the inductive case.

(=) the actions performed by ¢’ and p’ can be performed as well by
a1@...Qq,Qp" and a7Q...a,Q¢’, with the only possible side effects of
adding complementary actions to the prefixes, and of spawning further par-
allel threads. Since both the effects are compatible with the thesis, we are
done.

29

(«=) if the action is a 7 action, then the corresponding session contract can
perform it as well. If it is a synchronization, by definition of the semantics
it involves two threads with complementary prefixes a;@ ... Qa,@Qp" and
a71Q@... @, Q0. By inductive hypothesis p || 0 ——sc o’ || o’, hence the thesis
follows since p’ and ¢’ can match the synchronization. a

The proof of Proposition descends immediately from the fact that SC C rC C
rsC. and the fact that system >gc is a subsystem of system ©> . Similarly for
Proposition [2|(ii), by taking into account ¢ .

A direct proof of Corollary @@) We provide now a direct proof of Corollary
, that is of the conservativity of the retractable/speculative compliance with
respect to to session-contract compliance. We do that by taking into account the
definition of the relation R , since we have that -4l = AR .

The proof requires some care. In fact, as seen in Lemma [3] even if we restrict p in
Hx p to be a session contract, reductions can modify the stack. This implies that
in a sequence of reductions out of a retractable client/server system ()X p || ()Xo

with p,o € SC, also ™, reductions can occur. In order to handle the presence
of rollbacks, we can show that in reduction sequences out of ()xp || ()xo, with
p,o € SC, only particular stacks can be produced (called incompatible below),
such that once a rollback procedure is started it necessarily goes on till a stuck
state is reached.

Definition 23 (Incompatible Stacks). Let Hy, Hy € rsCH such that Hy = 6;:
coe:0p and Hy = 71+ 17y, for some n.

We say that Hy and Hg are incompatible if for any 1 < i < n either §; = o or
Yi = o.

The following technical lemmas describe the behaviour of reduction and
reduction sequences out of contracts with histories when session contracts are
taken into account.

Lemma 4. Let p,o € SC.

i) Let Hixp || Hoxo — Hixp' || Hyxo'. If Hy and Hy are incompatible, so
are H) and HY.
i) If (yxp || (yxo —=¢ Hixp' || Hyxo' then HY and Hjy are incompatible.
iti) Given two incompatible stacks Hi and Hy and given p,o € rsC, if
Hixp || Hoxo—/ then Hixp || Hoxo il Hixp' || Hhxo'—.
w) If Oxp || (yxo — Hyxp' | Hyxo'—/» then the reduction sequence —— is

rb *

actually of the form L>f —

Proof. (i) If the reduction — is actually a reduction (7), the thesis trivially
holds. Otherwise, —; is necessarily a reduction (comm). Since p,o € SC,
from Hixp || Hoxo — Hixp' || Hyxo’' we can infer that either p = a.p”
and 0 =a.0” or p=a.p” + p"” and 0 = a.c” or 0 = a.0” and p =a.p” or
o =a.c"” + 0" and p = a.0”. In all such cases, by rule (comm) of Definition

30

we get that either H} = Hj :0 or Hy = Ha:o. This implies H] and Hj to
be incompatible if H; and Hs are so.

(ii) By induction of the length of the reduction sequence, using point .

(iif) Since H; and Ho are incompatible, the rollbacks out of Hyixp || Hoxo can
proceed until the stacks become empty. At that point, the last element of
such sequence of rollbacks is ()xd; || ()X~y1, where ()xd1 || ()xy1—~ since
one among d; and ~y; is equal to o.

If the reduction sequence does not contain any rollback, we get the thesis
immediately. Let us then consider the leftmost subsequence such that

Oxp || Oxo —p HYxp” || HYxo"' /¢
By point we have that H] and H} are incompatible. By point we
hence get that HY xp” || Hfxo” Ll HY xp" || HY xo""—/+. So, we have
necessarily that Hjxp' || Hyxo' does coincide with HY'xp"" || HY' xo""' -/~

and that the reduction sequence is actually a sequence i>f LA a

Fact 3 Let p,o € SC.
Hixp || Hoxo — Hixp' || Hyxo =/ implies p || 0 —sc p' || 0.

We are now ready to provide a direct proof of Corollary , that we recall below
(taking into account that -HI* = HI).

The theory of retractable compliance is a conservative extension of com-
pliance for session contracts SC, that is, given p,o € SC,

pAlsco iff pifo
Proof. (=) By contradiction let us assume
Oxp || Oxo == Hyxp' || Hyxo -

with p’ # 1. By Lemma just the following two cases can be taken into

account:
either

Oxp || (yxo —y Hyxp' || Hyxo'—=
or

Oxp || xo — HYxp” || Hy xo” E{Hlllxp/ | B xo' 4>

In the first case, by induction, using Fact |3 we get that p || 0 —sc p' || 0" /
—sc with p # 1, that is p #Al sco.
In the second case, similarly to what done previously, we can get p || 0 —sc
o' || 0”"—>sc. Since H xp" || HY xo” r—b>, we have necessarily that p” # 1.
This means that p Al sco.

(<) By contradiction, let us assume that p || 0 —sc p’ || '—>sc with p’ # 1.
It is easy now to get ()xp || ()xo —=¢ Hixp' || Hyxo'—+. We distinguish
now two cases: either Hixp' || Hyxo' = or Hixp" || H’2[><a’7r£>. In the

31

first case we have finished, since we get p A® o by definition. In the second
one, by Lemma 1) we get that Hjxp' || Hyxo' LR HYxp" || HYxo" .
Moreover, p” cannot be 1, otherwise it should have be put on the stack
in one of the reductions of ()xp || (yxo ——; Hjxp' || Hyxo', and that is
impossible. Hence we get by definition that p AR o. a

A.3 Soundness and Completeness Proofs (Theorems |z| and

We begin with the proof of Soundness and Completeness of system > with
respect to the retractable compliance.

Retractable Soundness and Completeness It is useful to show that if a configu-
ration is stuck, then both histories are empty. This is a consequence of the fact
that the property “the histories of client and server have the same length” is
preserved by reductions.

Lemma 5. If ()xp || ()xo — Hyxp' || Hoxo'—, then Hy = Hy = ().

Proof. Clearly Hyxp' || Haxo'—/~ implies either H; = () or Hy = (). Observe
that:

— rule (comm) adds one element to both stacks;
— rule (7) does not modify both stacks;
— rule (rbk) removes one element from both stacks.

Then starting from two stacks containing the same number of elements, the
reduction always produces two stacks containing the same number of elements.
So Hy; = () implies Hy = () and vice versa. a

The following lemma proves that compliance is preserved by the concatenation
of histories to the left of the current histories.

Lemma 6. If Hixp 4R Hyxo, then H) :Hyxp 4R Hy:Haxo for all HY, H).
Proof. 1t suffices to show that
Hixp R Hoxo implies p':Hixp 4R Hayxo and Hyxp R ¢/ :Haxo

which we prove by contraposition.
Suppose that p':Hyxp AR Hyxo; then

P Hixp || Hoxo —— Hixp” || Hyxo” =+ and p” #1
If p' is never used, then H] = p':H{ and H}, = (), so that we get
Hixp || Hoxo — HYxp" || ()xo”
Otherwise we have that

P Hixp || Hoxo — p'xp” || Hyxo” — (yxp’ || Hy o

32

and we assume that —s is the shortest such reduction. It follows that p” # 1.
By the minimality assumption about the length of — we know that p’ neither
has been restored by some previous application of rule (rbk), nor pushed back
into the stack before. We get

Hixp || Hoxo — (yxp” || Hyxo"
In both cases we conclude that Hyxp AR Hoxo as desired.
Similarly we can show that Hyxp AR ¢':Hyxo implies Hixp AR Hayxo. O

The following lemma gives all possible shapes of compliant contracts. It is
the key lemma for the proof of soundness and completeness.

Lemma 7. We have p 4R o if and only if one of the following conditions holds:

1.
2.
3.

T v
|

1;

Dier Qinpi, 0= e ;0505 and 3k € 1N J. py, AR oy, ;
@ielai.pi, o= ZjeJaj'Uj; I CJ andVk e 1. Pk R Ok,
4. p= Zielai.pi, o= @jeJaj'ij I2>J and Vk € J. Pk R 0.

Proof. The if part is immediate. We prove the only if part by contraposition and
by cases on the possible shapes of p and o.

Suppose p = >, @i-pis 0 = 350 ;@505 INT = {ki, ... kn} and py, AR oy,
for 1 <4 < n. Then we get

(YXok, — Hixp || Hixoi—

O X Pk,
for 1 <4 < n, where p}, # 1 and H; = H; = () by Lemma [5| This implies

Do\ {1} Qi -PiX Ply | Do\ {k1} 005X Ok, — Zie[\{kl}ai'pilxpll [ngJ\{kl}aj~0j'><U/1

by Lemmal6] Let I’ = I\ J and J' = J \ I. We can reduce ()xp || ()xo only as
follows:

Oxp L OXo = 3 ey @-Pi% Py || D5k} @-03 Xk, by (comm)
— Dien\ (k) @Pi%PL L e k) @03 X 01
— OX X ien (i ®-Pi | OX X jenqry @05 by (rbk)

L} ZiGI’ alpllxp; H ZjEJ’ aj.Uj D(U;L

— OK D iep @iepi || X D50 @).0 by (rbk)
and ()X 3. pipi || (% D050 5 @ .05 is stuck since I' 0" = 0.
Suppose p = @;c; qipi and o =3, ;aj.05. I I Z Jlet k € I\ J; then we

get
OXp || Oxo — (YXA.pk || ()Xo by ()

33

Otherwise I C J and py AR oy for some k € I. By reasoning as above we have

Oxpr || Oxor = Oxp' || (xo'+~
and
oxpr || e (ry Q-0 XoK — oxp' || ZjeJ\{k}aj.ajlxa’
which imply
Oxp || Oxo — Ox@kpy || (X0 by (7)
—>oxpp || Xojenqry @05 X0k by (comm)
—oxp’ || Xienquy -0 %0’
— ()Xo || ()X ZjeJ\{k} a;.0; by (rbk)
—>

In both cases we conclude that p AR o.

The proof for the case p = >_,c; @;.pi, 0 = B¢y ;.05 is similar.

Lemma [7|suggests that -I® can be coinductively defined, or equivalently that
4R =N, 4R where 4} is the trivial relation rsC x rsC, and for all n > 0,
1 4|§ o and we have p 4|5 o if one of the following holds:

Lop=Yc;ipi, 0 =3 ;0,005 and Ik € INJ. py Ay, o;
2. p=c; Wipi, 0 =Y ;c;0;05, 1 CJand Vk € I p A}, o3
3. p = s Mi-pir 0=, 005, 12T and Vk € J. pr I, o

We write:

1. ER I[if for all p' 4R o’ € I' we have p’ R ¢/
2. I' ER pyo if =R I implies p R o

We also write I' =R p o if R is replaced by —HS in the above.
Observing that —||§+1 C AR, we have that =R, I implies =R I'. Also it is
immediate to verify that the following holds:

Fact 4 If I' =R pjo for alln, then I' =R pqo.

We are ready now to prove Theorem [2] which, using the notation above, can
be restated as follows.

Theorem |Z| (Retractable Soundness and Completeness)
>pAo iff):R pAo

Proof. (=) For this direction we can actually prove a stronger statement,
namely

I'>pdo = I'ERpao

34

By Fact 4] it suffices to prove that if I' > p{ o then I' =R p o for all n, which
we establish by simultaneous induction over n and over the derivation D of
I'>poo.
If D either ends by ax or by Hve then the thesis trivially holds. If D ends by
rule:
(+-4)
Nap+p dac+ad > poo

I'> ap+p Aaoc+o

then we have to show that =R I" implies a.p + p/ 4R @.o 4 o’. By induction
over n we know that I' =R_| a.p + p/ 4@.0 + ¢’; from this and the fact that
=R I implies =R | I', we obtain that a.p + p/ 4R | @.0 + o/, and hence that
ER | I a.p+p Ja.o+0o'. By induction over D it follows that p 4R | o, which
implies a.p + p' AR @.o + 0’ by Lemma [7] as desired.

The cases in which D ends by either (& - +) or (4 - @) are similar, and we
conclude.

(«<=) By Theorem |l] each computation of Prove(> p« o) always terminates.
By Lemmam and Fact [1} p 4R o implies that Prove(> p o) # fail, and hence
> pAo. O

We proceed now with the proof of Soundness and Completeness of system
> with respect to the speculative compliance.

Speculative Soundness and Completeness

Lemma 8. We have p 4° o if and only if one of the following conditions holds:

1;
D icr QiPi, O = Zjejaj.aj and Ik € INJ. py A5 oy;

Dicr@i-pis 0= c,05.05, I CJ and Vk € 1. py, 5 o5
4o P =i ®i-pis 0 = Djey .05, 1 2T and Vk € J. py 15 0.

1.
2.
3.

RIS
I

Proof. The if part is immediate. We prove the only if part by contraposition and
by cases on the possible shapes of p and o.

Suppose p =) i ipi, 0 = ZjeJaj.aj, INJ ={ki,...,ky} and pg, #° o,
for 1 <4 <n. Then we get

pr. | on, — CL || CF 4>

for 1 <i < n, where C! # C | a;@...Qq,, Q1.
This implies

Dier®i-pi || 2oje 5005
* — —
— ([Liernsi@pi) | Zie]\.lai'pi | (Hje[ﬂ]aj@gj) ‘ ZjeJ\IO‘J*UJ’

where [];.; C; denotes the parallel composition of C; for each i € I.

35

One can notice that terms ZieI\J «;.p; and ZjEJ\I @;.0; cannot inter-
act with other terms. Instead, term [];,.;~; @i@p; can interact only with
term [[,c -, @;@o; and vice versa. The interaction follows the computations
ok, || ox;, — C? || C7 —/», with the added prefixes o; and @;. However, none of
these computations produces a thread of the form of@...Qa},@1, hence p AP o.

Suppose p = D, @i-pi and o =3, ;.05 T Z Jlet k€ I\ J; then we
get
oIl o — Ghpr | o by ()

7L>

Otherwise I C J and py AP oy for some k € I. By reasoning as above we have
pi || o) = C* || C7=
and
pllo
— Qg.pi || o
— @;Qpy, || arQoy, | ZjeJ\{k} Q.0 = @,@cr | ar@QC7 | ZJEJ\{,C} Q.0
s

where a@QC denotes [[,.; a@QT; if C = [],.; T;.
In both cases we conclude that p A° o.

The proof for the case p =}, @i.pi, 0 = D, ; ;.05 is similar. O

As with 4R | we define the family of relations -Hfl on the basis of Lemma
which are such that 4° =, P ; similarly we define the respective notions
=S pAoand I' =5 po.

Theorem (3| (Speculative Soundness and Completeness)
>pAo iff ESpdo

Proof. (=) This implication can be proved in the same way as Theorem

(<) By Theorem [l| each computation of Prove(> p« o) always terminates.
By Lemmalﬂ and Fact |l p 4R o implies that Prove(> p- o) # fail, and hence
> pAo. O

A.4 Proof of Proposition

As stated previously, Lemma [7| 4I® can be coinductively defined. This holds
for -l as well, since, by Corollary 4R = 4°F = 4. So 4l = ,Al, where
A, = 4R,

We recall here the definition of I, for sake of readability.

lg is the trivial relation rsC x rsC, and for all n > 0, 1 Hl,,0 and we have p 0
if one of the following holds:

36

Lop=> c;qipi, 0= ZjeJajUj and dk € INJ. pg dl,,_10%;
2. p= @ielai.pi, o= EjeJ aj.05, I € Jand Vk € 1. p, Alp—10%k;
3. p= Zielai.p,;, o= ®j€J Q;.0j, 1D Jand VEk € J. Pk Alp_10k.

‘We shall prove that
vn.[(p 4,0 and @ Hl,0’) implies p I, 07 (1)

So, from p 4l 0 and 7 Hl ¢’ we have that Vn.p Hl,,0 and Vn. Hl,0’ and hence,
by [] we can get Vn.p l,,0”, that is p I o’
We show now [1| by induction on n.

The base case is trivial. Let then n > 0 with p 4,0 and & Hl,¢6’. We proceed
by cases according to the possible shapes of p and o in the definition of -l,,.

p =1 Immediate.
P =7 icr Qi-Piy O = Zjejaj.aj and Fk € INJ. pp Alp_10%
We have then that ¢ = @je] «;.5j. So, by @ -l,,0’ and by definition of I,
we have that o' =)7, _,ap.0y, J C Hand Vj € J. 7, —||n,10;-. By the
induction hypothesis we can hence get that 3k € (IN.J) C (I N H) such that
px l_107, that means, by definition, that p Hl,,o’.
p=D;c; Wi-pis 0= ZjeJ aj.05, 1 CJ and Vk € 1. p, 10k
We have then that 0 = @, ;@;.0;. So, by @ l,0" and by definition of I,
we have that o’ = >, .y an.0y,, J C H and Vj € J. 5 Hl,_10}. By the
induction hypothesis we can hence get that Vk € I C J C H. py l,_10},
that means, by definition, that p -l,0’.
P= icr Qi-Piy O = @jeJ a;.05, I O J and Vk € J. pp 10k
We have then that 7 =}, ;@;.5;. So, by @ l,0" and by definition of I,
we have to take into account two cases.
o' =3 penmanoy, and Ik € JNH. op 10y
By the induction hypothesis we can get that 3k € (JN H) C (INH)
such that py l,,_10}, that means, by definition, that p l,0’.
o' =@,y on-oy, J 2 H and Vh € H. o Hl,,_107,
By the induction hypothesis we can get that Vh € H C J C I. pp 107,
that means, by definition, that p l,0".

