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Parallel performance tools offer insights into the execution behavior of an application and are a
valuable component in the cycle of application development, deployment, and optimization. However,
most tools do not work well with large-scale parallel applications where the performance data gener-
ated comes from upwards of thousands of processes. As parallel computer systems increase in size,
the scaling of performance observation infrastructure becomes an important concern. In this paper,
we discuss the problem of scaling and perfomance observation, and the ramifications of adding online
support. A general online performance system architecture is presented. Recent work on the TAU
performance system to enable large-scale performance observation and analysis is discussed. The
paper concludes with plans for future work.

1. Introduction

The scaling of parallel computer systems and applications presents new challenges to the techniques
and tools for performance observation. We use the term performance observation to mean the meth-
ods to obtain and analyze performance information for purposes of better understanding performance
effects and problems of parallel execution. With increasing scale, there is a concern that standard
observation approaches for instrumentation, measurement, data analysis, and visualization will en-
counter design or implementation limits that reduce their effective use. What drives this concern,
in part, is the problem of measurement intrusion, and the fact that simple application of current
approaches may result in more perturbed performance data. It is also clear that scaling of standard
methods will raise issues of performance data size, the amount of processing time required to analyze
the data, and the usability of performance presentation techniques.

Concurrently, there is an interest in the online observation of parallel systems and applications
for purposes of dynamic assessment and control. With respect to performance observation, we think
of performance monitoring as constituting online measurement and performance data access, and
performance interaction as additional infrastructure for affecting performance behavior externally.
Certainly, there are several motivations for online performance observation, including the control of
intrusion via dynamic instrumentation or dynamic measurement. However, the influence of scaling
must again be considered when evaluating the benefits of alternative approaches.

In this paper, we consider these issues with respect to profiling and tracing methods for online
performance observation. Our main interest in this work is to understand how best to scale a parallel
performance measurement model and its implementation, and to extend its functionality to offer
runtime control and interaction. We present results from the development of scalable online profiling
in the TAU performance system. We also have develop online tracing capabilities in TAU, but this
work is discussed elsewhere.

2. Scaling, Intrusion, and Online Observation

As the starting point for understanding the influences of scaling on performance observation, it is
reasonable to consider the standard methods for performance measurement and analysis: profiling
and tracing. Profiling makes measurements of significant events during program execution and calcu-
lates summary statistics for performance metrics of interest. These profile analysis operations occurs



at runtime. In contrast, tracing captures information about the significant events and stores that
information in a time-stamped trace buffer. The information can include performance data such as
hardware counts, but analysis of the performance data does not occur until after the trace buffer is
generated. For both profiling and tracing, it is usually the case that the performance measurements
(profile or trace) are generated and kept at the level of application threads or processes.

What happens, then, as the application scales? We consider scaling mainly in terms of number
of threads of execution. In general, one would expect that the greater the degree of parallelism,
the more performance data overall that will be produced. This is because performance is typically
observed relative to each specific thread of execution. Thus, in the case of profiling a new profile will
be produced for each thread or process. Similarly, tracing will, in general, produce a separate event
sequence (and trace buffer) for each thread or process. Certainly, these consequences of scaling have
direct impact on the management of performance data (profile or trace data) during a large-scale
parallel execution. Scaling, it is expected, will also cause changes in the number, the distribution, and
perhaps the types of significant events that occur during a program’s run, for instance, with respect
to communication. Furthermore, larger amounts of performance data will result in greater analysis
time and complexity, and more difficulty in presenting performance in meaningful displays.

However, the real practical question is whether our present performance observation methods and
tools are capable of dealing with these issues of scale. Most importantly, this is a concern for measure-
ment intrusion and performance perturbation. Any performance measurement intrudes on execution
performance and, more seriously, can perturb “actual” performance behavior. While low intrusion
is preferred, it is generally accepted that some intrusion is a consequence of standard performance
observation practice. Unfortunately, perturbation problems can arise both with only minor intrusion
and small degrees of parallelism.

How scaling affects intrusion and perturbation is an interesting question. Traditional measurement
techniques tend to be localized. For instance, thread profiles are normally kept as part of the thread
(process) state. This suggests that scaling would not compound globally what intrusion is occuring
locally, even with larger numbers of threads (processes). On the other hand, it is reasonable to
expect that the measurement of parallel interactions will be affected by intrusion, possibly resulting
in a misrepresentation of performance due to performance perturbation. The bottom line is that
performance measurement techniques must be used in an intelligent manner so that intrusion effects
are controlled as best as possible. But this must involve a necessary and well-understood tradeoff of
the need for performance data for solving performance problems against the “cost” (intrusion and
possible perturbation) of obtaining that data.

Online support for performance observation adds interactivity to the performance analysis process.
Several arguments justify the use of online methods. Post-mortem analysis may be “too late,” such
as when the status of long running jobs needs to be determined to decide on early termination.
There may also be opportunities for steering a computation to better results or better performance
interactively by observing execution and performance behavior online. Some have motivated online
methods as a way to implement dynamic performance observation where both instrumentation and
measurement can be controlled at runtime. In this respect, online approaches may offer a means to
better manage performance data volume and measurement intrusion. Most of the arguments above
assume, of course, that the online support can be implemented efficiently and results in little intrusion
or perturbation of the parallel computation. This is more difficult with online methods as they involve
more directly coupled mechanisms for access and interaction. Again, one needs to understand the
tradeoffs involved to make an intelligent choice of what online methods to use and how.

3. Online Performance Observation Architecture

The general architecture we envision for online performance observation is shown in Figure 1. The
online nature is determined by the ability to access the performance data during execution and make it
available to analysis and visualization tools, which are typically external. Additionally, performance
interacton is made possible through a performnace control path back into the parallel system and
software. Here, instrumentation and measurement mechanisms may be changed at runtime.

How performance data is accessed is an important factor for online operation. Different access mod-
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Figure 1. Online Performance Observation Architecture

els are possible with respect to the general architecture. A Push model acts as a producer/consumer
style of access and data transfer. The application decides when, what, and how much data to send. It
can do so in several ways, such as through files or direct communication. The external analysis tools
are consumers of the performance data, and its availability can be signalled passively or actively. In
contrast, a Pull model acts as a client/server style of access and transfer. Here, the application is a
performance data server, and the external analysis tool decides when to make requests. Of course,
doing so requires a two-way communication mechanism directly with the application or some form of
performance control component. Combined Push/Pull models are also possible.

Online profiling requires performance profile data, distributed across the parallel application in
thread (process) memory, to be gathered and delivered to the profile analysis tool. Profiling typically
involves stateful runtime analysis that may or may not be consistent at the time the access is requested.
To obtain valid profile data, it may be necessary to update execution state (e.g., callstack information)
or make certain assumptions about operation completion (e.g., to obtain communication statistics).
Assuming this is possible, online profiling will then produce a sequence of profile samples allowing
interval-based and multi-sample performance analysis. The delay for profile collection will set a lower
bound on interval frequency. This delay is expected to increase with greater parallelism.

Similarly, online tracing requires the gathering and merging of trace buffers distributed across the
parallel application. The buffers may be flushed afterwards, thereby allowing only the last trace
records since the last flush to be read. Such interval tracing may require “ghost events” to be
generated before first event and after the last event to make the trace data consistent. If the tracing
system dynamically registers event identifiers per execution thread, it will be necessary to make these
identifiers uniform before analysis. (Static schemes do not have this problem, but require instead that
all possible events be defined beforehand.)

4. Online Profiling in TAU

We have extended the TAU performance system [12] to support both online profiling and tracing.
Given space constraints, we only describe our approach to online profiling is this paper. Our online
tracing work can be found in [13].

4.1. Approach

The high-level approach we have taken for online parallel profiling is shown in Figure 2. The TAU
performance system maintains profiling statistics on a context basis for each thread in a context [12].
Normally, TAU collects performance profiles at the end of the program run into profile files, one for
each thread of execution. For online profiling, TAU provides a “profile dump” routine that, when
called by the application, will update the profile statistics for each thread, to bring them to internally
consistent states, and then output the profile data to files.

The performance data access model we have implemented and used in TAU is a Push model. The
application scenario we want to target is one where there are major phases and/or interations in the
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Figure 2. Online Profiling in TAU

computation where one would like to capture the current profile at those time steps. Thus, at these
points, the application calls the TAU profile dump routine to output the performance state. Each call
of the dump routine will generate a new set of profile files or append to files containing earlier profile
dumps. The updating of the profile dump files is used to “signal” the external profile analysis tools.

One of the advantages of this approach is that it can be made portable and robust. The only
requirement is support for a shared file system, using NFS or some other protocol. It is possible to
implement a push model in the TAU performance system using a signal handler approach, but it
introduces other system dependencies that are less robust.

A valid argument against this approach is that it has problems when the application scales, as the
number of files increase and the file system becomes the bottleneck. There are four mechanisms we
are investigating to address this problem. First, thread profiles for a context can be merged into a
single context profile file. This directly reduces the number of files when there are multiple threads
per context. Second, the profile dump routine allows event selection, thereby reducing the amount
of profile data saved. The third mechanism is to utilize a data reduction network facility, such as
Wisconsin” MRNet [6], to gather and merge thread/context profiles using the parallel communication
hardware, before producing output files. This can both address problems with scaling file systems
and problems with large number of files, by merging profile data streams in parallel until generating
profile output files. Finally, the fourth mechanism is to leverage the more powerful I/O hardware and
software infrastructure in the parallel system that one would expect to be present in the system as it
is scaled (e.g., parallel file system, multiple I/O processors, clustered file system software, etc.).

4.2. Tools

Our work has produced two profile analysis tools that can be used online. ParaProf [8] is the
main TAU tool used for offline performance analysis. It is capable of handling profiles from multiple
performance experiments and gives various interactive capabilities for data exploration. ParaProf can
accept profile data from raw files, our performance database, or through a socket-based interface.

The ParaVis tool [9] was developed to experiment with scalable performance analysis and visual-
ization using three-dimensional graphics. The ParaVis arcitecture is shown in Figure 3; see [9] for
details. A key result from our work with this tool is the importance of selection and focus in different
components of the tool. Also, use of the tool demonstrated the online benefits of being able to see
how performance behavior unfolds during a computation.

4.3. Application Access to Profile Data

Part of the online performance observation model includes the possibility of the application itself
accessing its measured performance data. This is presently supported in TAU at the context level,
where a thread can request the profile data for some measured event. Our intention is to extend this
capability to include access to performance data on remote application contexts.
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Figure 3. ParaVis Online Profile Analysis and Visualization

5. Related Work

The research ideas and work presented here relate to several areas. There has been a long time
interest in the monitoring of parallel systems and aplications. This is due to the general hypothesis
that by observing the runtime behavior or performance of the system or application, it is possible to
identify aspects of parallel execution that may allow for improvement. Several projects have developed
techniques that allow parallel applications to be responsive to program behavior, available resources,
or performance factors. The Falcon project [3] is an example of computational steering systems [15]
that can observe the behavior of an application and provide hooks to alter application semantics.
These “actuators” will lead to changes in the ongoing execution. Because computational steering
systems enable direct interaction with the application, they are often developed with visualization
frontends that provide graphical renderings of application state and objects for execution control.

Online performance observation systems look to achieve several advantages for performance analy-
sis. Paradyn [7] works online to search for peformance bottlenecks, while controlling the measurment
overhead by dynamically instrumenting only those events that are useful for testing the current bot-
tleneck hypothesis. Thus, the performance analysis done by Paradyn at runtime both collects profile
statistics and interprets the performance data to decide on the next coarse of action. Where as Para-
dyn attempts to identify performance problems, Autopilot [1] is an online performance observation
and adaptive control framework that uses application sensors to extract quantitative and qualitative
performance for automated decision control. While both Paradyn and Autopilot are oriented towards
automated performance analysis and tuning, neither address the problem of scalable performance
observation or provide capabilties to analyze or visualize large-volume performance information.

Indeed, the difficulty of linking application embedded monitoring to data consumers will ultimately
determine what amount of runtime information can be utilized. This involves a complicated tradeoff
of instrumentation and measurement granularity versus the overhead of application / performance
data transport versus the information requirements for desired analysis [4]. Projects such as the
Multicast Reduction Network (MRNet) [6] will help in providing efficient infrastructure for data
communication and filtering. Similarly, the Peridot [10] project is attempting to develop a distributed
application monitoring framework for shared-memory multiprocessor (SMP) clusters that can provide
scalable trace data collection and online analysis. The system will have selective instrumentation
and analysis control, helping to address node- and system-level monitoring requirements. A different
approach to scalable observation is taken in [5]. Here, statistical sampling techniques are used to gain
representative views of system performance characteristics and behavior.

In general, we believe the benefits seen in the application of online computation visualization and
steering, itself requiring demanding monitoring support, could also be realized in the parallel perfor-
mance domain. Our goal is to consider the problem of online, scalable performance observation as a
whole, understanding the tradeoffs involved and designing a framework architecture to address them.



6. Conclusion

The combination of scalable performance observation and online operation sets a high standard
for effective use of present day performance tools. Many performance systems are not built for scale
and work primarily offline. Our experience is one of extending the existing TAU performance system
to address problems of scale through improved measurement selectivity, new statistical clustering
functions, parallel analysis, and three-dimensional visualization. In addition, online support in TAU
is now possible for both profiling and tracing using a Push model of data access. We have demonstrated
these capabilities for applications over 500 processes. However, it is by no means correct to consider
our TAU experience as evidence for a general purpose solution. As with TAU, it is reasonable to expect
that other traditional offline tools could be brought online under the right system conditions. In the
wrong circumstances, the approaches may be ineffective either because they process larger volumes
of data or require more analysis power. Any solution to scalable, online performance observation will
necessarily be application and system dependent, and will require an integrated analysis of engineering
tradeoffs that include concerns for intrusion and quality of performance data. Our goal is to continue
to advance the TAU performance system for scalability and online support to better understand where
and how these tradeoffs arise and apply.
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