
Dymaxion++: A Directive-based API to Optimize Data Layout and

Memory Mapping for Heterogeneous Systems

Shuai Che†, Jiayuan Meng∗ and Kevin Skadron⋆

Shuai.Che@amd.com, jmeng@alcf.anl.gov and skadron@cs.virginia.edu

AMD Research†, Argonne National Laboratory∗ and Dept. of Computer Science, University of Virginia⋆

Abstract—There has been a growing trend in using heteroge-
neous systems with CPUs and GPUs to solve diverse compute
problems. However, high application performance on these plat-
forms relies on efficient memory accesses. For many applications,
CPUs and GPUs prefer different memory mappings and data-
structure layouts. This in turn requires developers to use device-
specific strategies for memory access optimizations. Achieving
both code and performance portability becomes a challenge for
heterogeneous computing.

This paper proposes a directive-based API, Dymaxion++,
which enables programmers to optimize memory access patterns
across devices with a simple interface. Use of Dymaxion++
requires only minimal modifications to existing codes with a small
set of pragma extensions. The current framework augments the
original Dymaxion framework [6] with a clean abstraction backed
by a source-to-source code translator. Dymaxion++ also provides
additional programming features to map data structures to
GPU’s hybrid memory spaces (e.g. texture and constant memory)
for different uses. Additionally, data layout transformation is
enabled while exchanging data between GPU scratchpad and
device memory as well as between system memory and device
memory.

I. INTRODUCTION

Developing codes that work efficiently across different

devices is challenging, especially for heterogeneous systems

with diverse accelerators (e.g., AMD APU [1], IBM Cell [11],

and Intel MIC [9]). In particular, the fast growing core counts

in today’s multicore and manycore architectures have exposed

significant pressure on the memory subsystem. Memory band-

width and latency are improving at a relatively slower pace,

which limits the overall system throughput. High application

performance relies heavily on efficient memory bandwidth

utilizations. Though GPUs usually have a wider memory

interface than CPUs, performance would be suboptimal in the

presence of insufficient memory coalescing [10], [20], [23].

To achieve good performance, different architectures may

prefer distinct access patterns and data structure layouts. This

requires device-specific optimizations for memory references.

In addition, GPUs’ hybrid memories (e.g., scratchpad, texture

and constant memories) present specialized access patterns.

However, codes optimized for these access patterns may not

perform well on another device [6]. Also, programming APIs

are designed to program different devices but do not solve

the issue of performance portability. For instance, OpenCL

has been released to target diverse compute devices. However,

Part of this work was completed at the University of Virginia. The extension
was done at AMD

a single OpenCL implementation (e.g. with the same data-

structure layout, block size, compiler options, etc.) usually

does not perform equally well across devices. In particular, this

becomes critical when CPUs and GPUs are coordinated on the

same task. Compiler and runtime support is required to bridge

the gap for heterogeneous data layouts and access patterns

favored by different devices. An important optimization tech-

nique is memory remapping [6]. The technique restructures

layout of data structures or mapping them to specialized

spaces. However, memory remapping sometimes requires a

high-level understanding of the code and can be difficult for

compilers or runtime to identify automatically. The goal is to

allow the programmer to specify in a generic way what they

want to accomplish, e.g. a generic access pattern, and let the

device specific optimizations happen transparently.

This paper addresses these concerns with a simple API, Dy-

maxion++, to improve memory accesses in unoptimized code.

Dymaxion++ aims to achieve both good programmability and

performance portability. It provides a directive-based API for

programmers to express heuristics for memory remapping.

In Dymaxion++, programmers are asked to employ a set of

simple pragmas and associated clauses in particular regions

of parallel code and direct the compiler and runtime system

to make appropriate memory remapping decisions.

Dymaxion++ extends the original Dymaxion proposal [6].

However, the original version of Dymaxion requires non-trivial

modifications to the source code. In contrast, Dymaxion++

allows programmers to annotate code with a much clearer

interface and helps to preserve the original code structure.

In addition, we include support for memory-space mapping

and layout transformation across different memory spaces. The

proposed programming style is general and can be integrated

easily into other directive-based models (e.g., OpenMP and

OpenACC) for parallel programming. Code and layout trans-

formation is handled automatically by the framework with a

source-to-source translator and a runtime system. Dymaxion++

currently targets GPUs, but can be implemented and optimized

for any other device.

This work makes the following contributions:

• We present the first-step design of the Dymaxion++

API. Its high-level abstraction of memory layout and

space mapping, together with the parameterized model,

enable programmers to apply their domain knowledge to

influence memory remapping in a flexible manner.

• We demonstrate the capabilities of Dymaxion++ as well

skadron
Typewritten Text
In AsHES 2014

as its code translation framework converting Dymaxion++

code into regular OpenCL/CUDA code. We present the

underlying mechanism of layout reorganization for effi-

cient inter-thread DRAM coalescing, mapping to scratch-

pad memory and other specialized memory spaces.

• We evaluate several compute kernels with representative

access patterns and use them as preliminary case studies

to present easy use of Dymaxion++. We also show their

performance speedups on real hardware.

II. AN OVERVIEW OF DYMAXION++

Today’s GPU programming models (e.g., OpenCL and

CUDA) require programmers to expend significant effort to

optimize memory accesses. Dymaxion++ is an extension to

existing GPU programming models to allow easy optimization

of memory accesses for heterogeneous systems. Applications

that make use of Dymaxion++ possess a generic code form

(straightforward, unoptimized version of OpenCL/CUDA im-

plementation). Dymaxion++ also relieves programmers from

dealing with error-prone and fine-grained code structuring that

leads to ad-hoc device-specific codes.

A. Directive-based Programming

The Dymaxion++ framework consists of two major compo-

nents. It features a layout transformation model and a memory-

space mapping model:

• The layout-transformation (reshape) model allows pro-

grammers to annotate data structures to guide transfor-

mation. The data structure is reorganized into a different

shape in memory that is ideal for memory accesses.

• The memory-space mapping (place) model allows pro-

grammers to map data structures to different memory

spaces (e.g., texture and constant) without using tedious

OpenCL/CUDA APIs for memory management. With this

model, the program can map data structures in the device

memory to specialized memory spaces for different uses,

while maintaining the original code structure.

In certain scenarios, layout transformation and memory-

space mapping models can be used in combination. For

instance, when conducting a discrete GPU offload, beginning

with PCI-E transfers to the point where data is brought to

GPU cores, there can be different spaces to store remapped

data structures (e.g. system, device and, scratchpad memo-

ries). Dymaxion++ directives follow the pragma mechanism

provided by the C/C++ standards. Each directive starts with

#pragma followed by clauses to specify detailed parameters.

The general formats of Dymaxion++ programming model are

as follows:

/ / Memory Layou t T r an s f o rma t i o n Model

#pragma dympp r e s h a p e [c l a u s e]

/ / Memory−space Mapping Model

#pragma dympp p l a c e [c l a u s e]

The reshape construct is used to specify memory layout

transformation in general. Immediately after this option, pro-

grammers need to specify the type of transformation in the

clause. Programmers also are asked to provide additional

information, such as the name of data structure, array dimen-

sion and data types and so on, when necessary. The current

Dymaxion++ implements diverse transformations common in

many scientific applications, including row2col (convert row-

major to column-major), diagonal (support diagonal access in

a rectangular array), indirect (gather data into a compact vector

from non-contiguous memory locations) and stride (reorganize

data in which adjacent accesses present a fixed stride). Our API

is a high-level abstraction while the actual implementations

may vary depending on specific architectures (e.g., memory

alignment, address distributions, cache hierarchy, etc.). Even

though the same transformation type (e.g., row2col) applies for

similar devices (e.g., AMD or NVIDIA GPUs), due to their ar-

chitectural differences, each device may favor device-specific

parameters for layout transformation. It is possible to support

different versions of underlying transformation routines for

each device. These are part of the Dymaxion++ framework that

are transparent to the programmer. The Dymaxion++ system

chooses the appropriate version of transformation routine (e.g.

row2col amd) to generate code for the detected device.

The place construct is used to specify data-structure map-

pings to different memory spaces. The framework then con-

ducts code translation automatically with user-provided hints

(e.g., the memory space, data structure name and array di-

mension) to exploit GPU scratchpad, texture and constant

memories. It produces code to allocate these memory buffers

for the target data structure the user annotates, move data

between buffers across spaces and manage memory accesses

to these buffers. The space mapping is handled transparently,

so programmers write generic code as usual with appropriate

directives,. In addition, for the scratchpad memory, when data

mapping is used together with layout transformation, two

options are supported, which we will discuss in detail in

Section V-A:

• Layout transformation is performed across the system

and device memories by chunking data structures and

overlapping them with PCI-E transfers. With the same

layout, the remapped data structure is loaded from the

device to scratchpad memory to take further advantage

of program locality.

• Data is transferred between the CPU to the GPU with

regular PCI-E transfers and layout transformation is per-

formed when loading data from the GPU device memory

to the scratchpad memory as part of the compute kernel.

In this study, as a preliminary proof of concept, our

directive-based framework is built on top of existing GPU

programming models, annotating OpenCL and CUDA codes.

Extension to OpenMP [18] and OpenACC [16] is straightfor-

ward but beyond the scope of this paper. Pragmas are chosen

for these OpenCL/CUDA annotations because OpenMP-like

programming has shown convenience of pragmas for pro-

grammers. The proposed pragmas can be used in combination

with existing OpenMP directives (e.g., OMP parallel for) to

annotate a code block for accelerator offload. In addition,

Fig. 1. A Dymaxion++ program is fed into a directive handler and source-
to-source translator. It then outputs intermediate OpenCL code and further
compiled to device-specific binary with a vendor’s tool chain.

OpenCL is used to demonstrate code examples. They all

use the device clause to specify the target device for which

Dymaxion is being directed to optimize. It is also useful to

include a “source device” clause to specify for which the

original code is written for, because OpenCL is supported by

diverse devices. It can have a default device value when not

used (e.g. CPU).

B. Source-to-Source Translation Framework

Figure 1 illustrates the Dymaxion++ code translation flow.

A Dymaxion++ program is fed into a directive handler and the

source-to-source translator that outputs intermediate OpenCL

and CUDA code. It is then compiled into GPU binaries with

vendors’ specific tool chains.

Our source-to-source translator produces OpenCL/CUDA

programs with additional code plugged in for layout trans-

formation and memory-space mapping. For instance, when

layout transformation is conducted and optimized during PCI-

E data transfer, Dymaxion++ generates new code that allocates

buffers on the device memory and transfers data between the

host and device memory in a mapping order guided by pragma

specifications. The translator inserts codes to perform memory

layout transformation. The transformation is conducted with a

separate kernel before the actual computation kernel. Layout

transformation is achieved by making each GPU thread map

(copy) one data element from the old to new memory location.

During the layout transformation, we further optimize layouts

with padding to meet the memory alignment requirement

for better inter-thread coalescing. The code translator also

generates CPU-side code, which attempts to hide the latency

of data transformation by overlapping PCI-E transfers and

data reorganizations [6]. Similarly, the framework can generate

kernel-side code for layout transformation between the GPU

device and scratch memory. In this case, an existing kernel

is modified to insert transformation before the user-specified

portion of the computation. For this proof of concept, rather

than an integrated source-to-course compiler pass, we use Perl

scripts to prototype simple code translations.

For the actual GPU compute kernel, another major trans-

formation performed by Dymaxion++ is to redirect memory

accesses (i.e., address redirection). Due to layout changes, ar-

ray indices need to point to new locations in the remapped data

structures [6]. The source-to-source translator will produce

new array indices or index computations to visit the remapped

data structures. Similarly, for memory-space mapping, Dymax-

ion++ generates necessary GPU codes to access texture and

constant memories on both the host and kernel sides.

III. EXPERIMENTAL SETUP

The experimental results are measured on real hardware

with an AMD Radeon HD7950 (Tahiti) discrete GPU and a

NVIDIA GeForce GTX 480 GPU. The AMD HD7950 features

28 Graphics Core Next (GCN) compute units with a total of

1,792 stream processors with an 800 MHz shader clock and

3 GB of device memory. The Geforce GTX 480 has 480 cores,

a 1.4 GHz shader clock, 768 kB of shared L2 cache, and

1.6 GB of device memory. We use AMD APP SDK 2.8 with

OpenCL 2.1 support and NVIDIA GPU Compute SDK with

CUDA 4.0 support. In addition, this study is restricted to cases

in which the memory buffer sizes consumed by applications

and Dymaxion++ do not exceed the capacity of GPU memory;

handling such cases is left for future work.

IV. LAYOUT TRANSFORMATION

In this section, we use several case studies to show how

to leverage Dymaxion++’s directive-based interface for mem-

ory remapping. We use the same application examples as

the prior Dymaxion work [6]. The codes with Dymaxion++

directives are demonstrated in OpenCL. The reshape construct

currently supports several clauses: row2col, diagonal, indirect

and stride.

A. Transformation and Latency Hiding

Layout transformation is conducted on the GPU side with

built-in GPU kernel templates customizable through user-

provided heuristics. Regular data transfer will be replaced by

Dymaxion++ transfers and the following layout transformation

on the GPU. We hide transformation latency by overlapping

memory layout reorganization with chunked PCI-E transfer.

This technique is studied in prior work [6], [23]. In a brief

summary, when layout transformation is conducted across the

system and device memory through PCI-E, we break the data

into small chunks and transfer each chunk asynchronously

from the CPU to the GPU one by one. Immediately after data

transfer of each chunk, Dymaxion++ launches transformation

kernels to reorganize data layout; each thread is responsible

for relocating one data element. The transfer of the next

chunk overlaps with on-going layout transformation of the

most recently transferred chunk. When layout transformation

happens across the GPU device and scratchpad memory,

techniques such as CudaDMA can be used to achieve a similar

goal, with a subset of threads dedicated to data prefetching and

transformation with specific rules [3].

B. Row-major to Column-major

We use the Kmeans distance kernel to demonstrate the use

of Dymaxion++ for row-major-to-column-major transforma-

tion (see Figure 2). In Kmeans, the task of searching the

nearest centroid to a given data element is done in parallel by

multiple threads [5]. The feature structure is stored in a 2-D

array in a row-major layout with each row representing a data

object and each column representing a feature. Such layout is

efficient for CPU computation, because when a single thread

calculates the distances of each row to the centroids, different

MAP

threads threads

Fig. 2. Three types of Dymaxion++ transformations: transpose, diagonal and indirect transformations (from left to right) [6]

features of a row are laid out contiguously in a cache line

for data locality. However, this is inefficient for GPU’s SIMD

execution; threads in a SIMD group access different rows in

the array, which often are spread among multiple memory

transactions. Therefore, column-major layout is desirable for

Kmeans on the GPU.

In this case, programmers can use the reshape construct

and row2col clause to optimize Kmeans’ access patterns for

the GPU. As shown in the example, the device for the

target transformation is GPU. row2col is applied on the

feature array, which then is reorganized into a column-major

order on the GPU. The layout organization and associated

latency hiding will be handled by the runtime system [6].

The source-to-source translator will generate code to trans-

late the array indices to access the remapped feature array.

The new index calculation follows the rule: new index =
npts ∗ (old index%nfts) + (old index/nfts).

unsigned t i d = g e t g l o b a l i d (0) ;

i f (t i d >= np t s) re turn ;

. . .

pragma dympp dev i c e (GPU) \
r e s h a p e row2col (f e a t u r e [np t s , n f t s])

f o r (i n t l =0 ; l<n f t s ; l ++){
ans += (f e a t u r e [t i d ∗ n f t s + l]− c l u s t e r s [i∗ n f t s + l]) ∗

(f e a t u r e [t i d ∗ n f t s + l]− c l u s t e r s [i∗ n f t s + l]]) ;

}
. . .

Listing 1. The distance kernel of Kmeans (row2col). All the code examples
in this paper are shown in OpenCL

C. Diagonal

We use the Needleman-Wunsch algorithm to demonstrate

the use of diagonal-strip transformation in Dymaxion++ (see

Figure 2). In Needleman-Wunsch, potential DNA sequence

pairs are organized in a 2-D matrix. The first phase can be

done in parallel by filling the matrix with scores, each of which

represents the value of the maximum weighted path ending

at each cell. Needleman-Wunsch traverses the computation

domain in a diagonal strip manner; parallelism is present for

the data elements processed within a diagonal strip. Adjacent

strips must be processed serially [5].

The code example in Listing 2 shows the code region that

fills the score matrix (upper-left) by accessing each element’s

northwest, west, and north neighbors. More efficient GPU

computation is achieved when SIMD threads access contigu-

ous data elements as well as their neighbors to maximize

the benefit of DRAM coalescing. As shown in the code, Dy-

maxion++ provides programmers the diagonal clause to rotate

the score array by 45 degrees. Similarly, our source-to-source

translator modifies the original code by transparently adding

extra routines for layout and array index transformation.

The new index calculation for diagonal-strip transformation

follows the rule: new index = dim ∗ ((old index%dim) +
(old index/dim)) + old index/dim

unsigned i n t t i d = g e t g l o b a l i d (0) ;

. . .

i f (i dx <= i){
unsigned i n t i ndex = t i d ∗ dim + (i − t i d) ;

#pragma dympp dev i c e (GPU) \
r e s h a p e d i a g o n a l (s c o r e [dim , dim])

s c o r e [i ndex]= max (s c o r e [index−1−dim]+ r e f [i ndex] ,

s c o r e [index−1] −pena l t y ,

s c o r e [index−dim] −p e n a l t y) ;

}

Listing 2. The score-filling kernel in Needleman Wunsch (diagonal)

D. Indirect

Gathering data from randomly distributed memory regions

into a contiguous vector makes SIMD execution more efficient.

The code in Listing 3 shows a simple multithreaded vector

multiplication, in which indices of v are obtained from the

col array and used to gather actual data. It can be used

in sparse-matrix vector multiplication [6], [8], in which the

algorithm computes the result in two steps, including a partial

multiplication step and a reduction step summarizing the

partial result.

By applying Dymaxion++’s indirect clause, the gathering

operation (see Figure 2) can happen at the same time while

conducting data communications between memory spaces. For

instance, v is first transferred to the GPU, and then we can

apply the indirect transformation on col, which is chunked

and transferred to the GPU overlapping with a gather from

v to v’. The vector v’, an internal structure maintained by

Dymaxion++ (not shown in the code), contains continuously

gathered data and is used for future accesses.

unsigned i n t t i d = g e t g l o b a l i d (0) ;

#pragma dympp dev i c e (GPU) r e s h a p e i n d i r e c t (v [c o l [dim]])

r e s u l t v e c t o r [t i d] = d a t a [t i d] ∗ v [c o l [t i d]] ;

Listing 3. The gather kernel (indirect)

E. Other Transformations

In addition to the previous three transformations, which are

useful in many applications, Dymaxion++ can be extended

to support other memory remappings. This paper shows only

a subset of access patterns for proof-of-concept purposes.

For instance, row2col and diagonal transformations are two

special cases of the strided access pattern (e.g. matrix[tid

Fig. 3. Performance speedups for the GPU kernels (Dymaxion++ vs. non-
Dymaxion++ versions)

* stride + j]), where stride represents the distance between

two adjacent thread accesses. In particular, when accessing

an array a[0:m*n], the stride is n for row2col and (n− 1)
for diagonal respectively. Thus, the reshape construct can

be extended to arbitrary strides. Ideally, the stride size after

transformation should be 1 for adjacent GPU threads within

a wavefront. This achieves the best memory coalescing – the

goal of Dymaxion++ reorganization. In addition, our directives

can be extended to support restructuring arrays of struct (AoS)

to struct of arrays (SoA).

Sometimes, users prefer to define their own reorganizations

to solve particular problems. The Dymaxion++ framework is

extensible to user-defined transformation. In this case, users

specify a remap func function, which defines the relationship

between the old index and the new remapped index for each

data element in a linear array space.

The following code in Listing 4 shows an example of strided

and user-defined transformations respectively.

/ / An example o f t h e s t r i d e d r e o r g a n i z a t i o n t o a r ray a r r

#pragma dympp dev i c e (GPU) \
r e s h a p e s t r i d e d (a r r [dim , dim , s t r i d e])

/ / An example o f t h e user−d e f i n e d r e o r g a n i z a t i o n t o a r r a r r

#pragma dympp dev i c e (GPU) \
r e s h a p e u s e r d e f (a r r [dim , dim , remap func (0 :m∗n , m,

n)])

Listing 4. Strided access pattern and user-defined remapping

F. The Benefits of Layout Transformation

We applied Dymaxion++ pragmas to the naı̈ve GPU imple-

mentations of several Rodinia compute kernels. Figure 3 shows

the speedups of three GPU compute kernels with Dymax-

ion++ compared to their original implementations on an AMD

Radeon HD7950. The speedups are 6.2×, 2.1× and 1.3×
for Kmeans, Needleman Wunsch and Gather respectively. The

performance benefits are due to a better match between data

layouts and the efficient memory access patterns supported by

the hardware.

Dymaxion [6] requires users to modify applications by

replacing memory transfers and array indices with the Dymax-

ion API. In contrast, Dymaxion++ provides a more friendly

programming style with directive annotation. This relieves

programmers from modifying the actual computation code.

The pragma mechanism is flexible to enable, disable and

configure different parameters for different devices. In fact,

for the current implementation, a Dymaxion++ program will

be translated at compile time into a form similar to a program

developed with the Dymaxion API. In terms of the actual

application execution time, there is little difference between

Dyamxion and Dymaxion++ versions.

V. MEMORY SPACE MAPPING

In this section, we describe Dymaxion++’s support for

mapping data structures to specialized memory spaces in

GPUs.

A. Mapping to Scratchpad Memory

Dymaxion++ is designed to be a high-level programming

abstraction to define memory mappings. The actual implemen-

tation of the API can be accomplished in software, hardware,

or both. It depends on specific hardware features and the

memory hierarchy of particular platforms. In many cases,

it is possible to use layout transformation in combination

with memory-space mapping. For instance, the code in List-

ing 5 shows an example of a combined row2col remapping

and scratchpad data mapping. We compare two possible

approaches to implement this combination across different

memory-hierarchy levels. Their graphical illustration is shown

in Figure 4

unsigned i n t t i d = g e t g l o b a l i d (0) ;

i f (t i d >= np t s) re turn ;

. . .

#pragma dympp dev i c e (GPU) \
r e s h a p e row2col (f e a t u r e [np t s , n f t s]) \
p l a c e s c r a t c h p a d (f e a t u r e [np t s , n f t s] , BLOCKSIZE)

f o r (i n t l =0 ; l<n f t s ; l ++){
ans += (f e a t u r e [t i d ∗ n f t s + l]− c l u s t e r s [i∗ n f t s + l]) ∗

(f e a t u r e [t i d ∗ n f t s + l]− c l u s t e r s [i∗ n f t s + l]]) ;

}
. . .

Listing 5. Combined layout transformation and memory-space mapping

1) Mapping to Scratchpad – Layout Transformation across

PCI-E: In Section IV-A, we discussed that layout trans-

formation can be implemented during PCI-E transfers by

chunking data structures and launching the remapping kernel

after the transfer of each chunk. After layout transformation, a

desirable layout will be ready in the GPU device memory for

future thread accesses. In addition, programmers can map data

structures to the on-chip scratchpad memory to take further

advantage of data locality and reuse for higher performance

(See Figure 4(i)).

In a GPU, per-SIMD scratchpad (local data share by AMD

and shared memory by NVIDIA) usually is divided into banks.

These banks are organized such that successive addresses are

assigned to successive banks. Therefore, any memory load or

store of n addresses that spans n distinct memory banks can

be serviced simultaneously. Simultaneous accesses by multiple

threads to data within the same bank will cause bank conflicts.

Fig. 4. Two possible implementations of combined layout transformation
and memory-space mapping: 1) layout transformation across PCI-E and 2)
layout transformation across the device memory and scratchpad

i n t bx = ge t g r o up i d (0) ;

i n t t x = g e t l o c a l i d (0) ;

i n t t i d = BLOCK SIZE ∗ bx + t x ;

/ / l oad da ta i n t o f e a t u r e t (row2col) i n s c r a t c hpad

f o r (i n t i = 0 ; i < n f e a t u r e s ; i ++)

f e a t u r e t [i ∗ BLOCK SIZE + t x]= f e a t u r e [t i d ∗ n f t s + i] ;

/ / d e t e rm i n e t h e c e n t r o i d f o r each da ta p o i n t

f l o a t min d i s t =BIG NUM;

f o r (i n t i =0 ; i < n c l u s t e r s ; i ++) {
f l o a t d i s t = 0 , ans = 0 , v a l u e ;

f o r (i n t l =0 ; l<n f t s ; l ++){
/ / r 2 c i d x t r a n s f o rm s t h e i nd e x f o r t h e new ar ray

va l u e = f e a t u r e t [r 2 c i d x (t i d , l , np t s , n f t s)] ;

ans += (va lue−c l u s t e r s [i∗ n f t s + l]) ∗
(va lue−c l u s t e r s [i∗ n f t s + l]) ;

}
d i s t = ans ;

i f (d i s t < min d i s t) {
min d i s t = d i s t ;

i ndex = i ;

}
membership [p o i n t i d] = index ;

}

Listing 6. An example of translated Kmeans GPU code after the combined
layout transformation and memory-space mapping. Layout transformation is
conducted during data communications between the device and scratchpad
memory.

From a programmer’s point of view, the requirements for

efficient bank accesses are similar to those of DRAM coalesc-

ing. If the data structure is transformed between the system and

device memory (by overlapping chunked PCI-E transfers and

layout transformation), Dymaxion++ will produce a different

data layout in the device memory. This layout is naturally

desirable for scratchpad accesses as well for the most cases.

In this case, the Dymaxion++ source-to-source translator will

generate code to declare a shadow array in the scratchpad

memory, fetch data from the device memory to the shadow

array (with the same layout), and redirect memory accesses

to the shadow memory. Dymaxion++ also will produce code

to transform the array indices for accessing the shadow array.

Both work-group and shared memory size are important for

Fig. 5. Execution time breakdown of Kmeans due to memory remapping
and PCI-E transfer (NVIDIA GTX 480). Base is the case without any layout
and memory mapping optimizations. “reshape (PCI-E)” means the layout
transformation is performed during PCI-E transfer. “reshape (Scratchpad)”
means the layout transformation is performed during the data transfer between
the device and scratchpad memory.

GPU occupancy and parallelism [15], [17]; we leave automatic

determination of the best resource-allocation strategy as future

work.

2) Mapping to Scratchpad – Layout Transformation across

DRAM and Scratchpad: Alternatively, layout transformation

can be implemented in another way. In a second implemen-

tation, we instead transfer a linear contiguous data region in

bulk from the system memory to the GPU device memory

(i.e., regular clEnqueueWriteBuffer and cudaMemcpy) without

chunking. Layout transformation is performed when loading

data from the device memory to the scratchpad memory

(Figure 4(ii)). In this scenario, the application needs to pay the

one-time cost of gathering data from non-contiguous memory

blocks in the device memory into the scratchpad. If the

algorithm has sufficient data reuse, this overhead can be amor-

tized over future memory accesses and thus the application

benefits from performance improvement due to more efficient

layout. In addition, prior techniques [3] can be integrated with

possible latency hiding, with certain threads dedicated to data

prefetching and transformation.

Similarly, in this case Dymaxion++ generates code to de-

clare a shadow array in the scratchpad memory for the target

array to be transformed. When executing each work-group,

data is loaded from the device memory to the shadow array in

a remapped order defined by the programmer. Array indices

are transformed to access the remapped array. Code Listing 6

shows the resulting code from such transformation.

Figure 5 shows the total execution times for Kmeans on

a NVIDIA GTX480 GPU. We considered four cases for the

experiments. Base refers to the original naive implementation

without any memory remapping. In the second experiment,

Dymaxion++ conducts layout transformation during the chun-

ked PCI-E transfer, and the GPU kernel accesses the remapped

data structure in the GPU device memory. The performance of

kmeans distance kernel improves 4× due to better-coalesced

memory accesses. Considering both layout remapping and

PCI-E overhead, the overall execution time is approximately

half of the original version. In the third experiment, data-layout

transformation is performed when exchanging data between

the device memory and scratchpad memory after the bulk

PCI-E transfer. The performance of the GPU kernel improves

an additional 10% and the overall performance improves

8%. Accessing the local scratchpad memory achieves higher

bandwidth and lower latency. In the last experiment (the fourth

experiment), which improves the second implementation with

layout transformation across the system and device memory,

Dymaxion++ loads the remapped array from the GPU device

memory to the scratchpad memory with the same layout. In

this case, the performance of the GPU kernel improves an

additional 40% and the overall performance improves 8%

compared to the third case. The fourth case overlaps GPU

layout transformation with PCI-E transfer, therefore the com-

bined PCI-E transfer + layout transformation consumes a little

more time than the third case which conducts regular PCI-E

transfer. In addition, since the in-kernel layout transformation

is conducted between the device and scratchpad memories for

the third case, its kernel execution time is slower than the four

case by about 70%.

We also perform the same set of experiments for Needleman

Wunsch. The second experiment, where Dymaxion++ conducts

layout during the PCI-E transfer, and the GPU kernel accesses

the remapped data structure in device memory, improves

performance by 23% for kernel execution and 16% for overall

performance. Because the Needleman Wunsch kernel presents

little data reuse, the performance of the third case achieves

similar performance to the first case, while the fourth case’s

performance is similar to the second case.

Programmers can decide and specify what Dymaxion++

mechanism to use based on their knowledge of the application

for potential benefits. On the other hand, GPU performance

models [13] can be integrated to estimate performance benefits

of different transformations.

B. Texture and Constant Memory

Conventionally, data structures must be declared explicitly

to use texture and constant memories and special API func-

tions must be applied to manage and access these buffers.

Aside from the tedious process, the optimized code may not

be performance portable across devices. Dymaxion++ provides

the place construct and the constant and texture clauses for

users to specify mappings to these spaces.

unsigned i n t t i d = g e t g l o b a l i d (0) ;

. . .

i f (i dx <= i){
unsigned i n t i ndex = t i d ∗ dim + (i − t i d) ;

#pragma dympp dev i c e (GPU) \
r e s h a p e d i a g o n a l (s c o r e [dim , dim]) \
p l a c e t e x t u r e (r e f [dim , dim])

s c o r e [i ndex]= max (s c o r e [index−1−dim]+ r e f [i ndex] ,

s c o r e [index−1] −pena l t y ,

s c o r e [index−dim] −p e n a l t y) ;

}

Listing 7. Map the substitution score matrix (ref) in Needleman Wunsch to
texture memory

An example demonstrates a Dymaxion++ mapping to the

texture memory. In the Needleman-Wunsch score-filling ker-

nel, a 2-D reference array (ref) stores the substitution score for

each value at the coordinate i and j. It is used to calculate the

optimal score for alignment and is read-only during the entire

program execution. We apply the texture clause to map the ref

array into the texture space in addition to transformation of

the score array. The sample code with Dyamxion++ directives

is in Listing 7.

Two transformations are performed by Dymaxion++. In

the case of OpenCL, Dymaxion++ translates the code to use

clCreateImage and clEnqueueCopyBufferToImage for buffer

management on the host side and use read image to access

the texture array. In CUDA, Dymaxion++ inserts code on the

host side to declare a new array in the texture space and binds

the global array via the CUDA API call cudaBindTexture. On

the kernel side, it replaces the original array in the global

memory space with the new texture array. tex1Dfetch is used to

access the structure. We measure the performance on an AMD

Radeon HD 7950 GPU. The texture-memory version achieves

an average of 20% performance improvement compared to the

original version, which accesses the device memory.

Constant memory mapping can be implemented similarly

(i.e. place constant). In the Kmeans distance kernel, a small

2-D array stores all the centroids of k clusters. We map this

array to the GPU constant memory. When conducing distance

calculations, all the threads will access the same data when

navigating the features of an individual centroid. For OpenCL,

transformation is relatively simple; in the kernel argument,

the cluster array is labeled with constant. For CUDA, two

transformations are performed by Dymaxion++. On the host

side, it inserts the code to declare a new array in the constant

space and copies the global array to the new structure via the

CUDA API call cudaMemcpyToSymbol. On the kernel side,

Dymaxion++ replaces the original cluster array in the global

space with the new constant array. The constant memory

version consistently improves the execution time by 3% on

a NVIDIA GTX 480.

VI. RELATED WORK

Prior research studied directive-based programming models

for the GPU architecture. OpenACC [16] offers a mode

describing a collection of compiler directives to specify loops

and regions of code in standard C, C++, and Fortran to be

offloaded from a host CPU to an attached accelerator. Sim-

ilarly, OpenHMPP [4] allows annotations of code to offload

procedures in codelets (i.e., functions to offload) onto a remote

device and optimizations of data transfers. The recent OpenMP

4.0 [18] includes programmings features for offloading compu-

tation to accelerators. Szafaryn et al. [21] proposed a high-level

programming framework, supporting a common codebase with

translations of the code to OpenMP and PGI Accelerator API.

However, these models do not include features to optimize

data access patterns and layouts. hiCUDA [7] defined a

directive-based API for programming NVIDIA GPUs. The C-

to-CUDA [2] work describes an automatic code transformation

system that generates parallel GPU code from sequential C

code for regular programs. OpenMPC [12] is directive-based

and provides a higher-level API built on top of OpenMP.

OpenMPC implements a compiler that automatically generates

GPU code by interpreting directives and provides a variety of

optimization options. The above works include data mapping

of structures to specialized memories. However they do not

support layout transformation or its potential combination

with memory-space mapping. In contrast to these works, our

work is unique in focusing on a more comprehensive API

designed specifically for memory layout transformation and

space mapping.

Sung et al. [20] investigated a compiler approach for layout

transformation for GPU kernels, focusing on structured-grid

applications. The DL [19] work studies an Array-of-Structure-

of-Tiled-Array (ASTA) layout and in-place data marshaling for

improving the device memory throughput for GPU. Jang et

al. [10] used a mathematical model and algorithms to analyze

data access patterns and target loop vectorization and GPU

memory selection with different patterns. Zhang et al. [23]

proposed a library to reduce irregularities in GPU programs

through a level of indirection and job swapping to improve

branch and memory divergence. In contrast to these works for

GPUs, our work is focused on a more general, directive-based

programming framework. This approach enables programmers

to influence the underlying memory mapping and transforma-

tion for common access patterns without breaking the original

code structure and achieving good performance portability. In

addition, Meng et al. [14] proposed a hardware mechanism of

dynamic warp subdivision for improving branch and memory

divergence tolerance. Yang et al. [22] developed a compiler

proposing a variety of techniques such as vectorization, tiling

and unrolling, data prefetching, etc. Their paper mentions the

use of scratchpad memory to yield better coalescing. Our

framework targets a comprehensive understanding and support

for data and memory remappings, and provides different

possibilities for their implementations.

VII. CONCLUSIONS AND FUTURE WORK

This work is a first-step preliminary study proposing a

directive-based API framework, Dymaxion++, to ease GPU

optimizations and improve performance portability. It comple-

ments existing GPU API designs with a focus on programming

abstractions for memory layout transformation and mapping to

different memory spaces. It adds pragma support for using the

prior Dymaxion abstractions in a pragma-based framework,

instead of requiring users to manually rewrite their programs to

use the Dymaxion API. We also demonstrate the possibilities

where layout transformation and memory mapping can be

combined. We use several application kernels to demonstrate

the use of our API. Dymaxion++ improves productivity of

programmers in optimizing memory accesses. For most ap-

plications, it requires only a few lines of code changes. Our

preliminary experiments show an average of 3.2× performance

improvement across GPU kernels. Depending on how layout

transformation is performed and degree of data reuse, the over-

all performance benefit ranges from 48% to 56% for Kmeans,

and 16% for Needleman Wunsch. The programming effort

of applying our API is trivial compared with performance

gains. Future work will improve the framework with more

pragma features and integration of Dymaxion++ into existing

directive-based APIs such as OpenMP. We will support more

layout transformation and memory mapping features for Dy-

maxion++, including more structures (e.g., array of structs)

and optimizations across multiple nodes. We will extend this

preliminary analysis with more comprehensive performance

evaluation for different pragmas and applications on diverse

platforms. In addition, future work will also study data layout

issues for irregular algorithms, e.g., sparse matrix and graph

theory problems. It would also be an interesting research

to study compiler techniques which allow automated source

code analysis and Dymaxion++ optimizations, thus reducing

developer involvement.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CCF-

1116673. We thank the reviewers for their constructive com-

ments.

REFERENCES

[1] AMD Accerated Processing Unit (APU). Web resource. http://www.
amd.com/us/products/technologies/apu/Pages/apu.aspx.

[2] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-
to-CUDA code generation for affine programs. In Proceedings of the

International Conference on Compiler Construction, Mar 2010.

[3] M. Bauer, H. Cook, and B. Khailany. CudaDMA: optimizing gpu
memory bandwidth via warp specialization. In Proceedings of the

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, Nov 2011.

[4] CAPS OpenHMPP. Web resource. http://www.caps-entreprise.com/
openhmpp-directives/.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the International Symposium on Workload

Characterization, Oct 2009.

[6] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: Optimizing memory
access patterns for heterogeneous systems. In Proceedings of the

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (Supercomputing Conference), Nov
2011.

[7] T. Han and T. S. Abdelrahman. hiCUDA: a high-level directive-based
language for GPU programming. In Proceedings of 2nd Workshop on

General Purpose Processing on Graphics Processing Units, Mar 2009.

[8] B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient gather
and scatter operations on graphics processors. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, Nov 2007.

[9] Intel Many Integrated Core Architecture. Web resource.
http://www.intel.com/content/www/us/en/architecture-and-technology/
many-integrated-core/intel-many-integrated-core-architecture.html.

[10] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting memory access
patterns to improve memory performance in data parallel architectures.
IEEE Transactions on Parallel and Distributed Systems, 22:105–118,
2010.

[11] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM Journal of Research and

Development, 49(4/5):589-604, 2005.

[12] S. Lee and R. Eigenmann. OpenMPC: Extended openmp program-
ming and tuning for GPUs. In Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking,

Storage and Analysis, Nov 2010.

[13] J. Meng, V. Morozov, K. Kumaran, V. Vishwanath, and T. Uram.
GROPHECY: Projecting GPU performance from CPU code skeletons.
In Proceedings of the ACM/IEEE Supercomputing Conference, Nov
2011.

[14] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for
integrated branch and memory divergence tolerance. In Proceedings of

the 37th ACM/IEEE International Symposium on Computer Architecture,
June 2010.

[15] NVIDIA CUDA. Web resource. http://www.nvidia.com/object/cuda
home new.html.

[16] OpenACC. Web resource. http://www.ece.umd.edu/dramsim/.

[17] OpenCL. Web resource. http://www.khronos.org/opencl/.

[18] The OpenMP API specification for parallel programming. Web resource.
http://openmp.org/wp/.

[19] I-J. Sung and W-M W. Hwu. DL: A data layout transformation system
for heterogeneous computing. In Proceedings of the Innovative Parallel

Computing, May 2012.

[20] I-J Sung, J. A. Stratton, and W-M W. Hwu. Data layout transforma-
tion exploiting memory-level parallelism in structured grid many-core

applications. In Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, Sept 2010.
[21] L. G. Szafaryn, T. Gamblin, B. R. de Supinski, and K. Skadron. Expe-

riences with achieving portability across heterogeneous architectures. In
Proceedings of the Workshop on Domain-Specific Languages and High-

Level Frameworks for High Performance Computing, May 2011.
[22] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for

memory optimization and parallelism management. In Proceedings of

the ACM SIGPLAN 2010 Conference on Programming Language Design

and Implementation, June 2010.
[23] E. Z. Zhang, Z. Guo Y. Jiang, K. Tian, and X. Shen. On-the-fly elimi-

nation of dynamic irregularities for GPU computing. In Proceedings of

the International Conference on Architectural Support for Programming

Languages and Operating Systems, Mar 2011.

