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Protecting Biometric Templates with Sketch:
Theory and Practice

Yagiz Sutcu∗, Qiming Li, Nasir Memon

Abstract— Secure storage of biometric templates has become
an increasingly important issue in biometric authentication sys-
tems. We study how secure sketch, a recently proposed error-
tolerant cryptographic primitive, can be applied to protect the
templates. We identify several practical issues that are not
addressed in the existing theoretical framework, and show the
subtleties in evaluating the security of practical systems. We
propose a general framework to design and analyze secure
sketch for biometric templates, and give a concrete construction
for face biometrics as an example. We show that theoretical
bounds have their limitations in practical schemes, and theexact
security of the system often needs more careful investigations.
We further discuss how to use secure sketch in the design of
multi-factor authentication systems that allow easy revocation of
user credentials.

Index Terms— Biometric template security, secure sketch, en-
tropy loss

I. I NTRODUCTION

In many biometric authentication systems, the biometric
templates of users are sampled during anenrollment phase,
and are stored in the system, either in a central database,
or in smartcards. Later, when the user wants to authenticate
himself/herself to the system, a fresh measurement of the same
biometrics is taken and is matched against the corresponding
template. If they are sufficiently similar according to some
similarity measure, the user is considered as authentic. These
biometric templates are often stored in the form of raw
samples of the user biometrics (e.g. scanned fingerprints, or
photographs of faces). If these templates are compromised by
attackers, they can be used to impersonate legitimate users.
In some cases, features extracted from raw samples are stored
instead (e.g., minutiae of fingerprints, or SVD of face images).
When a fresh measurement of the same biometrics is made,
the same feature extraction algorithm is applied, and the
extracted features are compared against the template. However,
in this case, it is often not clear how difficult it is to forge a
biometric sample that would generate the same features using
the same feature extraction algorithm, especially when the
feature extraction algorithm is compromised together withthe
template.

Secure storage of user credentials is not a new problem.
In many UNIX-like systems, user credentials are stored in
a shadow password file, where the passwords are hashed and
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only the hash values are stored. When a user enters a password,
it is hashed and matched against the stored hash value, and
the user is considered as authentic if the hash values are
exactly the same. In this way, if the hashed passwords are
compromised, it would still be difficult for any attacker to
guess the passwords, even if the hashing function is publicly
known. Legitimate users, after detecting the compromise, can
change their passwords, which makes old passwords useless
to attackers.

Unfortunately, such techniques cannot be easily adapted to
protect biometric templates. The main difficulty is that bio-
metric samples cannot be exactly reproduced, and traditional
cryptographic primitives do not allow even a single bit of error.
To make things worse, biometric templates, once comprised,
are difficult (if possible at all) to revoke or replace.

There has been much work to solve this problem with
various approaches. These methods can be roughly categorized
into two types: (1) Robust hash functions, where small changes
in a biometric sample would yield the same hash value (e.g.,
[1], [2], [3], [4], [5]); (2) Similarity-preserving hard-to-invert
transformations, where similarity of biometric samples would
be preserved through the transformation, yet it is difficult
to find the original template from a transformed one (e.g.,
[6], [7], [8], [9]). We note, however, that there lacks rigorous
security analysis for these techniques. In particular, it is not
clear exactly how difficult it is to break these schemes once the
hash values (or the transformed templates) are compromised,
especially when the hash function, transformation algorithm
and related keys and parameters are also compromised.

Yet another approach, which allows more rigorous secu-
rity analysis, is to employ recently proposed cryptographic
primitives, where some public informationP can be used to
recover the original biometric dataX given a fresh sample
Y that is sufficiently similar toX , and P itself does not
reveal too much information aboutX . Such schemes include
fuzzy commitment [10], fuzzy vault [11], helper data [12], and
secure sketch [13]. Here we follow Dodis et al. and call such
public information asketch[13].

A sketch scheme (Fig. 1) consists of two algorithms: A
sketch generation algorithmGen, and a reconstructionRec.
Given some dataX , the outputPX = Gen(X) is called a
sketchof X . Given a sketchPX and anotherY that is suffi-
ciently similar toX according to some measure,Rec(PX , Y )
would reconstruct the originalX . When applying such a
sketch in biometric authentication systems, astrong extractor
(such as pair-wise independent hash functions) can be further
applied on the originalX to obtain a keyK that is robust, in
the sense that it can be consistently reproduced given anyY
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that is similar toX . This key can then be used in the same way
as passwords. For instance, in the context of authentication, a
one-way hash functionh can be applied onK, and only the
hash valueh(K) and the sketchPX are stored in the system.

Fig. 1. Sketch Generation and Template Reconstruction

The secure sketch approach is similar in certain ways to
both robust hashing and similarity-preserving transformations.
On one hand, like a robust hash, a sketch allows exact recovery
of the original X , hence the exact key or hash value for
authentication. On the other hand, like a similarity-preserving
transformation, we would need some extra data associated
with each user to guide the authentication process. One may
compare a sketchP of X with a syndrome ofX w.r.t. some
error-correcting code, such that,X can be computed fromP
and someY that is close toX [14]. In general, however,
constructing a sketch using an error-correcting code in such
a straightforward manner may not be feasible or sufficiently
secure for real biometric data.

We emphasize that the reconstruction of the original bio-
metrics should be done only locally by the user, so that
the reconstructedX is never transmitted and is stored only
temporarily. Also, the strong extractors and the hash functions
can be randomly chosen for each user at each enrollment, such
that even the same biometric data would generate different
keys and hash values during multiple enrollments, which
further protect the privacy of the users against certain data
mining techniques such as database cross-matching.

An important security requirement for sketches is that they
should not reveal too much information about the original
biometric templateX . In the formal framework due to Dodis
et al. [13],min-entropyis used as the measure of the strength
of the key, andentropy lossis used as the measure of the
advantage a sketchPX gives to the attacker in guessingX .
In this setting, the entropy loss can be conveniently bounded
by the size of the sketch. It is worth to note that the entropy
loss is a worst case bound forall distributions ofX .

There are a few difficulties in applying their techniques to
biometric templates in the real world. Most importantly, many
biometric templates are not discrete, but are instead points
in continuous domains (e.g., real numbers resulted from some
signal processing techniques). In this case, it would be hard to
define what the min-entropy of the original biometric template
should be. Furthermore, to extract a discrete key from such
a template, some kind of quantization would be necessary.
However, since the formulation of secure sketch requires
that the originalX can be reconstructed exactly, the entropy
loss could be arbitrarily high, which can be misleading. For
example, consider the quantization of a random variableX

uniformly distributed in[0, 1), where anyY ∈ (X−0.01, X +
0.01) is considered as “similar” toX . Suppose we apply
the sketch scheme in [15] with different quantization steps.
If the quantization step is0.01, the entropy loss after the
quantization would be(log 3), and if we use a quantization
step of0.001, the entropy loss after the quantization would be
(log 21). However, it is not difficult to show that a quantization
step of0.001 leads to a stronger key given thatX is uniformly
distributed.

Furthermore, even if the biometric templates are represented
in discrete forms, existing theoretical results can be either
impractical or not applicable. For example, an iris patterncan
be represented by a2048 bit string callediris code, and up to
20% of the bits could be flipped during measurements [16].
The fuzzy commitment scheme [10] seems to be applicable
at first, but it would be impractical to apply a binary error-
correcting code for such long strings with such a high error
rate. A two-level error-correcting technique is proposed in
[16], which essentially changes the similarity measure such
that the space is no longer a metric space.

Minutiae-based fingerprint authentication is another ex-
ample where the similarity measure for the templates does
not define a metric space. In particular, the minutiae of a
fingerprint is a set of points in 2-D space, and two sets of
minutiae are considered as similar if more than a certain
number of minutiae in one set are near distinct minutiae in
the other. In this case, the similarity measure has to consider
both Euclidean distance and set difference at the same time.

The construction of a secure sketch for point sets [17] is
perhaps the first rigorous approach to similarity measures that
do not define a metric space. While the schemes proposed in
[17] are potentially applicable to minutiae-based fingerprint
authentication, other types of biometrics are different both in
representations and similarity measures, thus require different
considerations.

In a recent work, we further consider the problem of
designing and analyzing secure sketch for biometric templates
in continuous domains [15]. In [15], we mainly study how to
design and analyze different quantization algorithms. Since
it is very difficult to have a general algorithm to find the
“optimal” quantizer, we instead examine therelative entropy
loss for any given class of quantizers, which, for any given
quantizer in that class, measures the number of additional bits
we could have extracted if the optimal quantizer was used in
the first place. If we use the quantization example earlier, we
would be able to claim that although using a quantization step
of 0.01 may not yield the strongest key, but the strength is at
most log 3 bits less than the strongest (for all distributions of
X). We use the notion of relative entropy loss together with
entropy loss to measure the security of the scheme.

In this paper, we identify several important practical issues
involved in the design and analysis of secure sketch for
biometric templates. Besides the subtleties in the entropyloss
due to quantization, a very important aspect of any biometric
authentication system is its false accept rate (FAR) and false
reject rate (FRR), which are often overlooked in previous
theoretical work on secure sketch.

In fact, the use of FAR (with a fixed FRR) as the measure
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of security in a biometric authentication system is not new
(e.g., [18]). This is the correct measure when the storage of
template is secure and the attacker only uses the biometric
data of a random user. However, min-entropy would be a better
measure when smart attackers are considered. For example, let
us consider an extreme case where there are only two users
in the system, one of them has anX1 that is always0.1, and
the other has anX2 that is always0.7 (i.e., no error in the
measurements). In this case, the min-entropy of the biometric
data is 1 bit, which correctly reflects the fact that a smart
attacker who knows exactly the distribution of the biometrics
can succeed with probability at least0.5. At the same time,
the FAR of the system is0, which does not tell us anything
about how difficult it is to attack the system.

Although secure sketches may have some nice properties
that would allow us to handle all attackers and all biometric
distributions, using min-entropy and entropy loss alone may
not be sufficient to measure the security. In many cases,
although the entropy loss can be proved, the min-entropy
of the original dataX cannot be easily determined, hence
making it difficult to conclude the key strength of the resulting
system. Even the min-entropy ofX can be fixed in some
way, the entropy loss may be too large to be useful and it
can be misleading. Therefore, cautions have to be taken when
analyzing the security of biometric authentication schemes that
employs secure sketches.

In this paper we follow the same setting in [15] and consider
biometric templates that can be represented as sequences
of points in continuous domains, and two sequences are
considered as close if sufficiently many points in on sequence
are close to the corresponding point in the other sequence. In
particular, we examine face biometrics represented by singular
values with randomization. Similar to [15], we consider the
general 2-step approach where we quantize the data into
discrete domains first, and then apply a known secure sketch
scheme in discrete domains.

We present a general framework to design and analyze
biometric protection schemes using secure sketch, focusing
on the trade-off among various parameters. We observe that
certain randomization techniques can be applied to achieve
better performance in terms of FAR and FRR. However, at the
same time, these techniques would make it harder to bound
the entropy loss of the sketch. We further estimate the min-
entropy of the data in the quantized domain and analyze the
key strength in the resulting system. We observe that in some
cases theoretical upper bounds on information leakage (i.e.,
entropy loss) can be too large to be useful, and the exact
security of the system needs to be further investigated.

It is worth to note that we are not trying to develop a facial
recognition or authentication technique that gives the best FAR
and FRR possible. Instead, we study a rather simple scheme
with reasonable performance in a controlled environment, and
focus on the analysis of the effect of applying the secure
sketch scheme on top of the signal processing techniques.
Furthermore, we assume that the input is a vector of a fixed
length, where all components are independent. For different
techniques with other types of features and/or similarity mea-
sures, the construction of the sketches as well as the actual

security analysis would need to be adapted accordingly.
In many practical systems, a single-factor authentication

system (i.e., one that uses only biometrics) may not be
sufficient. We discuss the design of multi-factor authentication
systems. In such systems, a user would be required not only
to produce a correct sample of certain biometrics, but also
a correct password and/or a smartcard is required. With the
help of secure sketch, it is possible to have a system that is
simple, secure, and the user credentials can be easily revoked
or replaced.

We will give a review of related work in Section II, followed
by some preliminary formal definitions in Section III. We give
a concrete secure sketch scheme for face biometrics in Section
IV. We further analyze the security and performance of the
scheme using real face image data in Section V. We discuss
multi-factor authentication schemes in Section VI.

II. RELATED WORK

The construction of secure sketches largely depends on the
representation of the biometric templates and the underlying
similarity measure. Most of the known techniques assume that
the noisy data under consideration are represented as points in
some metric space. The fuzzy commitment scheme [10], which
is based on binary error-correcting codes, considers binary
strings where the similarity is measured by Hamming distance.
The fuzzy vault scheme [11] considers sets of elements in a
finite field with set difference as the distance function, and
corrects errors by polynomial interpolation. Dodis et al. [13]
further gives the notion offuzzy extractors, where a “strong
extractor” (such as pair-wise independent hash functions)is
applied after the originalX is reconstructed to obtain an
almost uniform key. Constructions and rigorous analysis of
secure sketch are given in [13] for three metrics: Hamming dis-
tance, set difference and edit distance. Secure sketch schemes
for point sets in [17] are motivated by the typical similarity
measure used for fingerprints, where each template consistsof
a set of points in 2-D space, and the similarity measure does
not define a metric space. The problem of designing secure
sketch for continuous data is first studied in [15], and a notion
of relative entropy loss is proposed to measure the quality of
a given quantization strategy.

On the other hand, there have been a number of papers on
how to extract consistent keys from real biometric templates,
some of which may have quite different representations and
similarity measures from the above theoretical work. Such bio-
metric templates include handwritten online signatures [19],
fingerprints [20], iris patterns [16], voice features [21],and
face biometrics [2]. These methods, however, are not accom-
panied with sufficiently rigorous treatment of the security,
compared to well-established cryptographic techniques. Some
of the works give analysis on the entropy of the biometrics,
and approximated amount of efforts required by a brute-force
attacker.

Boyen [22] shows that a sketch scheme that is provably
secure may be insecure when multiple sketches of the same
biometric data are obtained. Boyen et al. further study the
security of secure sketch schemes under more general attacker
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models in [23], and techniques to achieve mutual authentica-
tion are proposed.

Linnartz and Tuyls [24] consider a similar problem for bio-
metric authentication applications. They consider zero mean
i.i.d. jointly Gaussian random vectors as biometric templates,
and use mutual information as the measure of security against
dishonest verifiers. Tuyls and Goseling [12] consider a similar
notion of security, and develop some general results when the
distribution of the original is known and the verifier can be
trusted. Some practical results along this line also appearin
[25].

The concept of cancelable biometrics was first introduced
by Ratha et al. [6] (also see [8], [9]). The underlying idea
is to apply a user-specific similarity-preserving transforma-
tion to biometric templates before they are stored in the
database. New biometric samples are transformed in the same
way before they are matched with the templates. Hence, the
templates can be easily revoked by applying other (random)
transformations. The security of these schemes, given that
some templates are compromised, relies on the difficulty to
invert the transformation to obtain the original biometric data.
Although it is believed that such transformations are difficult
to invert, it seems difficult to rigorously prove the actual one-
wayness.

In addition to the above, there are many other approaches
which address similar problems. Threshold-based biometric
hashing methods for faces, fingerprints and palmprints, are
proposed in [3], [4], [26]. The idea ofBioHashingis further
developed in [27], [28], which is mainly for multi-factor
authentications. In [5], a non-invertible quantization and ECC
based method for creating renewable binary face templates is
proposed. As noted by the authors, this technique may not
be feasible in practice due to large error correcting capability
requirements.

Tulyakov et al. [29] proposed a set of symmetric hash func-
tions and Ang et al. [7] proposed a key-based geometric trans-
formation for minutiae based fingerprint templates. Vielhauer
et al. [1] proposed a simple method to calculate biometric hash
values using statistical features of online signatures. A key
binding algorithm is proposed by Soutar et al. [30] and a face
recognition scheme based on minimum average correlation
energy filters is proposed by Savvides et al. [31].

III. PRELIMINARIES

A. Entropy and Entropy Loss in Discrete Domain

In the case whereX is discrete, we follow the definitions
by Dodis et al. [13]. They consider a variant of theaverage
min-entropyof X givenP , which is essentially the minimum
strength of the key that can be consistently extracted fromX
whenP is made public.

In particular, the min-entropyH∞(A) of a discrete random
variableA is defined asH∞(A) = − log(maxa Pr[A = a]).
For two discrete random variablesA and B, the average
min-entropy of A given B is defined asH̃∞(A | B) =
− log(Eb←B [2−H∞(A|B=b)]).

For discreteX , the entropy loss of the sketchP is defined
asL = H∞(X)− H̃∞(X |P ). This definition is useful in the

analysis, since for anyℓ-bit stringB, we haveH̃∞(A | B) ≥
H∞(A)− ℓ. For any secure sketch scheme for discreteX , let
R be the randomness invested in constructing the sketch, it is
not difficult to show that whenR can be computed fromX
andP , we haveL = H∞(X)−H̃∞(X | P ) ≤ |P |−H∞(R).

In other words, the entropy loss can be bounded from above
by the difference between the size ofP and the amount of
randomness we invested in computingP . This allows us to
conveniently find an upper bound ofL for any distribution of
X , since it is independent ofX .

B. Secure Sketch in Discrete Domain

Our definitions of secure sketch and entropy loss in the
discrete domain follow that in [13]. LetM be a finite set of
points with asimilarity relationS ⊆ M×M. When(X, Y ) ∈
S, we say theY is similar toX , or the pair(X, Y ) is similar.

DEFINITION 1 A sketch scheme in discrete domain is a tuple
(M, S, Enc, Dec), whereEnc : M → {0, 1}∗ is an encoder
and Dec : M× {0, 1}∗ → M is a decoder such that for all
X, Y ∈ M, Dec(Y, Enc(X)) = X if (X, Y ) ∈ S. The string
P = Enc(X) is the sketch, and is to be made public. We say
that the scheme isL-secure if for all random variablesX
overM, the entropy loss of the sketchP is at mostL. That
is, H∞(X) − H̃∞(X | Enc(X)) ≤ L.

We callH̃∞(X | P ) the left-over entropy, which in essence
measures the “strength” of the key that can be extracted from
X given thatP is made public. Note that in most cases, the
ultimate goal is to maximize the left-over entropy for some
particular distribution ofX . However, in the discrete case,
the min-entropy ofX is fixed but can be difficult to analyze.
Hence, entropy loss becomes an equivalent measure which is
easier to quantify.

C. Secure Sketch in Continuous Domain

To handle points in some continuous domainU , we follow
[15] and use a two-step approach. In particular, we quantize
(discretize) the points such that they become points in a
discrete domainM. After that we apply known sketch scheme
in discrete domainM to construct the sketch. When a fresh
measurement of the same biometrics is given, it is quantized
using the same quantizer and the corresponding reconstruction
algorithm in the discrete domain is used to recover the
quantized version of the original data points.

More formally, letU be a set that may be uncountable, and
let S be a similarity relation onU , i.e., S ⊆ U × U . Let M
be a set of finite points, and letQ : U → M be a function
that maps points inU to points inM. We will refer to such
a functionQ as aquantizer.

DEFINITION 2 A quantization-based sketch scheme is a tuple
(U , S,Q,M, Enc, Dec), where Enc : M → {0, 1}∗ is an
encoder andDec : M × {0, 1}∗ → M is an decoder such
that for all X, Y ∈ U , Dec(Q(Y ), Enc(Q(X))) = Q(X) if
(X, Y ) ∈ S. The stringP = Enc(Q(X)) is the sketch. We say
that the scheme isL-secure in the quantized domain if for all
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random variableX over U , the entropy loss ofP is at most
L, i.e., H∞(Q(X)) − H̃∞(Q(X) | Enc(Q(X))) ≤ L

It is worth to note that according to this definition, we
only require the quantized original to be reconstructed. This,
in some sense, avoids the problem of possible high entropy
loss due to quantization. It is shown in [15] that when the
quantization step (assuming scalar quantization) is closeto the
error that we want to tolerate, the resulting scheme would not
be too much different in terms of left-over entropy from using
the “optimal” quantization step, which may be difficult to find.
Therefore, in this paper we will follow this principle, with
some necessary deviation due to be nature of the biometrics
in the real world.

D. A General Scheme

Here we give a construction of sketch for biometric data
that can be represented as real vectors of a fixed lengthn,
based on the general scheme in [15]. Our scheme differs from
that in [15] in that, the scheme in [15] assumes the same
error-tolerance for all components and for all users, whereas
in our scheme, we allow the error-tolerance to be different
for each component in a vector of the same user, and for the
samei-th component for different users. This setting is more
general, and in fact it is necessary for the data set we use in
the experiments.

We assume that a template can be written asX =
[x1 · · · xn]

T . For each componentxi, there is a parameter
δi, and another vectorY = [y1 · · · yn]

T is considered as
similar to X if |yi − xi| ≤ δi for all i.

The sketch scheme consists of several building blocks:
A quantizer, a codebook, an encoder and a decoder. A
class of schemes can be defined as below with parameters
λ1, λ2, · · · , λn.

a) QuantizerQλi
: We defineQλi

(for eachi) as a scalar
quantizer with step sizeλi ∈ R. For eachx ∈ U , Qλi

(x) = x̂
if and only if λix̂ ≤ x < λi(x̂+1), and the quantization ofX
is defined asX̂ = Q(X) , [Qλ1

(x1) · · · Qλn
(xn)]T . The

corresponding quantized domain is thusMλi
= [0, ⌈ 1

λi
⌉]n.

The encoders and the decoders work only on the quantized
domain. Let δ̂λi

= ⌈δi/λi⌉. Under noise, a point̂x in the
quantized domain can be shifted by a distance of at mostδ̂λi

.
Let us denote∆λi

, 2δ̂λi
+ 1.

b) CodebookCλi
: For each quantized domainMλi

, we
consider acodebookCλi

, where every codewordc ∈ Cλi
has

the formc = β∆λi
for some non-negative integerβ. We use

Cλi
(·) to denote the function where given a quantized pointx̂,

it returns a valuec = Cλi
(x̂) such that|x̂ − c| ≤ δ̂λi

. That is,
the functions finds the unique codewordc that is nearest tôx
in the codebook.

c) EncoderEnc: Given a quantized̂X , the encoderEnc

does the following.

1) For eacĥxi ∈ X̂, computeci = Cλi
(x̂i);

2) OutputP = Enc(X̂) = [d1 · · · dn]
T , wheredi = x̂i −

ci for 1 ≤ i ≤ n.

In other words, for everŷxi, the encoder outputs the distance
of x̂i from its nearest codeword in the codebookCλi

.

d) DecoderDec: For a fresh measurementY , it is first
quantized byŶ = Q(Y ). GivenP = [d1 · · · dn]

T and Ŷ =
[ŷ1 · · · ŷn]T , and the decoderDec does the following.

1) For eacĥyi ∈ Ŷ , computeci = Cλi
(ŷi − di);

2) OutputX̃ = Dec(Ŷ ) = [c1 + d1 · · · cn + dn]T .
In other words, the decoder shifts everyŷi by di, maps it to
the nearest codeword inCλi

, and shifts it back by the same
distance.

e) Entropy loss:Using an analysis that is very similar to
that in [15], it is not difficult to show that the entropy loss for
the above scheme in the quantized domain is the total size of
the sketch, which is

∑n

i=1 log ∆λi
. The relative entropy loss

of the scheme is also
∑n

i=1 log ∆λi
. Whenλi = δi for all i,

both the entropy loss and the relative entropy loss would be
n log 3, which agree with the results in [15].

IV. SKETCH OF FACE BIOMETRICS

In this section, we describe our scheme to compute sketches
from face images that allow us to extract consistent keys. Our
main idea is as the following. For a given image, we first
extract a feature vectorV of size n (Section IV-A). Next,
we apply a randomization on then component to obtain a
randomized feature vectorW of sizek (Section IV-B). After
that, we discretize (quantize) the new feature vector (Section
IV-C). Finally, we apply a known sketch scheme to generate a
sketch, or to reconstruct the quantized feature vector (Section
IV-D), and analyze its security (Section IV-E).

A. Feature Vector Extraction

We assume that from each biometric sample we can extract
a feature vector of sizen. Let Vi = [vi1 vi2 ... vin]T represent
the n-dimensional feature vector ofi-th user of the system
where each componentvij ∈ R is a real number. These com-
ponents can be extracted from certain transformations on the
raw measurement. For example, we can apply singular value
decomposition and take then most significant components
(Section V).

During different measurements of the same legitimate user,
the value of each componentvij can vary within a certain
range, which is going to be determined through experiments
on the data set. In other words, we consider thej-th component
for the i-th user to be always associated with a range, which
is defined by amidpointvij and asizeρij .

In the simplest case, for thei-th user in the system, we
can consider a sampleVi = [vi1 vi2 ... vin]T as authentic if
vij − ρij ≤ vj ≤ vij + ρij for all j = 1, ..., n.

In this case, the template for thei-th user can be described
by two vectors. The first is the list ofn midpointsvi1, . . . , vin,
and the other is the list of range sizes for each of the
componentsρi1, . . . , ρin.

Through experiments, we found that the performance of
the system in terms of FAR and FRR can be improved
if we perform somerandomizationon the feature vector
before creating the templates. In this case, a template would
consist of the description of the randomization process, and
the midpoints and the range sizes of the components after
randomization. This will become clearer in Section IV-B.
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B. Randomization

Before generating a sketch from the components extracted
from raw samples of biometric data, we can further apply
user-specific random mapping on these feature vectors. In
particular, we generatek-by-n matrices whose elements are
uniformly distributed random numbers between−θ and θ,
whereθ is a parameter. We call such matricesrandomization
matrices. Through experiments, we found that the overall
performance is not sensitive to the value ofθ, so we fix the
value ofθ to be1.

Let Ri be the randomization matrix for useri and by
multiplying the feature vector with this random matrix, an
n dimensional feature vector can be mapped into another
k dimensional feature vector. That is, for useri and a raw
sampleVi = [vi1 . . . vin]

T , we computeWi = RiVi =
[wi1 wi2 ... wik]T .

Similar to the simple case in Section IV-A, we find mid-
pointswij ’s and range sizesδij ’s and for anyWi = RiVi =
[wi1 wi2 ... wik]T , we consider it as authentic ifwij − δij ≤
wij ≤ wij + δij for all j = 1, ..., k.

The midpointwij for the j-th component of thei-th user is
determined aswij = (mxij +mnij)/2, wheremnij (resp.mxij )
is the minimum (resp. the maximum) value of thejth com-
ponent of the feature vector observed in the training data set
of useri. Similarly, the range sizeδij for the i-th component
of the i-th user is determined asδij = (mxij − mnij)/2.

The main reason of using such a random mapping is better
noise tolerance. In particular, the noise on the original com-
ponents seems to be smoothed out by the random mapping,
which makes the scheme more robust for the same FAR.

C. Quantization and Codebook

To discretize the data, we employ a straightforward method,
which uses a scalar quantizer for each of the components to
map them to a discrete vector.

First, we find the global ranges of each component. Let
MNj = mini(mnij) and MXj = maxi(mxij). We also de-
termine the quantization step asδj = α mini(δij), where
α ∈ (0, 1] is some parameter.

Next, the discrete domainMj for the j-th component
is computed by quantizing the overall user range by the
quantization stepδj . That is,Mj = {MNj − rj ,MNj − rj +
δj , ...,MNj − rj + Ljδj} where Lj is appropriately chosen
integer which satisfiesMNj − rj + Ljδj ≥ MXj and rj is a
positive random number.

In this way, for thej-th component of thei-th user, a range
of midpoint wij and sizeδij can be translated to a discrete
range where the discrete midpoint is quantization ofwij in
Mj , and the discrete range sizedij is given bydij = ⌈

δij

δj
⌉.

Finally, the codebookCij can be constructed using the
general algorithm in Section III-D, with parametersDij =
2dij + 1 andβ = Dij .

D. Sketch Generation and Data Reconstruction

1) Sketch Generation:During enrollment, the biometric
data of each user are acquired and feature vectors are extracted

(Section IV-A), randomized (Section IV-B), and quantized
(Section IV-C).

Following the scheme in Section III-D, the sketchPi for
useri is a vectorPi = [pi1 pi2 ... pik]T . For eachpij we have
pij = Qij(wij)−wij , whereQij(wij) is the codeword inCij

that is closest towij .
2) Data Reconstruction:During authentication, biometric

data of thei-th user is taken and corresponding feature vector
is computed. Let us denote this noisy feature vector asṼi =
[ṽi1 ṽi2 ... ṽin]T .

After applying the random mapping associated with the
given identity, we havẽWi = RiṼi = [w̃i1 w̃i2 ... w̃ik]T . Next,
the decoder takes̃Wi andPi and calculatesQij(w̃ij)−pij for
j = 1, ..., k. Reconstruction of the original biometric will be
successful if−dij ≤ Qij(w̃ij)−Qij(wij) < dij , wheredij is
the user specific error tolerance bound for thej-th component.

It is not difficult to see that,Qij(w̃ij) − pij = Qij(w̃ij) −
Qij(wij)+wij and the errors up to the some preset threshold
value will be corrected successfully.

E. Security

As mentioned earlier,̃H∞(X | P ) is called theleft-over
entropy, which measures the “strength” of the key that can
be extracted fromX given thatP is made public and in most
cases, the ultimate goal is to maximize the left-over entropy for
some particular distribution of the biometric data considered.
However, in the discrete case, the min-entropy is fixed but can
be difficult to analyze and entropy loss becomes an equivalent
measure which is easier to quantify.

For this construction, in order to estimate the left-over
entropy, firstly, we tried to estimate the min-entropy ofV
(H∞(V )). Here we assume that the components of the feature
vector (before randomization) are independent, we estimated
the min-entropy of each component independently and the
total min-entropy of the feature vectorV is calculated as the
summation of the individual min-entropies of the components.
That is,H∞(V ) = Σn

i=1H∞(vi).
To estimateH∞(vi), we considered the distribution of the

feature vector componentvi over all user space. In particular,
we analyzed the histogram of that distribution while setting
the bin size to the quantization step sizeδi of that component
and determined the number of elements in the most likely bin.
This gives a rough estimate of the min-entropy of the feature
vector componentvi.

The (component-wise) entropy loss in the quantized domain
can be bounded byL(P ) ≤ Σk

i=1L(pi), whereL(pi) is the
entropy loss of the sketch for the componentvi of the feature
vector representation of the biometric data after randomization.
This can be conveniently bounded by the size of the sketch.
That is,L(pi) ≤ |pi| = log(2⌈

δij

δj
⌉ + 1).

Note that this estimation of left-over entropy may not be
accurate in reality. First of all, a more accurate estimation
would require the estimation of min-entropy after random-
ization. However, feature vectors become dependent after the
randomization process and it is not easy to estimate the min-
entropy in that case. Second, depending on the size of the
randomization matrix employed, dimension of the transformed
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feature vector becomes larger and as a result, size of the sketch
becomes larger as well. Therefore, entropy loss, which are
bounded simply by the size of the sketch, becomes too high
and it may not be meaningful.

We note that the “entropy loss” is an upper bound of the
information leakage. Whether the attacker can really gain that
much information needs to be further studied for particulardis-
tributions. In other words, entropy loss is a worst case bound,
which states that there exists an input distribution that may
give such amount of information leakage, but not necessarily
the distribution for the particular biometric data. We consider
it an open question to bound the “exact information leakage”
of the sketch.

V. EXPERIMENTS AND ANALYSIS

A. Singular Value Decomposition

Due to the ease of capturing and availability of many
powerful digital signal processing tools to analyze digital
images, face images are one of the widely used biometrics
for authentication purposes. As it is the case for many face
image based biometric recognition systems proposed in recent
years, singular values are used as features [32], [33], [34]and
due to established properties of singular values, we also used
them for testing our scheme. However, it should be noted that
the essence of the technique is not specific to face image data
and can be applied to any type of ordered biometric features.

Since SVD is one of the well-known topics of linear algebra,
we omitted to give detailed analysis of this subject and the
following definitions will be helpful to understand the singular
value decomposition and robustness properties of singular
values.

Singular Value Decomposition:If the matrix A ∈
R

m×n then there exist orthogonal matricesU ∈ R
m×m

and V ∈ R
n×n such that A = U × Σ × V T where

Σ = diag{λ1, λ2, ..., λp} with λ1 ≥ λ2 ≥ ... ≥ λp and
p = min(m, n).

Perturbation: Let Ã = A+E ∈ R
m×n be a perturbation

of A and letÃ = Ũ×Σ̃×Ṽ T be singular value decomposition
of Ã, then |λi − λ̃i| ≤ ‖E‖2 for i = 1, ..., p where‖E‖2 is
induced-2 norm ofE.

It is also worth mentioning that, in many applications, it is
often sufficient (as well as faster, and more economical for
storage) to consider the firstn singular values. Therefore, in
our experiments, we choosen = 20. To further justify the
choice of the numbern, we also examine the variances of the
singular values (as shown in Fig. 2), since a random variable
with smaller variance would usually have less “distinguishing
power”. It is easy to observe from the figure that, the variances
of the singular values decrease dramatically as the magnitude
of the singular values decrease. In fact, many small singular
values are exactly the same for many users, which would
not be useful for authentication. For our data set, the first
20 coefficients consist of more than99% of the total mass.

B. Experiment Data Set

In our experiments, we use the Essex Faces 94 face database
(E94 database) [35], which is essentially created for face
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Fig. 2. Variances of the singular values

Fig. 3. Some examples from E94 database

recognition related research studies. Sample images from the
E94 database are given in Fig. 3. The database contains still
images of 152 distinct subjects, with 20 different images for
each subject. The size of each JPEG image is 180x200. We
first transformed these JPEG images to 8-bit gray level images
and then use only the gray level images in our experiments.
For each subject, we randomly divide the 20 samples for the
subject into two parts, namely, training and test sets. The
training set is assigned 12 of the images, and test set has
the remaining 8 sample face images. Therefore, 8 test data for
every user is used to generate 152x8=1216 genuine authentica-
tion attempts and 151x152x8=183616 impostor authentication
attempts (8 attempts by 151 remaining users for every user in
the system). As noted earlier, in our simulations, only first20
singular values of the images are considered.

C. FAR and FRR

False accept rate (FAR) and false reject rate (FRR) are
important performance parameters of biometric authentication
systems. Typically, FAR is defined as the probability that a
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random user in the system is authenticated as another user, and
FRR is the probability that a legitimate user is deemed as non-
authentic. Usually, FAR and FRR can be traded-off against
each other by changing some tunable threshold parameter.
Such trade-off can be described using ROC curve of the
system.

We conduct experiments using the training and testing data
as described earlier. The FAR for a given user is defined as the
ratio of the number of testing images of other users that are
considered as authentic as that user over the total number of
testing images of other users. The overall FAR of the system
is then taken as the average of the FAR for every user. The
FRR is determined in a similar way. We find the ratio of the
number of test images of a legitimate user that are wrongly
declared as non-authentic over the total number of test images
of the user, and then the average of all users is computed.

This process gives a single point on the ROC curve. To
obtain the complete ROC curve, we calculated FAR and FRR
values by varying the quantization step size,δi. However, it
should be noted that, oncedij values are calculated, they are
fixed and did not changed during the determination of the ROC
curve. In addition, since the random mapping,Ris are different
for each realization, it is needed to calculate an average value
of the performance metrics over the random choices ofRi’s.
We evaluated performance metrics over 20 realizations in our
experiments to calculate the average.

D. Choosing Parameterk

In the proposed construction, one of the parameters that
has an effect on the performance isk, the dimension of the
transformed (through random mapping) feature vector. Fig.4
shows the performance of our scheme for E94 database for
different values ofk. ROC curve obtained by using only first
20 singular values (without secure sketch) is also providedfor
illustrating the effect of the quantization-based sketch scheme
on the performance. As shown in Fig. 4, the application of
secure sketch on top of the singular values does not make
significant difference in performance. Furthermore, we cansee
that random linear transformations improves the performance
of the scheme.
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However, it can also be seen that increasing the parameter
k beyond n has no significant effect on the performance.
Although it is very difficult to analyze the effect of increasing
k on the the performance of the scheme analytically, this may
be explained by the following. By taking the random linear
combination of the feature vector components, we inject some
amount of redundancy into the randomized feature vectors.
Whenk is large, the redundancy becomes so high that it does
not give any additional “distinguishing power”. Furthermore,
as we will see in Section V-F, it is possible that a choice of
k > n can make the entropy loss too large to be meaningful.

On the other hand, choosingk small thann is not advisable.
During the experiments, it is found that the number of bits
that can be extracted from one coefficient after randomization
remains roughly the same regardless the value ofk. Hence,
the number of bits that can be extracted from the transformed
feature vector would be less for smallerk. Intuitively, by
choosing ak < n, some information about the original feature
vector is lost. Such information loss would result in weaker
keys. Therefore,k = n seems a reasonable choice for practical
systems.

E. Effects of Quantization Steps

Another parameter needs to be considered is the quantiza-
tion step sizeδj . As already mentioned earlier, the quantization
stepδj can be determined in many different ways depending
on operational constraints (such as the noise level which needs
to be tolerated) and also depending on the data set considered.
Here, we considered a straightforward approach and set the
quantization step to be a fraction of the minimum range
observed over the whole data set (i.e.,δj = α mini(δij)).

Fig. 5 shows the effect ofα on the performance of the
scheme for 3 different values ofα. It should be mentioned that
to observe the effects of the parameterα on the performance
of the scheme separately, no randomization is involved here.
As can be seen from Fig. 5, small values ofα seem to improve
the performance of the scheme. However, it is easy to observe
that decreasingα to below 0.5 has no significant effect on the
performance. In addition, it is worth noting that the overall
effect of α is not as significant ask.
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F. Min-Entropy and Entropy Loss

As mentioned in Section IV, we estimate the min-entropy of
the original biometrics by computing the min-entropy of the
quantized feature vectors, assuming that all components are
independent (i.e., no randomization), and using quantization
steps that are equal the minimum errors to be tolerated for
each component (i.e.,α = 1). Under this setting, the min-
entropy of the feature vectors is estimated to be about85 bits.

On the other hand, the entropy loss of the scheme can be
calculated by the size of the sketch. Since the errors to be
tolerated are quite different for different users even for the
same component, the resulting entropy loss is much larger than
the theoretically achievablen log 3, when the error-tolerance
is the same for all components. From the experiments, the
average size of the sketch whenk = 20 is about65 bits, which
gives a guarantee of20 bits in the left-over entropy. When
k increases, the size of sketch (and hence the entropy loss)
increases proportionally. Whenk = 30, the size of the sketch
would be larger than85 bits, and the entropy loss calculated
from the size of sketch becomes meaningless.

Since, as we have observed earlier, having ak larger than
n = 20 would not improve the performance significantly, we
would recommend choosingk = n for a practical system with
certain guarantee of security from theoretical bounds. It is true,
however, that20 bits of security still looks weak. Nevertheless,
as we noted earlier, this is just a lower bound for the left-over
entropy, and the exact security requires further investigation.

Another possible way to obtain better left-over entropy is to
reduce the value ofα. As we observed earlier, this would not
gain much advantage in performance. Furthermore, having a
smallerα might actually decrease the left-over entropy. This
can happen for certain distribution ofX where decreasing
α does not increase the min-entropy of quantizedX , but
increases the information leakage (because of the now larger
sketch size). Therefore, we would recommend usingα = 1.

VI. M ULTI -FACTOR AUTHENTICATION

As we mentioned earlier, with the help of a sketch, a user
can reconstruct the original biometric data during registration,
and hence can use the data as a password or key in other
cryptographic schemes that do not tolerate errors.

However, two problems still remain. First, the entropy (or
length) of such a key extracted from biometric data may not be
large enough compared to the standard practice in widely used
cryptographic schemes. Secondly, if such a key is revealed
accidentally, it would reveal important information aboutthe
original biometric data. This could happen when the key is
used in some cryptographic schemes that can be attacked
offline. For example, the key may be used to encrypt a file,
and when an attacker gets a copy of the encrypted file, he/she
can launch an offline attack to decrypt the file. Although it
may take a long time to decrypt it and the content of the file
may become useless, the discovery of the key would give the
attacker information about the biometric data, which couldbe
in turn used to attack newly encrypted files using keys derived
from the same or similar biometric data.

These two problems can be both tackled using a multi-factor
authentication scheme. In such a scheme, a user is required not

only to produce a “correct” sample of the biometrics, but also a
smartcard and/or password that match the identity claimed by
the user. Clearly, there are a few different types of secretsthat
the user may be required to produce, and each of them have
their own strengths and weaknesses that have to be taken into
consideration. For example, a key stored in a smartcard can
be almost arbitrarily long, and can be easily made uniformly
distributed. However, such keys has to be stored somewhere,
which makes it easier to be compromised. Passwords have
lower entropy but can be completely stored in our brains.
These two types of secrets have the advantage that they can
be easily replaced and/or revoked. Biometrics, on the other
hand, have entropy higher than passwords but cannot be made
arbitrarily long, and they are difficult to revoke or replace.

Here we describe a simple multi-factor scheme using bio-
metrics and smartcards, and other factors can easily fit in using
the same principle. Suppose a user has biometric dataX and
a smart card with a keyK of lengthn. We further assume that
there is a cryptographic pseudo-random number generatorG
that takes a short seedS and outputs pseudo-random bits that
cannot be efficiently distinguished from random bits. During
registration, the user computes the hash ofX and uses it
as the seedS (i.e., S = h(X) for some cryptographic hash
function h), then appliesG(S) to generaten pseudo-random
bits. Let Kp = G(S) be the output. Next, the user computes
a sketchPX from X , and chooses a random stringQ, where
|Q| = |PX |. The stringQ is stored in the authentication server,
and the result ofQ⊕PX is stored in the smartcard, where⊕
denotes bit-wise XOR operation. Also, the result ofK⊕Kp is
also stored in the authentication database. The use of pseudo-
random number generator allows the stringKp to be of any
polynomial length, so that it can be easily xor’ed withK.

During authentication, the server retrievesQ⊕PX from the
smartcard, and uses it to recoverPX , which is then returned
to the user. Next the user reconstructsX usingPX and a fresh
scan of the biometrics, and applies the same functionG(h(X))
to recoverKp. After that the user would be able to generate
the keyK ⊕ Kp for authentication.

In this way, if the authentication database is compromised,
only Q and K ⊕ Kp is revealed. SinceK are completely
random, so isK ⊕ Kp. Hence the data stored at the server
does not reveal any information aboutX . On the other hand, if
the smartcard is stolen or lost, what an attacker would be able
to find out isQ ⊕ PX andK, which are just random strings.
SinceK andQ are independent from the user password and
biometrics, they can be easily revoked and replaced.

In the worst case, the attacker is able to steal the smartcard
and compromise the server at the same time. In that case,
PX and Kp would be revealed. However,PX reveals only
limited information aboutX , and it can be computationally
infeasible to computeX from Kp, if the min-entropy ofX
is high enough. Other secrets (e.g., passwords) can be used
in combination withX to make it harder to computeX from
Kp. Therefore, we can achieve unconditional security when
one of the storage (database and smartcard) is compromised,
and some extent of computational security when both storage
devices are compromised.
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VII. C ONCLUSIONS

In this paper we study the problem of secure storage of
biometric templates in biometric-based authentication systems.
We examine a recently proposed cryptographic primitive called
secure sketch and identify several practical issues when we
apply known theoretical results to real biometrics.

In particular, we note that the security measure in terms
of entropy loss may not be sufficient since FAR and FRR
should also be taken into consideration of a practical system.
Furthermore, entropy loss alone could be just too large to
be meaningful, or sometimes becomes misleading, especially
when the original biometrics are represented in continuous
domains.

We give a concrete construction of secure sketch for face
biometrics, and we illustrate the subtleties and difficulties
in applying theoretical bounds. We show various trade-offs
among different parameters of the system. It seems that, at
least in some cases, the exact security of the system needs to
be further investigated, and known theoretical results become
not very useful.

We also consider the multi-factor setting where multiple
secrets (including biometrics) are used together for authenti-
cation. We give a simple multi-factor scheme using a sketch
and a smartcard.

We consider it as a challenging open problem to find a
general and accurate way to compute the min-entropy (or any
quantitative means that measures the success probability of
smart attackers) of biometric data, and to determine the exact
information leakage of the sketches.
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