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Abstract— Secure storage of biometric templates has become only the hash values are stored. When a user enters a password
an increasingly important issue in biometric authenticaton sys- it is hashed and matched against the stored hash value, and
tems. We study howsecure sketch, a recently proposed eror- ha \;ser is considered as authentic if the hash values are

tolerant cryptographic primitive, can be applied to protect the . .
templates. We identify several practical issues that are no exactly the same. In this way, if the hashed passwords are

addressed in the existing theoretical framework, and showhe Compromised, it would still be difficult for any attacker to
subtleties in evaluating the security of practical systemsWe guess the passwords, even if the hashing function is pyblicl
propose a general framework to design and analyze secure known. Legitimate users, after detecting the compromiae, ¢

sketch for biometric templates, and give a concrete constelion change their passwords, which makes old passwords useless
for face biometrics as an example. We show that theoretical to attackers

bounds have their limitations in practical schemes, and thexact . .
security of the system often needs more careful investigats. Unfortunately, such techniques cannot be easily adapted to
We further discuss how to use secure sketch in the design of protect biometric templates. The main difficulty is that -bio

multi-factor authentication systems that allow easy revoation of  metric samples cannot be exactly reproduced, and tradition
user credentials. . . cryptographic primitives do not allow even a single bit aber
Index Terms— Biometric template security, secure sketch, en- . ) . .
tropy loss To mgke thlngs worse, biometric templates, once comprised,
are difficult (if possible at all) to revoke or replace.
There has been much work to solve this problem with
|. INTRODUCTION various approaches. These methods_ can be roughly categoriz
| bi i thenticati N the bi ¢ into two types: (1) Robust hash functions, where small ckang
¢ n lmtany flome fic authen :cz lgn Sys emﬁ, Ef[ ;]ome "fi a biometric sample would yield the same hash value (e.g.,
ergp ates to usgrs tire San N .tlrjlrmg_&mo metn Ipdatseba#g’ [2], [3], [4], [B]); (2) Similarity-preserving hardd-invert
and are stored In ne system, eiiher in a central dala nsformations, where similarity of biometric samplesudo

or in smartcards. Later, when the user wants to authenucglg preserved through the transformation, yet it is difficult
himself/herself to the system, a fresh measurement ofﬂmesqo find the original template from a transformed one (e.g.,

biometrics is taken and is matched against the correspgnd B] [71, [8], [2]). We note, however, that there lacks rigois
template. If they are sufficiently similar according to somg e ' '

milarit h . idered thentiesah ecurity analysis for these techniques. In particulars inot
simiiarity measure, the user 1S considered as autnentiesen g exactly how difficult it is to break these schemes ohee t
biometric templates are often stored in the form of ra

Wash values (or the transformed templates) are compromised

samples of the user biometrics (e.g. scanned fmgerprl_nts, %pecially when the hash function, transformation alpaorit
photographs of faces). If these templates are compromiged d related keys and parameters are also compromised.

attackers, they can be used to impersonate Iegitimate.userg(et another approach, which allows more rigorous secu-
In some cases, features extracted from raw samples arel stqr& analysis, is to employ recently proposed cryptographi

instead (e.9., minutiae of fingerprints, or SVD of face ingjge primitives, where some public informatioR can be used to

When a fresh measureme_nt of the_same_‘ b|ome_tr|cs IS Maf&tover the original biometric datA given a fresh sample
the same feature extraction algorithm is applied, and t

tracted feat d inst the t late e that is sufficiently similar toX, and P itself does not
extracted teatures are compared against tne template MeoWe. o 51 150 much information abou. Such schemes include
in this case, it is often not clear how difficult it is to forge

& itment [10], f It [11], helper data [12}ca
biometric sample that would generate the same featureg uséuzzycomml ment [10], fuzzy vault [11], helper data [123

: . . Rcure sketch [13]. Here we follow Dodis et al. and call such
the same feature extraction algorithm, especially when t

foat tracti lorithm i ised toaether it fiblic information asketch[13].
eature extraction algonthm 1S compromised togetner A sketch scheme (Fig. 1) consists of two algorithms: A

template. L sketch generation algorithi@en, and a reconstructioRec.
Secure storage of user credentials is not a new proble(g]Ven some dataX, the outputPx — Gen(X) is called a

In many UNIX-like systems, user credentials are stored E?(e chof X. Given a sketchPyx and anothed” that is suffi-
a shadow password file, where the passwords are hashed aa tly similar toX according to some measuec(Py,Y)
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that is similar toX. This key can then be used in the same wayniformly distributed in[0, 1), where anyy” € (X —0.01, X +

as passwords. For instance, in the context of authenticadio 0.01) is considered as “similar” taX. Suppose we apply
one-way hash functioh can be applied ork, and only the the sketch scheme in [15] with different quantization steps
hash value:(K') and the sketclPy are stored in the system.If the quantization step i9.01, the entropy loss after the
quantization would bélog 3), and if we use a quantization
step 0f0.001, the entropy loss after the quantization would be

. Exvaction ) X ) Generaon (log 21). However, it is not difficult to show that a quantization
i step 0f0.001 leads to a stronger key given thatis uniformly
Sketch <::> Database distributed.
p =y i Furthermore, even if the biometric templates are represent
‘% =) Expaten £ Y ) Reconstruction 2 x in discrete forms, existing theoretical results can beeeith

impractical or not applicable. For example, an iris pattean
be represented by 2048 bit string callediris code and up to
20% of the bits could be flipped during measurements [16].
The fuzzy commitment scheme [10] seems to be applicable
The secure sketch approach is similar in certain ways & first, but it would be impractical to apply a binary error-
both robust hashing and similarity-preserving transfdioms. correcting code for such long strings with such a high error
On one hand, like a robust hash, a sketch allows exact regoveite. A two-level error-correcting technique is proposad i
of the original X, hence the exact key or hash value fof16], which essentially changes the similarity measurehsuc
authentication. On the other hand, like a similarity-pre® that the space is no longer a metric space.
transformation, we would need some extra data associated/inutiae-based fingerprint authentication is another ex-
with each user to guide the authentication process. One nayiple where the similarity measure for the templates does
compare a sketct of X with a syndrome ofX’ w.r.t. some not define a metric space. In particular, the minutiae of a
error-correcting code, such that, can be computed fron? fingerprint is a set of points in 2-D space, and two sets of
and someY that is close toX [14]. In general, however, minutiae are considered as similar if more than a certain
constructing a sketch using an error-correcting code irh sugumber of minutiae in one set are near distinct minutiae in
a straightforward manner may not be feasible or sufficientifie other. In this case, the similarity measure has to censid
secure for real biometric data. both Euclidean distance and set difference at the same time.
We emphasize that the reconstruction of the original bio- The construction of a secure sketch for point sets [17] is
metrics should be done only locally by the user, so thperhaps the first rigorous approach to similarity measuras t
the reconstructed( is never transmitted and is stored onlydo not define a metric space. While the schemes proposed in
temporarily. Also, the strong extractors and the hash fanst [17] are potentially applicable to minutiae-based fingietpr
can be randomly chosen for each user at each enrollment, saathentication, other types of biometrics are differerthkin
that even the same biometric data would generate differespresentations and similarity measures, thus requiferdift
keys and hash values during multiple enroliments, whiatonsiderations.
further protect the privacy of the users against certairmdat In a recent work, we further consider the problem of
mining techniques such as database cross-matching. designing and analyzing secure sketch for biometric tetapla
An important security requirement for sketches is that théy continuous domains [15]. In [15], we mainly study how to
should not reveal too much information about the originalesign and analyze different quantization algorithms.c&in
biometric templateX. In the formal framework due to Dodisit is very difficult to have a general algorithm to find the
et al. [13], min-entropyis used as the measure of the strengtloptimal” quantizer, we instead examine thelative entropy
of the key, andentropy lossis used as the measure of thdossfor any given class of quantizers, which, for any given
advantage a sketcRx gives to the attacker in guessing. quantizer in that class, measures the number of additiatsal b
In this setting, the entropy loss can be conveniently bodndee could have extracted if the optimal quantizer was used in
by the size of the sketch. It is worth to note that the entropiie first place. If we use the guantization example earlier, w
loss is a worst case bound fall distributions of X. would be able to claim that although using a quantizatiop ste
There are a few difficulties in applying their techniques tof 0.01 may not yield the strongest key, but the strength is at
biometric templates in the real world. Most importantly,nma mostlog 3 bits less than the strongest (for all distributions of
biometric templates are not discrete, but are instead oitf). We use the notion of relative entropy loss together with
in continuous domains (e.g., real numbers resulted fromesoentropy loss to measure the security of the scheme.
signal processing techniques). In this case, it would bd tar  In this paper, we identify several important practical &su
define what the min-entropy of the original biometric tentpla involved in the design and analysis of secure sketch for
should be. Furthermore, to extract a discrete key from sublometric templates. Besides the subtleties in the entlogsy
a template, some kind of quantization would be necessatye to quantization, a very important aspect of any biometri
However, since the formulation of secure sketch requirasithentication system is its false accept rate (FAR) arskfal
that the originalX can be reconstructed exactly, the entropseject rate (FRR), which are often overlooked in previous
loss could be arbitrarily high, which can be misleading. Fdheoretical work on secure sketch.
example, consider the quantization of a random variable In fact, the use of FAR (with a fixed FRR) as the measure

Fig. 1. Sketch Generation and Template Reconstruction



of security in a biometric authentication system is not nesecurity analysis would need to be adapted accordingly.
(e.g., [18]). This is the correct measure when the storage ofin many practical systems, a single-factor authentication
template is secure and the attacker only uses the biometystem (i.e., one that uses only biometrics) may not be
data of a random user. However, min-entropy would be a bettarfficient. We discuss the design of multi-factor authexttom
measure when smart attackers are considered. For exagtplesystems. In such systems, a user would be required not only
us consider an extreme case where there are only two ugerproduce a correct sample of certain biometrics, but also
in the system, one of them has an that is alway9).1, and a correct password and/or a smartcard is required. With the
the other has arX, that is always0.7 (i.e., no error in the help of secure sketch, it is possible to have a system that is
measurements). In this case, the min-entropy of the bigenetsimple, secure, and the user credentials can be easilyadvok
data is1 bit, which correctly reflects the fact that a smarbr replaced.
attacker who knows exactly the distribution of the biormestri  We will give a review of related work in Section I, followed
can succeed with probability at leasts. At the same time, by some preliminary formal definitions in Section Ill. We giv
the FAR of the system i§, which does not tell us anythinga concrete secure sketch scheme for face biometrics ino8ecti
about how difficult it is to attack the system. IV. We further analyze the security and performance of the

Although secure sketches may have some nice propertgheme using real face image data in Section V. We discuss
that would allow us to handle all attackers and all biometriqulti-factor authentication schemes in Section VI.
distributions, using min-entropy and entropy loss along/ ma
not be sufficient to measure the security. In many cases,
although the entropy loss can be proved, the min-entropy
of the original dataX cannot be easily determined, hence The construction of secure sketches largely depends on the
making it difficult to conclude the key strength of the reimgt representation of the biometric templates and the underlyi
system. Even the min-entropy of can be fixed in some similarity measure. Most of the known techniques assume tha
way, the entropy loss may be too large to be useful andtlite noisy data under consideration are represented aspoint
can be misleading. Therefore, cautions have to be taken wis@mne metric space. The fuzzy commitment scheme [10], which
analyzing the security of biometric authentication schethat is based on binary error-correcting codes, considers Yinar
employs secure sketches. strings where the similarity is measured by Hamming diganc

In this paper we follow the same setting in [15] and considdhe fuzzy vault scheme [11] considers sets of elements in a
biometric templates that can be represented as sequeriitite field with set difference as the distance function, and
of points in continuous domains, and two sequences a@erects errors by polynomial interpolation. Dodis et al3][
considered as close if sufficiently many points in on seqeenttirther gives the notion ofuzzy extractorswhere a “strong
are close to the corresponding point in the other sequencegektractor” (such as pair-wise independent hash functiis)
particular, we examine face biometrics represented byusimg applied after the originalX is reconstructed to obtain an
values with randomization. Similar to [15], we consider thalmost uniform key. Constructions and rigorous analysis of
general 2-step approach where we quantize the data isgcure sketch are given in [13] for three metrics: Hammisg di
discrete domains first, and then apply a known secure sketahce, set difference and edit distance. Secure sketcimsshe
scheme in discrete domains. for point sets in [17] are motivated by the typical similgrit

We present a general framework to design and analyeasure used for fingerprints, where each template cowsists
biometric protection schemes using secure sketch, fogusih set of points in 2-D space, and the similarity measure does
on the trade-off among various parameters. We observe that define a metric space. The problem of designing secure
certain randomization techniques can be applied to achiesketch for continuous data is first studied in [15], and aaroti
better performance in terms of FAR and FRR. However, at tioé relative entropy loss is proposed to measure the quality o
same time, these techniques would make it harder to boum@iven quantization strategy.
the entropy loss of the sketch. We further estimate the min-On the other hand, there have been a number of papers on
entropy of the data in the quantized domain and analyze thew to extract consistent keys from real biometric template
key strength in the resulting system. We observe that in sos@me of which may have quite different representations and
cases theoretical upper bounds on information leakage (igmilarity measures from the above theoretical work. Suoh b
entropy loss) can be too large to be useful, and the exacetric templates include handwritten online signatured,[1
security of the system needs to be further investigated.  fingerprints [20], iris patterns [16], voice features [2&hd

It is worth to note that we are not trying to develop a facidbce biometrics [2]. These methods, however, are not accom-
recognition or authentication technique that gives th¢ BAR  panied with sufficiently rigorous treatment of the secyrity
and FRR possible. Instead, we study a rather simple schesoepared to well-established cryptographic techniquemes
with reasonable performance in a controlled environmend, aof the works give analysis on the entropy of the biometrics,
focus on the analysis of the effect of applying the secus:md approximated amount of efforts required by a bruteeforc
sketch scheme on top of the signal processing techniguatacker.
Furthermore, we assume that the input is a vector of a fixedBoyen [22] shows that a sketch scheme that is provably
length, where all components are independent. For differesecure may be insecure when multiple sketches of the same
techniques with other types of features and/or similarigam biometric data are obtained. Boyen et al. further study the
sures, the construction of the sketches as well as the actseturity of secure sketch schemes under more general attack

Il. RELATED WORK



models in [23], and techniques to achieve mutual authentianalysis, since for any-bit string B, we haveﬁoo(A | B) >
tion are proposed. H,.,(A) — ¢. For any secure sketch scheme for disciEtdet
Linnartz and Tuyls [24] consider a similar problem for bioR2 be the randomness invested in constructing the sketch, it is
metric authentication applications. They consider zer@amenot difficult to show that when? can be computed fronX
i.i.d. jointly Gaussian random vectors as biometric tertgga and P, we havel = H(X)—-H (X | P) < |P|—-Hx(R).
and use mutual information as the measure of security againsln other words, the entropy loss can be bounded from above
dishonest verifiers. Tuyls and Goseling [12] consider alaimi by the difference between the size Bf and the amount of
notion of security, and develop some general results when ttandomness we invested in computifg This allows us to
distribution of the original is known and the verifier can beonveniently find an upper bound &f for any distribution of
trusted. Some practical results along this line also appearX, since it is independent oX .
[25].
The concept of cancelable biometrics was first introducgd gecure Sketch in Discrete Domain
by Ratha et al. [6] (also see [8], [9]). The underlying idea
is to apply a user-specific similarity-preserving transfar
tion to biometric templates before they are stored in t
database. New biometric samples are transformed in the sdif
way before they are matched with the templates. Hence, e
templates can be easily revoked by applying other (rando’r?a%

Our definitions of secure sketch and entropy loss in the
Hiéscrete domain follow that in [13]. LeM be a finite set of
[nts with asimilarity relations € M x M. When(X, Y)e
e say theY is similar to X, or the pair(X,Y) is similar.

transformations. The security of these schemes, given t FINITION 1 A sketch scheme in discrete domain is a tuple

some templates are compromised, relies on the difficulty (’)\/é’s’ E'Tc’ Dec), Whe*re Enc : M Z {Oal}* IS E\nhen(;oder”
invert the transformation to obtain the original biometric datgnd Dec - M x {0,1}" — M is a decoder such that for a

Although it is believed that such transformations are diffic XY eM, D.ec(g/’ ET(C(Xh)) :dX. i (‘E’Y) edS. T?ﬁ. string
to invert, it seems difficult to rigorously prove the actuake 1 = Enc(X) is the sketch, and is to be made public. We say
wayness. that the scheme i£-secure if for all random variablesy

In addition to the above, there are many other approacl’%’serM’ the entropy loss of the sketdh is at mostL. That
Ho(X) — Hoo(X | Enc(X)) < L.

which address similar problems. Threshold-based biomet!?”
hashing methods for faces, fingerprints and palmprints, arey,e callﬁoo(X | P) theleft-over entropywhich in essence

proposed in [3], [4], [26]. The idea ddioHashingis further easyres the “strength” of the key that can be extracted from

developed in [27], [28], which is mainly for multi-factor y given thatP is made public. Note that in most cases, the
authentications. In [5], a non-invertible quantizatiord d&CC ultimate goal is to maximize the left-over entropy for some

based method for creating renewable binary face templates,iicular distribution ofX. However, in the discrete case,
proposed. As noted by the authors, this technique may RaL min-entropy ofX is fixed but can be difficult to analyze.
be feasible in practice due to large error correcting caipabi yence, entropy loss becomes an equivalent measure which is

requirements. _ easier to quantify.
Tulyakov et al. [29] proposed a set of symmetric hash func-

tions and Ang et al. [7] proposed a key-based geometrictrans . . ,

formation for minutiae based fingerprint templates. Vieia C: S€cure Sketch in Continuous Domain

et al. [1] proposed a simple method to calculate biometrghha To handle points in some continuous domainwe follow
values using statistical features of online signatures.ef k[15] and use a two-step approach. In particular, we quantize
binding algorithm is proposed by Soutar et al. [30] and a faddiscretize) the points such that they become points in a
recognition scheme based on minimum average correlatidiscrete domaio\V1. After that we apply known sketch scheme
energy filters is proposed by Savvides et al. [31]. in discrete domainM to construct the sketch. When a fresh
measurement of the same biometrics is given, it is quantized
using the same quantizer and the corresponding recoristiuct
o ] algorithm in the discrete domain is used to recover the
A. Entropy and Entropy Loss in Discrete Domain quantized version of the original data points.

In the case where&X is discrete, we follow the definitions More formally, letl/ be a set that may be uncountable, and
by Dodis et al. [13]. They consider a variant of theerage let S be a similarity relation orif, i.e.,S C U x U. Let M
min-entropyof X given P, which is essentially the minimum be a set of finite points, and 1€ : &/ — M be a function
strength of the key that can be consistently extracted ffom that maps points i/ to points in M. We will refer to such

Ill. PRELIMINARIES

when P is made public. a functionQ as aquantizer

In particular, the min-entropii, (A) of a discrete random
variable A is defined as(A) = —log(max, Pr[A = a]). DEFINITION 2 A quantization-based sketch scheme is a tuple
For two discrete random variabled and B, the average (i,S, Q, M, Enc,Dec), whereEnc : M — {0,1}* is an
min-entropy of A given B is defined asH..,(A | B) = encoder andDec : M x {0,1}* — M is an decoder such
— log(Ey. p[2 e (AIB=0)]), that for all X,Y € U, Dec(Q(Y),Enc(Q(X))) = Q(X) if

For discreteX, the entropy loss of the sketdh is defined (X,Y’) € S. The stringP = Enc(Q(X)) is the sketch. We say
asL = Ho(X) — Ho.(X|P). This definition is useful in the that the scheme i§-secure in the quantized domain if for all



random variableX overi/, the entropy loss of is at most d) DecoderDec: For a fresh measuremett, it is first
L,i.e, Hoo(9(X)) — Hoo(Q(X) | Enc(Q(X))) < L quantized byY = Q(Y). GivenP = [dy --- d,]" andY =

. " " o hie definit g1 - g?n]T, and the decodePec does the following.
t is worth to note that according to this definition, we 1) For eachj; € 7. computec; = Cx. (7 — di):

pnly require the qugntlzed original to be recqnstru.cteds,Th 2) Output)? _ Dec(}A/) e 4di o ent dn]T_
in some sense, avoids the problem of possible high entropy _ R .
loss due to quantization. It is shown in [15] that when thi Other words, the decoder shifts evejyby d;, maps it to
quantization step (assuming scalar quantization) is dipglee € Nearest codeword ié,;, and shifts it back by the same
error that we want to tolerate, the resulting scheme woutd rgstance.

be too much different in terms of left-over entropy from gsin ,e) Entrpp_y Ioss:ps_ing an analysis that is very similar to
the “optimal” quantization step, which may be difficult todin that in [15], it is not_dn‘flcult to show that th_e gntropy Iosm_f
Therefore, in this paper we will follow this principle, withthe above scheme in the quantized domain is the total size of

some necessary deviation due to be nature of the biometffa§ Sketch, which i9_;_, log A,,. The relative entropy loss
in the real world. of the scheme is alsd """, log Ay,. When\; = §; for all 4,
both the entropy loss and the relative entropy loss would be
nlog 3, which agree with the results in [15].
D. A General Scheme
Here we give a construction of sketch for biometric data IV. SKETCH OF FACE BIOMETRICS

that can be represented as real vectors of a fixed length |n this section, we describe our scheme to compute sketches
based on the general scheme in [15]. Our scheme differs frgfm face images that allow us to extract consistent keys. Ou
that in [15] in that, the scheme in [15] assumes the sarfgain idea is as the following. For a given image, we first
error-tolerance for all components and for all users, Wi®reaxiract a feature vectov of size n (Section IV-A). Next,

in our scheme, we allow the error-tolerance to be differefife apply a randomization on the component to obtain a

for each component in a vector of the same user, and for thgydomized feature vectd¥’ of size k (Section IV-B). After
samei-th component for different users. This setting is morgat, we discretize (quantize) the new feature vector {&ect
general, and in fact it is necessary for the data set we USGN,DC). Fina”y, we app|y a known sketch scheme to generate a

the experiments. _ sketch, or to reconstruct the quantized feature vectorti@ec
We assume that a template can be written J&s = |\.D), and analyze its security (Section IV-E).

[x1 - xn]T. For each component;, there is a parameter
p— T 1 i .
5%», gnd anot.her vector = [y Yyn]" is considered as o pFeature Vector Extraction
similar to X if |y; — ;| < §; for all 4. . .
The sketch scheme consists of several building blocks; Ve assume that fr_om each biometric sampIeTwe can extract
A quantizer, a codebook, an encoder and a decoder. 24€AIUre vector of size. LetVi = [vi1 via ... vin]" represent

class of schemes can be defined as below with parame n-dimensional feature vegtor atth user of the system
AL Ao A\ where each componenf; € R is a real number. These com-
3 3 3 n

a) QuantizerQ,,: We defineQ,. (for eachi) as a scalar ponents can be extracted from certain transformations en th

quantizer with step éiza» < R. For ééchr cU, O (z) =7 raw measurement. For example, we can apply singular value

if and only if ;& < x < ;i(§+1)’ and the qua,lntizéltion of decomposition and take the most significant components

is defined as¥ = Q(X) 2 [Qy, (x1) - Q, (z,)]". The (SECtON V). N

corresponding quantized domain is thid ne 0, [-L 7] During different measurements of the same legitimate user,

P 94 rio— Be I .thg value of each component; can vary within a certain

The encoders and the decoders work only on the quantize L . ) :

domain. Lets, — [5:/\]. Under noise, a poing in the range which is going to be determined through experiments
uantizéd dor;iai; car; bé éhifted by a diétanf:)e of at most on the data set. In other words, we consider;ttle component

9 y *= for the i-th user to be always associated with a range, which

is defined by amidpoint7,; and asizep;;.

Let us denoted, £ 2655, + 1.
b) CodeboolC,,: For each quantized domaikt,,, we In the simplest case, for theth user in the system, we
can consider a samplg = [v;1 v ... vi,]T as authentic if

consider acodeboolC,,, where every codeword € C,, has
the formc = BA,, for some non-negative integer We use _

) . R . . Vi — Pij < Vj < Ui; + Pij for all =1 ..n.
.C’\f‘( ) to denote the functAlon where g|xen a quantized pt_mnt In this case, the template for thiegh user can be described
it returns a value: = Cy, (%) such thatz — ¢| < d,,. That is,

the functi finds th / d dhat | (16 by two vectors. The first is the list of midpointsv;y, . .., Ty,
. ethunc Ic?nt? 'T( s the unique codewardnat 1S nearestlo: 5 the other is the list of range sizes for each of the
N the codebook. component;1, ..., pin.

¢) EncoderEnc: Given a quantized?, the encodeEnc

does the following. Through experiments, we found that the performance of

the system in terms of FAR and FRR can be improved

1) For eachr; € X, computec; :C%@-); ~ if we perform somerandomizationon the feature vector
2) OutputP’ = Enc(X) = [di --- dn]", whered; =; — pefore creating the templates. In this case, a templatedvoul
ciforl<i<n. consist of the description of the randomization process, an

In other words, for every;, the encoder outputs the distancé¢he midpoints and the range sizes of the components after
of z; from its nearest codeword in the codebagk. randomization. This will become clearer in Section IV-B.



B. Randomization (Section IV-A), randomized (Section IV-B), and quantized

Before generating a sketch from the components extracf&gction IV-C). _ _
from raw samples of biometric data, we can further apply Following the scheme in Section I1I-D, the sketéh for
user-specific random mapping on these feature vectors. USEri iS @ VECIOrP; = [p;1 pix ... pix]”. For eachp;; we have
particular, we generaté-by-n matrices whose elements ard’ii = Qij(Wi;) —Wi;, whereQi; (w;;) is the codeword irC;
uniformly distributed random numbers betweew and 9, thatis closest tav;;. _ o _ _
whered is a parameter. We call such matricemdomization 2) Data ReconstructionDuring authentication, biometric
matrices Through experiments, we found that the overa_ﬁata of thei-th user is taken an_d cor_responding feature vector
performance is not sensitive to the valuefgfso we fix the IS computed. Let us denote this noisy feature vectovias
value off to bel. (Vi1 iz .. ”in]_T- ) _ )

Let R; be the randomization matrix for userand by  After applying the random mapping associated with the
multiplying the feature vector with this random matrix, aliven identity, we havéV; = R;V; = [wi Wiz ... Wir]". Next,
n dimensional feature vector can be mapped into anotie decoder takel’; and P; and calculates);;(w;;) — pi; for
k dimensional feature vector. That is, for useand a raw J = 1,..., k. Reconstruction of the original biometric will be

sampleV; = [vi ... vin]", We computeW; = R;V; = Successfulif-di; < Qi;(wi;) — Qi;(Wi;) < dij, whered;; is

[wi1 wiz ... wik]T the user specific error tolerance bound for jh component.
Similar to the simple case in Section IV-A, we find mid- [t is not difficult to see thatQ;;(w;;) — pi; = Qi;(wi;) —

points;;’s and range size§;;’s and for anyW; = R;V; = Qi;(Wi;) +w; and the errors up to the some preset threshold

[wi wiz ... w)T, We consider it as authenticif,; — 6;; < Vvalue will be corrected successfully.
w;; < Wi5 + §ij for all j=1,..k.

The r_nidpointz—ul-j for the j-th component of the-th useris g Security
ie:ﬁ;m[;:'iﬁ?mafréj (?egg)(ltjh:nrzgil/n? hvr;?evr:mnz ”'Ogrf;g'g%)_ As mentioned earlierH..(X | P) is called theleft-over
ponent of the feature vector observed in the training data %Qtropy which measures the “s_trength” of the key_that can
of useri. Similarly, the range size;; for the i-th component € extracted fromY given thatP IS n_1ade public and in most
of the i-th user is determined a%; — (MX,; — M, )/2. cases, the ultimate goal is to maximize the left-over entfop

The minreasonof usingsuch  andom mapping s e PATICUAr buton of e bometc ot ot
noise tolerance. In particular, the noise on the originah<o ' ' Py

ponents seems to be smoothed out by the random mappltﬁ difficult to analyze and entropy loss becomes an equitvalen

which makes the scheme more robust for the same FAR. m asure_wh|ch 1S ea§|er t_o quantify. )
For this construction, in order to estimate the left-over

o entropy, firstly, we tried to estimate the min-entropy 6f
C. Quantization and Codebook (Ho (V). Here we assume that the components of the feature

To discretize the data, we employ a straightforward metho¢gctor (before randomization) are independent, we estichat
which uses a scalar quantizer for each of the componentsthg min-entropy of each component independently and the
map them to a discrete vector. total min-entropy of the feature vectdf is calculated as the

First, we find the global ranges of each component. L&¢#mmation of the individual min-entropies of the composent
MN; = min;(rm;;) and MX; = max;(mx;;). We also de- Thatis,Hoo (V) = 5L Hoo (vi). S
termine the quantization step @ = «min,(J;;), where To estimateH ., (v;), we considered the distribution of the
o € (0,1] is some parameter. feature vector component over all user space. In particular,

Next, the discrete domainvi; for the j-th component We analyzed the histogram of that distribution while settin
is computed by quantizing the overall user range by tiBe bin size to the quantization step sieof that component
guantization ste;. That is, M; = {MN; — r;, MN; — r; + and determined the number of elements in the most likely bin.
8y MN; — 75 +.Lj6j} where L; is appropriately chosen This gives a rough estimate of the min-entropy of the feature
integer which satisfiedN; — r; + L;6; > MX; andr; is a Vector component;.
positive random number. The (component-wise) entropy loss in the quantized domain

In this way, for thej-th component of the-th user, a range ¢an be bounded by (P) < X¥_, L(p;), where L(p;) is the

of midpointw;; and sized;; can be translated to a discrete@ntropy loss of the sketch for the componenbf the feature
range where the discrete midpoint is quantizatiorugf in ~ Vector representation of the biometric data after randatitn.

M, and the discrete range sig is given byd,; = 927, This can be conveniently bounded by the size of the sketch.

j . 8ii
Finally, the codebookC;; can be constructed using thelNatis, L(pi) < |pi| = log(2[5] +1).
general algorithm in Section I1I-D, with parameter; = Note that this estimation of left-over entropy may not be
2d;; + 1 and 8 = D;;. accurate in reality. First of all, a more accurate estinmatio

would require the estimation of min-entropy after random-
ization. However, feature vectors become dependent dfeer t
randomization process and it is not easy to estimate the min-
1) Sketch GenerationDuring enrollment, the biometric entropy in that case. Second, depending on the size of the
data of each user are acquired and feature vectors aretextracandomization matrix employed, dimension of the transfeatm

D. Sketch Generation and Data Reconstruction



feature vector becomes larger and as a result, size of thehske x10°
becomes larger as well. Therefore, entropy loss, which & or
bounded simply by the size of the sketch, becomes too hi 8t
and it may not be meaningful.

We note that the “entropy loss” is an upper bound of tk
information leakage. Whether the attacker can really dgadn t
much information needs to be further studied for particdias
tributions. In other words, entropy loss is a worst case dour
which states that there exists an input distribution thay mi
give such amount of information leakage, but not necesgsar
the distribution for the particular biometric data. We does
it an open question to bound the “exact information leakag 13&%
of the sketch.

variances of the singular values

0 10 20 30 40 50 60
V. EXPERIMENTS AND ANALYSIS singular values
A. Singular Value Decomposition

Due to the ease of capturing and availability of manki9- 2. Variances of the singular values
powerful digital signal processing tools to analyze digita
images, face images are one of the widely used biometrics
for authentication purposes. As it is the case for many face
image based biometric recognition systems proposed imtece
years, singular values are used as features [32], [33],d8d]
due to established properties of singular values, we aled us
them for testing our scheme. However, it should be noted that
the essence of the technique is not specific to face image data
and can be applied to any type of ordered biometric features.

Since SVD is one of the well-known topics of linear algebra,
we omitted to give detailed analysis of this subject and the
following definitions will be helpful to understand the sirdar
value decomposition and robustness properties of singular
values.

Singular Value Decompositionif the matrix A €
R™*™ then there exist orthogonal matricés € R™*™
and V. € R™" such thatA = U x X x VT where
Y = diag{ i, A2, ..., A\p} With Ay > Ay > ... > X, and Fig. 3. Some examples from E94 database
p = min(m, n). B

Perturbation: Let A = A+ E € R™*™ be a perturbation

of A and letA = U x £ x VT be singular value decompositionrecognition related research studies. Sample images fnem t
of A, then |\, — Xi| < ||E||s fori = 1,...,p where||E||, is E94 database are given in Fig. 3. The database contains still

induced-2 norm ofE. images of 152 distinct subjects, with 20 different images fo
It is also worth mentioning that, in many applications, it i€ach subject. The size of each JPEG image is 180x200. We

often sufficient (as well as faster, and more economical féfst transformed these JPEG images to 8-bit gray level image
storage) to consider the first singular values. Therefore, inand then use only the gray level images in our experiments.
our experiments, we choose = 20. To further justify the For each subject, we randomly divide the 20 samples for the
choice of the numben, we also examine the variances of théubject into two parts, namely, training and test sets. The
singular values (as shown in Fig. 2), since a random variafifgining set is assigned 12 of the images, and test set has
with smaller variance would usually have less “distingirigh the remaining 8 sample face images. Therefore, 8 test data fo
power”. It is easy to observe from the figure that, the vammsnceVvery user is used to generate 152x8=1216 genuine authentic
of the singular values decrease dramatically as the matmitdion attempts and 151x152x8=183616 impostor authenticati
of the singular values decrease. In fact, many small simguRftempts (8 attempts by 151 remaining users for every user in
values are exactly the same for many users, which woulte system). As noted earlier, in our simulations, only Gt
not be useful for authentication. For our data set, the firsingular values of the images are considered.

20 coefficients consist of more th&@19% of the total mass.
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C. FAR and FRR

B. Experiment Data Set False accept rate (FAR) and false reject rate (FRR) are
In our experiments, we use the Essex Faces 94 face databagmrtant performance parameters of biometric authetiica
(E94 database) [35], which is essentially created for fasgstems. Typically, FAR is defined as the probability that a
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random user in the system is authenticated as another user, a However, it can also be seen that increasing the parameter
FRR is the probability that a legitimate user is deemed as ndn beyondn has no significant effect on the performance.
authentic. Usually, FAR and FRR can be traded-off againatthough it is very difficult to analyze the effect of incréag
each other by changing some tunable threshold paramekean the the performance of the scheme analytically, this may
Such trade-off can be described using ROC curve of tlhe explained by the following. By taking the random linear
system. combination of the feature vector components, we injectesom
We conduct experiments using the training and testing datmount of redundancy into the randomized feature vectors.
as described earlier. The FAR for a given user is defined as ihenk is large, the redundancy becomes so high that it does
ratio of the number of testing images of other users that amet give any additional “distinguishing power”. Furthermap
considered as authentic as that user over the total numbeasfwe will see in Section V-F, it is possible that a choice of
testing images of other users. The overall FAR of the systdnt> n can make the entropy loss too large to be meaningful.
is then taken as the average of the FAR for every user. TheOn the other hand, choosirigsmall thann is not advisable.
FRR is determined in a similar way. We find the ratio of th®uring the experiments, it is found that the number of bits
number of test images of a legitimate user that are wrongdlyat can be extracted from one coefficient after randontnati
declared as non-authentic over the total number of testémagemains roughly the same regardless the valué.dflence,
of the user, and then the average of all users is computedthe number of bits that can be extracted from the transformed
This process gives a single point on the ROC curve. Teature vector would be less for smallér Intuitively, by
obtain the complete ROC curve, we calculated FAR and FRIRoosing & < n, some information about the original feature
values by varying the quantization step sigg, However, it vector is lost. Such information loss would result in weaker
should be noted that, oneg; values are calculated, they arekeys. Thereforef; = n seems a reasonable choice for practical
fixed and did not changed during the determination of the RGgstems.
curve. In addition, since the random mappifgs are different
for each realization, it is needed to calculate an averaievag  Effects of Quantization Steps
of the performance metrics over the random choice& .

. o ; Another parameter needs to be considered is the quantiza-
We evaluated performance metrics over 20 realizations in qu . . . o
. Ion step siz&;. As already mentioned earlier, the quantization
experiments to calculate the average.

stepd; can be determined in many different ways depending
) on operational constraints (such as the noise level whiedsie
D. Choosing Parametek to be tolerated) and also depending on the data set condidere
In the proposed construction, one of the parameters tliédre, we considered a straightforward approach and set the
has an effect on the performancekisthe dimension of the quantization step to be a fraction of the minimum range
transformed (through random mapping) feature vector. &ig.observed over the whole data set (i&.= amin;(d;;)).
shows the performance of our scheme for E94 database foFig. 5 shows the effect ofv on the performance of the
different values ofc. ROC curve obtained by using only firstscheme for 3 different values of It should be mentioned that
20 singular values (without secure sketch) is also provided to observe the effects of the parameteon the performance
illustrating the effect of the quantization-based sketdesne of the scheme separately, no randomization is involved.here
on the performance. As shown in Fig. 4, the application @&s can be seen from Fig. 5, small valuesxofeem to improve
secure sketch on top of the singular values does not make performance of the scheme. However, it is easy to observe
significant difference in performance. Furthermore, wesms that decreasing to below 0.5 has no significant effect on the
that random linear transformations improves the perfomaanperformance. In addition, it is worth noting that the overal
of the scheme. effect of « is not as significant as.



F. Min-Entropy and Entropy Loss only to produce a “correct” sample of the biometrics, bubals

As mentioned in Section IV, we estimate the min-entropy gmartcard and/or password that match the identity clainyed b
the original biometrics by computing the min-entropy of théhe user. Clearly, there are a few different types of sechetss
quantized feature vectors, assuming that all componeets §Ie User may be required to produce, and each of them have
independent (i.e., no randomization), and using quaitizat their own strengths and weaknesses that have to be taken into
steps that are equal the minimum errors to be tolerated fg¥nsideration. For example, a key stored in a smartcard can
each component (i.eq = 1). Under this setting, the min- be almost arbitrarily long, and can be easily made uniformly
entropy of the feature vectors is estimated to be aBouits. distributed. However, such keys has to be stored somewhere,

On the other hand, the entropy loss of the scheme can\geich makes it easier to be compromised. Passwords have
calculated by the size of the sketch. Since the errors to ls&ver entropy but can be completely stored in our brains.
tolerated are quite different for different users even foe t These two types of secrets have the advantage that they can
same component, the resulting entropy loss is much larger tpe easily replaced and/or revoked. Biometrics, on the other
the theoretically achievablelog 3, when the error-tolerance hand, have entropy higher than passwords but cannot be made
is the same for all components. From the experiments, thgbitrarily long, and they are difficult to revoke or replace
average size of the sketch whenr= 20 is about65 bits, which Here we describe a simple multi-factor scheme using bio-
gives a guarantee df0 bits in the left-over entropy. When metrics and smartcards, and other factors can easily fitimgus
k increases, the size of sketch (and hence the entropy lo$® same principle. Suppose a user has biometric Hagand
increases proportionally. When= 30, the size of the sketch a smart card with a keix of lengthn. We further assume that
would be larger tha5 bits, and the entropy loss calculatedhere is a cryptographic pseudo-random number genefator
from the size of sketch becomes meaningless. that takes a short seetland outputs pseudo-random bits that

Since, as we have observed earlier, having larger than cannot be efficiently distinguished from random bits. Dgrin
n = 20 would not improve the performance significantly, weegistration, the user computes the hashJofand uses it
would recommend choosing= n for a practical system with as the seed (i.e., S = h(X) for some cryptographic hash
certain guarantee of security from theoretical bounds.titlie, function ), then applies=(S) to generate: pseudo-random
however, thal0 bits of security still looks weak. Neverthelesspits. Let K, = G(S) be the output. Next, the user computes
as we noted earlier, this is just a lower bound for the leffova sketchPy from X, and chooses a random strify where
entropy, and the exact security requires further invetiga |Q| = |Px|. The stringQ is stored in the authentication server,

Another possible way to obtain better left-over entropyois tand the result of) @ Px is stored in the smartcard, whee
reduce the value of. As we observed earlier, this would notdenotes bit-wise XOR operation. Also, the resultofs K, is
gain much advantage in performance. Furthermore, havingigo stored in the authentication database. The use of pseud
smallera might actually decrease the left-over entropy. Thigitndom number generator allows the striig to be of any
can happen for certain distribution of where decreasing polynomial length, so that it can be easily xor'ed with
a does not increase the min-entropy of quantized but  p,ing authentication, the server retriev@s> Px from the
increases the information leakage (because of thg nowrlarg%artcard’ and uses it to recov, which is then returned
sketch size). Therefore, we would recommend using 1. 4 the yser. Next the user reconstrustaising Py and a fresh

VI. MULTI-FACTOR AUTHENTICATION scan of the biometrics, and applies the same funeiighn X))
to recoverk,. After that the user would be able to generate

As we mentioned earlier, with the help of a sketch, a usgr, keyK @ K, for authentication
» .

can reconstruct the original biometric data during regtgin, i i o ] )
and hence can use the data as a password or key in othdp this way, if the authentication database is compromised,

cryptographic schemes that do not tolerate errors. only @ and K @ K, is revealed. Sincek' are completely
However, two problems still remain. First, the entropy (df2ndom, so isk' @ K. Hence the data stored at the server

length) of such a key extracted from biometric data may not 1§9€s not reveal any information aba¥it On the other hand, if

large enough compared to the standard practice in widely ugge_smartcgrd is stolen or lost, vyhat an _attacker would .be abl

cryptographic schemes. Secondly, if such a key is reveaf@find outisQ @ Px and K, which are just random strings.

accidentally, it would reveal important information abshe Since X" andQ are independent from the user password and

original biometric data. This could happen when the key Riometrics, they can be easily revoked and replaced.

used in some cryptographic schemes that can be attacketh the worst case, the attacker is able to steal the smartcard

offline. For example, the key may be used to encrypt a filand compromise the server at the same time. In that case,

and when an attacker gets a copy of the encrypted file, he/dhe and K, would be revealed. Howeverx reveals only

can launch an offline attack to decrypt the file. Although itmited information aboutX, and it can be computationally

may take a long time to decrypt it and the content of the filafeasible to computeX from K, if the min-entropy ofX

may become useless, the discovery of the key would give tisehigh enough. Other secrets (e.g., passwords) can be used

attacker information about the biometric data, which cdagd in combination withX to make it harder to comput& from

in turn used to attack newly encrypted files using keys ddrives,. Therefore, we can achieve unconditional security when

from the same or similar biometric data. one of the storage (database and smartcard) is compromised,
These two problems can be both tackled using a multi-factand some extent of computational security when both storage

authentication scheme. In such a scheme, a user is requiteddevices are compromised.
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VII. CONCLUSIONS

[11]

In this paper we study the problem of secure storage ﬁg]
biometric templates in biometric-based authenticatisteys.
We examine a recently proposed cryptographic primitiveedal

. ) S 13
secure sketch and identify several practical issues when (/vé
apply known theoretical results to real biometrics.

In particular, we note that the security measure in ternf!
of entropy loss may not be sufficient since FAR and FRR
should also be taken into consideration of a practical syste[15]
Furthermore, entropy loss alone could be just too large to
be meaningful, or sometimes becomes misleading, esgecigﬂe]
when the original biometrics are represented in continuous
domains.

We give a concrete construction of secure sketch for fagg,
biometrics, and we illustrate the subtleties and diffiedlti
in applying theoretical bounds. We show various trade-o
among different parameters of the system. It seems that
least in some cases, the exact security of the system needs tono. 2, 2002.
be further investigated, and known theoretical resultober
not very useful.

We also consider the multi-factor setting where multiplg1]
secrets (including biometrics) are used together for anithe

cation. We give a simple multi-factor scheme using a sket

and a smartcard.

We consider it as a challenging open problem to find [&3!
general and accurate way to compute the min-entropy (or any]
guantitative means that measures the success probalfility o

smart attackers) of biometric data, and to determine thetex

information leakage of the sketches.
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