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Fast Regular Expression Matching
Using Small TCAM

Chad R. Meiners Jignesh Patel Eric Norige Alex X. Liu∗ Eric Torng

Abstract—Regular expression (RE) matching is a core compo-
nent of deep packet inspection in modern networking and security
devices. In this paper, we propose the first hardware-based
RE matching approach that uses Ternary Content Addressable
Memory (TCAM), which is available as off-the-shelf chips and
has been widely deployed in modern networking devices for tasks
such as packet classification. We propose three novel techniques
to reduce TCAM space and improve RE matching speed:
transition sharing, table consolidation, and variable striding.
We tested our techniques on 8 real-world RE sets, and our
results show that small TCAMs can be used to store large
Deterministic Finite Automata (DFAs) and achieve potentially
high RE matching throughput. For space, we can store each of
the corresponding 8 DFAs with 25,000 states in a 0.59Mb TCAM
chip. Using a different TCAM encoding scheme that facilitates
processing multiple characters per transition, we can achieve
potential RE matching throughput of 10 to 19 Gbps for each of
the 8 DFAs using only a single 2.36 Mb TCAM chip.

I. I NTRODUCTION

A. Background and Problem Statement

Deep packet inspection is a key part of many networking
devices on the Internet such as Network Intrusion Detection
(or Prevention) Systems (NIDS/NIPS), firewalls, and layer
7 switches. In the past, deep packet inspection typically
usedstring matchingas a core operator, namely examining
whether a packet’s payload matches any of a set of predefined
strings. Today, deep packet inspection typically usesregular
expression (RE) matchingas a core operator, namely exam-
ining whether a packet’s payload matches any of a set of
predefined regular expressions, because REs are fundamentally
more expressive, efficient, and flexible in specifying attack
signatures [1]. Most open source and commercial deep packet
inspection engines such as Snort, Bro, TippingPoint X505,
and many Cisco networking appliances use RE matching.
Likewise, some operating systems such as Cisco IOS and
Linux have built RE matching into their layer 7 filtering
functions. As both traffic rates and signature set sizes are
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rapidly growing over time, fast and scalable RE matching is
now a core network security issue.

RE matching algorithms are typically based on the Deter-
ministic Finite State Automata (DFA) representation of regular
expressions. A DFA is a 5-tuple(Q,Σ, δ, q0, A), whereQ is a
set of states,Σ is an alphabet,δ : Σ×Q → Q is the transition
function,q0 is the start state, andA ⊆ Q is a set of accepting
states. Any set of regular expressions can be converted intoan
equivalent minimum state DFA. The fundamental issue with
DFA-based algorithms is the large amount of memory required
to store transition tableδ. We have to storeδ(q, a) = p for
each stateq and charactera.

B. Summary and Limitations of Prior Art

Prior RE matching algorithms are either software-based [2],
[3], [4], [5], [6], [7], [8] or FPGA-based [9], [4]. Software-
based solutions have to be implemented in customized ASIC
chips to achieve high-speed, the limitations of which include
high deployment cost and being hard-wired to a specific
solution and thus limited ability to adapt to new RE matching
solutions. Although FPGA-based solutions can be modified,
resynthesizing and updating FPGA circuitry in a deployed
system to handle regular expression updates is slow and
difficult; this makes FPGA-based solutions difficult to be
deployed in many networking devices (such as NIDS/NIPS
and firewalls) where the regular expressions need to be updated
frequently [5].

C. Our Approach

To address the limitations of prior art on high-speed RE
matching, we propose the first Ternary Content Addressable
Memory (TCAM) based RE matching solution. We use a
TCAM and its associated SRAM to encode the transitions
of the DFA built from an RE set where one TCAM entry
might encode multiple DFA transitions. TCAM entries and
lookup keys are encoded in ternary as 0’s, 1’s, and *’s where
*’s stand for either 0 or 1. A lookup key matches a TCAM
entry if and only if the corresponding 0’s and 1’s match; for
example, key 0001101111 matches entry 000110****. TCAM
circuits compare a lookup key with all its occupied entries in
parallel and return the index (or sometimes the content) of the
first address for the content that the key matches; this address
is then used to retrieve the corresponding decision in SRAM.

Given an RE set, we first construct an equivalent minimum
state DFA [10]. Second, we build a two column TCAM lookup
table where each column encodes one of the two inputs toδ:
the sourcestate ID and theinput character. Third, for each
TCAM entry, we store thedestinationstate ID in the same
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entry of the associated SRAM. Fig. 1 shows an example DFA,
its TCAM lookup table, and its SRAM decision table. We
illustrate how this DFA processes the input stream “01101111,
01100011”. We form a TCAM lookup key by appending the
current input character to the current source state ID; in this
example, we append the first input character “01101111” to
“00”, the ID of the initial states0, to form “0001101111”.
The first matching entry is the second TCAM entry, so “01”,
the destination state ID stored in the second SRAM entry is
returned. We form the next TCAM lookup key “0101100011”
by appending the second input character “011000011” to this
returned state ID “01”, and the process repeats.
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Fig. 1. A DFA with its TCAM table

There are three key reasons why TCAM-based RE matching
works well. First, a small TCAM is capable of encoding
a large DFA with carefully designed algorithms leveraging
the ternary nature and first-match semantics of TCAMs. Our
experimental results show that each of the DFAs built from
8 real-world RE sets with as many as 25,000 states, 4 of
which were obtained from the authors of [3], can be stored
in a 0.59Mb TCAM chip. The two DFAs that correspond to
primarily string matching RE sets require 28 and 42 TCAM
bits per DFA state; 5 of the remaining 6 DFAs which have
a sizeable number of ‘.*’ patterns require 12 to 14 TCAM
bits per DFA state whereas the 6th DFA requires 26 TCAM
bits per DFA state. Second,TCAMs facilitate high-speed RE
matching because TCAMs are essentially high-performance
parallel lookup systems: any lookup takes constant time (i.e., a
few CPU cycles) regardless of the number of occupied entries.
Using Agrawal and Sherwood’s TCAM model [11] and the
resulting required TCAM sizes for the 8 RE sets, we show
that it may be possible to achieve throughput ranging between
5.36 and 18.6 Gbps using only a single 2.36 Mb TCAM chip.
Third, because TCAMs are off-the-shelf chips that are widely
deployed in modern networking devices,it should be easy to
design networking devices that include our TCAM-based RE
matching solution. It may even be possible to immediately
deploy our solution on some existing devices.

D. Technical Challenges and Proposed Solutions

1) Challenge 1: Encoding Large DFA in Small TCAM:
Directly encoding a DFA in a TCAM using one TCAM
entry per transition is infeasible. For example, consider a
DFA with 25,000 states that consumes one 8 bit character
per transition. We would need a total of140.38 Mb (=

25000× 28 × (8 + ⌈log 25000⌉)). This is infeasible given the
largest available TCAM chip has a capacity of only 72 Mb. To
address this challenge, we use two techniques that minimize
the TCAM space for storing a DFA:transition sharingand
table consolidation.

The basic idea of transition sharing is to combine multiple
transitions into one TCAM entry by exploiting two properties
of DFA transitions: (1) character redundancy where many
transitions share the same source state and destination state and
differ only in their character label, and (2) state redundancy
where many transitions share the same character label and
destination state and differ only in their source state. One
reason for the pervasive character and state redundancy in
DFAs constructed from real-world RE sets is that most states
have most of their outgoing transitions going to some com-
mon “failure” state; such transitions are often called default
transitions. The low entropy of these DFAs opens optimization
opportunities. We exploit character redundancy bycharacter
bundling (i.e., input character sharing) and state redundancy
by shadow encoding(i.e., source state sharing). In character
bundling, we use a ternary encoding of the input character field
to represent multiple characters and thus multiple transitions
that share the same source and destination states. In shadow
encoding, we use a ternary encoding for the source state ID to
represent multiple source states and thus multiple transitions
that share the same label and destination state.

The basic idea of table consolidation is to merge multiple
transition tables into one transition table using the observa-
tion that some transition tables share similar structures (e.g.,
common entries) even if they have different decisions. This
shared structure can be exploited by consolidating similar
transition tables into one consolidated transition table.When
we consolidatek TCAM lookup tables into one consolidated
TCAM lookup table, we storek decisions in the associated
SRAM decision table.

2) Challenge 2: Improving RE Matching Speed:One way
to improve the throughput by up to a factor ofk is to use
k-stride DFAs that consumek input characters per transition.
However, this leads to an exponential increase in both stateand
transition spaces. To avoid this space explosion, we propose
the novel idea ofvariable striding. The basic idea of variable
striding is to use transitions with a variety of strides so
that we increase the average number of characters consumed
per transition while ensuring all the transitions fit within
the allocated TCAM space. This idea is based on two key
observations. First, for many states, we can capture many but
not all k-stride transitions using relatively few TCAM entries
whereas capturing allk-stride transitions requires prohibitively
many TCAM entries. Second, with TCAMs, we can store
transitions with different strides in the same TCAM table.

3) Challenge 3: Handling REs with Counting Con-
straints: For REs with large counting constraints (such as
.*a.{n}bc), the corresponding DFA may have an exponen-
tial number of states in the lengthn of the counting constraint.
Other researchers have developed automata models to handle
REs with counting constraints such as the counting-DFA
proposed by Becchiet al. [12]. We propose to handle such
REs using counting-DFA, which works well with RegCAM.
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II. RELATED WORK

In the past, deep packet inspection typically used string
matching (often called pattern matching), which have been
extensively studied [13], [14], [15], [16]). TCAM-based so-
lutions have been proposed for string matching, but they do
not generalize to RE matching because they only deal with
independent strings [14], [15], [16].

Today, deep packet inspection often uses RE matching as
a core operator because strings are no longer adequate to
precisely describe attack signatures [17], [1]. Most priorwork
on RE matching falls into two categories: software-based
and FPGA-based. Prior software-based RE matching solutions
focus on either reducing memory by minimizing the number of
transitions/states or improving speed by increasing the number
of characters per lookup. Such solutions can be implemented
on general purpose processors, but customized ASIC chip
implementations are needed for high speed performance. For
transition minimization, two basic approaches have been pro-
posed: alphabet encoding that exploits character redundancy
[2], [3], [4], [8] and default transitions that exploit state redun-
dancy [5], [6], [3], [7]. Previous alphabet encoding approaches
cannot fully exploit local character redundancy specific toeach
state. Most use a single alphabet encoding table that can only
exploit global character redundancy that applies to every state.
Kong et al. proposed using 8 alphabet encoding tables by
partitioning the DFA states into 8 groups with each group
having its own alphabet encoding table [8]. Our work improves
upon previous alphabet encoding techniques because we can
exploit local character redundancy specific to each state. Our
work improves upon the default transition work because we do
not need to worry about the number of default transitions that
a lookup may go through because TCAMs allow us to traverse
an arbitrarily long default transition path in a single lookup.
Some transition sharing ideas have been used in some TCAM-
based string matching solutions for Aho-Corasick-based DFAs
[16], [18]. However, these ideas do not easily extend to DFAs
generated by general RE sets, and our techniques produce
at least as much transition sharing when restricted to string
matching DFAs. One recently published transition sharing idea
is the offset-DFA idea proposed by Liuet al. that exploits
similarity in the transition function structure between two
states even if they do not have the same destination state
[19]. For state minimization, two fundamental approaches have
been proposed. One approach is to first partition REs into
multiple groups and build a DFA from each group; at run
time, packet payload needs to be scanned by multiple DFAs
[20], [9], [21]. This approach is orthogonal to our work and
can be used in combination with our techniques. In particular,
because our techniques achieve greater compression of DFAs
than previous software-based techniques, less partitioning of
REs will be required. The other approach is to use scratch
memory to store variables that track the traversal history and
avoid some duplication of states [22], [17], [12]. The benefit
of state reduction for scratch memory-based FAs does not
come for free. The size of the required scratch memory may
be significant, and the time required to update the scratch
memory after each transition may be significant. This approach

is orthogonal to our approach. While we have only applied our
techniques to DFAs in this initial study of TCAM-based RE
matching, our techniques may work very well with scratch
memory-based automata.

Prior FPGA-based solutions exploit the parallel processing
capabilities of FPGA technology to implement nondetermin-
istic finite automata (NFA) [9], [4] or parallel DFAs [23].
While NFAs are more compact than DFAs, they require more
memory bandwidth to process each transition as an NFA may
be in multiple states whereas a DFA is always only in one state.
Thus, each character might be processed in up to|Q| transition
tables. Prior work has looked at ways for finding good NFA
representations of the REs that limit the number of states that
need to be processed simultaneously. However, FPGA’s cannot
be quickly reconfigured, and they have clock speeds that are
slower than ASIC chips. Note that the RE matching solutions
that can be implemented in ASIC and simulated by FPGA,
these do not fall into this category.

III. T RANSITION SHARING

The basic idea of transition sharing is to combine multiple
transitions into a single TCAM entry. We propose two transi-
tion sharing ideas: character bundling and shadow encoding.
Character bundling exploits intra-state optimization opportu-
nities and minimizes TCAM tables along the input character
dimension. Shadow encoding exploits inter-state optimization
opportunities and minimizes TCAM tables along the source
state dimension.

A. Character Bundling

Character bundling exploits character redundancy by com-
bining multiple transitions from the same source state to the
same destination into one TCAM entry. Character bundling
consists of four steps. (1) Assign each state a unique ID of
⌈log |Q|⌉ bits. (2) For each state, enumerate all 256 transition
rules where for each rule, the predicate is a transition’s label
and the decision is the destination state ID. (3) For each state,
treating the 256 rules as a 1-dimensional packet classifier
and leveraging the ternary nature and first-match semantics
of TCAMs, we minimize the number of transitions using the
optimal 1-dimensional TCAM minimization algorithm in [24],
[25]. (4) Concatenate the|Q| 1-dimensional minimal prefix
classifiers together by prepending each rule with its source
state ID. The resulting list can be viewed as a 2-dimensional
classifier where the two fields are source state ID and transition
label and the decision is the destination state ID. Fig. 1 shows
an example DFA and its TCAM lookup table built using
character bundling. The three chunks of TCAM entries encode
the 256 transitions fors0, s1, and s2, respectively. Without
character bundling, we would need256× 3 entries.

B. Shadow Encoding

Whereas character bundling uses ternary codes in the input
character field to encode multiple input characters, shadow
encoding uses ternary codes in the source state ID field to
encode multiple source states.
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1) Observations:We use our running example in Fig. 1
to illustrate shadow encoding. We observe that all transitions
with source statess1 and s2 have the same destination state
except for the transitions on characterc. Likewise, source state
s0 differs from source statess1 and s2 only in the character
range[a, o]. This implies there is a lot of state redundancy. The
table in Fig. 2 shows how we can exploit state redundancy to
further reduce required TCAM space. First, since statess1
and s2 are more similar, we give them the state IDs 00 and
01, respectively. States2 uses the ternary code of 0* in the
state ID field of its TCAM entries to share transitions with
states1. We give states0 the state ID of 10, and it uses the
ternary code of∗∗ in the state ID field of its TCAM entries to
share transitions with both statess1 ands2. Second, we order
the state tables in the TCAM so that states1 is first, state
s2 is second, and states0 is last. This facilitates the sharing
of transitions among different states where earlier stateshave
incomplete tables deferring some transitions to later tables.

TCAM SRAM
Src State ID Input Dest State ID

s1 00 0110 0011 01: s2
0* 0110 001* 00: s1

s2 0* 0110 0000 10: s0
0* 0110 **** 01: s2
** 0110 0000 10: s0

s0 ** 0110 **** 00: s1
** **** **** 10: s0

Fig. 2. TCAM table with shadow encoding

In the rest of this section, we solve the following three
problems in order to implement shadow encoding: (1) Find
the best order of the state tables in the TCAM (any order is
allowed). (2) Choose binary IDs and ternary codes for each
state given the state table order. (3) Identify entries to remove
from each state table.

Our shadow encoding technique builds upon prior work
with default transitions [5], [6], [3], [7] by exploiting the
same state redundancy observation and using their conceptsof
default transitions and Delayed input DFAs (D2FA). However,
our final technical solutions are different because we work
with TCAM whereas prior techniques work with RAM. For
example, the concept of a ternary state code has no meaning
when working with RAM. The key advantage of shadow
encoding in TCAM over prior default transition work is speed.
Shadow encoding in TCAM incurs no delay whereas prior
default transition techniques incur significant delay because a
DFA may have to traverse multiple default transitions before
consuming an input character.

2) Determining Table Order:We first describe how we
compute the order of tables within the TCAM. We use
some concepts such as default transitions and D2FA that were
originally defined by Kumaret al. [5] and subsequently refined
in [6], [3], [7].

A D2FA is a DFA with default transitions where each state
p can have at most one default transition to one other stateq
in the D2FA. In a legal D2FA, the directed graph consisting
of only default transitions must be acyclic; we call this graph
a deferment forest. It is a forest rather than a tree since more
than one node may not have a default transition. We call a
tree in a deferment forest adeferment tree.

We determine the order of state tables in TCAM by con-
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Fig. 3. D2FA, SRG, and deferment tree of the DFA in Fig. 1

structing a deferment forestF and then using the partial order
defined byF . If there is a directed path from statep to state
q in F , we say that statep defersto stateq, denotedp ≻ q. If
p ≻ q, we say that statep is in stateq’s shadow. Specifically,
stateq’s transition table must be placed after the transition
tables of all states in stateq’s shadow.

Our algorithm to compute a deferment forest that minimizes
the TCAM representation of the resulting D2FA builds upon
algorithms from prior work [5], [6], [3], [7], but there are
several key differences. First, unlike prior work, we do not
pay a speed penalty for long default transition paths. Thus,
we achieve better transition sharing than prior work. Second,
to maximize the potential gains from our variable striding
technique described in Section V and table consolidation, we
choose states that have lots of self-loops to be the roots of
our deferment trees. Prior work has typically chosen roots
in order to minimize the distance from a leaf node to a
root, though Becchi and Crowley do consider related criteria
when constructing their D2FA [3]. Third, we explicitly ignore
transition sharing between states that have few transitions
in common. This has been done implicitly in the past, but
we show how doing so leads to better results with table
consolidation.

Our algorithm consists of four steps. First, we construct a
Space Reduction Graph (SRG), [5], from a given DFA. Given
a DFA with |Q| states, an SRG is a clique with|Q| vertices
each representing a distinct state. The weight of each edge
is the number of common outgoing transitions between the
two connected states. Second, we trim away edges with small
weight from the SRG. In our experiments, we use a cutoff of
10. This pruning is effective because the distribution of edge
weights in our experiments is bimodal: usually either very
small (< 10) or very large (> 180). Using these low weight
edges as default transitions leads to more TCAM entries and
reduces the number of deferment trees which hinders our table
consolidation technique (Section IV). Third, we compute a
deferment forest by running Kruskal’s algorithm to find a
maximum weight spanning forest. Fourth, for each deferment
tree, we pick the state that has largest number of transitions
going back to itself as the root. Fig. 3(b) and (c) show the SRG
and the deferment tree, respectively, for the DFA in Fig. 1.

In most deferment trees, more than 128 (i.e., half) of
the root state’s outgoing transitions lead back to the root
state; we call such a state aself-looping state. Based on the
pigeonhole principle and the observed bimodal distribution,
each deferment tree typically has exactly one self-looping
state, and it is the root state. We choose self-looping states as
roots to improve the effectiveness of variable striding which
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we describe in Section V.
When we apply Kruskal’s algorithm, we use a tie breaking

strategy because many edges have the same weight. To have
most deferment trees centered around a self-looping state,we
give priority to edges that have the self-looping state as one
endpoint.

3) Shadow Encoding Algorithm:We now describe our
shadow encoding algorithm which takes as input a deferment
forest F with one node per state and outputs ashadow
encodingwhich consists of a ternaryshadow code(SC(q))
and a binarystate ID (ID(q)) for each stateq. State IDs
are used in the destination state ID field of transition rules.
Shadow codes are used in the source state ID field of transition
rules. Theshadow lengthof a shadow encoding is the common
length of every state ID and shadow code. A valid shadow
encoding for a given deferment forestF must satisfy the
following four Shadow Encoding Properties(SEP):

1) Uniqueness Property: For any two distinct statesp and
q, ID(p) 6= ID(q) andSC(p) 6= SC(q).

2) Self-Matching Property: For any statep, ID(p) ∈
SC(p) (i.e., ID(p) matchesSC(p)).

3) Deferment Property: For any two statesp and q, p ≻ q
(i.e., q is an ancestor ofp in the given deferment forest)
if and only if SC(p) ⊂ SC(q).

4) Non-interception Property: For any two distinct statesp
andq, p ≻ q if and only if ID(p) ∈ SC(q).

We prove that these properties are sufficient to properly
encode DFA transitions in the appendix, Theorem A.1.

We give a shadow encoding algorithm where the deferment
forest is a single deferment treeDT . We handle deferment
forests by simply creating a virtual root node whose children
are the roots of the deferment trees in the forest and then
running the algorithm on this tree. In the following, we refer
to states as nodes. Our algorithm uses the following internal
variables for each nodev: a local binary ID denotedL(v), a
global binary ID denotedG(v), and an integer weight denoted
W (v) that is the shadow length we would use for the subtree of
DT rooted atv. Intuitively, the state ID ofv will be G(v)|L(v)
where| denotes concatenation, and the shadow code ofv will
be the prefix stringG(v) followed by the required number of
*’s; some extra padding characters may be needed. We use
#L(v) and#G(v)to denote the number of bits inL(v) and
G(v), respectively. Our algorithm processes nodes bottom-up.
For all v, we initially setL(v) = G(v) = ∅ andW (v) = 0.
Each leaf node ofDT is now processed, which we denote by
marking them red. We process an internal nodev when all
its childrenv1, · · · , vn are red. Once a nodev is processed,
its weightW (v) and its local IDL(v) are fixed, but we will
prepend additional bits to its global IDG(v) when we process
its ancestors inDT .

We assignv and each of its children a variable-length binary
codeHCodesuch that no HCode is a prefix of another HCode.
One option is to assign each node a binary number from
0 to n using lg(n + 1) bits. To minimize the shadow code
length W (v), we use a Huffman coding style algorithm to
compute the HCodes andW (v). This algorithm uses two data
structures: a binary encoding treeT with n + 1 leaf nodes,
one for v and each of its children, and a min-priority queue

PQ, initialized withn+1 elements (one forv and each of its
children) that is ordered by node weight. WhilePQ has more
than one element, we remove the two elementsx andy with
lowest weight fromPQ, create a new internal nodez in T with
two childrenx andy, and set weight(z)=maximum(weight(x),
weight(y))+1, and then put elementz into PQ. WhenPQ has
only one element,T is complete. The HCode assigned to each
leaf nodev′ is the path inT from the root node tov′ where
left edges have value 0 and right edges have value 1.

We update the internal variables ofv and its descendants
in DT as follows. We setL(v) to be its HCode, andW (v)
to be the weight of the root node ofT ; G(v) is left empty.
For each childvi, we prependvi’s HCode to the global ID
of every node in the subtree rooted atvi including vi itself.
We then markv as red. This continues until all nodes are
red. We now set state IDs and a shadow codes. The shadow
length is k, the weight of the root node ofDT . We use
{∗}m to denote a ternary string withm *’s and {0}m to
denote a binary string withm 0’s. For each nodev, ID(v) =
G(v)|L(v)|{0}k−#G(v)−#L(v), SC(v) = G(v)|{∗}k−#G(v).
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Fig. 4. Shadow encoding example

We illustrate our shadow encoding algorithm in Figure 4.
Figure 4(a) shows all the internal variables just beforev1
is processed. Figure 4(b) shows the Huffman style binary
encoding treeT built for nodev1 and its childrenv2, v3, and
v4 and the resulting HCodes. Figure 4(c) shows each node’s
final weight, global ID, local ID, state ID and shadow code.

We prove the correctness and optimality of our algorithm in
Proofs A.2, A.3 in the appendix. Experimentally, no DFA had
a shadow length larger than⌈log2 |Q|⌉ + 3 where⌈log2 |Q|⌉
is the shortest possible shadow length.

4) Choosing Transitions:For a given DFA and a corre-
sponding deferment forest, we construct a D2FA by choosing
which transitions to encode in each transition table as follows.
If state p has a default transition to stateq, we identify
p’s deferrable transitions which are the transitions that are
common to bothp’s transition table andq’s transition table.
These deferrable transitions are optional forp’s transition
table; that is, they can be removed to create an incomplete
transition table or included if that results in fewer TCAM
entries. Fig. 2 is an example where including a deferrable
transition produces a smaller classifier. The second entry in
s2’s table in Fig. 2 can be deferred to states0’s transition
table. However, this results in a classifier with at least 4 TCAM
entries whereas specifying the transition allows a classifier
with just 3 TCAM entries. This leads us to the following
problem for which we give an optimal solution.
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Definition 3.1: (Partially Deferred Incomplete One-
dimensional TCAM Minimization Problem)
Given a one-dimensional packet classifierf on {∗}b and a
subsetD ⊆ {∗}b, find the minimum cost prefix classifierf ′

such thatCover(f ′) ⊇ {∗}b \ D and is equivalent tof over
Cover(f ′).

Hereb is the field width (in bits),D is the set of packets that
can be deferred, andCover(c) is the union of the predicates
of all the rules inc (i.e. all the packets matched byc). For
simplicity of description, we assume thatf has flattened rule
set (i.e. one rule for each packet with the packet as the rule
predicate). Assuming the packet is a one byte character, this
implies f has 256 rules.

We provide a dynamic programming formulation for solving
this problem that is similar to the dynamic programming
formulation used in [27] and [24] to solve the related problem
when all transitions must be specified. In these previous
solutions for complete classifiers, for each prefix, the dynamic
program maintains an optimal solution for each possible final
decision. It then specifies how to combine these optimal
solutions for matching prefixes into an optimal solution for
the prefix that is the union of the two matching prefixes; in
this step, two final rules for each prefix that have the same
decision can be replaced by a single final rule for the combined
prefix resulting in a savings of one TCAM entry. The main
change is to maintain an optimal solution for each prefix
where we defer some transitions within the prefix. Our formal
characterization of this algorithm and proof of its result size
is given in Theorem A.4, in the appendix.

Next, we discuss RE set updates. RE set updating is
typically infrequent, unlike IP lookup. When an RE set is
updated, we can use another computer to run our algorithms
to compute the TCAM entries. Note that TCAM chips are
often deployed in tandem. Thus, when one chip is updating,
the other chip can be continuously queried.

IV. TABLE CONSOLIDATION

We now presenttable consolidationwhere we combine
multiple transition tables for different states into a single
transition table such that the combined table takes less TCAM
space than the total TCAM space used by the original tables.
To define table consolidation, we need two new concepts:k-
decision rule andk-decision table. Ak-decision ruleis a rule
whose decision is an array ofk decisions. Ak-decision table
is a sequence ofk-decision rules following the first-match
semantics. Given ak-decision tableT and i (0 ≤ i < k), if
for any ruler in T we delete all the decisions except thei-th
decision, we get a 1-decision table, which we denote asT[i].
In table consolidation, we take a set ofk 1-decision tables
T0, · · · ,Tk−1 and construct ak-decision tableT such that
for any i (0 ≤ i < k), the conditionTi ≡ T[i] holds where
Ti ≡ T[i] means thatTi andT[i] are equivalent (i.e., they have
the same decision for every search key). We call the process
of computingk-decision tableT table consolidation, and we
call T the consolidated table.

A. Observations

Table consolidation is based on three observations. First,
semantically different TCAM tables may share common en-
tries with possibly different decisions. For example, the three
tables fors0, s1 ands2 in Fig. 1 have three entries in common:
01100000, 0110****, and ********. Table consolidation pro-
vides a novel way to remove such information redundancy.
Second, given any set ofk 1-decision tablesT0, · · · ,Tk−1,
we can always find ak-decision tableT such that for any
i (0 ≤ i < k), the conditionTi ≡ T[i] holds. This is easy
to prove as we can use one entry per each possible binary
search key inT. Third, a TCAM chip typically has a build-
in SRAM module that is commonly used to store lookup
decisions. For a TCAM withn entries, the SRAM module
is arranged as an array ofn entries where SRAM[i] stores the
decision of TCAM[i] for every i. A TCAM lookup returns
the index of the first matching entry in the TCAM, which
is then used as the index to directly find the corresponding
decision in the SRAM. In table consolidation, we essentially
trade SRAM space for TCAM space because each SRAM
entry needs to store multiple decisions. As SRAM is cheaper
and more efficient than TCAM, moderately increasing SRAM
usage to decrease TCAM usage is worthwhile.

Fig. 5 shows the TCAM lookup table and the SRAM
decision table for a 3-decision consolidated table for statess0,
s1, ands2 in Fig. 1. In this example, by table consolidation,
we reduce the number of TCAM entries from 11 to 5 for
storing the transition tables for statess0, s1, and s2. This
consolidated table has an ID of 0. As both the table ID and
column ID are needed to encode a state, we use the notation
< Table ID > @ < Column ID > to represent a state.

TCAM SRAM
Consolidated Input Column ID
Src Table ID Character 00 01 10

0 0110 0000 s0 s0 s0
0 0110 0010 s1 s1 s1
0 0110 0011 s1 s2 s1
0 0110 **** s1 s2 s2
0 **** **** s0 s0 s0

Fig. 5. 3-decision table for 3 states in Fig. 1
There are two key technical challenges in table consolida-

tion. The first challenge is how to consolidatek 1-decision
transition tables into ak-decision transition table. The second
challenge is which 1-decision transition tables should be
consolidated together. Intuitively, the more similar two 1-
decision transition tables are, the more TCAM space saving
we can get from consolidating them together. However, we
have to consider the deferment relationship among states. We
present our solutions to these two challenges.

B. Computing ak-decision table

In this section, we assume we know which states need to be
consolidated together and present a local state consolidation
algorithm that takes ak1-decision table for state setSi and
a k2-decision table for another state setSj as its input and
outputs a consolidated(k1 + k2)-decision table for state set
Si ∪ Sj . For ease of presentation, we first assume thatk1 =
k2 = 1.

Let s1 and s2 be the two input states which have default
transitions to statess3 ands4. The consolidated table will be
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assigned a common table IDX. We assign states1 column
ID 0 and states2 column ID 1. Thus, we encodes1 asX@0
and s2 as X@1. We enforce a constraint that if we do not
consolidates3 and s4 together, thens1 and s2 cannot defer
any transitions at all. If we do consolidates3 ands4 together,
then s1 and s2 may have incomplete transition tables due to
default transitions tos3 ands4, respectively.

The key concepts underlying this algorithm are breakpoints
and critical ranges. To define breakpoints, it is helpful to view
Σ as numbers ranging from 0 to|Σ|−1; given 8 bit characters,
|Σ| = 256. For any states, we define a characteri ∈ Σ to
be a breakpoint for s if δ(s, i) 6= δ(s, i − 1). For the end
cases, we define0 and |Σ| to be breakpoints for every states.
Let b(s) be the set of breakpoints for states. We then define
b(S) =

⋃

s∈S b(s) to be the set of breakpoints for a set of
statesS ⊂ Q. Finally, for any set of statesS, we definer(S)
to be the set of ranges defined byb(S): r(S) = {[0, b2 −
1], [b2, b3−1], . . . , [b|b(S)|−1, |Σ|−1]} wherebi is ith smallest
breakpoint inb(S). Note that0 = b1 is the smallest breakpoint
and |Σ| is the largest breakpoint inb(S). Within r(S), we
label the range beginning at breakpointbi as ri for 1 ≤ i ≤
|b(S)| − 1. If δ(s, bi) is deferred, thenri is a deferred range.

When we consolidates1 and s2 together, we compute
b({s1, s2}) and r({s1, s2}). For eachr′ ∈ r({s1, s2}) where
r′ is not a deferred range for boths1 and s2, we create a
consolidated transition rule where the decision of the entry is
the ordered pair of decisions for states1 and s2 on r′. For
eachr′ ∈ r({s1, s2}) wherer′ is a deferred range for one of
s1 but not the other, we fill inr′ in the incomplete transition
table where it is deferred, and we create a consolidated entry
where the decision of the entry is the ordered pair of decisions
for states1 and s2 on r′. Finally, for eachr′ ∈ r({s1, s2})
where r′ is a deferred range for boths1 and s2, we do not
create a consolidated entry. This produces a non-overlapping
set of transition rules that may be incomplete if some ranges
do not have a consolidated entry. If the final consolidated
transition table is complete, we minimize it using the optimal
1-dimensional TCAM minimization algorithm in [24], [25].
If the table is incomplete, we minimize it using the 1-
dimensional incomplete classifier minimization algorithmin
[27]. We generalize this algorithm to cases wherek1 > 1 and
k2 > 1 by simply consideringk1 + k2 states when computing
breakpoints and ranges.

C. Choosing States to Consolidate

We now describe our global consolidation algorithm for de-
termining which states to consolidate together. As we observed
earlier, if we want to consolidate two statess1 ands2 together,
we need to consolidate their parent nodes in the deferment
forest as well or else lose all the benefits of shadow encoding.
Thus, we propose to consolidate two deferment trees together.

A consolidated deferment tree must satisfy the following
properties. First, each node is to be consolidated with at
most one node in the second tree; some nodes may not be
consolidated with any node in the second tree. Second, a level
i node in one tree must be consolidated with a leveli node in
the second tree. The level of a node is its distance from the

root. We define the root to be a level 0 node. Third, if two
level i nodes are consolidated together, their leveli−1 parent
nodes must also be consolidated together. An example legal
matching of nodes between two deferment trees is depicted in
Fig. 6.

Fig. 6. Consolidating two trees

Given two deferment trees, we start the consolidation pro-
cess from the roots. After we consolidate the two roots, we
need to decide how to pair their children together. For each
pair of nodes that are consolidated together, we again must
choose how to pair their children together, and so on. We
make an optimal choice using a combination of dynamic
programming and matching techniques. Suppose we wish to
compute the minimum costC(x, y), measured in TCAM
entries, of consolidating two subtrees rooted at nodesx and
y where x has u children X = {x1, . . . , xu} and y has
v children Y = {y1, . . . , yv}. We first recursively compute
C(xi, yj) for 1 ≤ i ≤ u and1 ≤ j ≤ v using our local state
consolidation algorithm as a subroutine. We then constructa
complete bipartite graphKX,Y such that each edge(xi, yj)
has the edge weightC(xi, yj) for 1 ≤ i ≤ u and1 ≤ j ≤ v.
Here C(x, y) is the cost of a minimum weight matching
of K(X,Y ) plus the cost of consolidatingx and y. When
|X| 6= |Y |, to make the sets equal in size, we pad the smaller
set with null states that defer all transitions.

Finally, we must decide which trees to consolidate together.
We assume that we producek-decision tables wherek is
a power of 2. We describe how we solve the problem for
k = 2 first. We create an edge-weighted complete graph with
where each deferment tree is a node and where the weight of
each edge is the cost of consolidating the two corresponding
deferment trees together. We find a minimum weight matching
of this complete graph to give us an optimal pairing fork = 2.
For largerk = 2l, we then repeat this processl−1 times. Our
matching is not necessarily optimal fork > 2.

In some cases, the deferment forest may have only one tree.
In such cases, we consider consolidating the subtrees rooted
at the children of the root of the single deferment tree. We
also consider similar options if we have a few deferment trees
but they are not structurally similar.

1) Greedy Matching:Our algorithm using the matching
subroutines gives the optimal pairing of deferment trees but
can be relatively slow on larger DFAs. When running time is
a concern, we present a greedy matching routine. When we
need to match children of two nodes,x and y, we consider
one child at a time from the node with fewer children (sayx).
First all children ofy are setunmarked. For each child,xi,
of x, we find thebest matchfrom the unmarked children of
y, match them up, and set the matched child iny asmarked.
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The best match forxi is given by

argminyj∈{unmarked children ofy}
C(xi, yj)

C(xi) + C(yj)

whereC(x) is just the cost (in TCAM entries) of the subtree
rooted atx. If C(xi)+C(yj) = 0, then we set the ratio to0.5.
All unmarked children ofy at the end are matched with null
states. We consider the children ofx in decreasing order of
C(xi) to prioritize the larger children ofx. We use the same
approach for matching roots. First all roots are set unmarked.
Each time we consider the largest unmarked root, find the best
match for it, and then mark the newly matched roots.

In our experiments, this greedy approach runs much faster
than the optimal approach and the resulting classifier size is
not much larger. We also observe that another greedy approach
that usesC(xi, yj) instead of C(xi,yj)

C(xi)+C(yj)
produces classifiers

with much larger TCAM sizes. This approach often matches
a large child ofx with a small child ofy that it does not align
well with.

D. Effectiveness of Table Consolidation

We now explain why table consolidation works well on
real-world RE sets. Our algorithm proceeds as follows.

0 0-96,b,d-255
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1

c
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Fig. 7. D2FA for {a.*bc, cde}

Most real-world RE sets
contain REs with wildcard
closures ‘.*’ where the
wildcard ‘.’ matches
any character and the
closure ‘*’ allows for
unlimited repetitions of
the preceding character.
Wildcard closures create
deferment trees with lots
of structural similarity.
For example, consider the
D2FA in Fig. 7 for RE set
{.*a.*bc, .*cde}
where we use dashed
arrows to represent the
default transitions. The second wildcard closure ‘.*’ in the
RE .*a.*bc duplicates the entire DFA sub-structure for
recognizing stringcde. Thus, table consolidation of the
subtree(0, 1, 2, 3) with the subtree(4, 5, 6, 7) will lead to
significant space saving.

V. VARIABLE STRIDING

We explore ways to improve RE matching throughput
by consuming multiple characters per TCAM lookup. One
possibility is ak-stride DFA which usesk-stride transitions
that consumek characters per transition. Althoughk-stride
DFAs can speed up RE matching by up to a factor ofk,
the number of states and transitions can grow exponentially
in k. To limit the state and transition space explosion, we
propose variable striding usingvariable-stride DFAs. A k-
var-stride DFA consumes between 1 andk characters in each
transition with at least one transition consumingk characters.
Conceptually, each state in ak-var-stride DFA has256k

transitions, and each transition is labeled with (1) a unique
string of k characters and (2) a stride lengthj (1 ≤ j ≤ k)
indicating the number of characters consumed.

In TCAM-based variable striding, each TCAM lookup uses
the nextk consecutive characters as the lookup key, but the
number of characters consumed in the lookup varies from 1
to k; thus, the lookup decision contains both the destination
state ID and the stride length.

A. Observations

We use an example to show how variable striding can
achieve a significant RE matching throughput increase with
a small and controllable space increase. Fig. 8 shows a3-var-
stride transition table that corresponds to states0 in Figure
1. This table only has 7 entries as opposed to 116 entries
in a full 3-stride table fors0. If we assume that each of the
256 characters is equally likely to occur, the average number
of characters consumed per3-var-stride transition ofs0 is
1 ∗ 1/16 + 2 ∗ 15/256 + 3 ∗ 225/256 = 2.82.

TCAM SRAM
SRC Input DEC: Stride
s0 0110 0000 **** **** **** **** s0 : 1
s0 0110 **** **** **** **** **** s1 : 1
s0 **** **** 0110 0000 **** **** s0 : 2
s0 **** **** 0110 **** **** **** s1 : 2
s0 **** **** **** **** 0110 0000 s0 : 3
s0 **** **** **** **** 0110 **** s1 : 3
s0 **** **** **** **** **** **** s0 : 3

Fig. 8. 3-var-stride transition table fors0

B. Eliminating State Explosion

We first explain how converting a 1-stride DFA to ak-
stride DFA causes state explosion. For a source state and a
destination state pair (s, d), a k-stride transition path froms
to d may containk − 1 intermediate states (excludingd); for
each unique combination of accepting states that appear on a
k-stride transition path froms to d, we need to create a new
destination state because a unique combination of accepting
states implies that the input has matched a unique combination
of REs. This can be a very large number of new states.

We eliminate state explosion by ending anyk-var-stride
transition path at the first accepting state it reaches. Thus, ak-
var-stride DFA has the exact same state set as its corresponding
1-stride DFA. Endingk-var-stride transitions at accepting
states does have subtle interactions with table consolidation
and shadow encoding. We end anyk-var-stride consolidated
transition path at the first accepting state reached in any one
of the paths being consolidated which can reduce the expected
throughput increase of variable striding. There is a similar but
even more subtle interaction with shadow encoding which we
describe in the next section.

C. Controlling Transition Explosion

In a k-stride DFA converted from a 1-stride DFA with
alphabetΣ, a state has|Σ|k outgoing k-stride transitions.
Although we can leverage our techniques of character bundling
and shadow encoding to minimize the number of required
TCAM entries, the rate of growth tends to be exponential
with respect to stride lengthk. We have two key ideas to
control transition explosion: self-loop unrolling andk-var-
stride transition sharing.
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1) Self-Loop Unrolling Algorithm:We now consider root
states, most of which are self-looping. We have two methods
to compute thek-var-stride transition tables of root states.
The first is direct expansion (stopping transitions at accepting
states) since these states do not defer to other states which
results in an exponential increase in table size with respect
to k. The second method, which we callself-loop unrolling,
scales linearly withk.

Self-loop unrolling increases the stride of all the self-loop
transitions encoded by the last default TCAM entry. Self-loop
unrolling starts with a root statej-var-stride transition table
encoded as a compressed TCAM table ofn entries with a
final default entry representing most of the self-loops of the
root state. Note that given any complete TCAM table where
the last entry is not a default entry, we can always replace that
last entry with a default entry without changing the semantics
of the table. We generate the(j+1)-var-stride transition table
by expanding the last default entry inton new entries, which
are obtained by prepending 8 *s as an extra default field to
the beginning of the originaln entries. This produces a(j+1)-
var-stride transition table with2n−1 entries. Fig. 8 shows the
resulting table when we apply self-loop unrolling twice on the
DFA in Fig. 1.

2) k-var-stride Transition Sharing Algorithm:Similar to 1-
stride DFAs, there are many transition sharing opportunities in
a k-var-stride DFA. Consider two statess0 ands1 in a 1-stride
DFA wheres0 defers tos1. The deferment relationship implies
that s0 shares many common 1-stride transitions withs1. In
the k-var-stride DFA constructed from the 1-stride DFA, all
k-var-stride transitions that begin with these common 1-stride
transitions are also shared betweens0 and s1. Furthermore,
two transitions that do not begin with these common 1-stride
transitions may still be shared betweens0 ands1. For example,
in the 1-stride DFA fragment in Fig. 9, althoughs1 and s2
do not share a common transition for charactera, when we
construct the2-var-stride DFA,s1 and s2 share the same 2-
stride transition on stringaa that ends at states5.

Fig. 9. s1 ands2 share transitionaa

To promote transition
sharing among states in
a k-var-stride DFA, we
first need to decide on
the deferment relationship
among states. The ideal de-
ferment relationship should
be calculated based on the
SRG of the finalk-var-stride DFA. However, thek-var-stride
DFA cannot be finalized before we need to compute the
deferment relationship among states because the finalk-var-
stride DFA is subject to many factors such as available TCAM
space. There are two approximation options for the finalk-
var-stride DFA for calculating the deferment relationship: the
1-stride DFA and the fullk-stride DFA. We have tried both
options in our experiments, and the difference in the resulting
TCAM space is negligible. Thus, we simply use the deferment
forest of the 1-stride DFA in computing the transition tables
for the k-var-stride DFA.

Second, for any two statess1 and s2 where s1 defers to
s2, we need to computes1’s k-var-stride transitions that are

not shared withs2 because those transitions will constitute
s1’s k-var-stride transition table. Although this computation
is trivial for 1-stride DFAs, this is a significant challengefor
k-var-stride DFAs because each state has too many (256k) k-
var-stride transitions. The straightforward algorithm that enu-
merates all transitions has a time complexity ofO(|Q|2|Σ|k),
which grows exponentially withk. We propose a dynamic pro-
gramming algorithm with a time complexity ofO(|Q|2|Σ|k),
which grows linearly withk. Our key idea is that the non-
shared transitions for ak-stride DFA can be quickly computed
from the non-shared transitions of a(k-1)-var-stride DFA. For
example, consider the two statess1 and s2 in Fig. 9 where
s1 defers tos2. For charactera, s1 transits tos3 while s2
transits tos4. Assuming that we have computed all(k-1)-
var-stride transitions ofs3 that are not shared with the(k-
1)-var-stride transitions ofs4, if we prepend all these(k-
1)-var-stride transitions with charactera, the resultingk-var-
stride transitions ofs1 are all not shared with thek-var-
stride transitions ofs2, and therefore should all be included in
s1’s k-var-stride transition table. Formally, usingn(si, sj , k)
to denote the number ofk-stride transitions ofsi that are
not shared withsj , our dynamic programming algorithm uses
the following recursive relationship betweenn(si, sj , k) and
n(si, sj , k − 1):

n(si, sj , 0) =

{

0 if si = sj
1 if si 6= sj

(1)

n(si, sj , k) =
∑

c∈Σ

n(δ(si, c), δ(sj , c), k − 1) (2)

The above formulae assume that the intermediate states on
thek-stride paths starting fromsi or sj are all non-accepting.
For statesi, we stop increasing the stride length along a path
whenever we encounter an accepting state on that path or on
the corresponding path starting fromsj . The reason is similar
to why we stop a consolidated path at an accepting state, but
the reasoning is more subtle. Letp be the string that leads
sj to an accepting state. The key observation is that we know
that anyk-var-stride path that starts fromsj and begins withp
ends at that accepting state. This means thatsi cannot exploit
transition sharing on any strings that begin withp.

The above dynamic programming algorithm produces non-
overlapping and incomplete transition tables that we compress
using the 1-dimensional incomplete classifier minimization
algorithm in [27].

D. Variable Striding Selection Algorithm

We now propose solutions for the third key challenge -
which states should have their stride lengths increased and
by how much, i.e., how should we compute the transition
function δ. Note that each state can independently choose its
variable striding length as long as the final transition tables
are composed together according to the deferment forest. This
can be easily proven based on the way that we generatek-var-
stride transition tables. For any two statess1 and s2 where
s1 defers tos2, the way that we generates1’s k-var-stride
transition table is seemingly based on the assumption that
s2’s transition table is alsok-var-stride; actually, we do not
have this assumption. For example, if we choosek-var-stride
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(2 ≤ k) for s1 and 1-stride fors2, all strings froms1 will be
processed correctly; the only issue is that strings deferred to
s2 will process only one character.

We view this as a packing problem: given a TCAM capacity
C, for each states, we select a variable stride length value
Ks, such that

∑

s∈Q |T(s,Ks)| ≤ C, whereT(s,Ks) denotes
the Ks-var-stride transition table of states. This packing
problem has a flavor of the knapsack problem, but an exact
formulation of an optimization function is impossible without
making assumptions about the input character distribution. We
propose the following algorithm for finding a feasibleδ that
strives to maximize the minimum stride of any state. First, we
use all the 1-stride tables as our initial selection. Second, for
eachj-var-stride (j ≥ 2) table t of states, we create a tuple
(l, d, |t|) wherel denotes variable stride length,d denotes the
distance from states to the root of the deferment tree thats
belongs to, and|t| denotes the number of entries int. As stride
length l increases, the individual table size|t| may increase
significantly, particularly for the complete tables of rootstates.
To balance table sizes, we set limits on the maximum allowed
table size for root states and non-root states. If a root state table
exceeds the root state threshold when we create itsj-var-stride
table, we apply self-loop unrolling once to its(j−1)-var-stride
table to produce aj-var-stride table. If a non-root state table
exceeds the non-root state threshold when we create itsj-
var-stride table, we simply use its(j − 1)-var-stride table as
its j-var-stride table. Third, we sort the tables by these tuple
values in increasing order first usingl, then usingd, then using
|t|, and finally a pseudorandom coin flip to break ties. Fourth,
we consider each tablet in order. Lett′ be the table for the
same states in the current selection. If replacingt′ by t does
not exceed our TCAM capacityC, we do the replacement.

VI. H ANDLING RES WITH LARGE COUNTS

In this section, we consider the issue presented by REs with
large counting constraints. As an example, consider the RE
.*a.{n}bc; in this RE, exactlyn charactersmust appear
between some occurrence ofa andbc. The issue is that each
time ana is encountered in the input stream, the automaton
must check whetherbc appears exactlyn characters later. For
example, supposen = 3 and the input stream isaaaddbbc.
The seconda leads to a match with the finalbc in positions
7 and 8. The automaton must keep track of all theas that
appear and, in this case, check positions 5 and 6, 6 and 7, and
7 and 8 for the patternbc to determine if the RE matches the
input stream. In general, the corresponding DFA may have an
exponential number of states in the lengthn of the counting
constraint. The counting constraint might not be a single value
n but rather a range{m,n} which means the length must be
at leastm and not more thann.

We do not directly handle REs with large counting con-
straints. However, other researchers have developed automata
models to handle REs with counting constraints such as the
counting-DFA proposed by Becchiet al. [12]. We propose
to handle REs with large counting constraints by using other
automata such as a counting-DFA and then extending Reg-
CAM to implement these other automata. We demonstrate

this approach by showing how we can extend RegCAM to
implement counting-DFA. We first briefly review counting-
DFA and then show how to extend RegCAM to implement
counting-DFA.

A. Counting-DFA

A counting-DFA uses extra scratch memory apart from the
automaton to manage the count. As a result, the size of the
automaton is independent of the value of the count in the
counting constraint, making it practical to build the counting-
DFA for REs with large counting constraints. Fig. 10 shows
the counting-DFA example from [12] for the RE.*a.{n}bc.
We briefly explain here how the counting-DFA works using
this example; complete details can be found in [12].
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Fig. 10. Counting-DFA for RE.*a.{n}bc

The counting-DFA maintains a count variablecnt for each
counting constraint; our example has only one constraint. The
counting-DFA maintains all active instances ofcnt in a queue
with the cnt values strictly decreasing from front to back so
that the largestcnt value is the first value. Some transitions
create a new instance ofcnt and are marked with red, dashed
arrows in Fig. 10. Likewise, some states increment every active
instance ofcnt by 1; these are the red dashed states in Fig. 10.
Such states arecountingstates; all other states arestandard
states.

The outgoing transitions of counting states depend on the
current status of thecnt queue in addition to the input
character. For a queue corresponding to the range{m,n},
there are three possibilities for its status: (1) The largest cnt
value is strictly less thanm, i.e. no value in the queue satisfies
the condition. (2) The largest and smallestcnt values are
both betweenm and n, i.e. all values in the queue satisfy
the condition. (3) The largest instance ofcnt is betweenm
andn, but the smallest is strictly less thanm, i.e. some values
in the queue satisfy the condition and some do not.

Intuitively, counting states non-deterministically takeone
transition if the counter value is not satisfied, and take another
if the counter value is satisfied. In the deterministic automaton,
we have a set of counter values, so we may take either or both
of these transitions depending on the values in the queue.

We denote queue status 1, 2 and 3 by the symbols ‘<’,
‘=’ and ‘≤’ respectively. In Fig. 10, the transition label for
conditional transitions shows the input character concatenated
with the required queue status. For example, the transition
from DFA state4 to DFA state7 with label ‘c=’ will only be
taken if the input character is ‘c’ and the queue status is 2.
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As observed in [12] thecnt increment operation can be
efficiently performed using a differential representationthat
only requires updating the firstcnt instance in the queue.
The checks needed to determine the queue status only involve
testing the largest and smallestcnt instances and thus can be
performed in constant time.

As proposed in [12], conditional transitions can be im-
plemented as regular transitions by considering an expanded
alphabet that is the combination of the input character and the
cnt queue status. We can then compress the counting-DFA us-
ing deferred transitions to build an equivalent counting-D2FA.
Fig. 11 shows the SRG and and deferment forest constructed
while building the counting-D2FA for the counting-DFA in
Fig. 10, and Fig. 12 shows the resulting counting-D2FA.
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Fig. 11. SRG and deferment forest for the counting-DFA in Fig.10
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Fig. 12. Counting-D2FA for RE .*a.{n}bc

B. Implementing Counting-D2FA with RegCAM

Given REs with counting constraints, we first build the
counting-DFA and the corresponding counting-D2FA. Imple-
menting counting-D2FA has two parts: count queue manage-
ment and automaton transitions. We propose implementing
queue management in software. This involves allocating and
deallocatingcnt instances and determining the queue status,
both of which can be done in constant time for each counting
constraint in the RE set.

We implement the counting-D2FA transition function in
TCAM as follows taking into account two additional require-
ments. First, counting-D2FA transitions can have an action as-
sociated with them; second, the transitions for counting states
may depend on thecnt queue status. The first requirement can
be handled by storing the action information in SRAM along
with the next state. A simple scheme to handle conditional
transitions is to implement counting states in software and

only implement standard states in TCAM. With this scheme,
we do not need to make any changes to RegCAM other than
storing an extra bit in SRAM indicating whether the next state
is stored in software or in TCAM.

We now describe an extension to RegCAM that implements
all transitions in TCAM. The key is adding a two bitcnt
queue status field in the TCAM for each count queue. We only
need two bits because there are only three queue statuses. For
unconditional transitions, eachcnt queue status field is set
to ‘∗∗’. For conditional transitions, we again setcnt queue
status to ‘∗∗’ if the transition does not depend on the given
cnt queue. If it does depend on the givencnt queue, we encode
cnt queue status as follows: ‘01’ for state 1, ‘10’ for state 2,
and ‘11’ for state 3. We use this encoding because it allows
us to representcnt queue statuses 1 and 3 with one TCAM
entry ‘∗1’ and cnt queue statuses 2 and 3 with one TCAM
entry ‘1∗’. For example, in Fig. 13 which shows the TCAM
rules for implementing the counting-D2FA in Fig. 12, the two
transitions out of state 2 in Fig. 12 are combined into the first
rule in the TCAM table. When doing a transition lookup in the
TCAM, the queue management module determines the status
of eachcnt queue and sets the appropriate bits in the lookup
key according to this encoding.

TCAM SRAM

Source

SC

Input

char.

Queue

state

Dest.

ID
Action

1001 b 1 0101 New cnt

100 a 1001 New cnt

100 0100 New cnt

0010 c 0001

0101 c 10 0001

0101 c 1 0110

01 a 1 1001

01 b 10 0010

01 b 11 0101

01 1 0100

0 a 1000

0 0000
state 0

state 3

state 4

state 5

state 1

state 2

Fig. 13. TCAM rules for counting-D2FA for RE .*a.{n}bc

VII. I MPLEMENTATION AND MODELING

We now describe some implementation issues associated
with our TCAM based RE matching solution. First, the
only hardware required to deploy our solution is the off-
the-shelf TCAM (and its associated SRAM). Many deployed
networking devices already have TCAMs, but these TCAMs
are likely being used for other purposes. Thus, to deploy our
solution on existing network devices, we would need to share
an existing TCAM with another application. Alternatively,
new networking devices can be designed with an additional
dedicated TCAM chip.

Second, we describe how we update the TCAM when an
RE set changes. First, we must compute a new DFA and
its corresponding TCAM representation. For the moment, we
recompute the TCAM representation from scratch, but we
believe a better solution can be found and is something we
plan to work on in the future. We report some timing results in
our experimental section. Fortunately, this is an offline process
during which time the DFA for the original RE set can still be
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used. The second step is loading the new TCAM entries into
TCAM. If we have a second TCAM to support updates, this
rewrite can occur while the first TCAM chip is still processing
packet flows. If not, RE matching must halt while the new
entries are loaded. This step can be performed very quickly,
so the delay will be very short. In contrast, updating FPGA
circuitry takes significantly longer.

We have not developed a full implementation of our system.
Instead, we have only developed the algorithms that would
take an RE set and construct the associated TCAM entries.
Thus, we can only estimate the throughput of our system
using TCAM models. We use Agrawal and Sherwood’s TCAM
model [11] assuming that each TCAM chip is manufactured
with a 0.18µm process to compute the estimated latency of a
single TCAM lookup based on the number of TCAM entries
searched. These model latencies are shown in Table I. We
recognize that some processing must be done besides the
TCAM lookup such as composing the next state ID with
the next input character; however, because the TCAM lookup
latency is much larger than any other operation, we focus only
on this parameter when evaluating the potential throughputof
our system.

Entries TCAM TCAM Latency
Chip size Chip size ns

(36-bit wide) (72-bit wide)
1024 0.037 Mb 0.074 Mb 0.94
2048 0.074 Mb 0.147 Mb 1.10
4096 0.147 Mb 0.295 Mb 1.47
8192 0.295 Mb 0.590 Mb 1.84

16384 0.590 Mb 1.18 Mb 2.20
32768 1.18 Mb 2.36 Mb 2.57
65536 2.36 Mb 4.72 Mb 2.94

131072 4.72 Mb 9.44 Mb 3.37

TABLE I
TCAM SIZE AND LATENCY

VIII. E XPERIMENTAL RESULTS

In this section, we evaluate our TCAM-based RE matching
solution on real-world RE sets focusing on two metrics:
TCAM space and RE matching throughput.

A. Methodology

We obtained 4 proprietary RE sets, namely C7, C8, C10,
and C613, from a large networking vendor, and 4 public RE
sets, namely Snort24, Snort31, Snort34, and Bro217 from the
authors of [3] We do report a slightly different number of states
for Snort31, 20068 to 20052; this may be due to Becchiet al.
making slight changes to their Regular Expression Processor
that we used. Quoting Becchiet al. [3], “Snort rules have been
filtered according to the headers ($HOMENET, any, $EX-
TERNAL NET, $HTTP PORTS/any) and ($HOMENET,
any, 25, $HTTPPORTS/any). In the experiments which fol-
low, rules have been grouped so to obtain DFAs with rea-
sonable size and, in parallel, have datasets with different
characteristics in terms of number of wildcards, frequencyof
character ranges and so on.” Of these 8 RE sets, the REs in
C613 and Bro217 are all string matching REs, the REs in C7,
C8, and C10 all contain wildcard closures ‘.*’, and about 40%
of the REs in Snort 24, Snort31, and Snort34 contain wildcard
closures ‘.*’.

Finally, to test the scalability of our algorithms, we use one
family of 34 REs from a recent public release of the Snort

rules with headers ($EXTERNALNET, $HTTP PORTS,
$HOME NET, any), most of which contain wildcard closures
‘.*’. We added REs one at a time until the number of DFA
states reached 305,339. We name this family Scale.

We calculate TCAM space by multiplying the number of
entries by the TCAM width: 36, 72, 144, 288, or 576 bits.
For a given DFA, we compute a minimum width by summing
the number of state ID bits required with the number of input
bits required. In all cases, we needed at most 16 state ID bits.
For 1-stride DFAs, we need exactly 8 input character bits, and
for 7-var-stride DFAs, we need exactly 56 input character bits.
We then calculate the TCAM width by rounding the minimum
width up to the smallest larger legal TCAM width. For all our
1-stride DFAs, we use TCAM width 36. For all our7-var-
stride DFAs, we use TCAM width 72.

We estimate the potential throughput of our TCAM-based
RE matching solution by using the model TCAM lookup
speeds we computed in Section VII to determine how many
TCAM lookups can be performed in a second for a given
number of TCAM entries and then multiplying this number
by the number of characters processed per TCAM lookup.
With 1-stride TCAMs, the number of characters processed per
lookup is 1. For7-var-stride DFAs, we measure the average
number of characters processed per lookup in a variety of input
streams. We use Becchiet al.’s network traffic generator [28]
to generate a variety of synthetic input streams. This traffic
generator includes a parameter that models the probabilityof
malicious trafficpM . With probabilitypM , the next character
is chosen so that it leads away from the start state. With
probability (1 − pM ), the next character is chosen uniformly
at random.

TS TS + TC2 TS + TC4
RE set #states tcam #rows thru tcam #rows thru tcam #rows thru

Mbits per state Gbps Mbits per state Gbps Mbits per state Gbps
Bro217 6533 0.31 1.40 3.64 0.21 0.94 4.35 0.17 0.78 4.35
C613 11308 0.63 1.61 3.11 0.52 1.35 3.64 0.45 1.17 3.64
C10 14868 0.61 1.20 3.11 0.31 0.61 3.64 0.16 0.32 4.35
C7 24750 1.00 1.18 3.11 0.53 0.62 3.64 0.29 0.34 3.64
C8 3108 0.13 1.20 5.44 0.07 0.62 5.44 0.03 0.33 8.51
Snort2413886 0.55 1.16 3.64 0.30 0.64 3.64 0.18 0.38 4.35
Snort3120068 1.43 2.07 2.72 0.81 1.17 2.72 0.50 0.72 3.64
Snort3413825 0.56 1.18 3.11 0.30 0.62 3.64 0.17 0.36 4.35

TABLE II
TCAM SIZE AND THROUGHPUT FOR1-STRIDE DFAS

B. Results on 1-stride DFAs

Table II shows our experimental results on the 8 RE
sets using 1-stride DFAs. We use TS to denote our transi-
tion sharing algorithm including both character bundling and
shadow encoding. We use TC2 and TC4 to denote our table
consolidation algorithm where we consolidate at most 2 and
4 transition tables together, respectively. For each RE set, we
measure the number states in its 1-stride DFA, the resulting
TCAM space in megabits, the average number of TCAM table
entries per state, and the projected RE matching throughput;
the number of TCAM entries is the number of states times the
average number of entries per state. The TS column shows our
results when we apply TS alone to each RE set. The TS+TC2
and TS+TC4 columns show our results when we apply both TS
and TC under the consolidation limit of 2 and 4, respectively,
to each RE set.
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We draw the following conclusions from Table II. (1)Our
RE matching solution is extremely effective in saving TCAM
space. Using TS+TC4, the maximum TCAM size for the 8
RE sets is only 0.50 Mb, which is two orders of magnitude
smaller than the current largest commercially available TCAM
chip size of 72 Mb. More specifically, the number of TCAM
entries per DFA state ranges between .32 and 1.17 when we
use TC4. We require 16, 32, or 64 SRAM bits per TCAM
entry for TS, TS+TC2, and TS+TC4, respectively as we need
to record 1, 2, or 4 state 16 bit state IDs in each decision,
respectively. (2)Transition sharing alone is very effective.
With the transition sharing algorithm alone, the maximum
TCAM size is only 1.43Mb for the 8 RE sets. Furthermore,
we see a relatively tight range of TCAM entries per state of
1.16 to 2.07. Transition sharing works extremely well with
all 8 RE sets including those with wildcard closures and those
with primarily strings. (3)Table consolidation is very effective.
On the 8 RE sets, adding TC2 to TS improves compression
by an average of 41% (ranging from 16% to 49%) where the
maximum possible is 50%. We measure improvement by com-
puting (TS − (TS + TC2))/TS). Replacing TC2 with TC4
improves compression by an average of 36% (ranging from
13% to 47%) where we measure improvement by computing
((TS + TC2) − (TS + TC4))/(TS + TC2). Here we do
observe a difference in performance, though. For the two RE
sets Bro217 and C613 that are primarily strings without table
consolidation, the average improvements of using TC2 and
TC4 are only 24% and 15%, respectively. For the remaining
six RE sets that have many wildcard closures, the average
improvements are 47% and 43%, respectively. The reason, as
we touched on in Section IV-D, is how wildcard closure creates
multiple deferment trees with almost identical structure.Thus
wildcard closures, the prime source of state explosion, is
particularly amenable to compression by table consolidation.
In such cases, doubling our table consolidation limit does not
greatly increase SRAM cost. Specifically, while the number
of SRAM bits per TCAM entry doubles as we double the
consolidation limit, the number of TCAM entries required
almost halves! (4)Our RE matching solution achieves high
throughput with even 1-stride DFAs. For the TS+TC4 algo-
rithm, on the 8 RE sets, the average throughput is 4.60Gbps
(ranging from 3.64Gbps to 8.51Gbps).

We use our Scale dataset to assess the scalability of our
algorithms’ performance focusing on the number of TCAM
entries per DFA state. Fig. 14(a) shows the number of TCAM
entries per state for TS, TS+TC2, and TS+TC4 for the Scale
REs containing 26 REs (with DFA size 1275) to 34 REs
(with DFA size 305,339). The DFA size roughly doubled for
every RE added. In general, the number of TCAM entries
per state is roughly constant and actually decreases with table
consolidation. This is because table consolidation performs
better as more REs with wildcard closures are added as there
are more trees with similar structure in the deferment forest.

We now analyze running time. We ran our experiments on
the Michigan State University High Performance Computing
Center (HPCC). The HPCC has several clusters; most of our
experiments were executed on the fastest cluster which has
nodes that each have 2 quad-core Xeons running at 2.3GHz.

The total RAM for each node is 8GB. Fig. 14(b) shows the
compute time per state in milliseconds. The build times are
the time per DFA state required to build the non-overlapping
set of transitions (applying TS and TC); these increase linearly
because these algorithms are quadratic in the number of DFA
states. For our largest DFA Scale 34 with 305,339 states, the
total time required for TS, TS+TC2, and TS+TC4 is 19.25
mins, 118.6 hrs, and 150.2 hrs, respectively. These times are
cumulative; that is going from TS+TC2 to TS+TC4 requires
an additional 31.6 hours. This table consolidation time is
roughly one fourth of the first table consolidation time because
the number of DFA states has been cut in half by the first
table consolidation and table consolidation has a quadratic
running time in the number of DFA states. The BW times are
the time per DFA state required to minimize these transition
tables using the Bitweaving algorithm in [27]; these times are
roughly constant as Bitweaving depends on the size of the
transition tables for each state and is not dependent on the
size of the DFA. For our largest DFA Scale 34 with 305,339
states, the total Bitweaving optimization time on TS, TS+TC2,
and TS+TC4 is 10 hrs, 5 hrs, and 2.5 hrs. These times are not
cumulative and fall by a factor of 2 as each table consolidation
step cuts the number of DFA states by a factor of 2.

Fig. 14(c) shows the time required per state for the greedy
and optimal consolidation algorithms on the Scale dataset.The
greedy algorithm runs roughly 6 times faster than the optimal
algorithm. The average increase in the number of resulting
TCAM rules is around4% for TC2 and around9% for TC4.

The partially deferred algorithm given in section III-B4
always performs at least as well as the completely deferred
minimization algorithm given in [27]. For the three Snort
RE sets and C613, the partially deferred algorithm results
in a reduction of 1, 2, 152, and 194 TCAM entries over
the completely deferred algorithm. For the other RE sets,
both algorithms perform equally well. The partially deferred
algorithm is slower than the completely deferred algorithm
because there are more unique decisions during minimization,
so we use the completely deferred minimization algorithm for
computing classifier sizes during consolidation, and we use
the partially deferred minimization algorithm for generating
the final TCAM classifiers for each state.

C. Results on7-var-stride DFAs

We consider two implementations of variable striding as-
suming we have a 2.36 megabit TCAM with TCAM width 72
bits (32,768 entries). Using Table I, the latency of a lookupis
2.57 ns. Thus, the potential RE matching throughput of by a7-
var-stride DFA with average strideS is 8×S/.00000000257 =
3.11× S Gbps.

In our first implementation, we only use self-loop unrolling
of root states in the deferment forest. Specifically, for each
RE set, we first construct the 1-stride DFA using transition
sharing. We then apply self-loop unrolling to each root state
of the deferment forest to create a7-var-stride transition table.
Because of the linear increase in transition table size, we know
that the resulting TCAM table will increase in size by at most
a factor of 7. In all our experiments, the size never increased
by more than a factor of 2.25, and the largest DFA (for C7)
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Fig. 14. Per-DFA state statistics for Scale 26 through Scale34.

required only 2.25 megabits. We can decrease the TCAM
space by using table consolidation; this was very effective
for all RE sets except the string matching RE sets Bro217
and C613. This was unnecessary since all self-loop unrolled
tables fit within our available TCAM space.

Second, we apply full variable striding. We first create 1-
stride DFAs using transition sharing and then apply variable
striding with no table consolidation, table consolidationwith
2-decision tables, and table consolidation with 4-decision
tables. We use the best result that fits within the 2.36 megabit
TCAM space. For the RE sets Bro217, C8, C613, Snort24 and
Snort34, no table consolidation is used. For C10 and Snort31,
we use table consolidation with 2-decision tables. For C7, we
use table consolidation with 4-decision tables.

We now run both implementations of our7-var-stride DFAs
on traces of length 287484 to compute the average stride. For
each RE set, we generate 4 traces using Becchiet al.’s trace
generator tool using default values 35%, 55%, 75%, and 95%
for the parameterpM . These generate increasingly malicious
traffic that is more likely to move away from the start state
towards distant accept states of that DFA. We also generate a
completely random string to model completely uniform traffic
such as binary traffic patterns which we treat aspM = 0.

We group the 8 RE sets into 3 groups: group (a) represents
the two string matching RE sets Bro217 and C613; group (b)
represents the three RE sets C7, C8, and C10 that contain
all wildcard closures; group (c) represents the three RE sets
Snort24, Snort31, and Snort34 that contain roughly 40%
wildcard closures. Fig. 15 shows the average stride length and
throughput for the three groups of RE sets according to the
parameterpM (the random string trace ispM = 0).
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Fig. 15. The throughput and average stride length of RE sets.

We make the following observations.(1) Self-loop unrolling
is extremely effective on the uniform trace.For the non string
matching sets, it achieves an average stride length of 5.97 and
5.84 and RE matching throughput of 18.58 and 18.15 Gbps
for groups (b) and (c), respectively. For the string matching
sets in group (a), it achieves an average stride length of 3.30

and a resulting throughput of 10.29 Gbps. Even though only
the root states are unrolled, self-loop unrolling works very
well because the non-root states that defer most transitions to
a root state will still benefit from that root state’s unrolled
self-loops. In particular, it is likely that there will be long
stretches of the input stream that repeatedly return to a root
state and take full advantage of the unrolled self-loops.(2)
The performance of self-loop unrolling does degrade steadily
as pM increases for all RE sets except those in group (b).
This occurs because aspM increases, we are more likely to
move away from any default root state. Thus, fewer transitions
will be able to leverage the unrolled self-loops at root states.
(3) For the uniform trace, full variable striding does little to
increase RE matching throughput.Of course, for the non-string
matching RE sets, there was little room for improvement.
(4) As pM increases, full variable striding does significantly
increase throughput, particularly for groups (b) and (c).For
example, for groups (b) and (c), the minimum average stride
length is 2.91 for all values ofpM which leads to a minimum
throughput of 9.06Gbps. Also, for all groups of RE sets, the
average stride length for full variable striding is much higher
than that for self-loop unrolling for largepM . For example,
when pM = 95%, full variable striding achieves average
stride lengths of 2.55, 2.97, and 3.07 for groups (a), (b), and
(c), respectively, whereas self-loop unrolling achieves average
stride lengths of only 1.04, 1.83, and 1.06 for groups (a), (b),
and (c), respectively.

These results indicate the following. First, self-loop un-
rolling is extremely effective at increasing throughput for ran-
dom traffic traces. Second, other variable striding techniques
can mitigate many of the effects of malicious traffic that lead
away from the start state.

IX. CONCLUSIONS

We make four key contributions in this paper. (1) We pro-
pose the first TCAM-based RE matching solution. We prove
that this unexplored direction not only works but also works
well. (2) We propose two fundamental techniques, transition
sharing and table consolidation, to minimize TCAM space. (3)
We propose variable striding to speed up RE matching while
carefully controlling the corresponding increase in memory.(4)
We implemented our techniques and conducted experiments on
real-world RE sets. We show that small TCAMs are capable
of storing large DFAs. For example, in our experiments, we
were able to store a DFA with 25K states in a 0.5Mb TCAM
chip; most DFAs require at most 1 TCAM entry per DFA
state. With variable striding, we show that a throughput of up
to 18.6 Gbps is possible.
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APPENDIX

PROOFS

Lemma A.1:Given a valid shadow encoding for deferment
forestF , for any stateq and all statesp in q’s shadow,ID(p) ∈
SC(q).

Proof: The deferment property implies thatSC(p) ⊂
SC(q). The self-matching property implies thatID(p) ∈
SC(p). Thus, the result follows.

Lemma A.2:Given a valid shadow encoding for deferment
forestF , for any stateq and all statesp not in q’s shadow,
ID(p) /∈ SC(q).

Proof: This follows immediately from the non-
interception property.

Theorem A.1:Given a valid shadow encoding for a DFA
M and deferment forestF and a TCAM classifierC that uses
only binary state IDs for both source and destination state IDs
in transition rules and that orders the state tables according
to F , the TCAM classifier formed by replacing each source
state ID inC with the corresponding shadow code and each
destination state ID inC with the corresponding state ID will
be equivalent toC.

Proof: This follows from the first match nature of
TCAMs, the state tables are ordered according toF , and
Lemmas A.1 and A.2.

Theorem A.2:The state IDs and shadow codes generated
by our Shadow Encoding algorithm satisfy the SEP.

Proof: We prove by induction on the heightn of T . The
base case wheren = 0 is trivial since there is only a single
node. For the inductive case, our inductive hypothesis is that
the shadow codes and state IDs generated forTi for 1 ≤ i ≤ c
satisfy the SEP. Note, we do not process the root nodes in
this assumption. We now consider what happens when we
processs. For each nodev ∈ Ti for 1 ≤ i ≤ c, HCode(si)
is prepended to theSC(v) and ID(v). Thus, the SEP still
holds for all the nodes withinTi for 1 ≤ i ≤ c. For any
nodesp and q from different subtreesTi and Tj , it follows
that ID(p) /∈ SC(q) andID(q) /∈ SC(p) because HCode(si)
and HCode(sj) are not prefixes of each other. Finally, for all
nodesv ∈ T , ID(v) ∈ SC(s) becauseSC(s) contains only
*’s.

We define a prefix shadow encoding as a shadow encoding
where all shadow codes are prefix strings; that is, all *’s are
after any 0’s or 1’s. For any prefix shadow encodingE of T ,
ETi

denotes the subset of state ids and shadow codes for all
v ∈ Ti. For any state id or shadow codeX, p⌊X denotes the
first p characters ofX, andX⌋p denotes the lastp characters
of X. We defineETi

⌋p = {X⌋p | X ∈ ETi
}.

Lemma A.1:Consider a deferment treeT with a valid
lengthx prefix shadow encodingE that satisfies the SEP. For
every child si, 1 ≤ i ≤ c, of the root ofT , there exist two
valuespi andqi such that:

1) ∀i, 0 < pi ≤ x, 0 ≤ qi < x andpi + qi = x.
2) ∀i, ∀v ∈ Ti, pi

⌊ID(v) = pi
⌊SC(v) = pi

⌊SC(si).
3) ∀i, ETi

⌋qi is a valid prefix shadow encoding ofTi.
4) The setEID = {pi

⌊SC(si) | 1 ≤ i ≤ c} is prefix free.

Proof: SinceE is a prefix shadow encoding, for any child
si, SC(si) must be of the form{0, 1}a{∗}x−a. Let pi = a and

qi = x−a. Now, pi > 0, otherwise we would haveSC(si) =
{∗}x, which is not possible as it would violate the deferment
and non-interception properties. This proves (1). Also, sinceE
satisfies the deferment and self-matching properties, we must
have (2) and (3). And we must have (4) because of the non-
interception property.

Theorem A.3:For any deferment treeT , our shadow en-
coding algorithm generates the shortest possible prefix shadow
encoding that satisfies the SEP.

Proof: First, our shadow encoding algorithm generates a
prefix shadow encoding. We prove by induction on the height
n of T that it is the shortest possible prefix shadow encoding.
The base case wheren = 0 is trivial since the encoding for a
single node is empty and thus optimal. For the inductive case,
our inductive hypothesis is that the prefix shadow encoding
for Ti for 1 ≤ i ≤ c is the shortest possible.

Let E be the prefix shadow encoding generated by our
shadow encoding algorithm andF be the optimal prefix
shadow encoding. Letl and m be the lengths ofE and F
respectively. Letgi andwi be the values defined by Lemma
A.1 for E . And letpi andqi be the corresponding values forF .
By the inductive hypothesis, we havewi ≤ qi for 1 ≤ i ≤ c.

If m < l, this implies that the optimal shortest prefix
shadow encoding forT must compute a better set of HCode
equivalents for each child nodesi. In particular, we have that
maxi(pi + qi) < maxi(gi + wi). i.e. given equal or larger
initial lengths,{qi}, optimal prefix shadow encoding computes
prefix-free codesFID for the children that are shorter than
the prefix-free codesEID computed by the HCode subroutine.
However, this is a contradiction, since the Huffman style
encoding used to compute the HCodes minimizes the term
maxi(gi + wi) [26]. Therefore, we must havel ≤ m.

To formally specify our solution for the Partially De-
ferred Incomplete One-dimensional TCAM Minimization
Problem(Definition 3.1), we introduce the following notation.
Let di, i ≥ 1 denote the actual decisions in a classifier.
For a prefixP = {0, 1}k{∗}b−k, we useP to denote the
prefix {0, 1}k0{∗}b−k−1, andP to denote the matching prefix
{0, 1}k1{∗}w−k−1. For a classifierf on {∗}b and a prefix
P ⊆ {∗}b, fP denotes a classifier onP that is equivalent to
f (i.e. the subset of rules inf with predicates that are inP).
So f = f{∗}b . For i ≥ 1, fdi

P denotes a classifier onP that
is equivalent tof and the decision of the last rule isdi. Note
that all packets inP are specified by such classifiers. Classifier
fd0

P denotes the optimal classifier that is equivalent tof except
that it possibly defers some packets withinD. We useC(fdi

P )
to denote the cost of the minimum classifier equivalent tofdi

P

for i ≥ 0. [P (x)] evaluates to1 when the statement inside is
true; otherwise it evaluates to0. We usex to represent some
packet in the prefixP currently being considered.

Theorem A.4:Given a one-dimensional classifierf on {∗}b

and a subsetD ⊆ {∗}b with a set of possible decisions
{d1, d2, . . . , dz} and a prefixP ⊆ {∗}b, we have thatC(fdi

P )
is calculated as follows:
(1) For i > 0

C(fdi

P ) =

{

1 + [f(x) 6= di] if f is consistent onP
z

j=1

min(C(f
dj

P ) + C(f
dj

P
)− 1 + [j 6= i]) else
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(2) For i = 0:

C(fd0

P ) =

{

0 if P ⊆ D

min(minzi=1(C(fdi

P )), C(fd0

P ) + C(fd0

P
)) else

Proof: (1) When i > 0, we just build a minimum cost
complete classifier. The recursion and the proof is exactly the
same as given in [27] Theorem 4.1 (with decision weights
= 1). (2) We consider two possibilities. Either the optimal
classifier is a complete classifier or the optimal classifier is an
incomplete classifier. If the optimal classifier is incomplete, we
consider two cases. If the entire prefixP is contained withD
and can be deferred, the minimum cost classifier is to defer
all transitions and has cost0. Otherwise, the minimum cost
classifier forP would just be the minimum cost classifier for
P concatenated with the minimum cost classifier forP. This
is represented by the last term in the minimization for case
(2). The possibility that the optimal classifier is a complete
classifier is handled by the first term in the first minimization
for case (2).
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