Fast Regular Expression Matching
Using Small TCAM

Chad R. Meiners Jignesh Patel Eric Norige Alex X.'Liu Eric Torng

Abstract—Regular expression (RE) matching is a core compo- rapidly growing over time, fast and scalable RE matching is
nent of deep packet inspection in modern networking and security now a core network security issue.

devices. In this paper, we propose the first hardware-based RE matching algorithms are typically based on the Deter-

RE matching approach that uses Ternary Content Addressable . .~
Memory (T(?Alv?)? which is available as gﬁ-the-shelf chips and ministic Finite State Automata (DFA) representation ofulag

has been widely deployed in modern networking devices for tasks €xpressions. A DFA is a 5-tupl@), 3, 6, qo, A), whereQ is a
such as packet classification. We propose three novel techniquesset of statesy. is an alphabetj: ¥ x @ — @ is the transition
to reduce TCAM space and improve RE matching speed: function,qq is the start state, and C Q is a set of accepting
transition sharing, table consolidation, and variable striding. states. Any set of regular expressions can be converteinto

We tested our techniques on 8 real-world RE sets, and our . o . .
results show that small TCAMs can be used to store large equivalent minimum state DFA. The fundamental issue with

Deterministic Finite Automata (DFAs) and achieve potentially DFA-based algorithms is the large amount of memory required

high RE matching throughput. For space, we can store each of to store transition tablé. We have to storé(q,a) = p for

the corresponding 8 DFAs with 25,000 states in a 0.59Mb TCAM each statey and characte.

chip. Using a different TCAM encoding scheme that facilitates

processing multiple characters per transition, we can achieve B, Symmary and Limitations of Prior Art

potential RE matching throughput of 10 to 19 Gbps for each of

the 8 DFAs using only a single 2.36 Mb TCAM chip. Prior RE matching algorithms are either software-based [2]
[3], [4], [5], [6], [7], [8] or FPGA-based [9], [4]. Software
based solutions have to be implemented in customized ASIC

|. INTRODUCTION chips to achieve high-speed, the limitations of which idelu
high deployment cost and being hard-wired to a specific
A. Background and Problem Statement solution and thus limited ability to adapt to new RE matching

Deep packet inspection is a key part of many networkirfgﬂutions..A|thOUgh FPGA_-based solut_iong can be modified,
devices on the Internet such as Network Intrusion Detectié@Synthesizing and updating FPGA circuitry in a deployed
(or Prevention) Systems (NIDS/NIPS), firewalls, and layéystem to handle regular expression updates is slow and
7 switches. In the past, deep packet inspection typicaﬂ%kfflCMU thIS makes FPGA-baSGd.SOMtIOﬂS difficult to be
usedstring matchingas a core operator, namely examiningleployed in many networking devices (such as NIDS/NIPS
whether a packet’s payload matches any of a set of predefirfgtfl firewalls) where the regular expressions need to be eghdat
strings. Today, deep packet inspection typically ussgilar frequently [5].
expression (RE) matchings a core operator, namely exam-
ining whether a packet’s payload matches any of a set %f o _ .
predefined regular expressions, because REs are funddiyenta To address the limitations of prior art on high-speed RE
more expressive, efficient, and flexible in specifying dtadnatching, we propose the first Ternary Content Addressable
signatures [1]. Most open source and commercial deep packgmory (TCAM) based RE matching solution. We use a
inspection engines such as Snort, Bro, TippingPoint X506CAM and |ts_assomated SRAM to encode the transitions
and many Cisco networking appliances use RE matchirgf. the DFA built from an RE set where one TCAM entry
Likewise, some operating systems such as Cisco 10S améght encode multiple DEA transitions. TCAM entries and
Linux have built RE matching into their layer 7 filteringlookup keys are encoded in ternary as 0's, 1's, and *'s where
functions. As both traffic rates and signature set sizes dre stand for either 0 or 1. A lookup key matches a TCAM

entry if and only if the corresponding 0's and 1’s match; for

* Alex X. Liu is the corresponding author of this paper. example, key 0001101111 matches entry 000110****, TCAM

C. Meiners is now with MIT Lincoln Laboratory, Lexington, MAbut circuits compare a lookup key with all its occupied entries i
the work was conducted while he was at Michigan State UniyerMI. . .
chad.meiners@Il.mit.edu. J. Patel, E. Norige, A. Liu, and &ng are at parallel and return the index (or sometimes the contenthef t
Department of Computer Science and Engineering, Michigate Staiversity, ~ first address for the content that the key matches; this addre
East Lansing, MI 48824. Alex X. Liu is also with the DepartmehComputer js then used to retrieve the corresponding decision in SRAM.
Science and Technology at Nanjing University. The prelimingersion of
this paper titled “Fast Regular Expression Matching usimgas TCAMs Given an RE set, we first anStrUCt an equ'Valent minimum
for Network Intrusion Detection and Prevention Systems” wablished in state DFA [10]. Second, we build a two column TCAM lookup
USENIX Security 2010. This work is supported in part by thetidlzal Sci- tgple where each column encodes one of the two inpuds to
ence Foundation under Grant Numbers CNS-1017588 and CN&5084nd h D d thd h Third. f h
by the National Natural Science Foundation of China (Gramt §1272546). the sourcestate and t G”Pl_“ C_ aracter. !r , Tor eac
Email: {patelji1, norigeer, alexliu, tordg@cse.msu.edu. TCAM entry, we store thalestinationstate ID in the same

Our Approach

entry of the associated SRAM. Fig. 1 shows an example DF25000 x 28 x (8 + [log 25000])). This is infeasible given the

its TCAM lookup table, and its SRAM decision table. Wdargest available TCAM chip has a capacity of only 72 Mb. To
illustrate how this DFA processes the input stream “0110Q11laddress this challenge, we use two techniques that minimize
01100011". We form a TCAM lookup key by appending théhe TCAM space for storing a DFAransition sharingand
current input character to the current source state ID; is thable consolidation

example, we append the first input character “01101111" toThe basic idea of transition sharing is to combine multiple
“00", the ID of the initial statesy, to form “0001101111". transitions into one TCAM entry by exploiting two propesgie
The first matching entry is the second TCAM entry, so “01'9f DFA transitions: (1) character redundancy where many
the destination state ID stored in the second SRAM entry tinsitions share the same source state and destinatierasth
returned. We form the next TCAM lookup key “0101100011differ only in their character label, and (2) state reduroyan

by appending the second input character “011000011” to thidhere many transitions share the same character label and

returned state ID “01”, and the process repeats. destination state and differ only in their source state. One
TCAM SRAM reason for the pervasive character and state redundancy in
SeTD | Topt T DFAs constructed from real-world RE sets is that most states
00 [01100000 0 |5 have most of their outgoing transitions going to some com-
polll e v ool d IO mon “failure” state; such transitions are often called défa
01 | 01100000 0 s, transitions. The low entropy of these DFAs opens optimirati
g; g;;ggg;g 2 ?(1) " opportunities. We exploit character redundancydmaracter
PO - o |s bundling (i.e., input character sharing) and state redundancy
10 /01100000 0 s by shadow encodingi.e., source state sharing). In character
18 8:18 v | ?(1) N bundling, we use a ternary encoding of the input charactier fie
a,[d,0] | RO 00 |s, to represent multiple characters and thus multiple trenmst
e T T that share the same source and destination states. In shadow
S f S encoding, we use a ternary encoding for the source state ID to
Fig. 1. A DFA with its TCAM table represent multiple source states and thus multiple tiansit

that share the same label and destination state.

There are three key reasons why TCAM-based RE matchingrne pasic idea of table consolidation is to merge multiple
works well. First,a small TCAM is capable of encodingyansition tables into one transition table using the olmser
a large DFA with carefully designed algorithms leveragingjon that some transition tables share similar structuess,
the ternary nature and first-match semantics of TCAMs. Odpmmon entries) even if they have different decisions. This
experimental results show that each of the DFAs built froRhared structure can be exploited by consolidating similar
8 real-world RE sets with as many as 25,000 states, 4 @insition tables into one consolidated transition ta#aen
which were obtained from the authors of [3], can be storgge consolidates TCAM lookup tables into one consolidated
in a 0.59Mb TCAM chip. The two DFAs that correspond torcAM lookup table, we stord: decisions in the associated
primarily string matching RE sets require 28 and 42 TCAMRAM decision table.
bits per DFA state; 5 of the remaining 6 DFAs which have 2) Challenge 2: Improving RE Matching Spee@ne way
a sizeable number of “* patterns require 12 to 14 TCAMgp jmprove the throughput by up to a factor bfis to use
bits per DFA state whereas the 6th DFA requires 26 TCANLstride DFAs that consumk input characters per transition.
bits per DFA state. Second.CAMs facilitate high-speed REHowever, this leads to an exponential increase in both atede
matching because TCAMs are essentially high-performanggynsition spaces. To avoid this space explosion, we pBpos
parallel lookup systems: any lookup takes constant tie¢ & the novel idea ofzariable striding The basic idea of variable
few CPU cycles) regardless of the number of occupied entrig%iding is to use transitions with a variety of strides so
Using Agrawal and Sherwood’s TCAM model [11] and thenat we increase the average number of characters consumed
resulting required TCAM sizes for the 8 RE sets, we shoper transition while ensuring all the transitions fit within
that it may be possible to achieve throughput ranging betwege allocated TCAM space. This idea is based on two key
5.36 and 18.6 Gbps using only a single 2.36 Mb TCAM chigypservations. First, for many states, we can capture many bu
Third, because TCAMs are off-the-shelf chips that are widehot gl £-stride transitions using relatively few TCAM entries
deployed in modern networking devicasshould be easy to \yhereas capturing ali-stride transitions requires prohibitively
design networking devices that include our TCAM-based FﬁEany TCAM entries. Second, with TCAMs, we can store
matching solution It may even be possible to immediatelyyansitions with different strides in the same TCAM table.
deploy our solution on some existing devices. 3) Challenge 3: Handling REs with Counting Con-
straints: For REs with large counting constraints (such as
. *a. { n} bc), the corresponding DFA may have an exponen-

1) Challenge 1: Encoding Large DFA in Small TCAM: tial number of states in the lengthof the counting constraint.
Directly encoding a DFA in a TCAM using one TCAM Other researchers have developed automata models to handle
entry per transition is infeasible. For example, consider REs with counting constraints such as the counting-DFA
DFA with 25,000 states that consumes one 8 bit characfmoposed by Becchét al. [12]. We propose to handle such
per transition. We would need a total df0.38 Mb (= REs using counting-DFA, which works well with RegCAM.

D. Technical Challenges and Proposed Solutions

Il. RELATED WORK is orthogonal to our approach. While we have only applied our
technigues to DFAs in this initial study of TCAM-based RE
In the past, deep packet inspection typically used strimgatching, our techniques may work very well with scratch
matching (often called pattern matching), which have be@hemory-based automata.
extensively studied [13], [14], [15], [16]). TCAM-based-so Prior FPGA-based solutions exploit the parallel procegsin
lutions have been proposed for string matching, but they dapabilities of FPGA technology to implement nondetermin-
not generalize to RE matching because they only deal wittic finite automata (NFA) [9], [4] or parallel DFAs [23].
independent strings [14], [15], [16]. While NFAs are more compact than DFAs, they require more
Today, deep packet inspection often uses RE matching rmemory bandwidth to process each transition as an NFA may
a core operator because strings are no longer adequatddan multiple states whereas a DFA is always only in one state
precisely describe attack signatures [17], [1]. Most priork Thus, each character might be processed in u@tdransition
on RE matching falls into two categories: software-basedbles. Prior work has looked at ways for finding good NFA
and FPGA-based. Prior software-based RE matching sofutioepresentations of the REs that limit the number of statas th
focus on either reducing memory by minimizing the number afeed to be processed simultaneously. However, FPGA's tanno
transitions/states or improving speed by increasing tmeban be quickly reconfigured, and they have clock speeds that are
of characters per lookup. Such solutions can be implementdwer than ASIC chips. Note that the RE matching solutions
on general purpose processors, but customized ASIC clfiat can be implemented in ASIC and simulated by FPGA,
implementations are needed for high speed performance. Hwse do not fall into this category.
transition minimization, two basic approaches have been pr
posed: alphabet encoding that exploits character redugdan I1l. TRANSITION SHARING

[2], [3], [4], [8] and default transitions that exploit smltedlun- The basic idea of transition sharing is to combine multiple
dancy [5], [6], [3], [7]. Previous alphabet encoding ap transitions into a single TCAM entry. We propose two transi-

full loit local ch ifiedch
cannot fully exploit local character redundancy specifieaoh n sharing ideas: character bundling and shadow encoding

state. Most use a single alphabet encoding table that cgn Jé aracter bundling exploits intra-state optimization
exploit global character redundancy that applies to evetes . . S i . b
ploit g y bp ties and minimizes TCAM tables along the input character

Kong et al. proposed using 8 alphabet encoding tables) . . g
partitioning the DFA states into 8 groups with each grou%fmensm.n'. Shadow .enchmg exploits inter-state optitiuna
having its own alphabet encoding table [8]. Our work impsove pportL_mltles_and minimizes TCAM tables along the source
upon previous alphabet encoding techniques because we e dimension.

exploit local character redundancy specific to each state. O

work improves upon the default transition work because we @o Character Bundling

not need to worry about the number of default transitions tha cpgracter bundling exploits character redundancy by com-
a lookup may go through because TCAMs allow us to traverg,ing multiple transitions from the same source state & th
an arbitrarily long default transition path in a single lopk same destination into one TCAM entry. Character bundling
Some transition sharing ideas have been used in some TCAMsists of four steps. (1) Assign each state a unique ID of
based string matching solutions for Aho-Corasick-basedDF 1, |1 bits. (2) For each state, enumerate all 256 transition
[16], [18]. However, these ideas do not easily extend to DFA§|es where for each rule, the predicate is a transitiorbella
generated by general RE sets, and our techniques prodygg the decision is the destination state ID. (3) For eadh,sta
at least as much transition sharing when restricted t0Gtrireating the 256 rules as a 1-dimensional packet classifier
matching DFAs. One recently published transition shart@i 4 |everaging the ternary nature and first-match semantics
is the offset-DFA idea proposed by Liet al. that exploits of TCAMSs, we minimize the number of transitions using the
similarity in the transition function structure betweenotw gntimal 1-dimensional TCAM minimization algorithm in [24]
states even if t.hgy.do_not have the same destination st[a;g]. (4) Concatenate th&Q| 1-dimensional minimal prefix
[19]. For state minimization, two fundamental approact®®h c|assifiers together by prepending each rule with its source
been proposed. One approach is to first partition RES indgyte |D. The resulting list can be viewed as a 2-dimensional
multiple groups and build a DFA from each group; at rugjassifier where the two fields are source state ID and tiansit
time, packet payload needs to be scanned by multiple DFfie| and the decision is the destination state ID. Fig. Wsho
[20], [9], [21]. This approach is orthogonal to our work andy, example DFA and its TCAM lookup table built using
can be used in combination with our techniques. In partitulgnaracter bundling. The three chunks of TCAM entries encode
because our techniques achieve greater compression of DRAS 256 transitions fokg, s1, and so, respectively. Without

than previous software-based techniques, less partigoof character bundling, we would ne€d6 x 3 entries.
REs will be required. The other approach is to use scratch

memory to store variables that track the traversal histo a]

avoid some duplication of states [22], [17], [12]. The benefP- Shadow Encoding

of state reduction for scratch memory-based FAs does notWhereas character bundling uses ternary codes in the input
come for free. The size of the required scratch memory maklaracter field to encode multiple input characters, shadow
be significant, and the time required to update the scratehcoding uses ternary codes in the source state ID field to
memory after each transition may be significant. This apgroaencode multiple source states.

1) Observations:We use our running example in Fig. 1
to illustrate shadow encoding. We observe that all traomssti
with source states; and s, have the same destination state
except for the transitions on charactet.ikewise, source state
so differs from source states, and s, only in the character
rangela, o]. This implies there is a lot of state redundancy. The
table in Fig. 2 shows how we can exploit state redundancy to
further reduce required TCAM space. First, since states
and s, are more similar, we give them the state IDs 00 aqg 3
01, respectively. State, uses the ternary code of 0* in the 9=
state ID field of its TCAM entries to share transitions wittstructing a deferment foregt and then using the partial order
states;. We give statesy the state ID of 10, and it uses thedefined byF. If there is a directed path from stageto state
ternary code ofx in the state ID field of its TCAM entries to ¢ in F, we say that statg defersto stateq, denotedp >~ q. If
share transitions with both statesands,. Second, we order p > ¢, we say that statp is in stateg’s shadow. Specifically,
the state tables in the TCAM so that state is first, state stateq’s transition table must be placed after the transition
so IS second, and state is last. This facilitates the sharingtables of all states in statgs shadow.
of transitions among different states where earlier state® Our algorithm to compute a deferment forest that minimizes
incomplete tables deferring some transitions to lateresbl the TCAM representation of the resulting?|BA builds upon

242, 243 @
255 @

(b) ©
D?FA, SRG, and deferment tree of the DFA in Fig. 1

TCAM SRAM algorithms from prior work [5], [6], [3], [7], but there are
Sre f:ateo'('f T Degtl_Stj;e D several key differences. First, unlike prior work, we do not
——0% | 0110 00TF 00+ s, pay a speed penalty for long default transition paths. Thus,
e 8: 8118 0000 égf %0 we achieve better transition sharing than prior work. Sdcon
* | 0110 0000 10+ 50 to maximize the potential gains from our variable striding
so ™ | 0110 = 00 o technique described in Section V and table consolidatia, w

choose states that have lots of self-loops to be the roots of
our deferment trees. Prior work has typically chosen roots
In the rest of this section, we solve the following threén order to minimize the distance from a leaf node to a
problems in order to implement shadow encoding: (1) Findot, though Becchi and Crowley do consider related ceteri
the best order of the state tables in the TCAM (any order véhen constructing their £FA [3]. Third, we explicitly ignore
allowed). (2) Choose binary IDs and ternary codes for eatfansition sharing between states that have few transition
state given the state table order. (3) Identify entries tooee in common. This has been done implicitly in the past, but
from each state table. we show how doing so leads to better results with table
Our shadow encoding technique builds upon prior worgonsolidation.
with default transitions [5], [6], [3], [7] by exploiting #h Our algorithm consists of four steps. First, we construct a
same state redundancy observation and using their commeptSpace Reduction Graph (SRG), [5], from a given DFA. Given
default transitions and Delayed input DFAS?(). However, a DFA with |Q| states, an SRG is a clique witlp| vertices
our final technical solutions are different because we wosach representing a distinct state. The weight of each edge
with TCAM whereas prior techniques work with RAM. Foris the number of common outgoing transitions between the
example, the concept of a ternary state code has no mearting connected states. Second, we trim away edges with small
when working with RAM. The key advantage of shadowveight from the SRG. In our experiments, we use a cutoff of
encoding in TCAM over prior default transition work is speedl0. This pruning is effective because the distribution ofesd
Shadow encoding in TCAM incurs no delay whereas priaveights in our experiments is bimodal: usually either very
default transition techniques incur significant delay liseaa small (< 10) or very large & 180). Using these low weight
DFA may have to traverse multiple default transitions beforedges as default transitions leads to more TCAM entries and
consuming an input character. reduces the number of deferment trees which hinders ows tabl
2) Determining Table Order:We first describe how we consolidation technique (Section 1V). Third, we compute a
compute the order of tables within the TCAM. We useéeferment forest by running Kruskal's algorithm to find a
some concepts such as default transitions afigADthat were maximum weight spanning forest. Fourth, for each deferment
originally defined by Kumaet al. [5] and subsequently refinedtree, we pick the state that has largest number of transition
in [6], [3], [7]. going back to itself as the root. Fig. 3(b) and (c) show the SRG
A D?FA is a DFA with default transitions where each statand the deferment tree, respectively, for the DFA in Fig. 1.
p can have at most one default transition to one other gtate In most deferment trees, more than 128.(half) of
in the D’FA. In a legal BFA, the directed graph consistingthe root state’s outgoing transitions lead back to the root
of only default transitions must be acyclic; we call thispgra state; we call such a stateself-looping stateBased on the
a deferment forestlt is a forest rather than a tree since morgigeonhole principle and the observed bimodal distribytio
than one node may not have a default transition. We calleach deferment tree typically has exactly one self-looping
tree in a deferment forestdeferment tree state, and it is the root state. We choose self-looping stade
We determine the order of state tables in TCAM by comroots to improve the effectiveness of variable striding ahhi

Fig. 2. TCAM table with shadow encoding

we describe in Section V. PQ, initialized with n + 1 elements (one for and each of its

When we apply Kruskal’s algorithm, we use a tie breakinghildren) that is ordered by node weight. Whik&) has more
strategy because many edges have the same weight. To Ithe@ one element, we remove the two elementndy with
most deferment trees centered around a self-looping state, lowest weight fromP(Q, create a new internal noden 7" with
give priority to edges that have the self-looping state as otwo childrenz andy, and set weight)=maximum(weight(),
endpoint. weight(y))+1, and then put elementinto PQ. WhenPQ has

3) Shadow Encoding AlgorithmWe now describe our only one element] is complete. The HCode assigned to each
shadow encoding algorithm which takes as input a defermegif nodev’ is the path inT” from the root node ta’ where
forest I' with one node per state and outputsshadow |eft edges have value 0 and right edges have value 1.
encodingwhich consists of a ternarghadow codgSC(q)) We update the internal variables ofand its descendants
and a binarystate ID (ID(q)) for each statey. State IDs in DT as follows. We set.(v) to be its HCode, andV (v)
are used in the destination state ID field of transition ruleg be the weight of the root node 6f; G(v) is left empty.
Shadow codes are used in the source state ID field of tramsitigor each childv;, we prependy;’s HCode to the global ID
rules. Theshadow lengtof a shadow encoding is the commoryf every node in the subtree rootedatincluding v; itself.
length of every state ID and shadow code. A valid shadowe then markv as red. This continues until all nodes are
encoding for a given deferment foregt must satisfy the red. We now set state IDs and a shadow codes. The shadow

following four Shadow Encoding PropertigSEP): length is k, the weight of the root node oDT. We use
1) Uniqueness PropertyFor any two distinct states and {x}™ to denote a ternary string wittn *'s and {0}™ to
¢, ID(p) # ID(q) and SC(p) # SC(q). denote a binary string witm 0’s. For each node, ID(v) =

2) Self-Matching Property For any statep, ID(p) € G(v)|L(v)|{0}f~#C@)=#L1) SO (v) = G(v)|{*}F~#C@),
SC(p) (i.e, ID(p) matchesSC(p)).

3) Deferment PropertyFor any two statep andq, p > ¢
(i.e., ¢ is an ancestor gf in the given deferment forest)
if and only if SC(p) C SC(q).

4) Non-interception Propertyor any two distinct states
andgq, p > ¢ if and only if ID(p) € SC(q).

: ¢ sc=*
000 ID= 000
:3

We prove that these properties are sufficient to properly : : :
encode DFA transitions in the appendix, Theorem A.1. wognt 0o ” y F S
We give a shadow encoding algorithm where the deferment HCode: 000 001 o1 1
forest is a single deferment treé®@7. We handle deferment @ ®) ©

forests by simply creating a virtual root node whose chitdrerig. 4. Shadow encoding example

are the roots of the deferment trees in the forest and thenW il had di lorithm in Ei 4
running the algorithm on this tree. In the following, we mefe e illustrate our shadow encoding algorithm in Figure 4.

to states as nodes. Our algorithm uses the following mle”ﬁgure 4(a) shoyvs all the internal variables just befmqg
variables for each node: a local binary ID denoted.(v), a 'S propessed. Figure 4(b) shows the Hgffman style binary
global binary ID denoted+(v), and an integer weight denotedenCOdd'n?] tree” ?L_“It farcn(:jdevlFand |ts4ch|IdLem2, U3 ﬁnd de’
W (v) that is the shadow length we would use for the subtree]@"f &Tn t ﬁ reslut;ur}ng Io eISI.D 'gure “gc) sdovt\:s;ac I"I(;) €s
DT rooted at. Intuitively, the state ID ob will be G(v)|L(v) inal weight, global 1D, local ID, stat.e ' and shadow code.
where| denotes concatenation, and the shadow codewal We prove the _correctness and optlmghty of our algorithm in
be the prefix stringi (v) followed by the required number of Proofs A.2, A.3 in the appendix. Experimentally, no DFA had
»s; some extra padding characters may be needed. We Gsghadow length larger thaflog, |Q[] + 3 where [log, |Q|]
#L(v) and #G(v)to denote the number of bits if(v) and S the shortest possible shadow length.
G(v), respectively. Our algorithm processes nodes bottom-up4) Choosing Transitions:For a given DFA and a corre-
For all v, we initially setL(v) = G(v) =) and W (v) = 0. sponding deferment forest, we construct &R by choosing
Each leaf node oDT is now processed, which we denote byvhich transitions to encode in each transition table asvs|
marking them red. We process an internal nedwhen all If state p has a default transition to statg we identify
its childrenv,,--- ,v,, are red. Once a node is processed, p's deferrable transitions which are the transitions tha ar
its weight W (v) and its local IDL(v) are fixed, but we will common to botty’s transition table and's transition table.
prepend additional bits to its global I3 (v) when we process These deferrable transitions are optional fgs transition
its ancestors imDT. table; that is, they can be removed to create an incomplete
We assign and each of its children a variable-length binarffansition table or included if that results in fewer TCAM
codeHCodesuch that no HCode is a prefix of another HCodé&ntries. Fig. 2 is an example where including a deferrable
One option is to assign each node a binary number froff@nsition produces a smaller classifier. The second entry i
0 to n usinglg(n + 1) bits. To minimize the shadow codes2’s table in Fig. 2 can be deferred to staig's transition
length W (v), we use a Huffman coding style algorithm tdable. However, this results in a classifier with at least AWC
compute the HCodes arid (v). This algorithm uses two dataentries whereas specifying the transition allows a classifi
structures: a binary encoding tr@e with n + 1 leaf nodes, With just 3 TCAM entries. This leads us to the following
one forv and each of its children, and a min-priority queu®roblem for which we give an optimal solution.

Definition 3.1: (Partially Deferred Incomplete One-A. Observations

dimensional TCAM Minimization Problem) Table consolidation is based on three observations. First,
Given a one-dimensional packet classifieron {x}* and a semantically different TCAM tables may share common en-
subsetD C {x}", find the minimum cost prefix classifief’ tries with possibly different decisions. For example, these
such thatCover(f') 2 {*}" \ D and is equivalent tgf over aples fors,, s; andss, in Fig. 1 have three entries in common:
Cover(f"). 01100000, 0110**** and *******_Table consolidation pre
Hereo is the field width (in bits)D is the set of packets thatvides a novel way to remove such information redundancy.
can be deferred, an@over(c) is the union of the predicatesSecond, given any set df 1-decision tablesTy, - -, Ty_1,
of all the rules inc (i.e. all the packets matched hy). For we can always find &@-decision tableT such that for any
simplicity of description, we assume thfithas flattened rule i (0 < i < k), the conditionT; = T[] holds. This is easy
set {.e. one rule for each packet with the packet as the rute prove as we can use one entry per each possible binary
predicate). Assuming the packet is a one byte character, thearch key irlT. Third, a TCAM chip typically has a build-
implies f has 256 rules. in SRAM module that is commonly used to store lookup
We provide a dynamic programming formulation for solvinglecisions. For a TCAM with. entries, the SRAM module
this problem that is similar to the dynamic programmings arranged as an array afentries where SRAM[i] stores the
formulation used in [27] and [24] to solve the related prable decision of TCAM[i] for everyi. A TCAM lookup returns
when all transitions must be specified. In these previotise index of the first matching entry in the TCAM, which
solutions for complete classifiers, for each prefix, the dyica is then used as the index to directly find the corresponding
program maintains an optimal solution for each possibld findecision in the SRAM. In table consolidation, we essertiall
decision. It then specifies how to combine these optimtihde SRAM space for TCAM space because each SRAM
solutions for matching prefixes into an optimal solution foentry needs to store multiple decisions. As SRAM is cheaper
the prefix that is the union of the two matching prefixes; iand more efficient than TCAM, moderately increasing SRAM
this step, two final rules for each prefix that have the samisage to decrease TCAM usage is worthwhile.
decision can be replaced by a single final rule for the contbine Fig. 5 shows the TCAM lookup table and the SRAM
prefix resulting in a savings of one TCAM entry. The maiglecision table for a 3-decision consolidated table forestas,
change is to maintain an optimal solution for each prefixi, andss in Fig. 1. In this example, by table consolidation,
where we defer some transitions within the prefix. Our formate reduce the number of TCAM entries from 11 to 5 for
characterization of this algorithm and proof of its resudtes Storing the transition tables for states, si, and s,. This
is given in Theorem A.4, in the appendix. consolidated table has an ID of 0. As both the table ID and
Next, we discuss RE set updates. RE set updating Gelumn ID are needed to encode a state, we use the notation
typically infrequent, unlike IP lookup. When an RE set is< Table ID > @ < Column ID > to represent a state.
updated, we can use another computer to run our algorithms TCAM SRAM

Consolidated Input Column ID

to compute the TCAM entries. Note that TCAM chips are Src Table ID | Character 00 [01 | 10
often deployed in tandem. Thus, when one chip is updating, ° oo ooy 20| s | w0
the other chip can be continuously queried. 0 0110 0011 s1 | s2 | s1
0 0110 **x* S1 So S0
0 *kkk kkkk SO SO SO

Fig. 5. 3-decision table for 3 states in Fig. 1
IV. TABLE CONSOLIDATION There are two key technical challenges in table consolida-
tion. The first challenge is how to consolidatel-decision
We now presentable consolidationwhere we combine transition tables into &-decision transition table. The second
multiple transition tables for different states into a $ing challenge is which 1-decision transition tables should be
transition table such that the combined table takes lessMrCAconsolidated together. Intuitively, the more similar twe 1
space than the total TCAM space used by the original tablggcision transition tables are, the more TCAM space saving
To define table consolidation, we need two new concépts: We can get from consolidating them together. However, we
decision rule and:-decision table. Ak-decision ruleis a rule have to consider the deferment relationship among states. W
whose decision is an array &fdecisions. Ak-decision table present our solutions to these two challenges.
is a sequence ok-decision rules following the first-match
semantics. Given &-decision tableT andi (0 < i < k), if B. Computing ak-decision table
for any ruler in T we delete all the decisions except thth In this section, we assume we know which states need to be
decision, we get a 1-decision table, which we denot&[@s consolidated together and present a local state consoldat
In table consolidation, we take a set bfl-decision tables algorithm that takes #;-decision table for state se; and
To,---,Tx—1 and construct &-decision tableT such that a k,-decision table for another state s&t as its input and
for any: (0 < i < k), the conditionT; = T[:] holds where outputs a consolidate¢k; + k-)-decision table for state set
T; = T[i] means thal’; andT[:] are equivalentife., they have S; U S;. For ease of presentation, we first assume that
the same decision for every search key). We call the process= 1.
of computingk-decision tableT table consolidationand we Let s; and sy be the two input states which have default
call T the consolidated table transitions to statess ands,. The consolidated table will be

assigned a common table IF. We assign statg; column root. We define the root to be a level 0 node. Third, if two
ID 0 and states; column ID 1. Thus, we encodg as X@Q0 level: nodes are consolidated together, their levell parent
and s; as X@1. We enforce a constraint that if we do nonhodes must also be consolidated together. An example legal
consolidates; and s, together, thens; and s, cannot defer matching of nodes between two deferment trees is depicted in
any transitions at all. If we do consolidate and s, together, Fig. 6.
then s; and s may have incomplete transition tables due to
default transitions t@3 and sy, respectively. Py ; :
The key concepts underlying this algorithm are breakpoints 5
and critical ranges. To define breakpoints, it is helpful iew
¥ as numbers ranging from 0 {&|—1; given 8 bit characters, @ @ @ ‘ Q @ @ ’
|X| = 256. For any states, we define a charactere ¥ to @ ‘@ D ’
be abreakpointfor s if §(s,i) # &(s,i — 1). For the end ’ . @
cases, we defin@ and |X| to be breakpoints for every state i
Let b(s) be the set of breakpoints for stateWe then define Fig. 6. Consolidating two trees
b(S) = U,esb(s) to be the set of breakpoints for a set of
statesS C Q. Finally, for any set of stateS, we definer(.S)
to be the set of ranges defined byS): r(S) = {[0,b2 —
1], [b2,b3 = 1], ..., [bjy(sy|—1, |X] — 1]} whereb; is ith smallest
breakpoint inb(.S). Note that) = b, is the smallest breakpoint
and |X| is the largest breakpoint in(S). Within r(S), we
label the range beginning at breakpotptasr; for 1 < i <
|b(S)| — 1. If §(s,b;) is deferred, them; is a deferred range.
When we consolidates; and s, together, we compute

Given two deferment trees, we start the consolidation pro-

cess from the roots. After we consolidate the two roots, we

need to decide how to pair their children together. For each
pair of nodes that are consolidated together, we again must
choose how to pair their children together, and so on. We
make an optimal choice using a combination of dynamic

programming and matching techniques. Suppose we wish to
compute the minimum cosC(z,y), measured in TCAM

entries, of consolidating two subtrees rooted at nadesd
b({s1,50}) andr({s1,s2}). For eachr’ € r({s1,s2}) where y where z hasu children X = {z,...,z,} andy has

3
rs r:(()jt a(;jeferred rangle for: bOﬂ;l] a;d 52, wecheate a y childrenY = {yi,...,y,}. We first recursively compute
consolidated transition rule where the decision of theyelstr (. Yo 1 < < 4 and1 < j < v using our local state

the ordered pair of decisions for state and s, on r’. For consolidation algorithm as a subroutine. We then constuct

eachr’ € r({s1,s2}) wherer’ is a deferred range for one of . complete bipartite graplix y such that each edgers, y;)
s1 but not the other, we fill i’ in the incomplete transition has the edge weightt(z; y) for1<i<uandl < j ’<;}
1y) = = iy -~ .

table where it is deferred, and we create a consolidateg eNtfare C(z,y) is the cost of a minimum weight matching

where the decision of the entry is the ordered pair of demsmof K(X, Y) plus the cost of consolidating and y. When
for states; andse on /. Finally, for eachr’ € r({s1, s2}) : '

wherer’ is a deferred range for botk, and s, we do not
create a consolidated entry. This produces a non-overigppi
set of transition rules that may be incomplete if some rang
do not have a consolidated entry. If the final consohdate
transition table is complete, we minimize it using the optim
1-dimensional TCAM minimization algorithm in [24], [25].
If the table is incomplete, we minimize it using the 1-
dimensional incomplete classifier minimization algoritfim
[27]. We generalize this algorithm to cases where> 1 and
ko > 1 by simply considering:; + k2 States when computing
breakpoints and ranges.

set with nuII states that defer all transmons
Finally, we must decide which trees to consolidate together
e assume that we produdedecision tables wheré is
a power of 2. We describe how we solve the problem for
k = 2 first. We create an edge-weighted complete graph with
where each deferment tree is a node and where the weight of
each edge is the cost of consolidating the two corresponding
deferment trees together. We find a minimum weight matching
of this complete graph to give us an optimal pairing fot 2.
For largerk = 2!, we then repeat this proceks 1 times. Our
matching is not necessarily optimal fér> 2.

In some cases, the deferment forest may have only one tree.
C. Choosing States to Consolidate In such cases, we consider consolidating the subtreesdroote

We now describe our global consolidation algorithm for dedt the children of the root of the single deferment tree. We
termining which states to consolidate together. As we ofeser also consider similar options if we have a few defermentstree
earlier, if we want to consolidate two statesands, together, but they are not structurally similar.
we need to consolidate their parent nodes in the defermentl) Greedy Matching:Our algorithm using the matching
forest as well or else lose all the benefits of shadow encodisyibroutines gives the optimal pairing of deferment trees bu
Thus, we propose to consolidate two deferment trees togettwan be relatively slow on larger DFAs. When running time is

A consolidated deferment tree must satisfy the following concern, we present a greedy matching routine. When we
properties. First, each node is to be consolidated with m¢ed to match children of two nodes,and y, we consider
most one node in the second tree; some nodes may notope child at a time from the node with fewer children (say
consolidated with any node in the second tree. Second, b leest all children ofy are setunmarked For each childz;,
¢ node in one tree must be consolidated with a lévebde in of x, we find thebest matchfrom the unmarked children of
the second tree. The level of a node is its distance from thematch them up, and set the matched child; ias marked

The best match for; is given by transitions, and each transition is labeled with (1) a uaiqu
. O(xs,y;) ;tring pfk characters and (2) a stride length(l < j < k)
argmin,, c tunmarked children Oy}m indicating the number. of chargqters consumed.

! J In TCAM-based variable striding, each TCAM lookup uses
whereC'(z) is just the cost (in TCAM entries) of the subtreghe nextk consecutive characters as the lookup key, but the
rooted atz. If C'(z;)+C(y;) = 0, then we set the ratio ©.5. number of characters consumed in the lookup varies from 1
All unmarked children ofy at the end are matched with nullto k; thus, the lookup decision contains both the destination
states. We consider the children ofin decreasing order of state ID and the stride length.

C'(z;) to prioritize the larger children aof. We use the same

approach for matching roots. First all roots are set unnuarkéd. Observations

Each time we consider the largest unmarked root, find the bestWe use an example to show how variable striding can

match for it, and then mark the newly matched roots. achieve a significant RE matching throughput increase with
In our experiments, this greedy approach runs much fastesmall and controllable space increase. Fig. 8 sho¥sar-

than the optimal approach and the resulting classifier sizestride transition table that corresponds to stajein Figure

not much larger. We also observe that another greedy agproac This table only has 7 entries as opposed to 116 entries

that use<’(z;, y;) instead of#% produces classifiers in a full 3-stride table fors,. If we assume that each of the

with much larger TCAM sizes. This approach often match&56 characters is equally likely to occur, the average numbe

a large child ofr with a small child ofy that it does not align of characters consumed p8rvar-stride transition ofs, is

well with. 1%1/16 + 2 % 15/256 + 3 * 225/256 = 2.82.
TCAM SRAM
. . . SRC Input DEC: Stride
D. Effectiveness of Table Consolidation 50 | 0110 00QQ e wr %aat w so : 1
i i i SO 0110 Kkkk kkkk kkkk kkkk kkkk Sl : 1
We now explain why table consolidation works well on 50 | e w0110 0000 *rws weex 50 12
~ . SO *khkk kkkk 0110 *kkk kkkk kkkk 51 : 2
real-world RE sets. Our algorithm proceeds as follows. ou | v s e s 0110 0000 i3
Most real-world RE sets So | ek s sk e 070 e s1 13
. . . Kkkk kkkk hkkk khkkk kkkk hkkk .

contain REs with wildcard 50 S0 : 3

closures “* where the
wildcard ‘7 matches
any character and the
closure “*' allows for
unlimited repetitions of
the preceding character.
Wildcard closures create
deferment trees with lots
of structural similarity.
For example, consider the

-96.b.d-255 . . .
¥ Fig. 8. 3-var-stride transition table fasg

B. Eliminating State Explosion

We first explain how converting a 1-stride DFA toka
stride DFA causes state explosion. For a source state and a
destination state pairs{d), a k-stride transition path from
to d may containk — 1 intermediate states (excluding; for
each unique combination of accepting states that appear on a
k-stride transition path froms to d, we need to create a new
destination state because a unique combination of acgeptin
I states implies that the input has matched a uniqgue combmati
{DQL:'; 'TbFC'g' 7;2;5}'5 set @ of REs. This can be a very large number of new states.

C o v We eliminate state explosion by ending akhyar-stride
where we use dashedrig 7. Fa for {abc, cdg transition path at the first accepting state it reaches. Taks
grrfowls to r_ejprese_?;c] the 4 wildeard cl w0 oy, YAT-Stride DFA has the exact same state set as its correisgond
ReI‘Ea.u*tat.rirE)S(;“?jZSpllicatissﬁﬁgnenrivrle CDaILA Csaztjsrteru.cturl(raef‘oé_smde DFA. Endingk-var-stride transitions at accepting

- X o tates does have subtle interactions with table consmidat
recognizing strmgc.de. Thus, table consollda_ltlon of theand shadow encoding. We end akyvar-stride consolidated
sgbtrge(o, 1,2,3) W|th the subtree(4,5,6,7) will lead to 0 civion path at the first accepting state reached in amy on
significant space saving. of the paths being consolidated which can reduce the exgpecte

throughput increase of variable striding. There is a sinbla
V. VARIABLE STRIDING even more subtle interaction with shadow encoding which we

We explore ways to improve RE matching throughpudescribe in the next section.
by consuming multiple characters per TCAM lookup. One
possibility is ak-stride DFA which useg:-stride transitions C. Controlling Transition Explosion
that consume: characters per transition. Althoughstride In a k-stride DFA converted from a 1-stride DFA with
DFAs can speed up RE matching by up to a factorkof alphabetY, a state hagX|* outgoing k-stride transitions.
the number of states and transitions can grow exponentiafjthough we can leverage our techniques of character bogdli
in k. To limit the state and transition space explosion, wend shadow encoding to minimize the number of required
propose variable striding usingariable-stride DFAs A k- TCAM entries, the rate of growth tends to be exponential
var-stride DFA consumes between 1 dngharacters in each with respect to stride lengtih. We have two key ideas to
transition with at least one transition consumingharacters. control transition explosion: self-loop unrolling aridvar-
Conceptually, each state in k-var-stride DFA has256* stride transition sharing.

1) Self-Loop Unrolling Algorithm:We now consider root not shared withsy because those transitions will constitute
states, most of which are self-looping. We have two methodgs k-var-stride transition table. Although this computation
to compute thek-var-stride transition tables of root statesis trivial for 1-stride DFASs, this is a significant challenémr
The first is direct expansion (stopping transitions at atiogp k-var-stride DFAs because each state has too m256/} k-
states) since these states do not defer to other states whiaghstride transitions. The straightforward algorithrattenu-
results in an exponential increase in table size with respecerates all transitions has a time complexity@(fQ|?|[*),
to k. The second method, which we caklf-loop unrolling which grows exponentially witlk. We propose a dynamic pro-
scales linearly withk. gramming algorithm with a time complexity @?(|Q|?|%|k),

Self-loop unrolling increases the stride of all the seligo which grows linearly withk. Our key idea is that the non-
transitions encoded by the last default TCAM entry. Setiplo shared transitions for &-stride DFA can be quickly computed
unrolling starts with a root statg-var-stride transition table from the non-shared transitions of le-1)-var-stride DFA. For
encoded as a compressed TCAM tablenokntries with a example, consider the two states and s, in Fig. 9 where
final default entry representing most of the self-loops & ths; defers tos,. For charactew, s; transits toss while s,
root state. Note that given any complete TCAM table wheteansits tos,. Assuming that we have computed &K-1)-
the last entry is not a default entry, we can always replaae tivar-stride transitions oks that are not shared with thek-
last entry with a default entry without changing the sentanti1)-var-stride transitions ofsy, if we prepend all thesek-
of the table. We generate thgr1)-var-stride transition table 1)-var-stride transitions with character the resultingk-var-
by expanding the last default entry intonew entries, which stride transitions ofs; are all not shared with thé-var-
are obtained by prepending 8 *s as an extra default field $tride transitions ofs, and therefore should all be included in
the beginning of the originat entries. This produces @1)- s;'s k-var-stride transition table. Formally, usings;, s;, k)
var-stride transition table witBn — 1 entries. Fig. 8 shows theto denote the number of-stride transitions ofs; that are
resulting table when we apply self-loop unrolling twice twve t not shared withs;, our dynamic programming algorithm uses
DFA in Fig. 1. the following recursive relationship betweerts;, s;, k) and

2) k-var-stride Transition Sharing AlgorithmSimilar to 1- n(s;, s;, k — 1):

stride DFAs, there are many transition sharing opportesiith [0 ifs=s L
a k-var-stride DFA. Consider two states ands; in a 1-stride n(si,s5,0) = 1 if s #s; @)
DFA wheres defers tas;. The deferment relationship implies o _ '

that s; shares many common 1-stride transitions with In n(si; 85, k) = Zn((s(s“ ¢),8(s5,¢), k —1) @

. . ceX
the k-var-stride DFA constructed from the 1-stride DFA, all 1he apove formulae assume that the intermediate states on

k:-var_-gtride transitions that begin with these common mstr 4 1._stride paths starting frors; or s; are all non-accepting.
transitions are also shared betweenand s,. Furthermore, pq, gtates;, we stop increasing the stride length along a path
two transitions that do not begin with these common 1-stridg,enever we encounter an accepting state on that path or on
transitions may still be shared betwegrands;. For example, he corresponding path starting from. The reason is similar

in the 1-stride DFA fragment in Fig. 9, although and s> 5 \why we stop a consolidated path at an accepting state, but
do not share a common transition for charaatewhen wWe e reasoning is more subtle. Lptbe the string that leads
construct the2-var-stride DFA, s, and s, share the same 2- s; t0 an accepting state. The key observation is that we know
stride transition on stringa that ends at states. that anyk-var-stride path that starts fros) and begins withp

To promote transition b ends at that accepting state. This means thaannot exploit
sharing among states in transition sharing on any strings that begin wjth
a k-varstride DFA, we The above dynamic programming algorithm produces non-
first need to decide on ! defer overlapping and incomplete transition tables that we cespr

the deferment relationship using the 1-dimensional incomplete classifier minimizatio
among states. The ideal de- algorithm in [27].

ferment relationship should Fig. 9. s, ands, share transitiorua

be calculated based on the) o _ _

SRG of the finalk-var-stride DFA. However, thé-var-stride D- Variable Striding Selection Algorithm

DFA cannot be finalized before we need to compute theWe now propose solutions for the third key challenge -

deferment relationship among states because the fivar- which states should have their stride lengths increased and

stride DFA is subject to many factors such as available TCABYy how much,i.e., how should we compute the transition

space. There are two approximation options for the final function . Note that each state can independently choose its

var-stride DFA for calculating the deferment relationshipe variable striding length as long as the final transition eabl

1-stride DFA and the fulk-stride DFA. We have tried both are composed together according to the deferment foreist. Th

options in our experiments, and the difference in the rggult can be easily proven based on the way that we gengrade-

TCAM space is negligible. Thus, we simply use the defermestride transition tables. For any two statesand s, where

forest of the 1-stride DFA in computing the transition tables; defers toss, the way that we generate’s k-var-stride

for the k-var-stride DFA. transition table is seemingly based on the assumption that
Second, for any two states and so wheres; defers to s,'s transition table is alsd-var-stride; actually, we do not

s2, we need to compute;’s k-var-stride transitions that arehave this assumption. For example, if we choésear-stride

10

(2 < k) for s; and 1-stride forso, all strings froms; will be this approach by showing how we can extend RegCAM to

processed correctly; the only issue is that strings dedetwe implement counting-DFA. We first briefly review counting-

so Will process only one character. DFA and then show how to extend RegCAM to implement
We view this as a packing problem: given a TCAM capacitgounting-DFA.

C, for each states, we select a variable stride length value

K, such tha® , |T(s, K;)| < C, whereT(s, &) denotes A, Counting-DFA

the K;-var-stride transition table of state This packing

roblem has a flavor of the knapsack problem. but an ex tA counting-DFA uses extra scratch memory apart from the
P . L psack: pr . . Ahtomaton to manage the count. As a result, the size of the
formulation of an optimization function is impossible watlt

making assumptions about the input character distributidés automaton is independent of the value of the count in the
o oge the foFI)Io ina algorithm f%r finding a feasiblethat counting constraint, making it practical to build the cangt
brop wing aigori inding ! DFA for REs with large counting constraints. Fig. 10 shows

strives to maximize the minimum stride of any state. Firs, w, .
. . ' th nting-DFA example from [12] for the RE a. { n .
use all the 1-stride tables as our initial selection. Secéod the counting example from [12] for the a. {n}be

eachjj-var-stride { > 2) tablet of states, we create a tuple We briefly explain here how the counting-DFA works using

(1,d,|t]) wherel denotes variable stride lengtth,denotes the this example; complete details can bea:found in [12].

distance from state to the root of the deferment tree that
belongs to, andk| denotes the number of entriestinAs stride
length [increases, the individual table sizeé may increase
significantly, particularly for the complete tables of ratates.
To balance table sizes, we set limits on the maximum allowed
table size for root states and non-root states. If a roct sadie
exceeds the root state threshold when we createvts-stride
table, we apply self-loop unrolling once to its—1)-var-stride
table to produce g-var-stride table. If a non-root state table
exceeds the non-root state threshold when we creatg- its
var-stride table, we simply use ig — 1)-var-stride table as
its j-var-stride table. Third, we sort the tables by these tuplég. 10. Counting-DFA for RE *a. {n}hc
values in increasing order first usingthen usingZ, then using ~ The counting-DFA maintains a count variakfet for each
[t|, and finally a pseudorandom coin flip to break ties. Fourthpunting constraint; our example has only one constraime. T
we consider each tablein order. Lett’ be the table for the counting-DFA maintains all active instances«ft in a queue
same state in the current selection. If replacing by ¢ does with the cnt values strictly decreasing from front to back so
not exceed our TCAM capacit§, we do the replacement. that the largestnt value is the first value. Some transitions
create a new instance ofit and are marked with red, dashed
arrows in Fig. 10. Likewise, some states increment everyect
instance of:nt by 1; these are the red dashed states in Fig. 10.
In this section, we consider the issue presented by REs wllch states areounting states; all other states astandard
large counting constraints. As an example, consider the Rtates.
.*a.{n}bc; in this RE, exactlyn charactersmust appear The outgoing transitions of counting states depend on the
between some occurrence @fandbc. The issue is that eachcurrent status of theent queue in addition to the input
time ana is encountered in the input stream, the automat@haracter. For a queue corresponding to the rapgen},
must check whethdsc appears exactly characters later. For there are three possibilities for its status: (1) The larges
example, suppose = 3 and the input stream i@aaddbbc. value is strictly less tham, i.e. no value in the queue satisfies
The secondh leads to a match with the findlc in positions the condition. (2) The largest and smallestt values are
7 and 8. The automaton must keep track of all #sethat both betweenmn andn, i.e. all values in the queue satisfy
appear and, in this case, check positions 5 and 6, 6 and 7, @mel condition. (3) The largest instance oft is betweenm
7 and 8 for the patterbc to determine if the RE matches theandn, but the smallest is strictly less tham, i.e. some values
input stream. In general, the corresponding DFA may have anthe queue satisfy the condition and some do not.
exponential number of states in the lengtlof the counting Intuitively, counting states non-deterministically takee
constraint. The counting constraint might not be a singlaesa transition if the counter value is not satisfied, and taket@ro
n but rather a rangém, n} which means the length must beif the counter value is satisfied. In the deterministic atdton,
at leastm and not more tham. we have a set of counter values, so we may take either or both
We do not directly handle REs with large counting conef these transitions depending on the values in the queue.
straints. However, other researchers have developed atiom We denote queue status 1, 2 and 3 by the symbals
models to handle REs with counting constraints such as the’ and ‘<’ respectively. In Fig. 10, the transition label for
counting-DFA proposed by Becchat al. [12]. We propose conditional transitions shows the input character comzatsl
to handle REs with large counting constraints by using othesith the required queue status. For example, the transition
automata such as a counting-DFA and then extending Réigpm DFA state4 to DFA state7 with label ‘c=" will only be
CAM to implement these other automata. We demonstrateken if the input character is ‘c’ and the queue status is 2.

VI. HANDLING RES WITH LARGE COUNTS

11

As observed in [12] the:nt increment operation can beonly implement standard states in TCAM. With this scheme,
efficiently performed using a differential representatibiat we do not need to make any changes to RegCAM other than
only requires updating the firsint instance in the queue. storing an extra bit in SRAM indicating whether the nextetat
The checks needed to determine the queue status only invdlsstored in software or in TCAM.
testing the largest and smallestt instances and thus can be We now describe an extension to RegCAM that implements
performed in constant time. all transitions in TCAM. The key is adding a two hitit

As proposed in [12], conditional transitions can be imgueue status field in the TCAM for each count queue. We only
plemented as regular transitions by considering an exghnd®ed two bits because there are only three queue statuses. Fo
alphabet that is the combination of the input character had tunconditional transitions, eacint queue status field is set
cnt queue status. We can then compress the counting-DFA ts-+x’. For conditional transitions, we again sett queue
ing deferred transitions to build an equivalent countird-®. status to 4« if the transition does not depend on the given
Fig. 11 shows the SRG and and deferment forest constructed queue. If it does depend on the given queue, we encode
while building the counting-BFA for the counting-DFA in cnt queue status as follows0t’ for state 1, 10’ for state 2,

Fig. 10, and Fig. 12 shows the resulting countingB. and ‘11’ for state 3. We use this encoding because it allows
us to representént queue statuses 1 and 3 with one TCAM
entry «1’ and cnt queue statuses 2 and 3 with one TCAM
entry ‘1«’. For example, in Fig. 13 which shows the TCAM
rules for implementing the counting2BA in Fig. 12, the two
transitions out of state 2 in Fig. 12 are combined into the firs
rule in the TCAM table. When doing a transition lookup in the
TCAM, the queue management module determines the status
sc: 100+ of eachent queue and sets the appropriate bits in the lookup
key according to this encoding.

1> 10100 TCAM SRAM
SC: 0010 SC:0001 SC: 1001 Source iInputiQueue Dest. Acti
D : 0010 D : 0001 D : 1001 SC lchar ! state D ction

state 2 1001 b 1
100% P
100
0010

0101
state 4 0101

0l1s%*
state 3 Ol

0101 : New cnt
1001 | New cnt
0100 ! New cnt
0001
0001
0110
1001
0010
0101
0100
1000
0000

SC:0101 SC:0110 state 1
D : 0101 ID : 0110

Fig. 11. SRG and deferment forest for the counting-DFA in Bi@.

sk

Hk
10
#1
#1
10
11
#1
Hk

state 5

01**
01**
sk

AR EEEE RN

*|o|x|o|loc|o|o|oo]x|o

state 0

sk sk

Fig. 13. TCAM rules for counting-BFA for RE . *a. {n}bc

b<,[Aab]<,[Aab]<

Fig. 12. Counting-BFA for RE . +a. {n}bc VII. | MPLEMENTATION AND MODELING

]) _ We now describe some implementation issues associated
B. Implementing Counting4FA with RegCAM with our TCAM based RE matching solution. First, the

Given REs with counting constraints, we first build thenly hardware required to deploy our solution is the off-
counting-DFA and the corresponding countingF®. Imple- the-shelf TCAM (and its associated SRAM). Many deployed
menting counting-BFA has two parts: count queue manageaetworking devices already have TCAMs, but these TCAMs
ment and automaton transitions. We propose implementiage likely being used for other purposes. Thus, to deploy our
gueue management in software. This involves allocating asdlution on existing network devices, we would need to share
deallocatingent instances and determining the queue statusn existing TCAM with another application. Alternatively,
both of which can be done in constant time for each countimgw networking devices can be designed with an additional
constraint in the RE set. dedicated TCAM chip.

We implement the counting4FA transition function in Second, we describe how we update the TCAM when an
TCAM as follows taking into account two additional requireRE set changes. First, we must compute a new DFA and
ments. First, counting-fFA transitions can have an action asits corresponding TCAM representation. For the moment, we
sociated with them; second, the transitions for countiagest recompute the TCAM representation from scratch, but we
may depend on thent queue status. The first requirement cahelieve a better solution can be found and is something we
be handled by storing the action information in SRAM alonglan to work on in the future. We report some timing results in
with the next state. A simple scheme to handle conditionalir experimental section. Fortunately, this is an offlinecess
transitions is to implement counting states in software amfliring which time the DFA for the original RE set can still be

12

used. The second step is loading the new TCAM entries imales with headers ($EXTERNAINET, $HTTP PORTS,
TCAM. If we have a second TCAM to support updates, thiBHOME _NET, any), most of which contain wildcard closures
rewrite can occur while the first TCAM chip is still procesgin “.*'. We added REs one at a time until the number of DFA
packet flows. If not, RE matching must halt while the newtates reached 305,339. We name this family Scale.
entries are loaded. This step can be performed very quicklyWe calculate TCAM space by multiplying the number of
so the delay will be very short. In contrast, updating FPGAntries by the TCAM width: 36, 72, 144, 288, or 576 bits.
circuitry takes significantly longer. For a given DFA, we compute a minimum width by summing
We have not developed a full implementation of our systerthe number of state ID bits required with the number of input
Instead, we have only developed the algorithms that wouldts required. In all cases, we needed at most 16 state ID bits
take an RE set and construct the associated TCAM entri€sr 1-stride DFAs, we need exactly 8 input character bitd, an
Thus, we can only estimate the throughput of our systefor 7-var-stride DFAs, we need exactly 56 input character bits.
using TCAM models. We use Agrawal and Sherwood’s TCAMVe then calculate the TCAM width by rounding the minimum
model [11] assuming that each TCAM chip is manufactureglidth up to the smallest larger legal TCAM width. For all our
with a 0.18um process to compute the estimated latency of lastride DFAs, we use TCAM width 36. For all oUrvar-
single TCAM lookup based on the number of TCAM entriestride DFAs, we use TCAM width 72.
searched. These model latencies are shown in Table |. WaNe estimate the potential throughput of our TCAM-based
recognize that some processing must be done besides R matching solution by using the model TCAM lookup
TCAM lookup such as composing the next state ID witpeeds we computed in Section VII to determine how many
the next input character; however, because the TCAM lookTICAM lookups can be performed in a second for a given
latency is much larger than any other operation, we focug omumber of TCAM entries and then multiplying this number
on this parameter when evaluating the potential througbputby the number of characters processed per TCAM lookup.

our system. With 1-stride TCAMSs, the number of characters processed per
Entries TCAM TCAM Catency lookup is 1. For7-var-stride DFAs, we measure the average
(3‘éhlft jviizdee) (7‘5‘1'; iviiche) ns number of characters processed per lookup in a variety ottinp
1024 0.037 Mb 0.074 Mb 0.94 streams. We use Beccht al’s network traffic generator [28]
20981 oorawb OMaTMbl 10 to generate a variety of synthetic input streams. This traff
8192 0.295 Mb 0.590 Mb 1.84 generator includes a parameter that models the probability
pestadl IR P oy malicious trafficp,,;. With probability p,,, the next character
65536 2.36 Mb 4.72 Mb 2.94 is chosen so that it leads away from the start state. With
131072 4.72 Mb 9.44Mb | 337 probability (1 — py/), the next character is chosen uniformly
TABLE | at random.
TCAM SIZE AND LATENCY S TSTTC TSTTCa
VIIl. EXPERIMENTAL RESULTS B e oo e o it por e g i ot s g

In this section, we evaluate our TCAM-based RE matchingo5 " 6533| 0-81 140 3.641 0.21 091 2800 0.7 018 290

solution on real-world RE sets focusing on two metricsci0 14868 0.61 1.20 3.11| 0.31 0.61 3.64| 0.16 0.32 4.35
TCAM space and RE matching throughput C7 24750| 1.00 1.18 3.11| 0.53 0.62 3.64| 0.29 0.34 3.64

C8 3108| 0.13 1.20 5.44| 0.07 0.62 5.44| 0.03 0.33 &8.51
Snort2413886| 0.55 1.16 3.64| 0.30 0.64 3.64| 0.18 0.38 4.35
A MethOdOIOgy Snort3120068 | 1.43 2.07 2.72| 0.81 1.17 2.72| 0.50 0.72 3.64
We obtained 4 proprietary RE SetS, name'y C?, 08, C1 @ynort3413825 0.56 1.18 3.11| 0.30 0.62 3.64| 0.17 0.36 4.35
and C613, from a large networking vendor, and 4 public RE TABLE |l
sets, namely Snort24, Snort31, Snort34, and Bro217 from the TCAM SIZE AND THROUGHPUT FORL-STRIDE DFAS

authors of [3] We do report a slightly different number oftsta)
for Snort31, 20068 to 20052: this may be due to Beethl. B- Results on 1-stride DFAs
making slight changes to their Regular Expression ProcessoTable Il shows our experimental results on the 8 RE
that we used. Quoting Becchét al.[3], “Snort rules have been sets using 1-stride DFAs. We use TS to denote our transi-
filtered according to the headers ($HOMYET, any, $EX- tion sharing algorithm including both character bundlingl a
TERNAL_NET, $HTTP PORTS/any) and ($HOMENET, shadow encoding. We use TC2 and TC4 to denote our table
any, 25, SHTTPPORTS/any). In the experiments which fol-consolidation algorithm where we consolidate at most 2 and
low, rules have been grouped so to obtain DFAs with red-transition tables together, respectively. For each REveet
sonable size and, in parallel, have datasets with differemeasure the number states in its 1-stride DFA, the resulting
characteristics in terms of number of wildcards, frequeoty TCAM space in megabits, the average number of TCAM table
character ranges and so on.” Of these 8 RE sets, the RE®mtries per state, and the projected RE matching throughput
C613 and Bro217 are all string matching REs, the REs in Ghe number of TCAM entries is the number of states times the
C8, and C10 all contain wildcard closures ‘.*’, and about 40%verage number of entries per state. The TS column shows our
of the REs in Snort 24, Snort31, and Snort34 contain wildcardsults when we apply TS alone to each RE set. The TS+TC2
closures ‘.*", and TS+TC4 columns show our results when we apply both TS
Finally, to test the scalability of our algorithms, we useeonand TC under the consolidation limit of 2 and 4, respectively
family of 34 REs from a recent public release of the Snotb each RE set.

13

We draw the following conclusions from Table Il. (Dur The total RAM for each node is 8GB. Fig. 14(b) shows the
RE matching solution is extremely effective in saving TCAbbmpute time per state in milliseconds. The build times are
space Using TS+TC4, the maximum TCAM size for the 8the time per DFA state required to build the non-overlapping
RE sets is only 0.50 Mb, which is two orders of magnitudset of transitions (applying TS and TC); these increasatige
smaller than the current largest commercially availabl&NVIC because these algorithms are quadratic in the number of DFA
chip size of 72 Mb. More specifically, the number of TCAMstates. For our largest DFA Scale 34 with 305,339 states, the
entries per DFA state ranges between .32 and 1.17 when wtal time required for TS, TS+TC2, and TS+TC4 is 19.25
use TC4. We require 16, 32, or 64 SRAM bits per TCAMnins, 118.6 hrs, and 150.2 hrs, respectively. These times ar
entry for TS, TS+TC2, and TS+TC4, respectively as we needmulative; that is going from TS+TC2 to TS+TC4 requires
to record 1, 2, or 4 state 16 bit state IDs in each decisioan additional 31.6 hours. This table consolidation time is
respectively. (2)Transition sharing alone is very effective roughly one fourth of the first table consolidation time hesm
With the transition sharing algorithm alone, the maximurthe number of DFA states has been cut in half by the first
TCAM size is only 1.43Mb for the 8 RE sets. Furthermordable consolidation and table consolidation has a quadrati
we see a relatively tight range of TCAM entries per state ofinning time in the number of DFA states. The BW times are
1.16 to 2.07. Transition sharing works extremely well witlthe time per DFA state required to minimize these transition
all 8 RE sets including those with wildcard closures and ¢hosables using the Bitweaving algorithm in [27]; these times a
with primarily strings. (3)Table consolidation is very effective roughly constant as Bitweaving depends on the size of the
On the 8 RE sets, adding TC2 to TS improves compressitansition tables for each state and is not dependent on the
by an average of 41% (ranging from 16% to 49%) where ttgize of the DFA. For our largest DFA Scale 34 with 305,339
maximum possible is 50%. We measure improvement by costates, the total Bitweaving optimization time on TS, TS2]C
puting ('S — (T'S + T'C2))/TS). Replacing TC2 with TC4 and TS+TC4 is 10 hrs, 5 hrs, and 2.5 hrs. These times are not
improves compression by an average of 36% (ranging froonmulative and fall by a factor of 2 as each table consoliati
13% to 47%) where we measure improvement by computistep cuts the number of DFA states by a factor of 2.

(TS +TC2) — (TS +TC4))/(TS + TC2). Here we do Fig. 14(c) shows the time required per state for the greedy
observe a difference in performance, though. For the two RI&d optimal consolidation algorithms on the Scale datd$e.
sets Bro217 and C613 that are primarily strings withoutdabjreedy algorithm runs roughly 6 times faster than the ogtima
consolidation, the average improvements of using TC2 aatyjorithm. The average increase in the number of resulting
TC4 are only 24% and 15%, respectively. For the remaininigCAM rules is aroundt% for TC2 and around% for TC4.

six RE sets that have many wildcard closures, the averagerhe partially deferred algorithm given in section IlI-B4
improvements are 47% and 43%, respectively. The reasonadsays performs at least as well as the completely deferred
we touched on in Section IV-D, is how wildcard closure createninimization algorithm given in [27]. For the three Snort
multiple deferment trees with almost identical structireus RE sets and C613, the partially deferred algorithm results
wildcard closures, the prime source of state explosion, iis a reduction of 1, 2, 152, and 194 TCAM entries over
particularly amenable to compression by table consobdati the completely deferred algorithm. For the other RE sets,
In such cases, doubling our table consolidation limit doats nboth algorithms perform equally well. The partially deésir
greatly increase SRAM cost. Specifically, while the numbedgorithm is slower than the completely deferred algorithm
of SRAM bits per TCAM entry doubles as we double théecause there are more unique decisions during minimigatio
consolidation limit, the number of TCAM entries requiredso we use the completely deferred minimization algorithm fo
almost halves! (4Our RE matching solution achieves highcomputing classifier sizes during consolidation, and we use
throughput with even 1-stride DFA&or the TS+TC4 algo- the partially deferred minimization algorithm for genémgt
rithm, on the 8 RE sets, the average throughput is 4.60Glipe final TCAM classifiers for each state.

(ranging from 3.64Gbps to 8.51Gbps).]

We use our Scale dataset to assess the scalability of &urResults orv-var-stride DFAs
algorithms’ performance focusing on the number of TCAM We consider two implementations of variable striding as-
entries per DFA state. Fig. 14(a) shows the number of TCABUmMIing we have a 2.36 megabit TCAM with TCAM width 72
entries per state for TS, TS+TC2, and TS+TC4 for the Scddéds (32,768 entries). Using Table |, the latency of a lookaip
REs containing 26 REs (with DFA size 1275) to 34 RER&.57 ns. Thus, the potential RE matching throughput of By a
(with DFA size 305,339). The DFA size roughly doubled fowvar-stride DFA with average stridgis 8 x.S/.00000000257 =
every RE added. In general, the number of TCAM entrigs11 x .S Gbps.
per state is roughly constant and actually decreases wvith ta In our first implementation, we only use self-loop unrolling
consolidation. This is because table consolidation peréor of root states in the deferment forest. Specifically, forheac
better as more REs with wildcard closures are added as thBfe set, we first construct the 1-stride DFA using transition
are more trees with similar structure in the deferment foressharing. We then apply self-loop unrolling to each rootestat

We now analyze running time. We ran our experiments @f the deferment forest to createravar-stride transition table.
the Michigan State University High Performance ComputinBecause of the linear increase in transition table size,wosvk
Center (HPCC). The HPCC has several clusters; most of dhat the resulting TCAM table will increase in size by at most
experiments were executed on the fastest cluster which leaactor of 7. In all our experiments, the size never incréase
nodes that each have 2 quad-core Xeons running at 2.3GHy.more than a factor of 2.25, and the largest DFA (for C7)

14

- Algorithm
1000 = P
//— 000 =7 s 1000

Algorithm

Algorithm

g
S

Rt ---- TS+TC2 - optTC2

o
1)
S

— TS

I e I —optTca

---- TS+TC2

=
o

.................... proc = = Greedy TC2
---------------- - TS+TC4 10- 2= Step

~ Build
_____________________ i \/-\//\/_’ o BW

1 I 1 1 1 T 1
1000 10K 100K 1000 10K 100K 100 1000 10K 100K
states # states # states

entries/state
S
time/state (msec)
q‘
°»

}

[]
time/state (msec)

—=- Greedy TC4

o

Y

/
/
-

(a) TCAM entries (b) Compute time (c) Consolidation time
Fig. 14. Per-DFA state statistics for Scale 26 through S8dle

required only 2.25 megabits. We can decrease the TCA&hd a resulting throughput of 10.29 Gbps. Even though only
space by using table consolidation; this was very effectitke root states are unrolled, self-loop unrolling worksyver
for all RE sets except the string matching RE sets Bro2iwell because the non-root states that defer most transitimn
and C613. This was unnecessary since all self-loop unrolladroot state will still benefit from that root state’s unrdlle
tables fit within our available TCAM space. self-loops. In particular, it is likely that there will be rig
Second, we apply full variable striding. We first create Istretches of the input stream that repeatedly return to & roo
stride DFAs using transition sharing and then apply vaeiabstate and take full advantage of the unrolled self-loqg$.
striding with no table consolidation, table consolidatisith The performance of self-loop unrolling does degrade stgadi
2-decision tables, and table consolidation with 4-denisi@s pys increases for all RE sets except those in group (b).
tables. We use the best result that fits within the 2.36 méegabhis occurs because as, increases, we are more likely to
TCAM space. For the RE sets Bro217, C8, C613, Snort24 anwve away from any default root state. Thus, fewer trarsstio
Snort34, no table consolidation is used. For C10 and Snort3iill be able to leverage the unrolled self-loops at rootestat
we use table consolidation with 2-decision tables. For GF, W3) For the uniform trace, full variable striding does I#tlto
use table consolidation with 4-decision tables. increase RE matching throughp@f course, for the non-string
We now run both implementations of otvar-stride DFAs matching RE sets, there was little room for improvement.
on traces of length 287484 to compute the average stride. k&) As pys increases, full variable striding does significantly
each RE set, we generate 4 traces using Beethi’s trace increase throughput, particularly for groups (b) and (&or
generator tool using default values 35%, 55%, 75%, and 95%ample, for groups (b) and (c), the minimum average stride
for the parametep,;. These generate increasingly malicioutength is 2.91 for all values gfy; which leads to a minimum
traffic that is more likely to move away from the start statéhroughput of 9.06Gbps. Also, for all groups of RE sets, the
towards distant accept states of that DFA. We also generatgvg&rage stride length for full variable striding is muchteg
completely random string to model completely uniform teaffithan that for self-loop unrolling for large,,. For example,
such as binary traffic patterns which we treatpag = 0. when py, = 95%, full variable striding achieves average
We group the 8 RE sets into 3 groups: group (a) represeftgde lengths of 2.55, 2.97, and 3.07 for groups (a), (bjl an
the two string matching RE sets Bro217 and C613; group (). respectively, whereas self-loop unrolling achievesrage
represents the three RE sets C7, C8, and C10 that conglfide lengths of only 1.04, 1.83, and 1.06 for groups (&), (b
all wildcard closures; group (c) represents the three RE sénd (c), respectively.
Snort24, Snort31, and Snort34 that contain roughly 40% These results indicate the following. First, self-loop un-
wildcard closures. Fig. 15 shows the average stride length g0lling is extremely effective at increasing throughput fan-

throughput for the three groups of RE sets according to tHem traffic traces. Second, other variable striding teainesq
parametemp,, (the random string trace isy; = 0). can mitigate many of the effects of malicious traffic thatdlea

away from the start state.

Self-Loop Unrolling Variable Striding |X. CONCLUSIONS
0 l\ — Group (a) We make four key contributions in this paper. (1) We pro-
8 =7 “\ +== Group (b) pose the first TCAM-based RE matching solution. We prove
;?L RN -~ Group () that this unexplored direction not only works but also works
3 well. (2) We propose two fundamental techniques, transitio
= sharing and table consolidation, to minimize TCAM spacg. (3
i i i i | | | | We propose variable striding to speed up RE matching while

0000000 o000 080 0m carefully controlling the corresponding increase in men{d)

Pwm

Fig. 15. The throughput and average stride length of RE sets. We implemented our techniques and conducted experiments on

We make the following observationd) Self-loop unrolling real-world RE sets. We show that small TCAMs are capable
is extremely effective on the uniform tra€@r the non string of storing large DFAs. For example, in our experiments, we
matching sets, it achieves an average stride length of ;87 avere able to store a DFA with 25K states in a 0.5Mb TCAM
5.84 and RE matching throughput of 18.58 and 18.15 Gbpkip; most DFAs require at most 1 TCAM entry per DFA
for groups (b) and (c), respectively. For the string matghirstate. With variable striding, we show that a throughput pf u
sets in group (a), it achieves an average stride length & 31® 18.6 Gbps is possible.

15

APPENDIX gi = v —a. Now, p; > 0, otherwise we would haveC(s;) =
PROOFsS {*}*, which is not possible as it would violate the deferment

Lemma A.1:Given a valid shadow encoding for defermenﬁf‘nOI non-interception properties. This proves (1). Alsocst

forestF, for any state; and all states in ¢'s shadow D(p) € satisfies the deferment and self-matching properties, w& mu
SC(q). y @ ping D) have (2) and (3). And we must have (4) because of the non-

interception property. []

Theorem A.3:For any deferment tred&’, our shadow en-
coding algorithm generates the shortest possible prefidasha
?ncoding that satisfies the SEP.

Proof: First, our shadow encoding algorithm generates a
prefix shadow encoding. We prove by induction on the height
Proof: This follows immediately from the non- n of T that it is the shortest possible prefix shadow encoding.
. : The base case where= 0 is trivial since the encoding for a
interception property. .) . . .

single node is empty and thus optimal. For the inductive case

Theorem A.1:Given a valid shadow encoding for a DFA .) . . .
M and deferment forest and a TCAM classifief® that uses °Y inductive hypothesis is that the prefix shadow encoding
for T; for 1 < i < c is the shortest possible.

only binary state IDs for both source and destination sta&e | Let £ be the prefix shadow encoding generated by our
in transition rules and that orders the state tables aaugrdi hadow encoding algorithm and be the optimal prefix

to F', the TCAM classifier formed by replacing each Sourcd adow encoding. Let andm be the lengths of and F

state ID inC with the corresponding shadow code and eac tively. Let. andw. be th | defined by L
destination state ID i€ with the corresponding state 1D will réspectively. Let; andw; be the values etined by Lemma
be equivalent taC. A.1for £. And letp; andg; be the corresponding values far.

Proof: This follows from the first match nature of By the inductive hypothesis, we hawe < ¢; for 1 <7 <c.

TCAMSs, the state tables are ordered accordingFtoand hlfdm < l’dt.hls fm%plles tthat thet opu;n?tl shortte?tH[gegx
Lemmas A1 and A.2. shadow encoding fof” must compute a better set o ode

Theorem A.2-The state IDs and shadow codes generatee(guwalents for each child nodg. In particular, we have that

by our Shadow Encoding algorithm satisfy the SEP. max;(p; + g;) < maxi(g; + w;). i.e. given equal or larger
Proof: We prove by induction on the heightof 7. The initial lengths,{¢; }, optimal prefix shadow encoding computes

base case where = 0 is trivial since there is only a single prefix-free codesF;p for the children that are shorter than

the prefix-free code§;p, computed by the HCode subroutine.

node. For the inductive case, our inductive hypothesisas t o - .
) owever, this is a contradiction, since the Huffman style
the shadow codes and state IDs generated’fdor 1 < i < ¢ . S
encoding used to compute the HCodes minimizes the term

T et e o o e oo W) 26, Therfoe, we st hake< i '8
) %o formally specify our solution for the Partially De-

processs. For each node € T; for 1 < i < ¢, HCodeg;) f . . L
. . ferred Incomplete One-dimensional TCAM Minimization
's prepended to th&/C'(v) and ID(v). Thus, the SEP stil Problem(Definition 3.1), we introduce the following notti

holds for all the nodes withirf; for 1 < ¢ < ¢. For any . . . "

. . Let d;,i > 1 denote the actual decisions in a classifier.
nodesp and ¢ from different subtreeq’; and 7}, it follows For a prefix® — {0, 1}*{«}*~*, we useP to denote the
that/D(p) ¢ SC(q) andID(q) ¢ SC(p) because HCode() & Premxs = U v = . .

. . refix {0, 1}70{«} , andP to denote the matching prefix
and HCodeg;) are not prefixes of each other. Finally, for al & w_k1 - b ;
nodesv € T, ID(v) € SC(s) becauseSC(s) contains onl {0, 1}71{x} - For a classifierf on {x}" and a prefix
o v ' v) 5 Y p C {*}*, fp denotes a classifier oR that is equivalent to

S. [] , T . .
.) . [(i.e. the subset of rules irf with predicates that are).
We define a prefix shadow encoding as a shadow encod . d o
) . .) [= frp. FOri > 1, f' denotes a classifier oR that
where all shadow codes are prefix strings; that is, all *'s are

e ay 0 o 15 For any resshadow encou 7, ST 300 16 deesir ol e et e e
&r, denotes the subset of state ids and shadow codes for P b y)

v € Ty. For any state id or shadow codg, ,| X denotes the 7 denotes the optimal classifier that is equivalenf &xcept
it p

. . . d1
first p characters ofY, and X |,, denotes the lagt characters :?)a(;:ng?:?gycg:;cec:ftizmninﬁ%cukgtil\;vgsﬁi?ine\r/vg L:jjgéﬁ %i)o
of X. We defineér, |, = {X], | X € &, }. q

Lemma A 1-Consider a deferment tre@ with a valid for ¢ > 0. [P(x)] evaluates ta when the statement inside is

lengthz prefix shadow encoding that satisfies the SEP. Fortrue; otherwise it evaluates to We usex to represent some

every childs;,1 < i < ¢, of the root of T, there exist two packet in the pr-ef'l)@ currently. bemg_ conmderep_l. b
) Theorem A.4:Given a one-dimensional classifigon {s}
valuesp; andg; such that:

and a subse C {x}* with a set of possible decisions

Proof: The deferment property implies th&C'(p) C
SC(q). The self-matching property implies thdtD(p) €
SC(p). Thus, the result follows.

Lemma A.2:Given a valid shadow encoding for defermen
forest F', for any stateg and all statep not in ¢'s shadow,
ID(p) ¢ SC(q).

1) Vi, 0 <pi <2, 0<g¢ <zandp; +¢; = . {di,ds,...,d.} and a prefixP C {x}*, we have thaC(f&)
2) Vi, Vv €T;, p,[ID(v) = p,[SC(v) = p,[SC(s:). is calculated as follows:
3) Vi, &r,]q, is a valid prefix shadow encoding @f. (1) Fori > 0

4) The set€rp = {,,[SC(s;) | 1 <i < ¢} is prefix free. o .
Proof: Since¢ is a prefix shadow encoding, for any child ¢(pdi) — 1+ [f(fﬂ)d?"é d;] '(fi_f is consistent orP
si, SC(s;) must be of the forn{0, 1}*{*}*~%. Letp; = a and P min(C(fp') + C(f5) —1+1[j #1]) else

(2) Fori =0:

C(do) _

0 IfFPCD
| min(ming_, (C(f5), C(f5°) + C(f)) else

Proof: (1) When: > 0, we just build a minimum cost

complete classifier. The recursion and the proof is exabtly t

same as given in [27] Theorem 4.1 (with decision weights
= 1). (2) We consider two possibilities. Either the optimal??

classifier is a complete classifier or the optimal classifearn
incomplete classifier. If the optimal classifier is inconipleve
consider two cases. If the entire prefixis contained withD

and can be deferred, the minimum cost classifier is to defgy;

all transitions and has coét Otherwise, the minimum cost

classifier for? would just be the minimum cost classifier forl2®!

‘P concatenated with the minimum cost classifier far This

is represented by the last term in the minimization for cages]

(2).

The possibility that the optimal classifier is a comgle

classifier is handled by the first term in the first minimizatio
for case (2). |

(1]

(2]

(3]
(4]
(5]

(6]
(7]
(8]
(9]
[10]

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

REFERENCES

R. Sommer and V. Paxson, “Enhancing bytelevel networkusitn
detection signatures with context,” ifroc. ACM Conf. on Computer
and Communication Securjt2003, pp. 262-271.

B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalablechitecture
for high-throughput regular-expression pattern matchirglGARCH
Computer Architecture New2006.

M. Becchi and P. Crowley, “An improved algorithm to acaele regular
expression evaluation,” ifroc. ACM/IEEE ANCS2007.

——, “Efficient regular expression evaluation: Theory pieactice,” in
Proc. ACM/IEEE ANCS2008.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turriat
gorithms to accelerate multiple regular expressions matcfungieep
packet inspection,” ifProc. SIGCOMM 2006, pp. 339-350.

S. Kumar, J. Turner, and J. Williams, “Advanced algorithrasfast and
scalable deep packet inspection,”Rmoc. ANCS 2006, pp. 81-92.

M. Becchi and S. Cadambi, “Memory-efficient regular exgies search
using state merging,” ifProc. INFOCOM |EEE, 2007.

S. Kong, R. Smith, and C. Estan, “Efficient signature matghwith
multiple alphabet compression tables,” in AC8&cureComm2008.

M. Becchi and P. Crowley, “A hybrid finite automaton for ptezal deep
packet inspection,” ifProc. CoNext2007.

J. E. Hopcroft,The Theory of Machines and Computationécademic
Press, 1971, ch. An nlogn algorithm for minimizing the statea finite
automaton, pp. 189-196.

B. Agrawal and T. Sherwood, “Modeling TCAM power for riggener-
ation network devices,” ifProc. IEEE Int. Symposium on Performance
Analysis of Systems and Softwa2€06, pp. 120- 129.

M. Becchi and P. Crowley, “Extending finite automata tdiogéntly
match perl-compatible regular expressions,’Piroc. CONEXT 2008.
A. V. Aho and M. J. Corasick, “Efficient string matchingn aid to
bibliographic search,Communications of the ACMol. 18, no. 6, pp.
333-340, 1975.

F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packettern-
matching using TCAM,” inProc. 12th IEEE Int. Conf. on Network
Protocols (ICNP) 2004, pp. 174-183.

J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. KitA, multi-
gigabit rate deep packet inspection algorithm using TCAM,Proc.
IEEE GLOBECOM 2005.

M. Alicherry, M. Muthuprasanna, and V. Kumar, “High spkepattern
matching for network IDS/IPS,” inCNP, 2006, pp. 187-196.

R. Smith, C. Estan, and S. Jha, “XFA: Faster signature niragcwith
extended automata,” iRroc. IEEE Symposium on Security and Privacy
2008, pp. 187-201.

A. Bremler-Barr, D. Hay, and Y. Koral, “CompactDFA: geitestate ma-
chine compression for scalable pattern matching/ERE INFOCOM
2010, pp. 659-667.

16

[19] T. Liu, Y. Yang, Y. Liu, Y. Sun, and L. Guo, “An efficient gailar

expressions compression algorithm from a new perspectinelEEE
INFOCOM, 2011, pp. 2129-2137.

F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fasd
memory-efficient regular expression matching for deep pacisec-
tion,” in Proc. ACM/IEEE Symposium on Architecture for Networking
and Communications Systems (ANCE)06, pp. 93-102.

R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the laiggb fast
and scalable deep packet inspection with extended finitenzatg,” in
Proc. SIGCOMM 2008, pp. 207-218.

S. Kumar, B. Chandrasekaran, J. Turner, and G. Vargh&3ering
regular expressions matching algorithms from insomnia, armpesid
acalculia,” inProc. ACM/IEEE ANCS2007, pp. 155-164.

J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Impatation
of a content-scanning module for an internet firewall,”"Rroc. IEEE
Field Programmable Custom Computing Machin2803.

S. Suri, T. Sandholm, and P. Warkhede, “Compressing tivedsional
routing tables,”Algorithmicg vol. 35, pp. 287-300, 2003.

C. R. Meiners, A. X. Liu, and E. Torng, “TCAM Razor: A sgshatic
approach towards minimizing packet classifiers in TCAMs,"Froc.
15th IEEE Conf. on Network Protocol®©ctober 2007, pp. 266—-275.
D. E. Knuth, “Huffman’s algorithm via algebraJournal of Combina-
torial Theory, Series Avol. 32, no. 2, pp. 216 — 224, 1982.

C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A neprefix
approach to compressing packet classifiers in TCAMs,Pinc. 17th
IEEE Conf. on Network Protocols (ICNPDctober 2009.

M. Becchi, M. Franklin, and P. Crowley, “A workload fovaluating
deep packet inspection architectures,’Aroc. IEEE [ISWC 2008.

- Chad R. Meiners Chad Meiners received his Ph.D.

. in Computer Science at Michigan State University in
2009. He is currently a Member of Technical Staff
with MIT Lincoln Laboratory, Lexington, MA. His
research interests include networking, algorithms,
and security.

Jignesh Patel Jignesh Patel is currently a Ph.D.
student in the Department of Computer Science
and Engineering at Michigan State University. His
research interests include algorithms, networking,
and security.

Eric Norige is working towards his Ph.D. degree in

computer science from Michigan State University.
He is currently working for NetSpeed Systems, a
Silicon Valley startup in the area of NoC IP. His

research interests are algorithms, optimization, and
security.

Alex X. Liu received his Ph.D. degree in computer
science from the University of Texas at Austin in
2006. He received the IEEE & IFIP William C.
Carter Award in 2004 and an NSF CAREER award
in 2009. He received the Withrow Distinguished
Scholar Award in 2011 at Michigan State University.
He is an Associate Editor of IEEE/ACM Transac-
tions on Networking. He received Best Paper Awards
from ICNP-2012, SRDS-2012, and LISA-2010. His
research interests focus on networking and security.
Eric Torng received his Ph.D. degree in computer
science from Stanford University in 1994. He is cur-
rently an associate professor and graduate director
in the Department of Computer Science and Engi-
neering at Michigan State University. He received an
NSF CAREER award in 1997. His research interests
include algorithms, scheduling, and networking.

