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Abstract

In this paper we devise some technical tools for dealing with prob-
lems connected with the philosophical view usually called mathemat-
ical instrumentalism. These tools are interesting in their own right,
independently of their philosophical consequences. For example, we
show that even though the fragment of Peano’s Arithmetic known as
IΣ1 is a conservative extension of the equational theory of Primitive
Recursive Arithmetic (PRA), IΣ1 has a super-exponential speed-up
over PRA. On the other hand, theories studied in the Program of
Reverse Mathematics that formalize powerful mathematical principles
have only polynomial speed-up over IΣ1.

1 Introduction

In this paper we discuss some aspects of the philosophical view that is usu-
ally called mathematical instrumentalism. An instrumentalist takes only
a limited part of mathematics, P, as fully meaningful (or special in some
other way) and considers the rest of mathematics (or another larger part
of it) I as a formal apparatus for facilitating proofs of statements from P.
Thus, to justify applications of such a mathematical apparatus in proofs of
statements from P, one must only show the soundness of the I-proofs of
statements from P without having to argue about the meaning of the part
of mathematics embodied in the instrument I. The best known such view
is when P is finitistic mathematics; it was expounded by Hilbert in his Pro-
gram. His hope was that the rest of mathematics formalized through proof

∗This is a revised excerpt from the author’s Ph.D. Thesis submitted at the University
of California at Berkeley in 1990. The author is grateful to his adviser, Professor Jack
Silver, for his support, many helpful discussions and for sharing his insights, to Professor
Charles Chihara for discussions and encouragements, to the referees for many most useful
comments which reshaped the paper.
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theory could be proven consistent using purely combinatorial means and,
hence, in a way acceptable to a finitist. This would have justified a belief in
a paradox-free future of mathematics presupposing only the correctness of
finitistic reasoning.

Even though Gödel’s results showed (at least under certain assumptions
of what constitutes a finitistically acceptable proof) that Hilbert’s Program
cannot be realized, the instrumentalist view of mathematics is still an at-
tractive one. It might be quite informative to investigate those parts of
mathematics (denoted by P) which we feel that they have special status,
either in the sense of having clearer meaning than the the rest of mathemat-
ics, or that we have a clear intuitive representation of objects which such
parts seem to “talk about” (e.g. finite sequence of signs) or just that they
are in a certain sense minimal nontrivial parts (see [21], p. 525). Then we
can adjoin various other parts of mathematics, I, that are conservative over
P for all sentences of the language of P, considering I as an instrument for
facilitating proofs of such sentences. One can then analyze the relationship
between P and I in the following terms:

- how much does I help make P proofs shorter or easier to understand?
- can we find some support for the belief in the consistency of I on the

basis of P?
This paper is devoted to devising technical tools for accomplishing such

an analysis, as well as hinting how such tools can be used to draw philo-
sophical conclusions.

2 Philosophical Considerations

In this paper we choose P to be the finitistic reasoning about numbers,
accepting Tait’s analysis and delimitation of finitism (see [21]). Thus, we
take Finitism to be the part of mathematics that corresponds to the theory
of natural numbers formalized as Primitive Recursive Arithmetic, either as
an equational theory (which we will denote by eqPRA; see [8] for details)
or as a first order theory (denoted as PRA, see [16]). In the first case,
formulas are Boolean combinations of equations; in the second case we allow
universal closures of formulas that can involve bounded quantifiers. Since
the universal quantifiers can be replaced by free variables and the bounded
quantifiers can be eliminated using functions defined by primitive recursion,
according to Tait’s thesis, such formulas are finitistically acceptable.

We will consider several theories which are conservative extensions of
eqPRA or Π0

2 conservative extensions of PRA, which we denote by I. Such
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theories formalize mathematical principles of increasing strength to be used
as instruments in our derivations. There are two directions one can take. We
can either add stronger arithmetical principles, which seems to amount to
adding more induction1, or we can first expand the language with variables
for new type of objects (e.g. sets) and then add new mathematical principles
for these objects.

In the direction of adding only new arithmetical principles in the form
of stronger induction, we are extremely limited by our conservativeness re-
quirement: all we can add is Σ1 induction, that is, the restriction of the
induction schema of Peano’s Arithmetic for Σ1 formulas which is indeed a
conservative extension of eqPRA; Σ2 induction proves the consistency of
PRA and thus is not a conservative extension of PRA (see [16]).

On the other hand, the second direction leaves much more space; several
theories that formalize significant portions of mathematical practice are con-
servative extensions of eqPRA. Theories which we will consider here were
introduced by Friedman and Simpson in the program of Reverse Mathemat-
ics (see [19] for details). The weakest one is called Recursive Comprehension
(RCA) and it allows introduction of second order objects (i.e. sets of num-
bers) if they are simply definable (in a ∆0

1 way) as well as the use of Σ0
1

induction for formulas with second order parameters. The Weak König’s
Lemma (WKL) adds to this the power of the compactness principle which
is one of the most fundamental mathematical tools. Further strengthening
of such theories are obtained, for example, by adding a formalization of
Baire’s Category Theorem (WKL+ of Simpson and Brown, see [3], [18] and
[19]). Thus,

eqPRA ⊂ PRA ⊂ IΣ1 ⊂ RCA ⊂ WKL ⊂ WKL+ ⊂ ... (1)

Here eqPRA is the only part of mathematics of “real interest” for us (of
course only in our discussion of mathematical instrumentalism); in this chain
IΣ1 is the only purely arithmetical instrument conservative over eqPRA,
whereas the other theories formalize set theoretical principles. One could
expect that theories formalizing powerful mathematical tools would greatly
speed up proofs of various universal propositions about numbers. On the
other hand, even though the consistency of such theories is not provable
finitistically, their importance and “relative modesty” should motivate us
to look for alternative ways of supporting their consistency by appealing to
some forms of finitistic evidence. For example in [10], it was shown that
the consistency of IΣ1, RCA, and WKL is provable using a version of the

1Isaacson offers an argument in support of this claim in [11].
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“finitistically warranted” ω rule (of course, not acceptable on purely finitis-
tic grounds). More precisely, it can be shown that there is a finitistically
acceptable function f (in Tait’s sense) for which one can prove in a finitis-
tically acceptable way, that for all n, f(n) is a proof of the statement “n is
not (a code of) an inconsistency in WKL.” We can further consider if this
can be strengthened by, for example, restricting how fast f can grow.

Thus, the aim of the present work is to accurately evaluate the lengths
of proofs of “real” statements within an “instrumental” theory in order to
be able to independently evaluate other, more subtle features that such
instrumental theory can have. This is then supplemented with a matching
analysis of some types of consistency proofs of such instrumental theories.

3 Preliminaries

Unless otherwise specified, we will work in the standard first order Hilbert
style proof system (see [4]). Let p be a proof in a first order theory. We
will denote the total length of the proof p by |p|, counting the length of the
formulas of the proof (i.e. the total number of all symbols in p; see [15] for
details). We denote by 2n

m the stack of m two’s ending with n as the last
exponent:

2n
m = 22..

.2
n

︸ ︷︷ ︸
m

More formally, 2n
0 = n, 2n

m+1 = 22n
m . A function has Kalmar elementary

growth rate if there exists a natural number m such that f(x) is eventually
majorized by 2x

m. We say that a function f has a roughly super-exponential
growth rate if it does not have a Kalmar elementary growth rate, but for
some polynomial with natural coefficients P (x), f(x) is eventually domi-
nated by P (2x

x) (i.e. the function obtained by replacing the variable x in
P (x) by 2x

x; the function 2x
x is called the super-exponential function and is

the first function in the Wainer hierarchy which dominates all the elementary
functions).

A function has a polynomial growth rate if it is eventually dominated by
a polynomial with natural coefficients.

Definition 1 Let T ′ and T be two theories such that T ′ ⊂ T and let Φ be a
subset of theorems of T ′.

1. T has a roughly super-exponential speed-up over the theory T ′ with
respect to the set Φ if there exists a sequence {ϕi}i∈ω of formulas from

4



Φ such that if pT
n and pT ′

n are the shortest proofs of ϕn in T and T ′,
respectively, then: (i) no function f with Kalmar elementary growth
rate satisfies |pT ′

n | < f(|pT
n |) for all n; (ii) there is a function f with

a roughly super-exponential growth rate such that the above inequality
holds for all n.

2. Theory T has at most a polynomial speed-up over the theory T ′ if
there exists a polynomial P (x) with natural coefficients such that for
any theorem ϕ of T ′, the following holds: if pT and pT ′ are the shortest
proofs of ϕ in T and T ′, respectively, then |pT ′

n | < P (|pT
n |) for all n.

We can now formulate the main problems we will consider.

Problem 1 Are IΣ1, RCA, WKL, and similar conservative extensions of
eqPRA useful and efficient instruments at all? More precisely, are the IΣ1

proofs of Π0
1 theorems of PRA much shorter than the PRA proofs which

have the same conclusions? (Here we take PRA as a first order theory to
eliminate the advantage that IΣ1 might possibly have purely from its first
order logic with cut.) Are RCA (WKL) proofs shorter than IΣ1 (RCA
respectively) proofs?

We will show that IΣ1 has a very significant, roughly super-exponential
speed-up over PRA. We also show that RCA has at most polynomial speed-
up over IΣ1. In [9] we conjectured that WKL also has only a polynomial
speed-up over RCA; this conjecture was proved independently by P. Hájek
in [7] and by J. Avigad in [1] (each in light of [9]).

Note that in the above considerations, the speed-up is measured only in
terms of lengths of proofs; this does not rule out a “conceptual speed-up,”
i.e. a formulation of the proof which uses concepts that make the proof
easier to grasp, even if there is no speed-up in terms of length of formal
proofs.

We now have to make a decision about which speed-up we consider
significant and which we do not. One could argue that we should find a finite
number of mathematically important Π1 theorems about natural numbers
and compare the lengths of their PRA proofs with, for example, the lengths
of their WKL proofs. But if we want to draw conclusions of philosophical
importance, we should consider mathematics as having an infinite collection
of theorems, and in this case the growth rate of the sizes of proofs matters the
most. Extensive research in complexity theory indicates that two procedures
can be considered to belong to the same, naturally defined efficiency class if
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the number of steps needed to execute either one of them is smaller or equal
than the value of a polynomial evaluated at the number of steps needed to
execute the other one (for the same input). We accept this for provability
in formal theories, and, consequently, if a theory T has only a polynomial
speed-up over a theory T ′, we consider T and T ′ as instruments whose
efficiencies differ insignificantly.

Thus, since WKL has no significant speed-up over RCA (as shown in [1]
and [7]), and since WKL+ has no significant speed-up over WKL (which can
be seen by suitably modifying arguments from [1] and [7]), it appears that
(i) only stronger arithmetical principles embodied in the instrument make
proofs of arithmetical propositions shorter in length, and (ii) conservative
instruments that formalize stronger mathematical principles that are not
of an arithmetical nature (e.g. set theoretical principles) could produce
only “conceptual speed-up,” i.e. they can perhaps make proofs conceptually
clearer and easier to grasp without making formal proofs shorter in length.

To explain possible use of such results for an evaluation of mathemati-
cal instrumentalism, we consider instruments that can prove set theoretical
formalization of important theorems of analysis (e. g., RCA and stronger
theories of Reverse Mathematics, see [19]) and distinguish two possible cases.

Case 1. There is no significant body of finitistic truths whose proofs
using such instruments are conceptually clearer than the purely arithmetical
(i.e. IΣ1) proofs of the same truths.

In this case, since we do not have any speed-up in terms of length of
proofs, such instruments would be useless and so the particular case that we
consider of the instrumentalist view of mathematics would collapse.

Case 2. There is a significant body of finitistic truths whose proofs
which use such instruments are conceptually clearer than the purely arith-
metical proofs of the same truths.

In this case, since the benefit of our instruments does not come from the
mere shortening of the proofs but from some sort of more subtle, conceptual
clarification and facilitation, an instrumentalist must explain how the part
of formalized mathematics in these instruments can have less clear meaning
than the “real” (in our case, finitistic) part of mathematics and yet provide
conceptual facilitation.2

We now want to formulate the second problem we will consider. As
proved by Sieg (see [16]), there is a finitary procedure for transforming

2In [9] it was claimed that this was not possible. However, one of the referees has made
serious objections to such an argument. The referee’s remarks have convinced me that
determining the exact philosophical implications of the technical results of this paper is a
much subtler task than I originally envisioned.
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WKL proofs of Π1 formulas into proofs of such formulas in PRA. Thus, for
theories T like RCA or WKL we have:

PRA ` Con(T ) ↔ Con(PRA) (2)

Yet, such theories T formalize mathematical principles of increasing strength.
Thus, one would like to find a finer method for measuring consistency
strength of such theories, so that, say, the consistency of WKL in this new
sense would be a stronger assumption than the consistency of PRA alone.
As a consequence of Corollary 2 of [10], it is easy to see that there are
primitive recursive functions fPRA, fRCA and fWKL, such that if ConT (n)
suitably formalizes “there are no proofs of an inconsistency in T of length
smaller or equal than n”, then

PRA ` ∀x∃y(|y| < fT (x) ∧ PrPRA(y, ConT (x))) (3)

for T = PRA,RCA, WKL.3 Thus, it is natural to ask the following ques-
tion.

Problem 2 Let T and T ′ be two conservative extensions of PRA, such that
T ′ ⊂ T . Is it true that for the stronger theory T , the function fT producing
the least value fT (x) for which (3) holds grows significantly faster than the
function fT ′ corresponding to a weaker theory T ′?

To answer the above question we will use a result of Pudlák4 to con-
clude that fPRA grows polynomially. We will also show that fIΣ1 , fRCA

and fWKL grow roughly super-exponentially (see (5) and (6)). Thus, a sig-
nificant difference in the growth rates of the functions fPRA, fIΣ1 , fRCA

and fWKL which generate proofs of “consistency up to n” within PRA of
these theories occurs only between fPRA and fIΣ1 , while other functions
have similar growth rate as fIΣ1 . We conjecture that for any reasonable
conservative extension T of PRA the function fT grows at least as fast as
what the speed-up of T over PRA is. The same could be true for a broad
class of theories besides PRA. Also, it would be interesting to see if one

3As shown in [10], for some primitive recursive function f , PRA `
∀xPrPRA(f(x),¬PrT (x, d1 = 0e). Since there are less than 2x+1 proofs in T of length
at most x, they can be all combined together to get the value of a primitive recursive
function fT such that the above holds.

4Pudlák’s Theorem 5.5 from [15] shows that for any theory, A, from a wide class of
theories, there exists a polynomial, P (x), such that for any natural number n, there is a
proof of length P (n) in A of the statement ConA(n). The proof of his statement takes
place in the meta-theory but it is easy to see that it can be formalized in A. Thus, for
A = PRA we get the claim we need.
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can find more refined ways of distinguishing among equiconsistent theories
formalizing mathematical principles of different strength, using some other
functions or predicates naturally related to the consistency predicates.

The above is also relevant to the following problem presented by Gödel.
We quote Kreisel [12], Marginal Comments on page 241.

... one may modify Hilbert’s (generalized) programme by
taking into account the lengths of proofs. Thus given a formal
system F and an area of evidence P, let ψ(n) be the length of
the shortest proof in P of the consistency of F restricted to the
proofs of length n. (If the number of proofs of bounded length in
F is finite and F is consistent there will always be such a proof
of their consistency.) If ψ(n) is of the same order of magnitude
as n, we should have a ‘practical’ reduction of F to P. I first
heard this interesting suggestion in a conversation with Gödel.

In our analysis of this idea we will take P to be finitistic evidence which is
inherent in Hilbert’s Program. We formalize “the consistency of F restricted
to the proofs of length (at most) n” by by ConF (n) ≡ ¬∃p(|p| ≤ n ∧
PrF (p, d1 = 0e)). Also, we have to make precise the informal description
that “ψ(n) is of the same order of magnitude as n” and the informal notion of
a “practical reduction.” We will accept the standards of complexity theory:
ψ(n) is considered to be of the same order of magnitude as n if it is bounded
by a polynomial in n, i.e. if for all n

ψ(n) ≤ P (n) (4)

for some polynomial P with natural coefficients. If d(n) are proofs of length
ψ(n) and the above holds, we will say that the sequence of proofs d(n)
is feasible. Both of the above two conventions are standard and discussed
in length in the literature on complexity of proofs. Our third assumption
will be more delicate and we defend it on the same grounds we defended
the thesis in [10] about what instances of the ω rule could be considered
finitistically warranted.

In order to have a “practical reduction” of F to P that is satisfactory
from the standpoint of the area of evidence P, not only do we have to have P-
proofs d(n) of ConF (n) whose length ψ(n) is smaller or equal P (n), but this
fact itself must be verifiable by means that all belong to the area of evidence
P, i.e., one should be able to justify, on the basis of the area of evidence P,
the statement “For every n there is a P-proof d(n) of ConF (n) whose length
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is at most P (n).” Here P stands for a formal system corresponding to P;
the requirement that P is formalizable is built into the problem: to be able
to measure the length ψ(n) of proofs d(n), these proofs must be formalized
as sequences of symbols whose length is counted. The above motivates us
to introduce the following meta-definition which will replace the informal
notion of a “practical reduction.”

Meta-definition 1 The consistency of a theory T is feasibly reducible to
the area of evidence P if one can give a P-proof of the statement “there is
a feasible sequence d of P-proofs d(n) of the assertion that there is no proof
of an inconsistency in T of length shorter than n.”

Having in mind that we identify finitistic provability with provability in
PRA, a theory is feasibly reducible to the finitistic area of evidence if there
is a polynomial P (x), such that

PRA ` ∀x∃y(|y| < P (x) ∧ PrPRA(y, ConT (x))). (5)

The adaptation of the result of Pudlák mentioned in the previous problem
shows that the consistency of PRA is indeed feasibly reducible to the finitis-
tic area of evidence. Thus, it is natural to consider the following question.

Problem 3 Is there a theory T in which one can formalize a significant
portion of mathematical practice and whose consistency is feasibly reducible
to the finitistic area of evidence?

Proposition (5) proved in the next section and already mentioned in the
comments after Problem 2 shows that this is not the case for any theory
containing IΣ1. As it is shown by Simpson and Smith, IΣ1 is necessary to
prove some of the most basic mathematical theorems (see [17]). Thus, it is
safe to say that no significant theory from the point of view of mathematical
practice is “practically reducible” to the area of finitistic evidence with a
finitistic justification of such a reduction.

4 Technical Results

We now prove the technical results we discussed. We denote by IΣ1 the frag-
ment of Z (where Z is an extension of PRA with the induction schema for all
formulas of the language of PRA) with the induction schema restricted to Σ1
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formulas;5 RCA is a fragment of second order arithmetic containing, aside
from the few usual basic axioms, only ∆0

1 comprehension and Σ0
1 induction

(with free second order variables in these schemas); again we assume that
the language of RCA contains symbols for all primitive recursive functions.
Let LPRA(y) be a formula formalizing “y is a functional symbol of PRA”,
and let LPRA(x, y) be a formalization of “y is a functional symbol of PRA
(whose Gödel code6 is) smaller or equal than x.” TPRA(x, y) is a formula
formalizing “y is a closed term of PRA containing only functional symbols
smaller or equal than x.” Notice that this restricts only the language and
not the size of the term — an important feature for the cut-elimination pro-
cedure to be used later. In all standard coding procedures all these formulas
are at most ∆0

1. We denote primitive recursive functions which operate on
codes for various syntactical objects of PRA by capital letters. Ar(f) rep-
resents the arity of the functional symbol f ; < a0, . . . , alh(x)

.−1
> represents

one of the usual functions for coding a sequence x of numbers with lh(x)
representing the length of the sequence, and (s)i representing the ith element
of the sequence s. All such functions used in coding are primitive recursive.
G(f) =< 0, gf , hf > if f is defined by primitive recursion from gf and hf

(i.e. if f(0, ~x) = gf (~x) and f(y + 1, ~x) = hf (y, f(y, ~x), ~x) are axioms of
PRA), and G(f) =< 1, hf , gf

1 , ..., gf
k > if f is defined by composition from

hf , gf
1 , ..., gf

k . The usual codings have the property that for all (non atomic)
f , (G(f))i < G(f). x denotes a primitive recursive function producing the
Gödel code of the xth numeral.

By a cut in a theory T , we mean a formula J such that

T ` J(0) ∧ ∀x(J(x) → (J(x + 1) ∧ ∀z < x J(z))) (6)

In our proofs we use the fact that Σ0
1 induction, Π0

1 induction, the Σ0
1 least

number principle and the Π0
1 least number principle (all with free second

order variables) are all equivalent over a weak base theory (see [16]).

Proposition 1 There is a cut JRCA in RCA such that

RCA ` ∀x(JRCA(x) → ¬PrPRA(x, d1 = 0e)) (7)
5Even though IΣ1 formulated on the language {+, ·, =, <, 0} suffices to introduce all

primitive recursive functions in an extension by definitions, we prefer that the language of
our instruments extends the language of our base theory PRA. This also has an advantage
that all formulas with bounded quantifiers only are equivalent to quantifier-free formulas
by replacing bounded quantifiers with their primitive recursive definitions.

6In the sequel we will identify functional symbols, terms, formulas, and proofs with
their Gödel codes and consequently omit the text in the parentheses above.
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We define a truth predicate for variable-free sentences of some restric-
tions of the language of PRA and then prove the soundness of PRA re-
stricted to such languages with respect to the variable-free sentences of these
restrictions. To simplify our formalism, we will use similar notation for codes
of formulas as for the formulas themselves; what we mean will be clear from
the rest of the expression. Thus, in

S(x) = y ∈ E ↔ S(x) = y (8)

S(x) = y denotes a number that is a code of the formula built from the xth

and yth numerals and the symbols for the successor function and equality,
while S(x) = y is just a formula of the language of PRA. In the rest of the
paper ~x stands for (x)0, ...(x)

lh(x)
.−1

, and capitals (e.g. E) are used for set
variables whereas lower case letters (e.g. x) are used for number variables;
in particular f is a numeral coding for a functional symbol in the following
formulas. Consider the following formulas of RCA:

Θ1(n,E) ≡ ∀t(TPRA(n, t) → ∃!y(t = y ∈ E))
Θ2(n,E) ≡ ∀x∀y[(S(x) = y ∈ E ↔ S(x) = y) ∧ (x = y ∈ E ↔ x = y)

∧ (y = 0 ∈ E ↔ y = 0)]
Θ3(n,E) ≡ ∀f [[LPRA(n, f) ∧ (G(f))0 = 0 → ∀x, y, z(Ar(f) = lh(x) + 1

→ (f(0, ~x) = z ∈ E ↔ gf (~x) = z ∈ E) ∧ (f(y + 1, ~x) = z ∈ E

↔ hf (y, f(y, ~x), ~x) = z ∈ E))] ∧ [LPRA(n, f) ∧ (G(f))0 = 1
→ ∀x, y(f(~x) = y ∈ E ↔ ∃z(lh(z) = Ar(hf ) ∧ hf (~z) = y ∈ E

∧ ∀i < lh(z)(gf
i (~x) = (z)i ∈ E)]]

Θ4(n,E) ≡ ∀t∀z[TPRA(n, t) → (t = z ∈ E ↔ ∃f, y, v(LPRA(n, f)
∧ lh(y) = lh(v) = Ar(f) ∧ ∀i < lh(y)(TPRA(n, (y)i)
∧ (y)i = (v)i ∈ E ∧ t = f(~y) ∧ f(~v) = z ∈ E)]

Thus, Θ1 asserts that E contains a unique evaluation of each term of
the language of PRA restricted to the functional symbols smaller or equal
than n. Θ2 asserts that E contains all closed instances of the graphs of
the initial functions and equality, while Θ3 says that E contains all closed
instances of the rules of primitive recursion and composition that define
new functional symbols from the previous ones. The above properties of E
imply that E correctly evaluates all standard primitive recursive functions.
Θ4 asserts that E evaluates terms inductively according to how they are
built, which implies that E correctly evaluates all standard terms. Finally
let Θ(n,E) ≡ ∧

i≤4 Θi(n, E) and JRCA(n) ≡ ∃EΘ(n,E).
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Lemma 1 JRCA(n) defines a cut in RCA

Proof: The proof uses familiar techniques used for defining a (partial) truth
predicate. Let the set E0 consist of the codes of all formulas of the form
S(x) = y for all x and y such that S(x) = y and of the codes of all formulas
of the form x = x. It is easy to see that this set is ∆0

1 definable and thus
its existence can be proved in RCA. Assume now that there is an En such
that Θ(n, En) holds for some n; we show that then there is an En+1 such
that Θ(n + 1, En+1) also holds;7 this is sufficient to show that JRCA is a
cut in RCA as claimed. If n is not a functional symbol of LPRA then set
En = En+1; if it is, then in order to avoid possible notational confusion,
denote n by a more standard letter f and consider the following two cases:
Case 1: f is defined by primitive recursion from some g and h such that
g, h < f ; Case 2: f is defined by composition from some h, g1, ...gk, such
that Ar(h) = k and h < f , gi < f (here k can be nonstandard).

Case 1 (primitive recursion): Define first an auxiliary set En+1 which
extends evaluation for the function f ; En+1 will be obtained by extending
such evaluation to all terms involving functional symbols smaller or equal
to f . Thus, let

En+1 = En ∪ {f(y, ~x) = z : (y = 0 ∧ g(~x) = z ∈ En) ∨ ∃v(g(~x) = (v)0 ∈ En

∧(∀i < y)h(i, (v)i, ~x) = (v)i+1 ∈ En) ∧ (v)y = z)}

En+1 is obviously definable via a Σ0
1 formula ψ that corresponds to the right

hand side of the above equation. By using the usual arguments, Σ0
1 least

number principle and the properties of En, it is easy to show that En+1

has also a Π0
1 definition in RCA (i.e. is ∆0

1) and that ∀f, y, x∃!z(LPRA(n +
1, f) → ψ(f(y, ~x) = z)).

Define now En+1 as the set of all formulas of the form t = k such that
there are v, h, w satisfying: lh(v) = lh(w); v codes the sequence of terms
from which t is inductively built, with (v)lh(v)−̇1 = t; h codes the sequence
of functional symbols used to build higher complexity subterms of t from
some of the simpler ones; w codes a sequence of numerals that represent
the values of all the subterms of t. Thus, for all i < lh(v), (v)i is built
from some (v)j1 , ..., (v)js , j1, ..., js < i and a functional symbol fi = (h)i of
arity s. Also, whenever (v)i is a numeral, then (v)i = (w)i; otherwise, if
(v)i = f( ~(v)j) then (w)i = f( ~(w)j) ∈ En+1; finally (w)lh(w)−̇1 = k.

Exactly as before, En+1 is ∆0
1 definable and, consequently, a set in RCA.

It is easy to check that if Θ(n,En) holds, then Θ(n+1, En+1) holds as well.
7Here n is just a number variable of RCA and not necessarily a standard number.

12



Case 2 (composition) is handled similarly. ¥

Lemma 2 1. For all standard primitive recursive functions f we have:

RCA ` ∀x, y, E, k[k > f ∧Θ(k, f) → (f(~x) = y ∈ E ↔ f(~x) = y)]

2. For every standard term t of the language of PRA and for any suffi-
ciently large k, RCA proves that if E satisfies Θ(k, E), then ∀x(t =
x ∈ E ↔ t = x) holds.

Proof: Several facts about Θ(m,E) can be established; it is possible
to verify that if m > n and Em and En are such that Θ(m,Em) and
Θ(n,En), then Em and En “agree” about the evaluation of terms t such
that LPRA(n, t). In this sense the sequence of sets is monotonic.

Working within RCA, assume that Θ(k, E) holds for all t, k, E where t is
a term of PRA all of whose free variables are among x1, ..., xs and all func-
tional symbols are smaller or equal than k. Assume also that t1, ..., ts is a se-
quence of closed terms such that ∀i < s TPRA(k, ti), and ∀m,n1, ..., ns(∀i <
s)ti = ni ∈ E. Then t(n1, ..., ns) = m ∈ E if and only if t(t1, ..., ts) = m ∈ E.
This is proved by an easy Π0

1 induction on the complexity of t, using the
properties of E given by Θ(k,E).

Finally, by an easy Π0
1 induction on the complexity of t, using the proper-

ties of E given by Θ(k, E), we can verify that it is provable in RCA that for
all t, k, E, if Θ(k, E) holds and t is a term of PRA all of whose free variables
are among x1, ..., xs and all functional symbols are smaller or equal than k
and t1, ..., ts is a sequence of closed terms such that ∀i < s TPRA(k, ti) then
for all m,n1, ..., ns if (∀i < s) ti = ni ∈ E then t(n1, ..., ns) = m ∈ E if and
only if t(t1, ..., ts) = m ∈ E.

We can now define a truth predicate for all variable-free formulas whose
functional symbols are smaller or equal than k, providing that k belongs to
the cut JRCA. Note that by induction on the complexity of formulas it is
easy to define a primitive recursive function L such that for every variable-
free formula ϕ, L(ϕ) is a term t such that ϕ is equivalent to the equation
t = 0.

Let FPRA(n, ϕ) be a formalization of “ϕ is a variable-free sentence of
PRA such that all functional symbols appearing in it are less than or equal
n”; then define Ω(n,E, T ) by

Ω(n,E, T ) ≡ (Θ(n,E) ∧ ∀ϕ(ϕ ∈ T ↔ (FPRA(n, ϕ) ∧ L(ϕ) = 0 ∈ E))) (9)

and
Ω(n, T ) ↔ ∃EΩ(n,E, T ). (10)
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Then Ω(n, T ) satisfies the usual properties of a truth definition for all vari-
able free formulas ϕ such that FPRA(n, ϕ) holds. This can be easily proved
using Π0

1 induction and the above facts.
Note that whenever Θ(n,E) holds, then for T defined by Tn = {ϕ :

FPRA(n, ϕ)∧L(ϕ) = 0 ∈ En}, we have Ω(n,E, T ). Thus, whenever JRCA(n),
there exists some T such that Ω(n, T ) holds.

In particular, (i) for each standard variable-free formula ϕ one can prove
in RCA the formula

∀n, T (Ω(n, T ) ∧ n > dϕe → (dϕe ∈ T ↔ ϕ)); (11)

(ii) RCA proves that for all n, T , t, m and ϕ, if Ω(n, T ) and if ϕ is a
quantifier-free formula all of whose free variables are among x1, ..., xs then
(∀i < s)(TPRA(n, (t)i) ∧ ti = (m)i ∈ T → (ϕ(~t) ∈ T ↔ ϕ((m)i) ∈ T ).

The proof is by Π0
1 induction on the complexity of ϕ.

Finally, using the definition of Ω(n,E, T ), it is easy to verify within RCA
the following fact. Assume that θ(~x) is either an equality axiom or an axiom
of PRA which is not an induction axiom, and that θ(~x) has only functional
symbols smaller or equal to n. Also assume that n, E, T , and ~t are such
that Ω(n,E, T ) holds. Then (∀i < lh(t))(TPRA(n, (t)i)) → θ(~t) ∈ T . ¥

For the next step of the proof of (1) we must switch from the Hilbert
type proof system to a Gentzen type proof system (see [22]) because we
want to use a partial cut elimination theorem. The equivalence of these two
proof systems is provable in IΣ1, and the proof transformation converting a
Hilbert style proof into a Gentzen style proof does not change the language of
the formulas of the proof. We use the following fact whose proof is effective
and thus formalizable in IΣ1 (PRA in fact). For a proof, see [22], p. 116.

Proposition 2 There is a primitive recursive procedure for transforming
any proof p in PRA of a sequent Γ ⇒ ∆ into a proof p∗ of the same sequent
such that p∗ has the following properties:

(i) the language of p∗ contains only functional symbols of the language
of p;

(ii) all initial sequents of p∗ are of the form ϕ(~t) where ϕ(~x) is either a
logical axiom or an equality axiom or an (open) axiom of PRA which is not
an induction axiom and where ~t is a sequence of terms of the appropriate
length;

(iii) instead of the induction axioms of PRA we have the induction rule
of the form

Γ, ϕ(a) ⇒ ϕ(a + 1), ∆
Γ, ϕ(0) ⇒ ϕ(t), ∆

14



where ϕ is a quantifier-free formula and t is a term; the variable a cannot
appear in Γ, ϕ(0), ∆, or t. (As is usual in proof-theory, we use the first few
letters of the alphabet to denote free variables while the last few denote the
bound ones.)

(iv) all cuts of p∗ are on quantifier-free formulas only.

Such proofs are called free cut-free proofs. The free cut-free proofs can
be much lengthier than proofs involving arbitrary cuts, but, as we noted
above, the process of partial cut elimination does not change the language
of such proofs. Let FPPRA(n, p) be a formalization of “p is a free cut-free
proof of a quantifier-free sequent such that all formulas of the proof contain
only functional symbols smaller or equal than n.”

Working within RCA, consider a proof p∗ such that FPPRA(n, p∗) holds
for some n and let T be such that Ω(n, T ) holds, where Ω is defined iden-
tically to the previous lemma. We want to associate to each such proof p∗

and such T a tree of sequents p which contains only variable-free sentences
of PRA and which we call a proof transform of p∗ relative to T . To do so,
we move backwards through the proof p∗ (i.e. from the conclusions towards
the axioms). We first replace all the free variables of the conclusion of the
proof by 0’s throughout the proof. Assume we are at a height i. If the
inference from a sequent at height i + 1 to a sequent at height i is by a
propositional rule we move one step upwards without changing anything.
Since all cuts are on quantifier-free formulas and the conclusion of the proof
contains no formulas with quantifiers, no quantifier rules are used in the
proof. If the inference is a cut on a quantifier-free formula ϕ(~x), replace ~x
by 0, 0, ..., 0 in the entire part of the proof above and including the cut. If
it is an application of the induction rule of the form

Γ, ϕ(a) ⇒ ϕ(a + 1), ∆
Γ, ϕ(0) ⇒ ϕ(t), ∆

then all variables in t must have been previously replaced by numerals and
so we can assume that t is closed. Replace a by a numeral m−̇1 such that

m = µx ≤ k(ϕ(x) 6∈ T )

for a unique k such that t = k ∈ T and where the bounded µ-operator is
defined as usual: (µx ≤ k)θ(x) is the least x ≤ k such that θ(x) holds if
such an x exists, and x = k + 1 otherwise. Such an m always exists by the
least number principle applied to the simple formula ϕ(x) 6∈ T ∨ x = k + 1.

It is easy to see that the statement “p∗ is a proof transform of a proof p
such that FPPRA(n, p) holds” can be formalized by a ∆0

1 formula.

15



The following Claim can easily be proved by Σ1 induction on the length
of the proof p.

Claim 1 RCA proves that for all p, n, T such that FPPRA(n, p) and Ω(n, T )
hold, there exists p∗ such that p∗ is a proof transform of p with respect to T.

Proof of Proposition (1), i.e. that

RCA ` ∀x(JRCA(x) → ¬PrPRA(x, d1 = 0e))
We work inside RCA; assume p is a proof of 1 = 0 in PRA such that
JRCA(p) holds. Let Tp be such that Ω(p, Tp) holds. We first transform this
proof into a Gentzen style proof of ⇒ 1 = 0 and then get a free cut-free
proof p∗ of ⇒ 1 = 0 of the same language as p. Thus, all functional symbols
of p∗ are smaller than p, and consequently FPPRA(p, p∗) holds.

Let now p be a proof transform of p∗ with respect to Tp. All the initial
segments of p belong to Tp since they are of the form ψ(~t) where ψ(~x) is
a logical axiom, an equality axiom, or an axiom of PRA which is not an
induction axiom, and t is a closed term. An easy induction on height i,
smaller or equal to the height of p, shows that if all the formulas in Γ of a
sequent Γ ⇒ ∆ on the height i belong to Tp, then there is a formula in ∆
that also belongs to Tp. The induction step in proving this claim is easy;
in the case of a propositional or cut rule, it follows immediately from the
properties of Tp, whereas in the case of the induction rule it, follows from
our choice of m in defining the proof transform of a proof. More precisely,
consider

Γ, ϕ(m−̇1) ⇒ ϕ(m), ∆
Γ, ϕ(0) ⇒ ϕ(t), ∆

Assume that all formulas in Γ and ϕ(0) belong to Tp but neither ϕ(t) nor any
formula in ∆ belong to Tp. This implies that there is a least x ≤ t such that
ϕ(x) 6∈ Tp and it must be m by our choice. Since ϕ(0) ∈ Tp then m−̇1 6= m
and ϕ(m−̇1) ∈ Tp. But then all formulas in Γ and ϕ(m−̇1) belong to Tp

and no formula in ∆ or ϕ(m) belong to Tp which contradicts the inductive
hypothesis. Thus, since the final sequent is ⇒ 1 = 0, we conclude that 1 = 0
belongs to Tp, which contradicts the demonstrated properties of Tp. This
finishes our proof of Lemma (1). ¥

The presence of second order objects (e.g. sets) and ∆0
1 comprehension

are not essential; it is possible to carry out a proof of the analogous claim
for the first order theory IΣ1, by using codes for recursive sets rather than
the sets themselves. However, using sets rather than codes is arguably more
intuitive. The corresponding result for IΣ1 follows from the following well
know fact.
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Proposition 3 RCA is interpretable in IΣ1 with unchanged domain of
numbers.

The interpretation I does not change the domain of numbers and all
first order operations and relations remain the same. Let TrΣ1((x, y) be the
usual truth definition in IΣ1 for the first order Σ1 formulas. The domain
of sets is defined by Σ(w) ≡ ∀y(TrΣ1((w)0, y) ↔ ¬TrΣ1((w)1, y)), while
y ∈ X is interpreted as TrΣ1((wX)0, y). It is easy to see that under this
interpretation all of the axioms of RCA are satisfied.

Corollary 1 There is a cut JIΣ1 in IΣ1 such that

IΣ1 ` ∀x(JIΣ1(x) → ¬PrPRA(x, d1 = 0e))

Proof: By Proposition (1) there is a cut JRCA in RCA such that

RCA ` ∀x(JRCA(x) → ¬PrPRA(x, d1 = 0e))

Thus, denoting by JI
RCA the I-interpretation of JI

RCA, we have

IΣ1 ` ∀x(JI
RCA → ¬PrPRA(x, d1 = 0e)) (12)

Notice that if JRCA is a cut in RCA then JI
RCA is a cut in IΣ1; use the

fact that the interpretation I neither changes numbers nor the arithmetical
operations and relations. Hence, we can take JIΣ1 = JI

RCA. ¥
We now introduce some notation from [15].

Definition 2 ConT (n) ≡ ¬∃p(|p| ≤ n ∧ PrT (p, d1 = 0e)).

Lemma 3 There exists a cut K in IΣ1 such that

IΣ1 ` ∀x(K(x) → ConPRA(x)) (13)

Proof: To prove the Lemma we use Solovay’s cut shortening technique [20]
to get a cut K(x) such that ∀x(K(x) → JIΣ1(2

x)). K obviously satisfies
((3)). ¥

We now prove a proposition analogous to Theorem 4.2 of [15], with IΣ1

in place of GB and PRA in place of ZF .

Proposition 4 There exists ε > 0 and a polynomial p such that for every
natural number k

(i) IΣ1 has a proof of length p(k) of ConPRA(20
k);

(ii) PRA has no proofs of length (20
k)

ε of ConPRA(20
k).
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Proof: Replace GB by IΣ1 and ZF by PRA in the proof of Theorem 4.2
of [15], with the exception of the proof that there is a cut I in GB such that

GB ` ∀x(I(x) → ConZF (x)); (14)

instead we apply our Lemma (3).8

Part (i) of Proposition (4) follows from Lemma (3) and the fact that
for any cut K there are polynomial size proofs of K(20

n). This is based on
Lemma 2.2 of [15], which describes how given a cut I one can construct a
cut Ik such that A ` Ik(x) → ∃y(y = 2x

k ∧ I(y)), such that the proof is
polynomial in k, where A contains or interprets Q; see [15] for details.

Part (ii) of Proposition (4) is proved via a modified Gödel type argument
diagonalizing “ϕ(x) is provable in PRA with a proof of length ≤ x” rather
than just “ϕ is provable in PRA” which we diagonalize in the standard
Gödel argument. Again, for details see [15]. ¥

Corollary 2 IΣ1 has roughly super exponential speed-up over PRA for
quantifier free formulas.

Proof: Since ConPRA(20
n) can be formalized as a quantifier-free sentence

in the language of PRA by replacing the bounded quantifiers with their
primitive recursive substitutes we can apply Proposition (4) to conclude that
speed-up of IΣ1 over PRA is not Kalmar-elementary. However, the usual
cut elimination argument shows that the speed up is bounded by P (2x

x) for
a suitable polynomial. Thus, the speedup is roughly super-exponential. ¥

Proposition (3) also implies that RCA has at most polynomial speed-
up over IΣ1. The proof is straightforward, by estimating the size of the
IΣ1-interpretation of a proof in RCA. The exact speed-up depends on the
particular type of the proof system one uses. For example, if we choose a
Hilbert style proof system that allows the rule of universal generalization for
several variables simultaneously and its axioms allow simultaneous instan-
tiations of universal formulas by a sequence of terms, then the speed up is

8The usual proof of (4) is rather different from the proof of Lemma 2. The cut I is
obtained by shortening a cut L that consists of all x for which there exists a satisfaction
class in GB for all Πx sentences of the language of ZF . Then one uses a formalized version
of Montague’s Reflection Theorem, in which a satisfaction class is used rather than the
real truth in the set-universe to obtain a set model of the Πx part of ZF whenever x
belongs to L; we then apply the usual soundness argument for all proofs that belong to
the cut L, which is possible since the complexity of each formula in the proof is smaller
than the (Gödel code of) the proof itself. In our case such model theoretic argument is
replaced by our proof theoretic considerations.
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easily seen to be at most linear. For any other Hilbert style proof system
the speed up is at most quadratic. The details are given in [9].

It was conjectured in [9] that in order to get a similar result for WKL
versus RCA, one could try to adapt Harrington’s forcing proof of the con-
servativeness of WKL over RCA for arithmetical sentences such that the
proof in fact produces an interpretation of WKL in RCA which does not
change the domain of numbers. This was shown to be the case in [1].

We now turn to Problems 2 and 3, and prove the following Propositions.

Proposition 5 For any natural number n

IΣ1 6` ∀x∃y(|y| < 2x
n ∧ PrPRA(y, dConIΣ1(x)e).

Proof: Assume the opposite and let n be a natural number such that

IΣ1 ` ∀x∃y(|y| < 2x
n ∧ PrPRA(y, dConIΣ1(x)e).

Consider the shortening S(x) of the cut K(x) constructed in the proof of
Lemma (3). S(x) is closed for + and · and thus also for any polynomial
with natural coefficients; now take a shortening Sn(x) of the cut S(x) with
the property

IΣ1 ` “Sn(x) is a cut contained in S” ∧ ∀x(Sn(x) → S(2x
n))

Sn can be constructed by iterating the technique of Solovay from [20] men-
tioned in the proof of Lemma 2; see also [14]. By a result of Pudlák (Theorem
2.1 of [14]), there exists a model A of IΣ1 containing in Sn an A-proof p of a
contradiction from IΣ1, i.e. such that A |= Sn(p)∧PrIΣ1(p, d1 = 0e). Since
we can check in PRA the syntax of a sequence of formulas and determine
whether it is a correct proof in IΣ1, and since this can be done in polyno-
mially many steps in the length of the sequence, there is a proof p∗ ∈ A of
length polynomial in the length of p such that

A |= PrPRA(p∗, dPrIΣ1(p, d1 = 0e)e)

Thus, for some polynomial P (x) with natural coefficients and some p′ ob-
tained from p∗ in the obvious way, we get

A |= PrPRA(p′, d¬ConIΣ1(|p|)e) ∧ |p′| ≤ P (|p|)

On the other hand, by assumption, for some p ∈ A,

A |= PrPRA(p, dConIΣ1(|p|)e) ∧ |p| < 2|p|n
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Thus, since |p| < p, Sn(|p|) and so S(|p|). Combining p′ and p we can clearly
get a proof p# of an inconsistency in PRA whose length is polynomial in
the lengths of p and p, and so by our assumption about closure properties
of the cut S, S(|p#|) which is a contradiction since S is a shortening of K
and IΣ1 ` ∀x(K(x) → ConPRA(x)).

This theorem clearly justifies our conclusion concerning Problem 3.

Proposition 6 There is a function gWKL with a roughly super-exponential
growth rate such that

PRA ` ∀x∃y(|y| < f(x) ∧ PrPRA(y, dConWKL(x)e)

Proof: From a result of Sieg (see [16]), there exists a primitive recursive
function g such that if Π2(x) formalizes the predicate that recognizes (codes
of) Π2 sentences in the language of PRA, then

PRA ` ∀ϕ∀p(Π2(ϕ) → (PrWKL(p, ϕ) → PrPRA(g(p), ϕ))

Any such g formalizes a proof transformation procedure that first elimi-
nates cuts and then performs some other proof transformations that do
not increase lengths of proofs significantly compared to the roughly super-
exponential growth rate of the cut elimination procedure. Therefore, g is
dominated by a monotone function h of roughly super-exponential growth
rate; consequently, we have

PRA ` ∀x(ConPRA(h(x)) → ConWKL(x))

As a consequence of Pudlák’s result as mentioned above, we have that

PRA ` ∀x∃y(|y| < (h(x))k ∧ PrPRA(y, ConPRA(h(x))))

We also conclude from Sieg’s theorem that for a standard natural number c

PRA ` PrPRA(c, d∀x(ConPRA(h(x)) → ConWKL(x))e)

which obviously implies that there is a function f with a roughly super-
exponential growth rate such that

PRA ` ∀x∃y(|y| < f(x) ∧ PrPRA(y, ConWKL(x))

Since we have PRA ⊂ IΣ1 ⊂ RCA ⊂ WKL, (and provably so in
PRA for the corresponding representation of the axioms of these theories)
Propositions 5 and 6 imply that fIΣ1 , fRCA, and fWKL all have a roughly
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super-exponential growth rate, which justifies the claims we made in the
comments after Problem 2.

We conclude with the following remark. As we have seen, the relationship
between IΣ1 and PRA is quite similar to the relationship between GB and
ZF . It is now natural to ask if there are other, natural pairs of theories with
similar relationship, both stronger that the pair IΣ1 and PRA, say some
fragments of Predicative Analysis, as well as weaker than this pair, say
for theories of Second Order Feasible Arithmetic and First Order Feasible
Arithmetic like Buss’ Bounded Arithmetic S1

2 (see[2]).
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