
Sensor-assisted Face Recognition System on Smart
Glass via Multi-view Sparse Representation

Classification
Weitao Xu§¶, Yiran Shen*†, Neil Bergmann§, Wen Hu‡‖

¶CSIRO Data61, Australia
‖National ICT Australia

§School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
Email: {xuweitao005}@gmail.com {n.bergmann}@itee.uq.edu.au

†College of Computer Science and Technology, Harbin Engineering University, Harbin, China
Email: {shenyiran}@hrbeu.edu.cn

‡School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
Email: {wenh}@cse.unsw.edu.au

Abstract—Face recognition is one of the most popular research
problems on various platforms. New research issues arise when it
comes to resource constrained devices, such as smart glasses, due
to the overwhelming computation and energy requirements of the
accurate face recognition methods. In this paper, we propose a ro-
bust and efficient sensor-assisted face recognition system on smart
glasses by exploring the power of multimodal sensors including
the camera and Inertial Measurement Unit (IMU) sensors. The
system is based on a novel face recognition algorithm, namely
Multi-view Sparse Representation Classification (MVSRC), by
exploiting the prolific information among multi-view face images.
To improve the efficiency of MVSRC on smart glasses, we
propose a novel sampling optimization strategy using the less
expensive inertial sensors. Our evaluations on public and private
datasets show that the proposed method is up to 10% more
accurate than the state-of-the-art multi-view face recognition
methods while its computation cost is in the same order as an
efficient benchmark method (e.g., Eigenfaces). Finally, extensive
real-world experiments show that our proposed system improves
recognition accuracy by up to 15% while achieving the same level
of system overhead compared to the existing face recognition
system (OpenCV algorithms) on smart glasses.

Index Terms—Face Recognition, Smartglass, Sparse Represen-
tation, Sampling Optimization, IMU Sensors

I. INTRODUCTION

Smart glasses, e.g., Google Glass and Vuzix Smart Glasses,
have attracted significant attention both from researchers and
industrial communities since their introduction in 2013. One
of the most promising new applications enabled by this
technology is to assist people in recognizing identities. Smart
glasses have advantages over other smart devices as they are
equipped with first-person camera which can be naturally used
as a ‘third eye’ to deliver a significantly better user experience
for face recognition.

In this paper, we aim to develop a robust and efficient face
recognition system on smart glasses. Face recognition has been
well researched in the computer vision community, yet there
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still remain many challenges on mobile devices. As discussed
in [1], most of the advanced face recognition methods fail
on portable smart devices because of the tension between
high computation requirements and resource constraints. For
instance, the battery life of smart glasses is limited by its size.
It is reported that the fully charged battery on the Vuzix Smart
Glass can last for one hour; however our practical experience
shows that the battery would be completely drained within half
an hour with display on, camera open and high CPU loading.
Moreover, on smart devices, most of the applications involving
face recognition are still using the inaccurate but efficient
methods in the Open Source Computer Vision (OpenCV)
library, e.g, Eigenfaces [2] proposed in 1991. Recently, Shen
et al. [1] proposed a new face recognition system: opti-SRC,
which is specifically designed for smart phones based on
the sparse representation classification (SRC) algorithm [3].
However, as opti-SRC only applies on a single face image,
it ignores the rich information enabled by the sensors (ac-
celerometer, gyroscope, magnetometer, etc.) and video camera
when used on smart glasses. These additional information
may improve the performance of the recognition system and
user experience significantly. There have been some recent
face recognition systems implemented on smart glasses, e.g.,
Gabriel [4]. Gabriel shifts the computation burden to a cloudlet
(local server) or cloud from the smart glasses while smart
glasses are only used for images capture and results display.
Gabriel provides assistance services to the users such as face
recognition and object recognition. However, the usability of
the cloud-based recognition systems relies on the wireless con-
nectivity. The cost of wireless transmission depends greatly on
the quality of the wireless connection. Furthermore, according
to the results reported in [5], wireless transmission of a bit
requires over 1,000 times more energy than a single 32-bit
computation. Therefore, the in-situ approaches are preferable
considering the relatively high cost of wireless transmission
and the inconvenience of relying on wireless connections.

To overcome the challenges and facilitate the useful infor-



mation provided by smart glasses, we propose and implement
a novel sensor-assisted face recognition system which runs
locally on smart glasses by exploiting the information from
both the camera and sensors on smart glasses to improve
the recognition accuracy and reduce the energy consumption.
The system recognizes the identities based on face image
sequences collected from different view angles and utilizes
the IMU sensors to improve its efficiency. To the best of
our knowledge, our work is the first to consider in-situ face
recognition on smart glasses by fusing IMU sensors. The
proposed system presents a humble step forward for in-situ
face recognition on smart glasses. The contributions of this
paper are threefold:
• We propose a novel face recognition algorithm called

Multi-view Sparse Representation based Classification
(MVSRC). It exploits the high agreement among the
sparse representations of the face images from different
view angles and applies a novel weighted SRC model to
improve the Signal to Noise Ratio (SNR). Our evalua-
tion on several datasets show that MVSRC outperforms
several state-of-the-arts multi-view face recognition algo-
rithms.

• We propose a Support Vector Regression (SVR)-based
estimation model to relate the recognition accuracy to
the angle information obtained by IMU sensors. Then
we design a sampling optimization approach: Maximum
Accuracy Sampling Optimization (MASO) based on the
estimation model to improve the efficiency of MVSRC
while preserving its high recognition accuracy. We refer
to MVSRC after sampling optimization as fast-MVSRC.

• We implement a face recognition system based on the
proposed methods on smart glasses and demonstrate
that it significantly outperforms the existing in-situ face
recognition algorithms on smart glasses. We also discuss
the offloading approach and experimentally show that the
cost of our system is in the same order of offloading to
a nearby server (cloudlet).

The rest of this paper is organized as follows. In Section II,
we introduce technical background on SRC [3] and opti-
SRC [1]. Section III discusses the related work. We describe
the system architecture in details in Section IV. In Section V,
we evaluate the performance of the proposed system on several
datasets. We then implement the system on smart glasses
and conduct real-world experiments to evaluate the system in
Section VI. Finally, we discuss the feasibility of the system in
Section VII and conclude the paper in Section VIII.

II. TECHNICAL BACKGROUND

In this section, we introduce the rand-SRC face recognition
algorithm in [3] and opti-SRC in [1].

In [3], face recognition is cast as a sparse representation
problem and is solved by a Sparse Representation Classifier
(SRC). SRC is applied to solve the traditional linear equation:
y = Ax, where y ∈ Rp is the test image vector which comes
from concatenating the pixel values by rows or columns;
A ∈ Rp×(N ·K) is the dictionary consisting of K classes and

each class contains N p-dimensional image vectors. With the
knowledge of A and y, `1 optimization can be applied to solve
the linear equation with the sparse assumption:

x̂ = arg min
x

‖x‖1 subject to ‖y −Ax‖2 < ε (1)

where ε is used to account for noise and the sparse assumption
holds when the test image vector can be represented by one of
the classes in A. Due to the large dimensionality of the image
vectors, solving Eq. (1) can be computationally intensive.
Inspired by the recent information theory technique of Com-
pressive Sensing (CS) [6], [7], [8], a random projection matrix
R ∈ Rm×p (m� p) can be applied to improve the efficiency
of the `1 optimization. In particular, the projection matrices are
randomly generated from Bernoulli or Gaussian distributions
because of their information preserving properties:

x̂ = arg min
x

‖x‖1 subject to ‖Ry −RAx‖2 < ε (2)

After obtaining the sparse representation vector x̂ ∈ RN ·K ,
the class results can be determined by checking the residuals
based on the Euclidean distance. The definition of the residual
for class i is: ri(y) = ‖y − Aδi(x̂)‖2, where δi(x̂) ∈ RN ·K
contains the coefficients related to class i only (the coefficients
related to other classes are set to be zeros). Then the final result
of the classification will be: î = arg mini=1,...,K ri(y), i.e., the
right class produces the minimal residual.

To further improve the performance of SRC, [1] proposes
a heuristic algorithm to find the optimal projection matrix
instead of the random one. The classification accuracy is
improved by up to 12% with the optimized projection matrix.

III. RELATED WORK

Face recognition has been well researched in computer
vision community. It invokes new research challenges when
used on smart devices. With the availability of OpenCV, many
apps such as friends tagging have appeared on the app markets.
There are three face recognition algorithms in OpenCV: Eigen-
Faces [2], FisherFace [9] and LBPFace [10]. Although these
methods can be used in real-time on smartphones, the recog-
nition accuracies are unsatisfactory [1]. SRC [3] outperforms
these three methods; however, it cannot provide consistent
high recognition accuracy and is computationally intensive. To
overcome its limitations, [1] proposed opti-SRC by optimizing
the projection matrix to provide consistently better accuracy
while solving the computation efficiency issue. Much efforts
have also been made on multi-view based face recognition
to further improve recognition accuracy [11], [12], [13].
Compared to existing face recognition methods in computer
vision community, our work is significantly distinguished by
exploiting information from multi-view face images and IMU
sensors. The advent of smart glasses makes face recognition
easier to perform and more interactive with user by the first-
person camera. In [4], a cloud-based system Gabriel was
developed on Google Glass to provide cognitive assistance
services, such as face recognition, object recognition and
optical character recognition (OCR). However, Gabriel could
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Fig. 1: The pipeline of face recognition system

not work without connecting to servers. In comparison, our
system works locally on smart glasses.

There have been several papers which propose sensor-
assisted biometric authentication system. [14] developed a
multimodal system against spoofing attacks by fusing the
information from the camera and fingerprint sensor. [15] pro-
posed a face authentication system to prevent 2D media attack
and virtual camera attack by utilizing the motion sensors. In
[16], the authors used motion sensors to compensate the tilt
of the smartphone for face detection. In difference, the motion
sensors are used to assisted in face recognition and improve
computation efficiency in the proposed system.

Several papers have exploited the sparsity of multiple mea-
surements to improve the system performance. [17] used
CS to compress GPS signals and exploits the information of
various propagation paths to improve the SNR of GPS signals.
In [18], the authors improved activity classification accuracy
by fusing several channel state information (CSI) vectors.
The multimodal signal processing on resource constrained
platforms is challenging because of the limited computation
capability and energy supply. Some efforts have been made to
address the problem by applying CS. Bo et al. [19] applied a
SRC-based acoustic classification system on Pandaboard and
proposed a column reduction procedure to reduce the com-
putational complexity. In [20], a new background subtraction
algorithm based on the compressed projections was proposed
to enable the real-time tracking with low-power camera nodes.

IV. SYSTEM ARCHITECTURE

In this section, we will introduce the proposed system by
walking through an example scenario and then describe the
architecture in details.

Example Scenario. One day in a party, Tom wants to know
the name of the man standing near him. Tom moves a few steps
around the man and the smart glass pops up the name of Bob
on the display. Then Tom says hi to Bob and they have a nice
conversation.

System Overview. As shown in Figure 1, the face recog-
nition system starts with acquiring face images when the user
starts to move (i.e., walk a few steps around the subject). The
angle information of the face images are estimated by the IMU
sensors embedded on the smart glasses. Then the images and
the associated angle labels are recorded and stored for further
processing. After user stops recording face images, the optimal
subset of the frames is chosen via the sampling optimization
algorithm. Finally, the MVSRC is applied on the samples (i.e.
fast-MVSRC) to obtain the classification result and the smart
glass prompts the name on the display.

A. MVSRC

Multi-view Sparse Representation based Classification (we
call it MVSRC for short) is built on the single image ap-
proaches [3], [1]. The key assumption behind MVSRC is that
face images obtained from different view angles tend to have
a high agreement on the sparse representations because each
of the face images from the same person should be linearly
represented by the same class in the dictionary. Suppose we
have acquired a set of M feasible face images from the
camera. Following the single image approach described in
Section II, we can obtain a set of estimated coefficients vectors
X̂ = {x̂1, x̂2, ..., x̂M} by solving the `1 optimization problem
for each of the face images. Theoretically, a precise sparse
representation will only contain the non-zero entries at the
locations related to the specific class. However, noise exists in
the empirical estimations. Therefore, the estimated coefficients
vector of the test image m can be expressed as:

x̂m = x+ εm (3)

where x is the theoretical sparse representation of the face
image vector and εm is used to account for noise. The image
vector could be misclassified due to low Signal to Noise Ratio
(SNR). To enhance the SNR of the classification system, we
propose a new sparse representation model by exploiting the



information from the multi-view face images. The new sparse
representation model can be expressed as:

x̂sum =

M∑
m=1

αmx̂m (4)

where αm is the weight assigned to x̂m based on the Sparsity
Concentration Index (SCI) defined in [3]:

SCI(x̂m) =
K ·maxj‖δj(x̂m)‖1/‖x̂m‖1 − 1

K − 1
∈ [0, 1] (5)

the SCI measures how concentrated the coefficients are in the
dictionary. SCI(x̂m) = 1, if the test image can be strictly
linearly represented using images from only one class; and
SCI(x̂m) = 0, if the coefficients are spread evenly over all
classes. The weight of x̂m is obtained by normalizing the SCIs
among the multi-view face images:

αm = SCI(x̂m)/

M∑
n=1

SCI(x̂n) (6)

In the new face recognition model, the SNR is improved
in two aspects: 1) The estimated coefficients vector can be
divided into the theoretical part (signal part) and noise part.
The theoretical parts among the sparse representations of the
multi-view face images from the same identity have a high
agreement. However, due to the random nature of the noise,
the agreement among the noise signals is low. It is straight-
forward to prove that the SNR of the face recognition system
tends to be improved by summing up the coefficients vectors
obtained from conducting sparse representation on different
face images. 2) Normalized weights assigned to each of the
coefficients vectors are derived from their SCIs. SCI is de-
signed to approximate the sparsity of the coefficient vectors. A
higher SCI represents a more accurate approximation achieved
by solving `1 optimization. Therefore, the coefficients vector
with higher SNR will be assigned a relatively larger weight.
Meanwhile a coefficients vector with a high noise level will
be depressed by being assigned a smaller weight.

With the knowledge of x̂sum, the compressed residual of
each class is computed as:

ri(ysum) = ‖Roptysum −RoptAδi(x̂sum)‖2 (7)

where ysum =
M∑
m=1

αmym is the weighted summation of

all the feasible face image vectors obtained by the glasses.
Following the same approach in [3], [1], the final classification
result is obtained by finding the minimal residual.

To recognize individuals that are not in the system, we adapt
the same principle in [1] by using confidence level defined as:

confidence =

(
1

K

K∑
i=1

ri − min
i=1,...,K

ri

)
/

1

K

K∑
i=1

ri (8)

The confidence level is in the range of [0, 1] and should be
close to 1 if a subject is known by the recognition system;
otherwise it will be close to 0. An appropriate threshold (0.2
in our system) can be chosen by data-driven approach to make
the recognition system robust to intruders.

B. Optimized Sampling Strategy

Considering the computation and energy consumption issues
of the smart glasses, applying MVSRC straightforwardly on
all of the M face images is not a desirable choice because
it requires M `1 optimizations. Evaluation in [1] shows that
only a single `1 optimization takes almost 2/3 of the total
computation time. Moreover, a large amount of redundant in-
formation exists among the adjacent frames as the face images
with similar view angles contain large overlaps. This makes a
downsampling strategy possible to improve the efficiency of
MVSRC while preserving its accuracy.

To find the best sampling strategy, we propose to optimize
the downsampling on the face images set with a predefined
energy budget. The energy budget Eb is preset and we aim to
find the optimal subset Ωs of the face images set I to achieve
the highest recognition accuracy Ac within the preset budget
as follows:

Ωs = arg max
Ω

Ac s.t. Etotal ≤ Eb,Ω ⊆ I (9)

where Ω is one of the arbitrary subsets of I and Etotal is the
total energy consumption for face recognition.

To solve the optimization problem, we start with analyzing
the parameters affecting the face recognition accuracy. Accord-
ing to the processes of face recognition with smart glasses, we
define a potential parameters list X and aim to relate this list
to recognition accuracy by machine learning. The parameters
included in X in our system must satisfy two conditions: 1)
it can be quantified and 2) it can be estimated by sensors on
smart glasses. Using these two conditions, we build the list
X = (θ1, θt, θs1, θsi, ns) consisting of the following parameter
variables:
• θ1: the view angle of the first recorded face image which

is estimated by image processing method.
• θt: the total rotation angle displacement between the

leftmost (rightmost) and rightmost (leftmost) face images
in the yaw direction and is estimated by the IMU sensors.

• θs1: the view angle of the first face image in the chosen
subset and is estimated by combining the result of θ1 and
analysis on IMU sensor readings.

• θsi: the view angle interval among the face images in the
chosen subset and is estimated by IMU sensors.

• ns: the number of face images in the chosen subset.
The illustrative explanation of the parameter variables is

shown in Figure 2 (θ is obtained by gaze estimation in
Section IV-C1). As the evaluation in Section V-B1, the feasible
range of the view angle is between 30◦ to the left and 30◦

to the right of the frontal face respectively. The results are
also consistent to the symmetric property of the human face.
Therefore the original angle (0◦) can be either the 30◦ view
angle to the right (as shown in Figure 2(a)) or the 30◦ view
angle to the left (as shown in Figure 2(b)). We choose the
origin at the same side as the view angle of the first recorded
face image.

As the exact recognition accuracy cannot be computed
without the the knowledge of the groundtruth in real world
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Fig. 2: Angle coordinate system settings: θ is the relative view
angle of the first face image to the frontal face, θ1 is the view
angle of the first face image to the origin (θ1 = 30◦−θ), θt is
the rotation angle displacement between the first and last face
images.

application, to estimate recognition accuracy, we model the
correlation between the parameter variables and the recogni-
tion accuracy based on a novel Support Vector Regression
(SVR)-based approach [21] to find the optimal observation of
the parameters. The estimation model is learned offline and
then used for in-situ accuracy estimation. We use our private
dataset (see Section V for details of private dataset) which
consists of 10 subjects to learn the estimation model. Each
of the subject contributes 9 image sequences and each of the
image sequences contains 61 face images from different view
angles. In the following parts, we will describe how to build
the estimation model.

We define the set of all the possible observations of X ′

as {χ1, χ2, χ3, ..., χN} and the corresponding accuracies as
{z1, z2, z3, ..., zN}. Each of the observations is related to a
certain subset of the face images which is determined by
the values of the parameters in X ′. With the information of
the observations and the corresponding accuracies, we aim to
find the function f(·) which best approximates the relation
inherited between the input features X ′ and it can be used
later on to infer the accuracy z for a new input feature X ′.
Specifically, the goal of regression is to find the function
f(·) which relates the parameters list X ′ to the recognition
accuracy z with the deviation of at most ε:

Dev(z, f(X ′)) ≤ ε (10)

where Dev(·, ·) represents the deviation computation.We apply
SVR [21] by using all the possible observations in private
dataset to find the function f(X ′) and we use the Radial Base
Function (RBF) Kernel which is defined as:

k(xi, x) = e−γ‖xi−x‖2 (11)

where γ is a kernel parameter (0.01 in our experiment). For
more details of SVR, readers are encouraged to refer [21] for
the step-by-step instructions.

With the knowledge of the estimation function, we propose
a computationally efficient approach to solve the optimization
problem Eq. (9), i.e., Maximum Accuracy Sampling Opti-
mization (MASO). In the real application, θ1 and θt are
user-specific and determined before the sampling optimization
stage. The optimization approach is actually searching for

the optimal observation of (θs1, θsi, ns) under the predefined
conditions (energy budget). The estimation function is used
to efficiently approximate the recognition accuracy with the
knowledge of the angle information (Line 7 in algorithm 1).

Algorithm 1 Maximum Accuracy Sampling Optimization

1: Input: Estimation model f , total energy consumption
Etotal, energy budget Eb, angle of the first view θ1, total
rotation angle displacement θt, angle of the first sampled
image θs1, interval between sampled images θsi, number
of sampled images ns, maximum number of sampled
images Nmax = [(min(θ1 + θt, 60)− θs1)/θsi].

2: Initialization: allocate one empty list: Y , m = 0.
3: for ns = 1 : Nmax do
4: for θsi = 0 : θt do
5: for θs1 = θ1 : min(θ1 + θt, 60) do
6: if (Etotal ≤ Eb) then
7: Ym = f(θ1, θt, θs1, θsi, ns)
8: m++
9: end if

10: end for
11: end for
12: end for
13: (θs1, θsi, ns) = argmax

θs1,θsi,ns

Y

14: Output: (θs1, θsi, ns)

In Algorithm 1, the total energy consumption of the system
can be expressed as:

Etotal = T ∗ (Pbase + Pdis + Pimu + Pcam) + Ecpu (12)

where T is the total operating time for classification; Pbase
denotes the baseline power consumption of the smart glass;
Pdis, Pimu and Pcam are the power consumed by the display,
IMU sensors, and camera respectively; Ecpu is the total
energy consumption of CPU for classification which accounts
for face detection, gaze estimation, `1 optimization, residual
calculations and sampling optimization. Ecpu can be further
split into repeatable part and once-off part. The once-off part
consists of the energy consumption of gaze estimation, residual
calculation and sampling optimization which are operated once
only during classification, while the repeatable part includes
face detection and `1 optimization which are operated on every
sampled face images. Assuming m face images are sampled
for classification, the total energy consumption can be further
expressed as:

Etotal = T ∗ (Pbase + Pdis + Pimu + Pcam) +m ∗ Eu + E1

(13)
where Eu is unit energy consumption of the repeatable part
on each image, E1 is the energy consumption of once-off part.

The optimization strategy and corresponding parameter (i.e.
Eb in MASO) is preset by user before recognition, and the
optimization process is called online after multi-view face im-
ages are obtained. As the results in Section V-D1, the sampling
optimization component only takes less than 2.7% of the total



computation time which suggests that our optimization method
is computationally efficient. In order to differentiate from
MVSRC, we call MVSRC after sampling optimization as fast-
MVSRC. Note that the proposed MASO can also be generally
applied to other multi-view face recognition methods.

C. Sensors-assisted System

As described above, the sampling optimization process
requires the angle information. The angle information is ob-
tained by gaze estimation of the first face image and angle
displacement estimation with IMU sensor readings.
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Fig. 3: (a) Head model of the user [22] (b) Gaze of the subject
(c) Bird view of the recognition process.

1) Gaze Estimation: Gaze estimation is used to find the
initial angle information θ1 of the first image by the image
processing technique proposed in [23]. The method uses the
locations of the following five facial features: left and right
eye far corners, left and right mouth corners and nose tip
which are marked as red crosses in Figure 3(b). The angle
θ between the view point of the first face image recorded
and the frontal view is calculated by analyzing the relative
positions of the five facial points. Then θ1 in the view angle
coordinate system can be obtained with the knowledge of θ
(θ1 = 30◦− θ in our system). After obtaining the initial angle
information, the view angles of the face images recorded later
can be calculated by accumulating the angle displacements
along with θ1 as reference.

2) Angle Displacement Estimation: From Figure 3(a) and
Figure 3(c), we notice that the rotation angle is actually the
angle change along yaw direction of the smart glass when
the user moves around the subject. In practice, substantial
pitch and roll rotations rarely occur. Moreover, the slight
pitch rotation caused by the height difference between the
subject and user is within the tolerance of the face recog-
nition algorithms. One can estimate rotation angle by simply
integrating gyroscope readings. However, the measurements
from IMU sensors suffer from bias, noise and systematic

errors (e.g., misalignment between the sensor axes and non-
unit scale parameters) which lead to inaccurate orientation
estimations [24]. To address this issue, we implement a sensor
fusion algorithm to compensate for the weakness of each
sensor by utilizing other sensors’ information. Here we use
quaternion-based Extended Kalman Filter (EKF) proposed
in [25] to estimate the orientation of the smart glass. The EKF
incorporates an in-line calibration procedure for modeling
time-varying biases which may affect sensors like accelerom-
eters and magnetometers, and a mechanism for adapting
their measurement noise covariance matrix in the presence of
motion and magnetic disturbances. Assume the output of EKF
is quaternion q = [w, x, y, z]

T , we could compute the three
Euler angles of head model in Figure 3(a) using the following
equations:ϕψ

θ

 =

atan2
(
2 (wz + xy) , 1− 2

(
x2 + z2

))
asin (2 (wx− yz))

atan2
(
2 (wy + xz) , 1− 2

(
x2 + y2

))
 (14)

where ϕ stands for roll, ψ represents pitch and θ represents
yaw rotations respectively.

To improve user experience, the IMU sensor readings are
used to automatically determine the start and end of recogni-
tion process. From our observation, the gyroscope data along
the yaw direction (perpendicular to the motion) exhibits large
variations when the user moves during the recognition process.
We first apply a low pass filter to filter out the small vibrations,
then our system will start to record face images at θstart
when the gyroscope sensor reading along the yaw direction
is larger than a threshold (0.15 rad/s in our system) and end
the recording at θfinal when it is lower than the threshold
in the sense that the user stops moving. The rotation angle
can be simply obtained by θt = |θfinal − θstart| as shown in
Figure 3(c).

Another challenge is that the timestamps of sensors and
video frames are usually not well synchronized [26]. There-
fore, we apply the online calibration and synchronization
method proposed in [26] to obtain the delay td between
IMU sensors and camera, then td is in return used to syn-
chronize the timestamps of sensor readings and images. For
a full description of the EKF-based orientation estimation
and synchronization, the reader is referred to [25] and [26]
respectively.

After the user stops moving, θ1, θt and face images as-
sociated with corresponding angle displacement are used in
MASO as described in Algorithm 1.

V. EVALUATION

A. Goals, Metrics and Methodology

In this section, we evaluate the performance of the pro-
posed system via simulation. The goals of the simulation are
fourfold: 1) to determine the choice of the key parameters
including feasible range of views in the yaw direction and the
number of projections used in MVSRC; 2) whether MVSRC
outperforms the state-of-the-art face recognition methods in
accuracy; 3) whether MASO improves the efficiency of
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Fig. 5: Experimental results of parameters choice

MVSRC while retaining high accuracy; and 4) to evaluate
the angle estimation accuracy of IMU-based method and its
impact on face recognition accuracy.

Fig. 4: Examples of face images from private dataset
The evaluations are based on two datasets: Honda/UCSD

video dataset (Honda/USCD) [27] and the private dataset
we have collected with the smart glasses1. Honda/USCD
video dataset is widely used for the evaluation of multi-view
face recognition methods. It consists of 59 image sequences
from 20 subjects recorded in different environments and each
subject contributes at least two sequences. The number of
frames of the sequences vary from 12 to 645. The angle
information is not available in Honda/UCSD dataset, therefore
we built our private dataset by obtaining both multi-view face
images and their associated view angles. Our private dataset
consists of 10 subjects (2 females and 8 males) aged from 24 to
43 with different skin tones. The face images are taken under
9 different categories by combining the different expressions
(neutral, happy and sad) and locations (corridor, office and
outdoor). The user wearing the smart glass records the video
clips of the candidate to be recognized (suppose the candidate
is just facing to the user) by moving around the subject from
left to right (in yaw direction) with wide range. The flow of
orientation information is obtained and synchronized with the
video clips. Face regions are detected by a Viola-Jones face
detector [28] and cropped to 48 × 48 gray-scale images. We
then apply the method introduced in Section IV-C to find
the frame containing the face in frontal view angle. Finally
we sub-sample the video clips by every 1◦ according to the
associated angle displacement information until we reach 60◦

to both left and right direction. Therefore, for each video clip,
we obtain a symmetric sequence of 121 face images with view
angles from −60◦ (left) to +60◦ (right). A sequence of sample
images is shown in Figure 4.

We determine the parameters (feasible angle range and
number of projections) by gradually changing the parameters

1Ethical approval for carrying out this experiment has been granted by the
corresponding organization (Approval Number 2014000589)

and the choices are made according to the evaluation results
on the real datasets. In the evaluation of this section, the
training set is derived from random selection as in [1]. We
show the results of the average value and 95% confidence level
of the performance metrics (accuracy, energy consumption and
computation time) over 30 independent trails. The computation
time and energy consumption are measured by running the
system on Vuzix M100 Smart Glass.

B. Parameters Choice

In this section, we will determine the choice of the param-
eters including the feasible angle range and the number of
projections applied in the system by evaluations on the real
datasets.

1) Impact of View Angles: The view angles have substantial
impact on the recognition accuracy. In this experiment, we
evaluate the influence of different view angles on the recog-
nition accuracy on private dataset.

As described previously, we obtain a symmetric sequence
of 121 face images with view angles from −60◦ (left) to +60◦

(right) for each video clip. We group the the face images by
the view angles uniformly into 12 bins by every 10◦ and the
frontal faces are picked up to form the 13th bin. Each bin
represents an evaluation point. We calculate the recognition
accuracy of each bin by using three single-image based face
recognition methods: opti-SRC, rand-SRC and Eignfaces. We
display the evaluation points at the medium degree of each
bin (x-axis) in Figure 5(a). From the results, we observe that
the recognition accuracy decreases when the view angles of
the face images deviate from the frontal view angle and the
recognition accuracy has dropped significantly when the view
angle is over 30◦ apart from the frontal view. Therefore, we
determine the feasible range of the view angles in our system
as [−30◦, 30◦] (the origin of the view angle is the frontal face).
In addition, the work in [29], [30] also studies the effects of
different poses on face recognition and their findings support
our results. With this observation, we remove the images in our
private dataset whose view angles are not in the feasible range.
Therefore, the number of image in each sequence becomes to
61.

2) Impact of Number of Projections: It is known that
the recognition accuracy can be improved by increasing the
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Fig. 6: Evaluation results

number of projections or features. However, it also increases
the computation cost significantly. To investigate the recog-
nition accuracy on the number of projections, we evaluate
the performance of MVSRC with different settings by varying
the number of projections from 50 to 300. As MVSRC uses
multiple face images to perform recognition, we calculate
the accuracy of MVSRC with different number of views
(the number of face images from different view angles for
each classification) nview = 1, 2, 3, 4. We group the face
images of each image sequence in the test set into small
subsets of nview images and report the recognition accuracy of
MVSRC on the small subsets of different sizes in Figure 5(b).
We also evaluate the computation time of MVSRC with
different number of projections. As the computation time of
MVSRC is proportional to nview, without loss of generality,
we present the computation time of MVSRC when nview = 1.
From the results shown in Figure 5(b) and Figure 5(c), we
find the growth of the recognition accuracy diminishes when
the number of projections is above 200 while computation
time keeps increasing substantially. Therefore, we choose the
number of projections as 200.

C. Dataset Evaluation of MVSRC

In this section, we compare MVSRC with several competing
face recognition methods in the literature. Note that we do not
consider angle displacement information in this section.

1) Comparison with State-of-the-Art: We compare MVSRC
with three state-of-the-art multi-view face recognition meth-
ods, namely, JDSRC [11], SANP [12] and MSSRC [13]. We
compute the recognition accuracy of different methods under
different number of views (k) as well as different number of
projections/features (d) on private dataset and Honda/UCSD

dataset respectively. For each dataset, we randomly choose
30 images from each subject to form the training set and the
rest are used as test set. We first evaluate the accuracy with
different number of views from 1 to 5 by setting d = 200. We
then evalulate the accuracy of different methods against the
number of projections/features from 50 to 200 with k = 3. Fig-
ure 6(a) and Figure 6(b) plot the results of private dataset. The
results on Honda/UCSD dataset are shown in Figure 6(c) and
Figure 6(d). Note that SANP is not a feature-based method,
the accuracy of SANP in Figure 6(b) and Figure 6(d) is shown
by a straight line. From the results, we can see that MVSRC
consistently achieves the best recognition accuracy and is up
to 7% and 10% more accurate compared to the second best
recognition method on the two datasets respectively. MVSRC,
JDSRC and MSSRC are based on original SRC; however, we
noticed that MVSRC performs better than JDSRC and SANP
when k=1. This is due to the fact that single-image MVSRC
becomes opti-SRC and opti-SRC performs better than SRC. It
is worth mentioning that MVSRC is approximately 5%−10%
more accuracy than direct major voting in our evaluation. Due
to limited space, we do not plot the results of direct major
voting in this paper.

2) Computation Time Evaluation: Eigenfaces is known to
be efficient and is the most popular method used on resource-
constrained devices. We use our private dataset to evaluate the
computation time for MVSRC and Eigenfaces (with majority
voting) on smart glasses with various sizes of image sequence
from 1 to 60. The cost of the two methods is represented
by the computation time used for one classification operation.
The results in Figure 6(e) demonstrate that MVSRC requires
significantly more computation time than Eigenfaces and the



gap increases with the growth of the number of images used
for recognition. However, we will show in the following
section that the computation time of MVSRC can be reduced
significantly while preserving high accuracy with the proposed
sampling optimization method.

D. Dataset Evaluation of MASO

To address the computation issue of MVSRC, we propose
fast-MVSRC by combining MVSRC with MASO described in
Section IV-B. In this section, we start with some preliminary
experiments to investigate the computation and energy cost
performance of our system. Then we compare MASO with
other common sampling strategies. Finally, we compare the
recognition accuracy of fast-MVSRC with Eigenfaces under
various computation cost on smart glasses.

1) Preliminary Experiments: As the optimization method
proposed in Section IV-B requires the energy consumption
information, we conduct preliminary experiments on the Vuzix
Smart Glass to obtain the energy consumption and computa-
tion time information. It is worth mentioning that the proposed
system is not platform specific and is compatible with Google
Glass as well.

In the preliminary experiments, we first evaluate the impact
of image resolution and frame per second (FPS) on system
cost. Table I shows that the cost of face detection improves
significantly with the increase of image resolutions. Image
downsampling reduces the system cost, however, it also leads
to low recognition accuracy. Note that the recognition accuracy
shown in Table I are the mean results of single-image MVSRC
on private dataset without sampling optimization. The original
image resolution of Vuzix Smart Glass is 432 × 240. As
shown in Table I, we found that the recognition accuracy
drops significantly when the image is downsampled to 108x60
(4 times downsampling in both dimensions). Thus the raw
image is downsampled to 216 × 120 (1/2 downsample) in
the prototype. Table II illustrates the display power, camera
power and mean angle estimation error under different FPS. To
balance the system cost and the accuracy of angle estimation,
we set FPS to 24 in the prototype system.

TABLE I: System cost of face detection operation under
different image resolutions

Resolution Time(ms) Energy(mJ) Accuracy(%)
432*240 175 107 88.1
216*120 85 56 86.8
108*60 63 34 78.4

TABLE II: Display power and camera power under different
FPS

FPS Pdis(mW) Pcam(mW) Estimation error
27 265 177 1.9◦

24 220 122 1.9◦

20 204 112 2.9◦

15 187 105 3.8◦

10 162 92 5.7◦

TABLE III: Resource consumption on Vuzix Smart Glass
Face Detection(ms) 85

Gaze Estimation(ms) 87
`1(ms) 350

Residual(ms) 33
MASO (ms) 15
Eu(mJ) 238
E1(mJ) 62

Baseline Power(mW) 35
Display Power(mW) 220
Camera Power(mW) 122

Sampling Rate NORMAL UI GAME FASTEST
Frequency(hz) 5 15 50 205

IMU Power(mW) 11 29 61 295

After image resolution and FPS are determined, we eval-
uate the resource consumption of each component in the
system. Table III shows the related specifications and resource
consumptions on Vuzix Smart Glass. The computation time
is obtained from the console of the Eclipse development
environment and the energy consumption of each component
is estimated by PowerTutor App (it was also used in [1]). The
sampling rate of the IMU sensors can be set via Android API
and is in four levels from low to high: NORMAL, UI, GAME
and FASTEST. Considering both the energy consumption and
the accuracy of the synchronization, we choose the sampling
rate of the IMU sensors as GAME.
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2) Comparison with Other Sampling Strategies: In this
section, we compare the recognition accuracy of fast-MVSRC
with different sampling strategies under different energy con-
sumption budgets. The sampling strategies include the pro-
posed algorithm MASO, random sampling strategy, uniform
sampling strategy and oracle sampling strategy. For the random
sampling strategy, we randomly choose a subset of the image
sequences. The energy consumption of MVSRC with this
subset should satisfy the budget. For the uniform sampling
strategy, we divide the image sequence into uniform groups
and select the face image in the middle of the group as
the representative. We vary the energy budget from 530mJ
to 3230mJ for each classification. We consider an offline
oracle optimal strategy that provides an upper bound on
recognition accuracy for a given energy budget. In terms of
oracle sampling strategy, we calculate the recognition accuracy
of MVSRC with all possible subsets to find the most accurate
one. However it is not applicable for real-world applications
as the recognition system cannot compute the recognition
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Fig. 8: Evaluation results of IMU-based gaze estimation: (a) CDF of estimation error. (b) Computation time and energy
consumption on one image. (c) Impact of estimation error on recognition accuracy. (d) Accuracy of different total angle
displacement.
accuracy for each of the possible subsets without the the
knowledge of the groundtruth (the identity of each face image
obtained manually). For illustration purpose, we convert the
energy budget values (mJ) into expected battery life (hours)
and plot the results in Figure 6(f). The expected battery life
means the duration of running the system in Vuzix M100
Smart Glass.We can see that fast-MVSRC is comparable to the
oracle sampling strategy, and achieves higher accuracy than the
random and uniform approaches with the same energy budget.

3) Fast-MVSRC v.s. Eigenfaces: To demonstrate the effec-
tiveness of fast-MVSRC, we compare the Efficiency-Accuracy
performance of fast-MVSRC, MVSRC and Eigenfaces. We
define the Efficiency-Accuracy performance as the recognition
accuracy with respect to the computation time. We calculate
the accuracy of fast-MVSRC and Eigenfaces with majority
voting data fusion for multiple images under different compu-
tation time. The computation time is varied by using different
number of face images for classification. From the results
shown in Figure 7, we can see the recognition accuracy of
fast-MVSRC is up to 9% better than Eigenfaces. The results
in Figure 6(e) and Figure 7 show that fast-MVSRC improves
the efficiency of MVSRC significantly while preserving high
recognition accuracy.

E. Evaluation of IMU-based Gaze Estimation

In this section, we evaluate the performance of IMU-based
gaze estimation method and the impact of estimation error on
the face recognition accuracy. We also evaluate the impact of
total angle displacement on face recognition accuracy.

1) Comparison with Image-based Gaze Estimation: In this
part, we compare the estimation accuracy and resource con-
sumption of IMU-based gaze estimation used in our system
and image-based gaze estimation proposed in [23]. The results
in [23] show that the image-based method can achieve a
mean estimation error of 2.5◦ and a maximum estimation
error of 6◦ in 1000 samples of noisy face images. We
randomly select 30 face images from each subject to form the
comparison image set and use the angle information obtained
in Section V-B1 as corresponding estimated value of IMU-
based method. For image-based gaze estimation, we perform
facial features detection first and use the method in [23] to
estimate the gaze. Facial features are detected by a state-of-

the-art facial landmark detector flandmark [31]. The ground
truth are obtained by annotating facial features manually and
then performing the method in [23]. From Figure 8(a) and
Figure 8, we can see that our method reduces computation
time by 65% and energy consumption by 78% respectively,
while it achieves comparable accuracy compared to image-
based gaze estimation method.

2) Impact of Angle Estimation Error: As shown in Fig-
ure 8(a), the estimation errors for most of the face images
(over 95%) are within 3◦. Therefore, it is important to know
the impact of the estimation errors on the recognition accuracy.
As described in Section V-A, each subject in the private dataset
has 9 image sequences collected in different categorizes. We
randomly select 5 image sequences from each subject to form
a training dataset and use the rest sequences as testing data. We
apply MASO on each testing sequence and obtain the angles
of the sampled images. Then we select corresponding images
in the test sequence according to their angle information. The
angles of the testing images are obtained from two methods,
i.e., IMU-based method and image-based method. We vary
the energy budget from 530mJ to 3230mJ and calculate
corresponding recognition accuracy of IMU-based method and
image-based method respectively. From Figure 8(c), we can
see that IMU-based method achieves comparable accuracy to
image-based method. Therefore, we conclude that the minor
errors introduced by the IMU based angle estimation will not
have noticeable influence on the recognition accuracy.

3) Impact of Total Angle Displacement: As the total angle
displacement between the starting view angle and the ending
view angle varies in the practical use, we evaluate the impact
of the total angle displacement on the recognition accuracy.
We gradually increase the total angle displacement from 0◦ to
60◦ by every 5◦ and the recognition accuracy is calculated.
Figure 8(d) shows that the total angle displacement for high
recognition accuracy (95%) can be as small as 5◦ which
enables a very short image collection phase (200ms as our
user study). In addition, Figure 8(d) also shows that there is
a significant improvement on recognition accuracy from 0◦

(static) to 5◦.



VI. REAL-WORLD EXPERIMENTS

A. System Implementation

The prototype of our proposed face recognition system is
implemented on Vuzix M100 smart glass. The CPU is an
OMAP4460 at 1.2GHz and the operating system is Android
4.0.4. It is equipped with a 5-megapixel camera and the images
captured in our system are 216×120@24fps. We use hardware
face detection of OMAP for efficient operation and facial
features (i.e. nose tip, eye outer corners and mouth corners)
are detected by flandmark [31]. The efficient implement of `1
optimization algorithm `1-Homotopy [32] is used as [1], the
reader can refer to [1] for complexity analysis of `1-Homotopy.

B. Experimental Description

We recruited 15 volunteers: 5 users and 10 subjects in the
training set. The 10 subjects are the same as our private dataset
which was collected under different environments. We select
30 face images from each subject to form the training set.
Therefore, the training dictionary is a matrix of size 2304×300
(face image is resized to 48×48 = 2304). The experiments are
conducted at two different locations: the office and outdoor.
The lighting conditions are quite different for indoor (200-
400 lux) and outdoor (over 1,000 lux) environments. Different
lighting conditions are applied for indoor experiment (front-
lighting, back-lighting and uniform lighting) and outdoor
experiment (front-lighting and backlighting). Thus, the exper-
iments are divided into 5 categories. For each category, users
conducted two recognition attempts for each of the subjects.
Therefore, we obtain 500 independent recognition results. The
energy budget in the system is set as 550mJ (the actual energy
consumption of our system was around 520mJ).

We also implement the OpenCV face recognition algorithms
(OpenCV-2.4.9) on Vuzix M100 smart glass as a benchmark.
OpenCV provides three face recognition methods, namely
EigenFaces [2], FisherFace [9] and LBPFace [10] in its library.
In the experiments, we found that these three methods achieve
comparable performance in terms of recognition accuracy and
computational cost. Due to limited space, we present the
results of Eigenface only because the state-of-the-art cognitive
assistance system Gabriel [4] uses Eigenfaces as face recog-
nition methods. However, Gabriel uses offloading approach
which is a complementary work to the proposed system.

C. Experimental Results
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Fig. 9: Recognition accuracy

The recognition accuracy of our system and Eigenfaces
in different experimental categories are shown in Figure 9.
The proposed system is very stable under different lighting
conditions. It outperforms Eigenfaces significantly in every
experimental category and is up to 15% more accurate than
Eigenfaces under outdoor front-lighting condition. We also
evaluate and compare the system overhead of our system and
Eigenfaces. From the results in Table IV, we can see that the
cost of the proposed system is in the same order of that of
Eigenfaces.

TABLE IV: System overhead
Statistic The Proposed System Eigenfaces

Computation Time 516-582ms 247-331ms
Energy Consumption 506-535mJ 316-410mJ
Expected Battery Life ≈0.28hr ≈0.37hr

Memory Usage 55-64MB 38-44 MB

VII. DISCUSSION

Feasibility The implementation of the system takes advan-
tage of the following assumption: the subject to be recog-
nized remains still and the user needs to move subtly to the
left (right) of the target to capture multi-view images. Such
assumption may cause inconvenience in practical scenarios.
However, as the evaluation results in Section V-E3, a total
angle displacement of 5◦ is sufficient to obtain a reliable
recognition result (over 95%) and it only takes approximately
200ms for image collection. We believe it only requires small
efforts of the user and subjects for normal cases. If the
user remains static, single-image MVSRC will be adopted.
However, if the user is willing to make extra small efforts
with sacrificing user experience on one hand, the significant
higher recognition accuracy will significantly improve user
experience on the other hand. The proposed system provides
such options to users. In practice, face recognition may be
applied in a more complex scenario, such as the user or subject
is sitting. We defer face recognition in these scenarios as our
future work.

Offload V.S. In-situ Offloading computationally intensive
operations from mobile devices to powerful infrastructure is
a common strategy to reduce computation burden on resource
constrained devices. In terms of offloading approach, the smart
glass is used to capture images and perform MASO, then
the sampled images are transmitted to server via wireless
network. Results obtained by running MVSRC on server are
sent back to the smart glass. We evaluate the response time
and energy consumption of smart glass by transmitting raw
sampled images under two different offloading approaches:
cloudlet and remote cloud. Hardware specifications of different
offloading strategies are shown in Table V. The cloudlet
is implemented inside Virtual Machine (VM) managed by
Vmware Workstation on Windows 7 host. We use Amazon
EC2 VM instances located in local magic land as remote
cloud (location is anonymized for blind review process). The
wireless network is based on a campus WiFi.

Figure 10 presents the response time and energy consump-
tion of of the smart glasses using different approaches. We can



TABLE V: Server hardware specifications
Offload Strategy CPU RAM

Cloudlet Intel Core 2.7Ghz 2cores 8GB
Cloud Intel Xeon 2.5Ghz 1VCPU 1GB
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Fig. 10: Comparison of different strategies

see a significant drop in both latency and energy consumption
when switching from cloud to cloudlet. The performance of
offloading to remote cloud depends greatly on the network
conditions. We also find that the cost of our proposed system
(in-situ) is comparable to the offloading approach with cloudlet
and is significantly lower than that with remote cloud. It is
worth mentioning that the energy consumption of the proposed
system largely depends on the user-specified parameter set-
tings of optimization strategy, i.e., Eb in MASO. Meanwhile,
we also note that more advanced recognition methods such as
3D techniques can be achieved in powerful server. However,
offloading approaches require extra infrastructure and system
cost. Furthermore, the proposed system has advantages over
offloading strategies when network is not available or in poor
quality.

VIII. CONCLUSION

In this paper, we explore the capability of smart glasses
and propose a novel face recognition system which utilizes the
power of multimodal sensors. The proposed system improves
recognition accuracy by combining multi-view face images
and exploits prolific information from IMU sensors to reduce
energy consumption. Extensive dataset based evaluations and
real-world experiments demonstrate that our system is both
accurate and efficient compared to the state-of-the-arts.
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