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NUMERICAL SIMULATION OF STRING/BARRIER COLLISIONS: THE FRETBOARD.
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ABSTRACT

Collisions play a major role in various models of musicalins
ments; one particularly interesting case is that of theagtiet-
board, the subject of this paper. Here, the string is modetie
cluding effects of tension modulation, and the distribugetision

both with the fretboard and individual frets, and includbagh ef-
fects of free string vibration, and under finger-stoppedioms,

requiring an additional collision model. In order to hanatieltiple

distributed nonlinearities simultaneously, a finite difiece time
domain method is developed, with a penalty potential athgor

a convenient model of collision within a Hamiltonian framu;,

allowing for the construction of stable energy-conservingth-
ods. Implementation details are discussed, and simulatiguits
are presented illustrating a variety of features of such deho

1. INTRODUCTION

Physical modeling synthesis to date has relied, mainly,ilon
ear models of distributed components, accompanied bypisiat
nonlinearities often related to excitation mechanismshsas, for
example, models of the bow, hammer, or lip-reed interajtiSee,
e.g., [1] for an overview. In the pursuit of more realisticiad syn-
thesis, recent research has focused on inherent nontiesani the
distributed components themselves, beginning with thedtutc-
tion of tension modulation effects in strings [2]3, 4], shocave
effects in acoustic tubes|[5], geometric nonlinearitiestiings [6],
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this paper. Here, a distributed view of the barrier is takeclud-
ing frets and the backing fretboard. Finite difference toloenain
methods are employed, with special attention paid to thbleno
of numerical stability, which is especially pronouncedehettue
to the inherently non-smooth form of the collision interant To
this end, a formalism based upon the use of an added poteitial
lowing the use of a Hamiltonian framework, but permittingreo
spurious penetration of the string into the barrier is erygib
The action of a stopping finger, in order to simulate finger mo-
tion against the fretboard, is also included here. The mbdegd
is complementary to that of Evangelista mentioned abovthah
here, string motion is taken to be perpendicular to the frattb—
in a full model, both polarizations need to be taken into aoto
Finger plucking interactions have been described prelyeusee,
e.g., [20]

Section[2 presents a complete model of string vibration in
a single polarization, including tension modulation effedis-
tributed collision against a barrier of arbitrary shape lucking
excitation, as well as a further collision due to stopping dhger
against the fretboard. An energy analysis completes tleigose
SectiorB is a concise presentation of finite difference tiomain
construction, with a discussion of numerical stability;ivad at
through an analogous energy analysis, and implementasoes,
and in particular a vector nonlinear equation to be solveshah
time step. Simulation results, illustrating various featuof such
amodel, are presented in Secfidn 4. Sound synthesis exaangle
available online ahttp://www.ness-music.eu

and in 2D systems such as membranes and plates [7]. A distinct

form of distributed nonlinearity, and one which is of gre@nif-
icance to models of strings is the contact between a disétibu
vibrating object with a rigid barrier.

The problem of the string in contact with a rigid barrier has

seen research in the realm of musical acoustics for almosha c
tury, going back to early investigations of Indian stringestru-
ments such as the sitar or tambuira [8], and continuing toréeemt
day, particularly using a geometric analysis for barridrsimpli-
fied forms [9[10]. In practical sound synthesis applicatiomhere

the barrier may well be of a complex shape, and in musicalscou

tics investigations, more flexible methods have been eneploy-

cluding digital waveguides 11,12, 13,114] 15], modal téghas
[16], and time-stepping methods such as finite differenctnauks

[11,[17[1418].

The particular case of the interaction of a string with a,fret

modelled as a lumped barrier element, in order to emulatestea
tic playing in fretted instruments such as the guitar hasbee
searched by Evangelista’]12.119], which is the case of isténe

* This work was supported by the European Research Coundgrun
grant number StG-2011-279068-NESS.

2. STRING MODEL

A model of constrained string vibration may be written in aneco
pact form as

pdiu = Llu] + K[u] + Fe + Fe — Ff @)

Here,u(x, t) is the transverse displacement of a string in a single
polarization (assumed here to be perpendicular to a camisiga
surface, to be described shortly), as a function of time 0 and
x € D = [0, L], whereL is string length when at rest. The string
is of linear mass density kg/m, andd;; represents double partial
differentiation with respect to time See Figur&ll. Because this
model of a string is in a single polarization only, it is thuspable
of modelling only string plucks perpendicular to the fredbe—
which is a great simplification from the true situation, boeal-
lowing for an analysis of many of the important features aftsu
an instrument.

The linear operatocL is defined, in terms of its action on the
functionw, as

,C[’U,] = (Taza: - Ejaza:za: - 200p8t + ZUlpam;z) u (2)
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Figure 1: Diagram of string, of displacemeni(x, t), in contact
with a barrier b(z), as indicated in blue. An excitation force den-
sity F. is applied over a distributiog., and a force density; is
applied by a finger (indicated in green) over a distributipn A
collision force densityF. results at points of contact between the
string and barrier.

and describes the linear dynamics of the string, wheregbatif-
ferentiation with respect te is indicated byd,. The four terms
model, respectively, string tension, stiffness, freqyeindependent
loss, and frequency-dependent loss. H&rés string tension, in
N, E is Young’s modulus, in Pd, is the string moment of inertia
(and equal tarr* /4, for a string of circular cross-section and ra-
diusr m), andoo ando; are loss parameters, which may be set
according to comparison with measured data. Such a linedeimo
is relatively standard in the musical acoustics literatui¢h some
variation in the way in which the frequency-dependent lesss
are modelled[21,°22]).

The nonlinear operatdt is defined as

_ B4 (/D (8zu)2dm) Dot

Klu] = 5L
whereA is the string cross-sectional area if,mand describes ef-
fects of tension modulation in the string, giving rise toigdons
in pitch with excitation amplitude, or pitch glides; such adel
is due to Kirchhoff[[28] and Carrief]24], and has seen esxtens
use in sound synthesis applications[[2, 13, 4, 25]. This isricpa
ularly simple form of string nonlinearity—more realistiffexts,
including the generation of phantom partials![25, 6], maybe
tained using a complete form which models the coupling betwe
transverse and longitudinal motion in the string.

The final three terms i{1) represent force densities due, re
spectively, to a plucking action, collision of the stringthwithe
fretboard, and the stopping motion of a finger, and will bervfi
in the following sections.

®3)

2.1. Excitation

A relatively simple model of excitation will be employed ker
namely that of a force density

Fe :gefe

where here,f.(t) is an applied force in N, and whege (z) is

a distribution selecting the region of application of theitation
(chosen normalized, with, g. dz = 1, and perhaps as a Dirac
delta functiong.(z) = 6(xz — z.), for a plucking pointr = z.).

In some models of plucking excitation [27], a relatively sitio
form of excitation function is employed:

() = < i (1—cos(76(t—to)/tp)) to geltseg tp

(4)

This function is characterized by a small set of parametensely:
start timeto, durationt,,, and maximum force,,.

One could go further here and specify a full model of the
plucking finger, but as this is not the focus of this paper, alsd
because in general, the duration of a pluck is extremelytgbar
the order of 1-10 ms) the simple form above will be employed, a
in previous work on guitar synthes[s]28]. More involved ratsd
are available—see, e.d..]29./30].

2.2. TheFretboard

The string is assumed to vibrate above a rigid barrier of liteig
b(z)—in the case of a fretboard, the function will include the-pro
file of the board itself, as well as pointwise protuberantes frets
themselves). To this end, suppose that the function is ofcitme
b(z) = byack(z), almost everywhere, whetg...(z) is @ smooth
function representing the fretboard itself, in the abseoicéhe
frets. At locationsz,,, m = 1,..., N¢rer at which the Ny,
frets are located, the function takes on the vak(es,) = b;’;ﬁzt.
See Figuré]l.

The force densityF. acts upwards on the string, and may be
defined in terms of a potential densiby. > 0 as

0%,
at"]c

Fe where Ne=b—u (5)

The potentialb. (n.) here is to be viewed as a penalty density, ac-
tive whenever and whereve, the difference between the barrier
height and string height is positive, implying interpeaétn, and
thus repelling the string. A useful form of the penalty poiein®d..

is of the form of a power lawp. = @k «(7.), where, for a value
or distributionp

i (p) = ——[p]7+! [p]+=%(p+lpl)

T a+1

where K > 0, anda > 1. In simulation, the degree of inter-
penetration can be controlled through a proper choic& adnd
a—see Sectioh 412. Note that, under this choice of the patienti
Fe. = Kn.]%, and so this collision model is of a form similar
to that seen in lumped models of impact, such as that of Hertz
[31], and commonly used in models of striking action in makic
instruments[[22,°32]; here, however, it is to be viewed as@n a
proximation to an ideal elastic collision. The form [g (5)itien

in terms of a potential, however, is more useful when it cotoes
simulation design—see Sectigh 3.

2.3. Finger-stopping

Another separate collision which must be taken into accouat
full articulated model of such a stringed instrument is th&om
of a stopping finger pressing the string against the fretgeir f
board. This collision is slightly different from the casetbé bar-
rier/string collision described in the previous sectiohitee finger
must be permitted its own dynamics, including damping éffec
and is subject to external control. In this case, where thiegst
is assumed to move transverse to the fretboard, rubbingofric
effects against the fret are not included—seé [12].

For a lumped model of such a finger, the force dengiyy
now acting downward on the string from above, may be writeen a

Fr=grfr
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Here,g; = gs(x,t) is an externally specified function represent-
ing the region of contact of the finger with the string at time
again chosen normalized, witf, gy dz = 1, and f; is the force
applied to the string, in N. The position of the fingey,, may be
described by
d*u
f dt2f = ff - fO

where here); is the finger mass, in kg, and whefe= fo(t) is
an external force signal supplied by the player.

As in the case of the string/barrier collision, the intei@tt
force f; depends on a measurg of the relative displacement
between the string and finger at the stopping location:

 dd,/dt
 dny/dt

dny
dt =7

It WfI/ngdl’—uf (6)
D

Here again®;(ny) > 0 is a collision potential—now, however,
it is intended to model elastic deformation of the finger urttie
pressing action; the model here is identical to that of ismi
piano hammer, with losses taken into account, and undertaeon

uous excitation force. As in the case of the hammer, a chdice o

collision potential®; = Py, o, (ny) is reasonable, where again
Ky > 0anday > 1. Also modelled here are losses, through a
functionZ¢(ny) > 0. The model of Hunt and Crossley [33] is
appropriate here, witEy = =k, o,,5,, Where

= dn a
Exgiap.8, () = ﬁfod—;[Tlfh

for some constang; > 0.

2.4. Energy Balance

System[(lL) includes three separate nonlinearities, duensidn
modulation, collision, and finger stopping, as well as nateaomous
time variation due to the finger-stopping distributigpn and thus
frequency-domain analysis will thus be of virtually no usele-
signing a numerical method. To this end, it is useful to pnesa
energy balance for the system.

It may be easily verified, through the multiplication bf (3) b
Odwu, integrating over the domaiR, and employing integration by
parts, that the complete model described above satisfiaseagye
balance of the form

dH _

o _qrprs

7 )

where here, at timg $(t) represents the total stored energy of the
systemQ(t) is total dissipated powed3(t) is input power, anés
represents energy supplied to the string at the boundaries-20
andz = L.

In particular,

H = DL +Hx +H+9Hy
9] Qr +Qy

RY Pe +Ps

where, for the stored energy terms corresponding to lineags
vibration, nonlinear string vibration, the collision in&etion, and

the finger interaction, respectively, one has

N, = /B(ﬁtu)g—i—Z(&cu)g—i—g(&mu)2 dx
b2 2 2
EA ?
ﬁc = /@cdm
D
_ My (dug
o= (dt) T2

For the individual power loss term3, andQ; in the string and
finger, respectively, one has

Qr

/ 2p00 (O,gu)2 + 2po1 (amu)Q dx
D
Qy

For the supplied power terni8. and3; from the excitation and
stopping finger, respectively, one has

fe / geOru dx
D

d
ff/Duatgf dr — %fo

Be

By

The boundary power terf is given by

EA ?
<T+ oA (/D Oz dm) > Oulzu

—EI (01urott — Oratinztt) — 2p01 udprul 2=

In this study, boundary conditions are chosen as simply ctegp
(i.e.,u = Ozeu = 0 @tz = 0 andx = L), and thus3 vanishes
identically.

Under unforced conditions (i.e., with no excitation forte
no applied finger stopping forc), and no time variation of the
stopping finger distribution), note thaty > 0, andQ > 0, and
thus, for allt > 0

9

dt -

0 < 9H(t) <H(0)

and the system as a whole is dissipative. If, furthermorgs Ie
not present (i.e., ibo = 01 = Ef = 0), then the system is exactly
lossless. Such an energy balance serves as a useful désigplpr
in arriving at numerically stable simulation methods. Seet®n

3. TIME STEPPING METHODS

In this section, the basic techniques underlying the canogtm
of time-domain finite difference schemes are presented ciona

densed vectorized form. For a more expanded treatment bf suc

methods, see, e.gl._[34], or, in the context of physical riogle
synthesis[[35].
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3.1. Grid Functionsand Difference Operators

The grid functionu;’, for integern > 0 andl = 0,..., N, rep-
resents an approximation to the functiefw,t) at timet = nk
andxz = lh. Here,k is the time step (ands = 1/k is the sample
rate, chosen a priori), arfdis the grid spacing, chosen such that it
divides the lengttl. evenly asV = L/h.

and the nonlinear operatéias
EAh

2L
Note the use of the time averaging operaterin (I3) above, nec-
essary in arriving at a stable scherel[36].

tu"] = (Desu™)” (e Doru™) Dypu™  (13)

In this case, where the system under study is 1D, and becaus% 3. Discrete Force Densities

the boundary conditions are of simple form (that is, simpip-s
ported), it is useful to move directly to a vector represgore
of the state, namely the column vecta¥ = [u?,... uy_4]7.
Here, the values:} and «% have been omitted from the vec-
tor form, and thus need not be calculated, as they are icddiytic
zero—this choice has implications for the matrix represtons
of various spatial difference operators, as will be desttishortly.
For any vectow™, unit time shiftse, . ande;_ are defined as

n—1

+1 —

n n n
Ct4+W =W €t—W

The forward, backward and centered difference approxonatio
a first time derivative may thus be defined as

Ct — 1 1— Ct— €t — €t—
Oty = Ot = 8. = ——— (8
o k ‘ k ¢ 2k ®
and time averaging operators as
ey +1 1+e et + er—
= — = — = — 9
M+ 2 123 B ot B 9

An approximation to a second time derivative follows as

Cty — 2 + er—
k2
Forward and backward approximations to spatial diffeeenti
tion 0., when applied to the grid function™, and taking into ac-
count the simply supported boundary condition, may be emith
matrix form asD,4 andD,_, whereD, isanN x (N — 1)
matrix, andD,_ is (N — 1) x N:

St = 01401 = (10)

1
-1 1
1
Dgc+ - E .
-1 1
-1
where” indicates the transpose operation.
Approximations to the second and fourth spatial derivative
D.. andD.., respectively, botf N — 1) x (N — 1) matrices,
may be written, under simply supported conditions, as

Dzz = szDzﬁ» Dzzzz = DzzDzz

3.2. FiniteDifference Scheme

A finite difference time domain scheme f@i (1) may then be-writ
ten, in vector-matrix form, in terms of the grid functia¥, as

pdeeu” = ([u"] + ¢u"] + 2 + f¢ — ff (11)

Here, in analogy with definitio {2) for the linear operatyr
the linear discrete operatoris defined as
([u"] = (TDgs —

EIDyyur — 200p0:. + 2010t —Dyy) u”

(12)

The discrete force density terrfs, {2 andf} given in [11) are all
(N — 1) element column vectors.

The discrete force excitation densjfymay be written a§’ =
g.f whereg. corresponds tg.(x), with h17g. = 1, wherel
isanN — 1 element column vector consisting of ones, and where
f2 is sampled frony. (t), as defined in{4).

The discrete collision force due to the interaction withbae-
rier f¢ requires a more detailed treatment. Because one would
like to model collision between the string and the fretboatd
the N — 1 grid points at which the string is defined, and also
at the Ny, locations at which the frets themselves are defined
(which, in general, do not lie at grid locations), it is udetuwrite
fo = G.f', wheref. isanN. = N — 1 + Ny,., element force
vector, andG. is an(/N — 1) x N. matrix interpolant. In particu-
lar, G = +[In—1|G fret], wherely _; isthe(N —1) x (N —1)
identity matrix, and wher& ..., is an(N — 1) X Ny,..; matrix,
themth column of which is an interpolant to theth fret location
xm. Any form of interpolant (i.e., bilinear, Lagrangian, gtmay
be employed in this construction.

For the collision itself, one may then write, in analogy with
()8
0. D7

5t7]?
in terms of theN. element vectorsby, n. andb™. This lat-
ter vector, representing the barrier profile, may be deceepas
b = [bl,ck|bfrer]”, Wherebygy is the N — 1 element column
vector consisting of samples of the fretboard proiile) at the
grid locations, and ., is anNy,..; element column vector con-
sisting of the fret heightéﬁffe)t, m =1,..., Ntret. Asin the con-
tinuous case, a power law potential may be employed, su¢h tha
O = P o (n). (Here and henceforth, expressions such as the
first in (I4) represent a vector resulting from element-leyrent
division of two vectors.)

The finger force density may be written agf = 1. (g%) f7.
where as in the case of the excitatigf, is anN — 1 element nor-
malized column vector—note in particular that it is timeyiag,
allowing for gestural control of the finger-stopping actiofthe
finger force may be discretized, in analogy with (6), as

5. 9%
6,57’]}7’

£ ' =b - hG u" (14)

fp=2h v anpEy np=h(gf) " —u}  (15)
where®’y = (I)".(f"’f(n?)’. and wher_e‘E}} = EK;.ar.8; (y?). Fi-
nally, the equation of motion of the finger, in terms of digglaent

u¥ may be written as
Mf(ittu? = f;cl - fon

3.4. Discrete Energy Balance and Stability Conditions

In analogy with the energy balandg (7) for the continuousesys
a discrete energy balance follows for the scheme presemtged-

tion[3:2:

(stfbn+l/2 _ 7qn +pn + bn (16)
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where here)" /2 represents the total stored energy of the system
(written here as interleaved with respect to values caledlan the
scheme itself)q™ is total dissipated powep," is input power, and

b™ represents energy supplied to the string at the boundatries a A"

[ = 0andl = N—in this casep™ = 0 by construction, so may be
safely ignored in the remainder of this analysis. Here, tréous
terms may be decomposed as

bn+1/2 _ bz+1/2+h}+1/2+h?+1/2+b?+1/2
q" = qf +df
Pt o= pl +py

where, for the stored energy terms corresponding to lingggs
vibration, nonlinear string vibration, the collision inéetion, and
the finger interaction, respectively, one has

byt = %|6z+u”|2 + TT” (Doru™)’ Dyyu™ !
+ETUL (Dazu™)’ Dy u™ ™ — pa;hk|5t+Dac+u"|2
= E;LhQ ((Dac+un)T Dx+un+1)2
G = 1T e
prt/? = % (deru})® + @7

and for the power loss terms,
2paoh|6t<u"|2 + 2p01h|5t<Dz+u"|2
(demf)”

For the supplied power termg' andp’ from the excitation and
stopping finger, respectively, one has

pe f2h(6eu™)" ge
p¥ Fih (o™ 887 — Seuf £

Considering the discrete power balaricel (16), under undorce
conditions (i.e.pc = p} = 0), note that the loss termg; and
qf are non-negative; the only stored energy term which is not
non-negative is that corresponding to the string enérgy It is
straightforward to show [35] that under the conditior> h.min,
where

2
h?m'n:E T—k+401+\/<T—k+401)
2\ p p

the termh 1, is non-negative; this condition serves as a stability con-
dition for the entire scheme. Again, under lossless comftii.e.,
with o9 = 01 = Z" = 0), the scheme is numerically lossless.
See Sectiofi 414. Notice that conditidn](17) is equivalerthed
arrived at using von Neumann analysis|[34] for the linedngtin
isolation, though now for the complete system involving tiple
nonlinearities.

qar
qr

—_n

=f

16E1
- a7

3.5. Vector-matrix Update Form

In the interest of illustrating how such a scheme may be used i
practice, it is useful to rewrite it in a vector-matrix upeldorm as

AMa"T =Bu" + C"u" T e+ I (18)

DAFX-

where hereA™, B andC" are(N —1) x (N —1) matrices defined
as

(1+ook)In_1 + (a™) (a™)"

2 2
p P
C" = (ook—1)In_1—(a")(@")" —201kD,s

Due to the tension modulation nonlinearit%™ and C™ are de-
pendent on previously computed state values through thercol
vectora™, defined as

The vectoyj. is defined ag. = k*g./p, andf™ = [(£7)" | f7]”
is the consolidation of the contact forces due to the baanelrfin-
ger, with the combined matri&™ given byJ" = k>G™ /p, where
G" = [G¢| — gf]. Notice that]" andG" include effects of time
variation due to the motion of the stopping finger.

The update form[{18) requires the determination of the -colli
sion force vectof™; to this end, it may be rewritten as

un+1 _ qn + jnfn (19)

where
qn _ (An)—l (Bun 4 Cnunfl +jefen) jn — (An)—l J

Though the calculation of” andJ™ might appear to require the
full inversion of a matrixA™ (or at least a linear system solution),
note thatA™ is a rank one perturbation of a scaled identity matrix,
and thus the inverse may be written directly, using the Sharm
Morrison-Woodbury formuld[37] as

<IN—1

which leads to a matrix multiplication wit® (V') operations.

(a") (a")"

S " 1+ ook + (@) (an)

o 1+ ook

3.6. A Nonlinear Equation
Define the set of collision distanceg asn™ = [(n)" [n}]”.
From the definitiond(14) anf {IL5), one then has

n o __ b n_.n
=[] e

From this, one may further define the vectdr = [(rZ)T |r}L]T
asr” ="' — "' andr™ may be written as

rn _ W"fo"fh ((Gn+l)T un+1 o (anl)Tunfl) (20)
where
On,,1

B [ (=) + fél}

whereOy.,1 is anN. element column vector, arid is an (N, +
1) x (N. -+ 1) matrix, all zero, except for a value &f /M as the
entry at the lower right corner.

For the forces, from the definitiors{14) ahd](15), one has

n
Y k2
I\/If

£ = A" + P"r" (21)
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whereA™ is a diagona(N. + 1) x (N. + 1) matrix with diagonal
entries given byliag (A™) = [(A2)" |\7]”, with

e (r2 40 7") — ¢ (02 71)

n
rC

AL =

and
o5 (7’? + ?7}“1) — 95 (?7,71)

A =
r¥

and whereP™ is an(N. + 1) x (N. + 1) matrix, all zero except
for a value of=Z7% /(2k) in the lower right hand entry.

Finally, (I9), [20) and[{21) may be consolidated into a @n
vector nonlinear equation as

where
M" = Z"+h(G")T I
Qn _ INC+1 4 MnPn
ln _ 7771, + h (Gn+1)an o h (anl)Tunfl

Numerically, such an equation may be solved using an iterati
method such as, e.g., Newton-Raphson.

4. SIMULATION RESULTS

In this section, various features of simulations for theteysde-
scribed above are explored.

4.1. Visualization: Free Vibration

As a first example, consider a string positioned above adezth

and a series of 12 frets, under a plucking action—see Figure 2

showing the time evolution of the string profile under diéfet
plucking forces. In one case, the string vibration is freerficolli-

sion, but in the other, it is sufficient to allow for reboungliagainst
the frets, greatly distorting the profile of the string susantly. It
should be noted that under normal lossy conditions, stribgay
tion amplitude is decreased over time, and thus the cafligiith

the fretboard will lead to transients; similarly, stiffisesffects in
the string lead to dispersion, also decreasing the maximtngs
displacement after the initial pluck.

4.2. SpuriousPenetration

The penalty potential formulation intended to model thédrigpl-
lision between string and fretboard allows some unphygieak-
tration of the string into the fretboard itself. One questihich
emerges is then: how large is this penetration? For the ptlick
excitation simulation described in the previous sectibe, rhaxi-
mum penetration over the length of the string is plotted ama-f
tion of time step in FigurBl3—in this case, it takes on valusdean
10~ m, which is definitely acceptable in any acoustics simukatio
The degree of penetration may be controlled through thecetfi
K—the larger it is, the less the penetration, with the sideaff
that the number of iterations required in Newton’s methodi$eto
increase. See Sectibh 5 for more commentary on this point.
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Figure 2: Time evolution of the profile of a string in contact
with a fretboard (in blue), under plucking excitations offelient
amplitudes—in black, with a maximal excitation f3f = 0.5 N,
and in red, withf, = 1 N. In this case, the string is of parameters
L =0.65m,p=>525x10"3kg/mT =60N,E = 2x 10" Pa,
with radiusr = 4.3 x 10~* m, and loss parametersy = 1.38
ando; = 1.25 x 10~*. The barrier collision parameters are
K = 10" anda = 2.3, and the pluck occurs pointwise at loca-
tion z = 0.52 m. The sample rate is 88.2 kHz.
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Figure 3:Maximal penetration, in m, as a function of time sigp
for the simulation described in Sectibn#.1.

4.3. Visualization: Finger Tap

As a further example, consider the string under the apjpicatf a
tapping gesture on the fretboard, as illustrated in Fiflirie 4his
case, the tapping is modelled (crudely!) as an unforced ffiwgh
an initial velocity rebounding from the string, accompahiby an
intermediate pinning action against the fretboard itseéfe Figure
[, illustrating the interaction of the finger with a stringckad by
a fretboard and a series of 12 frets, with parameters forttiregs
and finger as given in the caption.

4.4. Energy Partition

In this example, the system has been assumed lossless,hsich t
a plot of the energy partition for the system over time may be
shown, as in Figurgl5 at left; the finger energy is transfefirst

to the linear and nonlinear energy components of the sttivem

to the stored energy of the collision, when the string is in-co
tact with the fretboard, and finally fully back to the fingeihiah
rebounds with a speed identical to its initial speed. Notite
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Figure 4:Collision of an unforced finger (in green), with a string
(in black) in contact with a fretboard (in blue). In this cagbe
string/fretboard parameters are as given in the caption iguiFe
2, and the finger is of mass x 10~ kg, and approaches the
string with velocity 3 m/s, at a position 0.012 from the endhef
string. The finger collision potential parameters &g = 10'°
anday = 2.3 and the sample rate is 88.2 kHz.

particular contact/recontact phenomena visible in thegnef
the string/fretboard collision. Energy is conserved togidy 14
places in this case, as is visible in a plot of the normalizestgy
variation at right in Figurgls.
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Figure 5: Left: energy partition for the system of parameters as
given in the caption to Figulgl 4, as a function of time stefvin-

ear string energyh, (red), nonlinear string energyx, (blue),
string/barrier collision energy. (green), finger energly s (cyan)
and total energyh (black). Right: normalized energy variation
€= (hn+1/2 _ hl/Q)/hl/Q-

4.5. Time-varying Finger Position

As a final example, consider the same system, under the applic
tion of a sliding finger stop position—see Figlile 6, showings
shots of the string profile as the finger, under a constantieappl

force, slides across a single fret, effecting a pitch chartdere,
the finger is assumed to act pointwise, at the position asaieiil;
notice in particular that due to the finite string stiffnett® slope
of the string exhibits a strong variation at the fret locafiand the
minimum may occur at a location slightly shifted from thatloé
finger.

t =40ms t =80ms
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Figure 6: Time evolution of string profile, for a
string/barrier/finger system of parameters as described in
the previous sections, where the finger, modelled pointwsigtes
over a single fret during a playing gesture.

5. CONCLUDING REMARKS

This paper is intended as an exploration of various featofes
string vibration in a more realistic setting, particulaihyolving
the non-trivial contact of various components, includinigaarier
intended to represent a fretboard. Various features hase be-
glected here. The most important of these is the modelling of
vibration in both polarizations; here, only the polaripatitrans-
verse to the barrier has been modelled, allowing for an exami
tion in particular of a colliding finger. In the case of extiva in
the other polarization, however, a different nonlinear hagism
is required for the finger stopping, which closely resemIbihes
of the bow-string interaction—see [12]. The other impottzle-
ment, not modelled here, is coupling to a body (in the cassayf,
an acoustic guitar), and perhaps to the surrounding acofstice.
When such features are included, one is not far from a futig-ar
ulated model of a guitar, leaving, then, the enormous proldé
gestural control—which is not considered here.

From a numerical point of view, a Hamiltonian potential for-
mulation has been used here in order to arrive at a stablenzahe
method. As with all such stable methods, this leads to aniampl
design in the nonlinear part of the problem (note that thedin
part of the scheme, in isolation, remains explicit), andmately
to a nonlinear vector algebraic equation to be solved at tamh
step. Though it is possible to show, for very simple systenth s
as alumped mass colliding with a rigid barrier|[38], and @erex-
tensions to the distributed case][18], that a unique saligidsts,
in this vector case, a means of showing existence and uréggen
is not immediately forthcoming—meaning that, when an tieea
method such as Newton-Raphson is employed it may either (a)
not converge, or (b) converge to one solution which may be spu
rious. Thus an open question, for this and all nontrivialisian
problems, is the determination of such uniqueness andeexist
conditions.

Beyond this basic question, at the level of the iterativeesol
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employed (in this case, Newton Raphson, but many others are[17]
available), there are further issues—one is that, evenistexce
and uniqueness results are available, convergence of iayart
iterative method is not ensured. Another is that, in gendhalit-

erative solver can prove to be something of a bottleneck oty

in terms of the over-all operation count (here, 50 iteratibave
been employed, for results to machine accuracy, thoughctris
be significantly reduced for audio synthesis), but also iralpel

implementations, where reducing the number of iteratiortgch

must be performed serially) is of paramount importance.
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