

Abstract — Boolean satisfiability is one of the
most researched algorithms, finding uses in
myriad fields ranging from artificial intelligence
to formal verification. Most advances in the
field have focused on improving the original
Davis-Putnam-Logemann-Loveland (DPLL)
algorithm. However, these optimizations were
designed with single-threaded code in mind and
many are not easily parallelizable. While
parallelizing the original DPLL algorithm has
been met with great success, achieving linear
speedup, attempts to parallelize a modern
DPLL algorithm with many advanced
optimizations resulted in an overall slowdown in
performance. We propose a hybrid solution
utilizing NVDIA’s CUDA platform, which runs
on massively parallel graphics processors, as
well as the system CPU, which offers high
single-threaded code performance. Our
preliminary testing demonstrates the potential
for our novel solution, generating a 2.5x
speedup over a standard CPU-only DPLL
implementation.

I. INTRODUCTION

The Boolean satisfiability problem (SAT)
appears in many fields, including formal
validation, artificial intelligence (AI), automatic
test pattern generation (ATPG), timing analysis,
delay fault testing, and logic verification. Due to
the ubiquitious nature of SAT, combined with the
fact that SAT was the first algorithm proven to be
NP-Complete [1], considerable research effort has
been spent designing efficient SAT algorithms.
There are several conferences dedicated to the
SAT algorithm and even a yearly competition.
While many algorithms have been proposed, most
are based on the original Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [2].

Several major improvements to the algorithm
have been proposed since then. GRASP introduced
an efficient method for clause learning [3], in
which new clauses are appended to the original
problem after discovering a conflict to avoid

reaching the same conflict again. CHAFF [4]
implements a highly efficient Boolean constant
propagation algorithm, which identifies any
variable assignments required by the current
variable state to satisfy the entire equation. Tinisat
[5] explores the effect of branch restarting, in
which the DPLL algorithm is restarted on different
branches of the tree to avoid traveling down a local
maximum in conjunction with clause-learning.

While computer architects have moved toward
exploiting parallelism instead of pushing the limits
of single-threaded computing, not much work has
been performed in multithreading the code.
Current popular SAT solvers are all single-
threaded implementations. Part of the issue is that
the DPLL algorithm improvements are all single-
threaded in nature and difficult to parallelize.
While researchers have been able to demonstrate
linear or even super-linear speedups when
implementing the basic DPLL algorithm [6],
attempts to parallelize a modern algorithm variant
were met with failure [7]. In addition, all parallel
work has been performed on networked computers
via message passing or on SMP systems. GPUs are
a low-cost and widely available platform that
contains hundreds of simple cores, reaching more
than 1 teraflop of theoretical compute power [8].
However, no work has been performed in porting
DPLL to GPUs.

We propose a hybrid approach involving a CPU
for running the single-threaded path selection and
other optimizations while a GPU performs the
heavy computation. We theorize that such a
platform would be able to incorporate many of the
latest single-threaded DPLL optimizations while
gaining the compute throughput advantages of a
GPU.

The rest of the paper is organized as follows.
Firstly, we provide a brief background on SAT, the
DPLL algorithm, and the CUDA GPU platform.
Secondly, we describe potential partitioning of the
algorithm on the CPU and GPU. Finally, we will
provide initial performance results and analyze the
resulting data.

Solving Satisfiability with a Novel CPU/GPU Hybrid Solution

Cas Craven, Bhargavi Narayanasetty, Dan Zhang

Department of Electrical & Computer Engineering
University of Texas, Austin, TX 78705

{dcraven, bhargavi, dan.zhang}@mail.utexas.edu

II. BACKGROUND

A. The Boolean Satisfiability Problem

Boolean satisfiability is the problem of
determining if there exists an assignment to a
Boolean formula’s variables such that the final
result is true. If such an assignment exists, the
formula is said to be satisfiable. Else, the formula
is unsatisfiable. The formula is provided in
conjunctive normal form (CNF), also known as a
product of sums. This is not a limitation since any
Boolean formula can be converted into an
equivalent CNF formula in polynomial time [9].
The variables or negated variables in the function
are known as literals. Literals are grouped into
clauses through the use of a logical OR. Literals
can be found any clause. Clauses are logically
ANDed together to form the full CNF equation.
For example, consider the following equation:

� = ��� + ����� + �	
��	 + ����� + ��
������ + �

This CNF formula contains three clauses:

�� + ����� + �	, �	 + ����� + ��, and ����� + �
. For an
equation to be satisfiable, it should satisfy all of its
clauses. An example solution would be: �	 =
1, �� = 0, and all other variables are Don’t Care.
This particular SAT problem falls under the 3-SAT
category, in which all clauses have at most 3
variables. 3-SAT is very popular in EDA and
formal verification since all logic circuits can be
represented in this form.

B. The DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL)
algorithm forms the basis of almost all 3-SAT
solvers. The algorithm assembles the variables in a
certain order and then incrementally assigns a
value to each. As long as the resulting partial
assignment doesn’t falsify the entire formula
(recall that since all clauses are ANDed together, if
any clause fails then the entire equation fails), the
algorithm continues to choose variables and assign
values. If a clause fails, then the algorithm assigns
the opposite value to the last chosen variable and
checks again. If this falsifies another clause, then
the algorithm knows that this entire branch is false.
Then, the algorithm backtracks to another
previously chosen variable and assigns it to be the
opposite value. This search process resembles a
depth-first search on a tree data structure. The
algorithm continues this process until all variables
are assigned and the formula is satisfied (SAT), or
until all possible assignments have been checked
and the equation is determined to be unsatisfiable

(UNSAT). Since DPLL backtracks as soon as a
branch is determined to be UNSAT, it won’t
necessarily visit all 2� possible combinations.

DPLL incorporates an optimization technique
called Boolean constraint propagation (BCP). In
BCP, the algorithm searches through the clauses to
see if the current partial variable assignment forces
any other variables to must evaluate to true or false
in order to satisfy the clause and thus the entire
equation. This extra variable assignment can cause
a cascade in which other variables must be set to a
certain value.

The data structures in DPLL are fairly simple.
The current variable assignment is represented as a
large data array, with the 0

th
 entry reserved. The

index of the array represents the variable.
Variables start with x1 and continue to xn, where n
is the total number of variables. For example, the
current value of x1 resides in the 1

st
 entry in the

array, the value of x2 is located in the 2
nd

 entry,
etc. The value can be one of three things: positive,
negated, or undetermined.

SAT solvers usually take input files in the
DIMACS CNF format, such as the following
example:

The format is very simple. Lines starting with c
are comments. The first non-comment line of the
file is of the format: p cnf numLiterals
numClauses. Finally, every clause in the equation
is listed, with the number representing the variable.
Since zero can’t be negated, we do not use 0 for a
variable name. Each literal ends with a space and
the number 0.

To run the basic DPLL algorithm, the processor
simply performs a lookup in the variable
assignment array using the variable number as the
index.

The DPLL algorithm is very compute-intensive.
Data sets are usually very small, on the order of
several megabytes. In addition, while the basic
DPLL algorithm can be easily be parallelized by
partitioning the tree, many optimizations are
single-threaded in nature (such as BCP) and cannot
be easily parallelized.

c Here is a comment.

p cnf 5 3

1 -5 4 0

-1 5 3 4 0

-3 -4 0

C. The CUDA GPU Platform

CUDA is an infrastructure from NVIDIA
Corporation that provides software extensions to
run general-purpose C code on their DirectX 10
graphics processors (GPUs). The architecture is
organized in a hierarchical manner. On the
NVIDIA GeForce 9800, there are 128 simple in-
order stream processors which are organized in a
SIMT (Single Instruction Multiple Thread)
fashion. In other words, these 128 cores are
grouped into 16 processing cores, each with 8
stream processors. Within each processing core,
the same instruction stream is sent to each of the
stream processors. To solve issues with execution
divergence (for example, in an if…else loop), the
stream processors use predication. The processing
cores are all connected to a large 256MB or
512MB global memory implemented in GDDR3.
To improve effective bandwidth and latency, each
processing core also has a 16KB scratchpad that is
shared between the stream processors.

Instead of optimizing for latency like CPUs,
GPUs are optimized for throughput. Thus, the
CPUs can switch threads at an extremely fine
granularity to hide latency. At least four threads
are necessary per stream processor in order to fully
hide dependency and register file/shared memory
access latencies and obtain maximal performance.

III. METHODOLOGY

Due to limitations of time, we only implemented
the basic DPLL algorithm without Boolean
constraint propagation. Since the goal of our
project is to demonstrate the effectiveness of our
CPU/GPU hybrid approach, we feel that our results
satisfy the requirements. Obviously, since our
implementation scales very poorly with larger
datasets, we are only able to provide results for
smaller inputs. However, our presented
optimizations are used effectively in different
algorithms and should definitely scale to larger
sized inputs.

We tested several inputs that were automatically
generated through a script. Some of the equations
were SAT and some were UNSAT. We found that
since our implemented optimizations were simple
and work for everything, the results were fairly
homogenous across different datasets. Thus, in the
interest of time and space, we only present the
results for a single testcase that has a runtime of a
few minutes for the CPU-only implementation.

IV. CPU/GPU ALGORITHM

A. Initial Implementation

To take advantage of the CPU’s single-threaded
prowess and the GPU’s ability to run highly
parallel code, we designed a simple algorithm that
tightly coupled the CPU together with the GPU. At
the start of the program, all of the clauses are

Figure 1. Hybrid SAT algorithm runtime, striding across the number of blocks and threads per block within CUDA

placed into the GPU global memory. During each
iteration of the DPLL algorithm, the CPU will
provide the GPU with the variable assignment.
Then, while the GPU is processing the variable
assignments, the CPU will calculate the next
variable assignments for the GPU to consume. The
GPU partitions the work as follows: clauses are
placed within global memory. Each thread reads a
few threads and accesses the variable assignment
array, which is placed within shared memory.
After each thread is done with their calculation, a
parallel merge is performed and the result is sent to
the CPU at the end of the kernel. Figure 1 shows
the performance of our algorithm across a number
of block and thread configurations. The algorithm
clearly prefers a high number of threads to hide the
latency of an access to global memory.

However, many problems became apparent
during the implementation of our algorithm. For
example, the CUDA kernel call is indeed non-
blocking such that we can run code on the CPU in
parallel with the code on the GPU, but the GPU
cannot transfer data to the CPU until after the
kernel call is over. Thus, we are not able to hide

the latency of GPU to CPU communication, which
is quite substantial since it’s over the PCI-E bus.
Even when we started sending only necessary data
(a difference of ~2KB vs. 1 byte), the amount of
time didn’t change since it is completely latency-
bound.

B. Parallel Depth First Search Optimization

To reduce the number of GPU to/from CPU
transactions, thus reducing the bottleneck, we
decided to parallelize the DPLL algorithm in a
different dimension. Previously, we only
parallelized the literal calculations. Our new
optimization breaks down the DPLL tree into
several regions, in which each thread block
processes a subsection of the tree. This breakdown
results in a minimal increase in the memory usage:
now, n variable assignment arrays are stored in
global memory within CUDA instead of only one.
However, these arrays are fairly small and the
datasets fit global memory with room to spare. In
addition, no additional space in shared memory is
used.

Keep in mind that the GPU is still only used to

Figure 2. Breakdown of execution time into calculation, GPU/CPU transfer, and initial overhead for various job sizes

process the literals. The goal of this optimization is
to aggregate GPU to CPU communication and also
provide more work for the GPU to consume.
Parallelizing the control goes against the goal of
this project, which is to enable the CPU to perform
the control work while giving the easily
parallelizable jobs to the GPU.

As shown in Figure 2, this optimization provides
a large amount of speedup as expected.
Communication overhead between the CPU and
GPU was decreased significantly. However, we
noticed that there was a large variance in the
individual job runtimes. There would frequently be
a case in which multiple jobs finish quickly, with
only a few jobs left remaining. Since the jobs are
each mapped to a few processing units, we were
clearly underutilizing the resources within the
GPU. This was because DPLL could sometimes
determine that a branch in the tree was UNSAT
very early in the process. We therefore decided to
implement another optimization to balance the
amount of work per thread.

C. Work Stealing

Work stealing is a common method used to
balance the amount of work performed per thread.

The key concept is that jobs that finish early take a
portion of the work left from jobs that have yet to
be completed.

Our work stealing algorithm works as follows:
when a job detects that its path is UNSAT, it runs a
heuristic to determine the job that’s furthest from
being done. Our chosen heuristic is simple: since
our DPLL algorithm searches the left-hand side
(represented as a 0) of the tree first and only
searches the right hand side (represented as a 1) as
it backtracks, we look for the job that has a 0
closest to the root of the node. Then, we mark that
section of the tree as having already been explored
to prevent others from repeating the same work.

As shown in Figure 3, our algorithm works very
efficiently. Since the CPU sends the entire variable
assignment vector to the GPU, this work stealing
algorithm demonstrates the potential of our hybrid
CPU/GPU approach. Analysis shows that there is
absolutely zero overhead as a result of work
stealing on the GPU-side: the work-stealing
algorithm is run on the CPU-side only. Our tests
show that all threads remain perfectly balanced,
some threads stealing work during back-to-back
cycles.

Figure 3. Increasing the number of jobs with and without work stealing

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2 4 8 16 32 64 128 256 512 1024

R
u

n
ti

m
e

 (
m

s
)

Number of Jobs

Scaling Impact of Work Stealing

No Optimization

Work Stealing

Work-stealing not only causes each thread to be
more efficient, but also enables more parallelism.
Since increasing the number of jobs without work-
stealing also decreases the efficiency of each job, it
is not possible to have a large number of jobs since
many processing units will be sitting idle after the
jobs terminate early. Work-stealing solves this
problem and thus allows the number of jobs to
scale much better. Thus, with work-stealing, we
can run a much greater number of jobs, which
allows us to run more threads in CUDA, which
allows us to hide latency much more effectively.

D. Final Algorithm vs. CPU

Since we did not have time to implement many
of the advanced optimizations for DPLL, our
algorithm scaled very poorly. Thus, we were only
able to test on fairly small datasets. A real SAT
problem would be orders of magnitude larger than
our sample testbenches. As demonstrated in Figure
4, even at such small input sizes, we see good
speedup in the 45 clause case. Recall that SAT
problems scale as a function of the clause squared.
Obviously, our algorithm will see much better
speedups with larger input sizes.

V. WORK DYNAMICS

For this project, Cas wrote the SAT software
implementation and parts of the CUDA algorithm.
Dan wrote the random DIMACS CNF generator,
the parallel DPLL algorithm, the work stealing
algorithm, and the paper. Bhargavi wrote the
CUDA kernels and extended them to support
various optimizations. Everyone assisted on the
debug of the code as well as the data collection.

VI. CONCLUSION

In this paper, we presented a novel approach to
dividing the Boolean satisfiability problem into
two components: control, which is performed by
the CPU, and data, which is performed by the
GPU. Our results demonstrate the effectiveness of
our solution. We implemented several
optimizations to decrease the effect of the GPU to
CPU communication over the slow PCI-E bus, as
well as load balancing algorithms to efficiently
scale to a large number of independent tasks.
These changes improved our performance
dramatically. The separation of DPLL into several

Figure 4. Baseline CPU vs. CPU/GPU hybrid solution. v stands for number of variables, c stands for number of clauses.

0

10000

20000

30000

40000

50000

60000

70000

80000

45v 200c 40v 200c 35v 200c 30v 200c

R
u

n
ti
m

e
 (

m
s
)

Configuration

CPU vs. Hybrid CPU/GPU Runtime

CPU

CUDA

independent tasks gained us about 10x in
performance, while implementing our work
stealing algorithm improved performance 3x
further. Implementing our optimizations on top of
our infrastructure was fairly straight-forward, and
no doubt implementing the standard SAT
optimizations should be similarly trivial.

References

[1] M. R. Garey and D. S. Johnson, Computers
and Intractability: A guide to the Theory of
NP-Completeness, W. H. Freeman and
Company, 1979.

[2] Davis, M., Logemann, G., and Loveland, D.
1962. A machine program for theorem-
proving. Commun. ACM 5, 7 (Jul. 1962), 394-
397.

[3] Silva, J. P. and Sakallah, K. A. 1996.
GRASP—a new search algorithm for
satisfiability. In Proceedings of the 1996
IEEE/ACM international Conference on
Computer-Aided Design (San Jose, California,
United States, November 10 - 14, 1996).
International Conference on Computer Aided
Design. IEEE Computer Society, Washington,
DC, 220-227.

[4] Moskewicz, M. W., Madigan, C. F., Zhao, Y.,
Zhang, L., and Malik, S. 2001. Chaff:
engineering an efficient SAT solver. In
Proceedings of the 38th Annual Design
Automation Conference (Las Vegas, Nevada,
United States). DAC '01. ACM, New York,
NY, 530-535.

[5] Huang, J. 2007. The effect of restarts on the
efficiency of clause learning. In Proceedings of
the 20th international Joint Conference on
Artifical intelligence (Hyderabad, India,
January 06 - 12, 2007). R. Sangal, H. Mehta,
and R. K. Bagga, Eds. Ijcai Conference On
Artificial Intelligence. Morgan Kaufmann
Publishers, San Francisco, CA, 2318-2323.

[6] Bohm, M., and Speckenmeyer, E. A fast
parallel SAT-solver – efficient workload
balancing. Annals of Mathematics and
Artificial Intelligence, 1996.

[7] Feldman, Y., Dershowitz, N., and Hanna, Z.
Parallel Multithreaded Satisfiability Solver:
Design and Implementation, Electronic Notes
in Theoretical Computer Science, Volume 128,
Issue 3, Proceedings of the 3rd International
Workshop on Parallel and Distributed
Methods in Verification (PDMC 2004), 19
April 2005, Pages 75-90, ISSN 1571-0661.

[8] Compute Unified Device Architecture
(CUDA) Programming Guide.

http://developer.nvidia.com/object/cuda.html:
NVIDIA, 2007.

[9] Plaisted, D., and Greenbaum, S. A structure-
preserving clause form translation, Journal of
Symbolic Computation 2 (1986), 293-304.

