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1. INTRODUCTION 

 Power has become a first order concern in 

modern processor design. The past trend of 

technology scaling has provided a path to faster cycle 

times and increased on-chip transistor density. 

However, the increase in transistor density has also 

greatly increased power consumption. To make 

matters worse, smaller transistor feature sizes have 

caused leakage power, which was once a negligible 

component of power consumption, to become an 

increasing concern. 

 Power is obviously a concern in the embedded 

and mobile domain, where power consumption 

affects battery life. However, the power problem has 

now become a limiter in other areas as well. 

Increased power consumption introduces thermal 

dissipation challenges. It is often impractical, 

expensive, or even impossible to provide a cooling 

solution for chips running at full capacity for 

extended periods of time. Even when such cooling 

solutions are possible, it is often still desirable to 

reduce power consumption for monetary reasons. For 

example, data centers deploy processors on such a 

large scale that a small savings in per-chip power 

consumption can dramatically reduce operational 

costs. 

 With the emergence of multi-core technology, it 

has become necessary to manage power across 

multiple cores. Multi-core power management 

schemes offer the opportunity to dynamically adjust 

frequency and voltage on a per core-basis to achieve 

system level power reduction. Global power 

managers use feedback from the system to decide 

how to allocate power between the cores. A power 

manager’s job is always to make a power vs. 

performance trade-off.  

The goal of this study is to determine if 

microarchitectural statistics can be used effectively 

by a global power manager to make decisions about 

power allocation. We begin by observing that a fully 

utilized pipeline makes better use of the power it is 

allocated. The increased frequency allows a rarely-

stalling pipeline to retire instructions faster in a given 

time period. Often times this means that the core is 

compute-bound. On the other hand, a pipeline will be 

poorly utilized while running a memory-bound 

application. The pipeline resources are potentially 

underutilized while the core waits for main memory. 

A faster clock is of little use to the core while the 

pipeline is stalled waiting for main memory. 

A manager that is aware of which cores are 

currently memory bound can choose to allocate 

power to the better-utilized cores. These cores can 

make use of faster clock frequencies to retire 

instructions more quickly. This will improve the 

overall throughput of the system. The memory-bound 

cores will be set to lower power states. This allows 

power to be saved without significantly degrading 

performance. 

Determining which cores are memory-bound is a 

challenge. However, we propose the use of 

microarchitectural statistics to allow the power 

manager to reason about which cores are the most 

memory-bound. Large numbers of L2 cache misses 

and reorder buffer (ROB) stalls are both symptoms of 

a core running a memory-bound application. Using 

these statistics as inputs to a global power manager 

allows it to determine which cores will make the best 

use of the additional power and which cores to 

reclaim power from if the chip power budget is not 

being met. 

 

2. MOTIVATION AND BACKGROUND 

It has been shown that global power 

management is a good approach for controlling the 

power of a multi-core processor. For a multi-core 

design, Sharkey et al. [9] show that trying to optimize 

power and performance needs to be done at the chip 



level. Trying to optimize each core’s power locally 

cannot provide as much performance per unit power. 

Global power managers can try to make 

different power/performance trade-offs.  Park et al. 

[8] propose a global power management scheme that 

makes a minimum performance degradation 

guarantee and then attempts to save as much power 

as possible. In such a scheme, keeping performance 

degradation within the guaranteed window is the 

most important concern. Isci et al. [4], on the other 

hand, make a guarantee about maximum power 

consumed. This scheme’s first concern is the power 

budget. As long as the budget is met, the scheme will 

then try to optimize for maximum performance. 

These two examples show the different kinds of 

power/performance goals that a power manager can 

have. 

Mutlu et al. [6] showed that long latency 

operations such as L2 cache misses will eventually 

fill the processor’s instruction window and cause the 

pipeline to stall. Rather than use this observation to 

perform prefetching and enhance performance, we 

use this to find opportunities for saving power during 

execution. 

 

3. MICROARCHITECTURE-DIRECTED 

POWER MANAGEMENT 

Whereas previous global power management 

policies were focused on optimizing for the system’s 

clock frequency or power consumption, our proposed 

policies focus on using the available power most 

efficiently -- in other words, striking the right balance 

between power and performance. We do this by 

examining the behavior of the programs running, in 

addition to the traditional way of targeting a given 

power budget. 

 

3.1 Program behavior statistics 

By characterizing the behavior of the active 

processes in the processor, we can base our power 

management policies on how well a particular 

program would respond to changes in the power state 

for the core on which it is running. In particular, we 

collect statistics that show the utilization rates for 

each core. If a program is making good use of the 

processor pipeline (i.e. few stalls and high 

utilization), then it would have high potential to reap 

significant benefits from an increased P-state, and 

likewise a significant performance degradation if the 

P-state is reduced. On the other hand, a program that 

is often stalling and waiting for memory operations to 

complete would not be able to utilize a higher P-state 

well, and would not significantly degrade in 

performance should the P-state be reduced. 

Therefore, we chose to use in our power 

manager a metric of how memory-bound a program 

is. A memory-bound program is one that spends 

many processor cycles waiting for memory accesses, 

and thus has relatively low IPC. Such programs are 

bottlenecked by the memory subsystem, and thus 

would not respond well to changes in the processor 

P-state. 

To determine how memory-bound a particular 

program (or phase of the program [10]) is, we 

identified and studied a few different metrics: L2 

cache misses and reorder buffer (ROB) stalls. The 

intuition behind and how we use each of these 

metrics are discussed in the following subsections. 

 

3.1.1 L2 cache misses 

A direct measure of how many memory accesses 

a program makes is the number of misses in its last-

level cache, which is the L2 cache in our processor 

model. All such misses generate at least one memory 

access (i.e. one to bring in the new line, and possibly 

another one to write back a dirty line that was 

replaced), which takes a few hundred processor 

cycles to complete in a modern-day 2-3GHz 

microprocessor. 

If the memory access was for instructions, then 

the processor would have exhausted its supply of 

instructions, and would therefore have to insert 

bubbles into the pipeline until the memory request 

returns. During this time, the processor is not well-

utilizing its execution resources. 

On the other hand, if the memory access was for 

data, then an out-of-order processor can continue 

executing, assuming it can find additional 

instructions with no dependencies on the requested 

data, and as long as there is space in its ROB. 

However, the size of the ROB in a typical 

microprocessor would not be able to cover the entire 

memory latency [6]. Once the ROB is full, the entire 

processor pipeline is stalled and the processor must 

wait for the memory access to return. Should this 

happen very frequently, the program would not be 

able to efficiently use the processor, and would be 

considered memory-bound. 

In order to provide a metric that is easy for the 

power manager to work with, we use a formula to 

convert the statistics we collect into a fraction in the 

range of 0 to 1, representing how memory-bound a 

particular program is. A higher number indicates the 

program is more memory-bound. The formula when 

characterizing the program using L2 cache misses is: 



 

 

 

3.1.2 Reorder buffer stalls 

Another way to determine memory-boundedness 

is at the ROB itself, by measuring the number of 

cycles when it is full. The ROB can be filled up if the 

processor is waiting for some long-latency operation 

to complete. If an operation is outstanding for an 

extended time, it will eventually become the head of 

the ROB, waiting to retire, and it will block all 

subsequent entries from retiring. As more instructions 

come in, the ROB will become full and the processor 

would be unable to make further progress. Hence, the 

more cycles a processor spends with a full ROB, the 

more likely it is to be running a memory-bound 

program. 

The formula to determine memory-boundedness 

is: 

 

 

 

3.2. Exploiting memory-boundedness using 

Amdahl’s Law 

In the previous section, we identified various 

indicators for memory-boundedness and proposed 

several equations for computing the memory-bound 

percentage of a program. The question is: how does 

one utilize this information to generate an efficient 

power management profile? To answer this question, 

we turn to Amdahl’s Law, which is used to find the 

overall speedup or slowdown to a system when only 

one portion of the system is modified. In this 

scenario, the entire system includes the cores and 

system memory, and portion of the system that is 

modified is the clock speed of the cores. DVFS only 

modifies the frequency of the cores, whereas the 

latency of a system memory access stays the same. 

Therefore, if m is the portion of the computation that 

is memory-bound, we can write: 

 

 

 

The above equation demonstrates that if the 

memory-boundedness of an application interval is 

close to 0, then the net speedup of the program is 

linear as frequency is changed. On the other hand, if 

the application interval is very memory-bound, then 

the net speedup of the program changes very little as 

frequency is changed. Thus, we can exploit this fact 

as follows: in the case of a memory-bound core, we 

can scale the frequency and voltage down and see 

negligible performance losses. In the case of a core 

that is compute-bound, we can attempt to scale the 

core up and benefit from near-optimal speedup. 

 

3.3. The global power management framework 

The power management policy is executed 

during a set phase in the overall global power 

manager algorithm. First, the global power manager 

allows the cores to run for one time interval. During 

this interval, each core collects the microarchitectural 

statistics previously described and measures power 

consumption. At the end of the interval, the power 

manager reads in each core’s statistics and power 

measurement counters. At this point, the power 

manager policy is executed and the next DVFS state 

for each core is determined. The cores are then 

allowed to proceed. The power manager will wait 

until the end of the next time interval before taking 

any further action. 

 

3.4. Proposed power management policies 

We have devised several global power 

management policies that attempt to exploit the 

memory-boundedness property of an application. 

These policies are variants of the policies presented 

in [4], with the power manager attempting to 

maximize a parameter while operating at a provided 

power budget. However, our proposed policies 

optimize for performance efficiency instead of pure 

performance. We utilize our memory-boundedness 

equations and Amdahl’s Law to improve 

performance efficiency. In addition, instead of 

attempting to use as much of the provided power 

budget as possible, our policies may choose to 

operate at a lower power level for that interval to 

save even more power. 

 

3.4.1. Microarchitecture-Directed Power 

Management 

This proposed scheme is not based on any of the 

schemes presented in [4] and is designed for 

maximum performance efficiency. First, the power 

manager checks to see if the cores over or under 

consumed power in the previous interval. Then it 

generates a power consumption estimate for each 

core in each of the available power states. Estimation 

is done by using the frequency and voltage of each of 

the core’s available power states to scale the power 

measurement of the previous run interval. This 

allows the core to project how much power will be 



saved or consumed as the core moves between the 

power states.  The power manager also computes the 

memory-bound metric for each core based on the 

input statistics. A memory-bound threshold value, 

determined empirically, is used to determine which 

cores are highly memory-bound. 

If the cores consumed less power than the 

budget in previous run interval, then the power 

manager searches the cores from least to most 

memory bound. As it searches the cores, those cores 

which are lower than the memory bound threshold 

(i.e. those cores not considered memory bound) are 

allowed to increase their power state by one for the 

next interval as long as the estimated additional 

power does not push the total power consumption 

above the budget.  It is possible to be under 

consuming power while all cores are above the 

memory bound threshold. In this case, the manager 

assumes that no core would make efficient use of 

additional power and saves the power rather than 

allocating it. 

If the cores consumed more power than the 

budget in the previous run interval, then the power 

manager begins searching by considering the cores 

that are above the memory bound threshold.  The 

manager considers these cores from most to least 

memory bound. As the manager examines the cores, 

it drops them by one power-state and estimates how 

much power will be saved, if the core is not already 

in the lowest power state. Once the manager has 

iterated through all the cores above the memory 

bound threshold it checks if the projected power is 

below the power budget. If it is then the manager has 

finished setting each core’s power state for the next 

run interval.  If the projected power is still above the 

power budget, the power manager iterates again over 

the memory bound cores. This process repeats until 

the power budget is met or all cores above the 

memory bound threshold are in the lowest power 

state. 

If the power manager finishes iterating over the 

cores above the memory bound threshold and the 

power budget has still not been met, then the power 

manager begins iterating over the cores below the 

threshold. The process for iterating over the cores 

below the threshold is the same as it was for the cores 

above the threshold. By searching the lowly memory 

bound cores second, we only lower the power of 

highly utilized cores when there are no other options 

to keep the chip within the power budget. 

 

 

 

3.4.2. MaxEff 

In addition to Microarchitecture-Directed Power 

Management, we have designed a power 

management policy that is based off the MaxBIPS 

algorithm described in [4]. The algorithm predicts the 

power and performance of each core at each DVFS 

frequency. Then, the algorithm uses a brute-force 

approach to test every possible core frequency 

combination that fits under the power budget. The 

combination with the highest net performance is 

chosen to be used for the following program 

execution interval. 

However, several major changes were made. 

When generating the performance prediction for each 

core, Isci, et al. assumed that performance scales 

linearly with clock speed. Instead, we use Amdahl’s 

Law to generate a more accurate prediction that takes 

into account the memory-boundedness of the 

application. In addition, instead of optimizing for 

performance, we optimize for an EDP (Energy-

Delay-Product) metric that provides a better 

measurement for the performance efficiency. Finally, 

we observed that MaxBIPS sometimes exceeds the 

provided power budget due to inaccuracies in the 

power prediction algorithm. We alleviate this by 

dynamically changing the budget based on 

cumulative power consumption: the power budget 

will be lowered if previous intervals went over the 

target budget. Likewise, the power budget will be 

raised if previous intervals did not fully utilize the 

target budget. 

 

4. EXPERIMENTAL METHODOLOGY 

4.1 Simulation infrastructure 

In order to evaluate our proposed multicore 

power management scheme, we looked for a 

simulator that could model a multicore processor 

system and be able to predict whole-system power. 

Furthermore, it would need to be able to take into 

account dynamically changing voltages and 

frequencies. Unfortunately, no existing simulator 

that’s available for research could meet such criteria. 

Hence, we needed to develop our own simulation 

infrastructure. 

We chose to modify the existing Wattch [1] 

power simulator, which is an expansion of 

SimpleScalar [2]. SimpleScalar is a software-based, 

cycle-accurate, microarchitectural-level simulator 

which includes a detailed out-of-order target 

processor model. The target model uses the DEC 

Alpha ISA and resembles a modern day single-core 

processor (see Table 1). The Wattch addition 



includes power estimation for this target processor 

model by modeling the energy usage of each 

individual microarchitectural structure, such as a 

cache, across each cycle. 

To meet our simulation requirements, we added 

the ability to model multiple cores, have them 

synchronously run our global power management 

policy, and dynamically adjust the frequency and 

voltage of each core every interval. Because 

SimpleScalar only supports a single target process 

running on a single target processor, it would be very 

difficult to provide the full-system support needed for 

a multicore shared-memory target that supports 

multithreaded programs. Thus, we decided to simply 

run as many instances of SimpleScalar as cores in the 

system we are modeling, therefore restricting our 

evaluation to multi-programmed scenarios. To 

achieve this, we used a Python script as the driver for 

our simulator. It spawns a SimpleScalar process for 

each target core, controls their execution rate, and 

models our global power management policies. A 

diagram of this simulation infrastructure is shown in 

Figure 1. 

In order to provide a synchronized point in 

target time at which the global power manager is 

activated, we use barrier synchronization for all the 

cores at the end of each interval when the power 

manager should run. Once all target cores 

(SimpleScalar processes) have reached the barrier, 

the global power manager performs its algorithm and 

provides the next power state to each core. Then, all 

cores execute until the end of the next interval. At the 

end of the interval, each core outputs the appropriate 

statistics collected during that interval, and waits for 

the power manager at the barrier again. 

 

4.2 Benchmarks 

For evaluating our power management schemes, 

we model a four-core system, where each core is as 

described in Table 1. All cores are assumed to be 

independent of one another and there are no shared 

components. This implies that the processor has per-

core DVFS capabilities. 

We picked a set of four benchmarks from the 

SPEC CPU2006 [11] suite -- two integer and two 

floating point workloads, which are described in 

Table 2. All four benchmarks are run with their 

reference inputs. For each benchmark, we will fast 

forward to the starting point of the most 

representative phase for it [7]. Each test runs until 

one core has reached 250 million instructions 

committed since the starting point. The length of 

these tests means that cache-warming effects can 

Pipeline width 4 

Branch predictor 2K-entry bimodal 

Branch misp penalty 3 cycles 

BTB 512-entry 4-way 

ROB 16-entry 

Load-store queue 8-entry 

L1 I-cache 512-set, direct-

mapped, 32-byte 

line, 1-cycle latency 

L1 D-cache 128-set, 4-way, 32-

byte line, 1-cycle 

latency 

Unified L2 cache 1024-set, 4-way, 64-

byte line, 6-cycle 

latency 

DRAM 50ns, 64-bit 

I-TLB 16-entry, 4-way 

D-TLB 32-entry, 4-way 

Functional units 4 int ALU,  

1 int mult/div,  

2 load-store,  

4 FP ALU,  

1 FP mult/div 

CPU nominal 

frequency 

3GHz 

CPU nominal 

voltage 

1.5V 

Table 1. Target processor configuration 

Benchmark Type Description 
Starting point (millions 

of instructions) 

401.bzip2 int compression 1528 

436.cactusADM FP physics, general relativity 13068 

450.soplex FP linear programming, optimization 1807 

462.libquantum int physics, quantum computing 9974 

 

Table 2. Benchmark description 



 
 

Figure 1. Simulation infrastructure 

effectively be ignored. 

For an objective and balanced evaluation, we did 

not pick any severely memory-bound or compute-

bound programs. Also, because SimpleScalar models 

an Alpha machine, we needed the Alpha binary of 

any benchmark we wanted to run. We were able to 

acquire Alpha binaries for only a subset of the SPEC 

CPU benchmarks, which did not include 429.mcf – 

the most memory-bound of all SPEC benchmarks. 

This means we were not able to explore the most 

extreme instances of memory-bound programs. 

Characteristics of each benchmark are available in 

previous studies [3, 5]. 

 

5. RESULTS 

This section compares our two proposed power 

management schemes to the MaxBIPS-based power 

management scheme described in [4]. We show 

results for Microarchitecture-Directed Power 

Management, using both ROB stall and L2 miss 

statistics, and the MaxEff scheme. All results are 

relative to a system with no power management with 

all cores running in the highest power state. 

Figure 2 compares the proposed power 

management schemes in terms of power savings. 

Microarchitecture-Directed Power Management 

(MDPM) with the L2 miss metric saves the most 

power. Microarchitecture-Directed Power 

Management with the ROB stall metric saves the 

second most. MaxBIPS saves the least amount of 

power. The MaxBIPS scheme tries to stay as close to 

the power budget as possible, so it is natural that it 

saves the least amount of power. Recall that our 

schemes allow the cores to consume less than the 

power budget if there is low utilization across all 

cores. 

Figure 3 compares the performance degradation 

of each scheme. Although Figure 2 showed that 

MDPM with the L2 stall metric was the best policy in 

terms of power savings, this policy does not do well 

in terms of performance degradation. It often 

underestimates the utilization of the cores, i.e. 

estimates the applications to be more memory-bound 

than they really are. This results in some cores 

receiving less power than they can take advantage of. 

Intuitively, instructions will only be blocked from 

committing when a memory operation waiting on an 

L2 miss reaches the head of the ROB. Furthermore, 

because of the out-of-order engine, it is not until the 

ROB becomes full that the pipeline stalls. In practice, 

not all L2 misses result in this behavior. This means 

that the L2 miss statistic is an overly conservative 

estimate of how memory-bound an application is.  

MDPM with the ROB stall metric and MaxEff 

do better in terms or performance degradation. 



MDPM with the ROB stall metric experiences the 

lowest performance degradation at power budgets of 

79 and 88 watts, while MaxEff experiences the 

lowest performance degradation at a power budget of 

96 Watts. 

Figure 4 shows the power savings versus 

performance degradation tradeoffs between the 

various policies, where the lower left corner (high 

power savings with minimal performance loss) is 

optimal. MDPM with the L2 miss metric makes a 

trade-off that is much more skewed toward power 

savings. Both MDPM with the ROB stall metric and 

MaxEff make a more balanced tradeoff between 

power and performance, with MDPM having better 

overall results. To fairly compare the evaluated 

schemes, we propose a “performance efficiency” 

metric, defined as the power-savings to performance-

lost ratio as shown in Figure 5. For the data points 

simulated, MDPM with the ROB stall metric has the 

best power-savings-to-performance-lost ratio at over 

3% power savings per 1% performance degradation 

(over 3 on the “performance efficiency” scale). The 

results show that the number of L2 cache misses is 

not a good indicator towards memory-boundedness, 

performing worse than the baseline MaxBIPS 

implementation. MaxEff, the MaxBIPS variant that 

takes into account memory-boundedness, performs 

better than MaxBIPS in all cases but still performs 

worse than the MDPM implementation using the 

ROB stall metric. 

 

5.1 MaxBIPS reference results 

Compared to the results obtained by Isci, et al. 

[4] for their MaxBIPS scheme, our reference 

MaxBIPS implementation did not perform as well in 

our tests in terms of the power savings obtained for a 

given percentage of performance degradation. There 

could be several contributing factors. 

First, Isci, et al. used four SPEC CPU 2000 

benchmarks: 179.art, 181.mcf, 186.crafty, and 

188.ammp. The benchmarks 179.art and 181.mcf are 

the two most memory-bound applications in the 

SPEC CPU 2000 suite, and 186.crafty and 188.ammp 

are two compute-bound applications. Therefore, 

because the authors used such extreme examples, the 

MaxBIPS scheme was easily able to trade off the 

power and performance of the memory-bound 

benchmarks and assign them to the compute-bound 

ones. Hence, they were able to observe very high 

power savings without sacrificing performance on the 

memory-bound programs. In contrast, we picked four 

moderate applications which better represent typical 

programs, and thus did not achieve the same 

evaluation results as those seen by Isci, et al. 

Second, we did not use the same target 

microprocessor as that used by Isci, et al. While they 

simulated a 5-wide PowerPC processor, we used a 4-

wide Alpha processor. Accordingly, they will have 

different power and performance behaviors. 

Finally, while Isci, et al. used Turandot and 

PowerTimer to simulate and predict power, we relied 

on SimpleScalar and Wattch. Due to the inherent 

inaccuracies and differences between system-level 

power simulators, the results may differ even with 

identical implementations, benchmarks, and target 

systems. 

 

6. CONCLUSIONS 

In this paper, we exploit the characteristics of a 

memory-bounded program to develop high-efficiency 

global power management algorithms. We 

 
        Figure 2. Power savings     Figure 3. Performance degradation 



demonstrated that various microarchitectural 

statistics correlate strongly with memory-

boundedness and developed algorithms to calculate 

memory-boundedness based on these metrics. Our 

experimental results demonstrate that MDPM with 

the ROB stall metric makes the most balanced power 

versus performance trade-off, performing up to 18% 

better than the baseline MaxBIPS policy proposed by 

Isci, et al [4]. 
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