
Microarchitecture-Directed Global Power

Management for Multicore Processors

Gene Y. Wu, Yi Yuan, Dan Zhang
Department of Electrical and Computer Engineering

The University of Texas at Austin

{gwu,yyuan,dan.zhang}@mail.utexas.edu

1. INTRODUCTION

 Power has become a first order concern in

modern processor design. The past trend of

technology scaling has provided a path to faster cycle

times and increased on-chip transistor density.

However, the increase in transistor density has also

greatly increased power consumption. To make

matters worse, smaller transistor feature sizes have

caused leakage power, which was once a negligible

component of power consumption, to become an

increasing concern.

 Power is obviously a concern in the embedded

and mobile domain, where power consumption

affects battery life. However, the power problem has

now become a limiter in other areas as well.

Increased power consumption introduces thermal

dissipation challenges. It is often impractical,

expensive, or even impossible to provide a cooling

solution for chips running at full capacity for

extended periods of time. Even when such cooling

solutions are possible, it is often still desirable to

reduce power consumption for monetary reasons. For

example, data centers deploy processors on such a

large scale that a small savings in per-chip power

consumption can dramatically reduce operational

costs.

 With the emergence of multi-core technology, it

has become necessary to manage power across

multiple cores. Multi-core power management

schemes offer the opportunity to dynamically adjust

frequency and voltage on a per core-basis to achieve

system level power reduction. Global power

managers use feedback from the system to decide

how to allocate power between the cores. A power

manager’s job is always to make a power vs.

performance trade-off.

The goal of this study is to determine if

microarchitectural statistics can be used effectively

by a global power manager to make decisions about

power allocation. We begin by observing that a fully

utilized pipeline makes better use of the power it is

allocated. The increased frequency allows a rarely-

stalling pipeline to retire instructions faster in a given

time period. Often times this means that the core is

compute-bound. On the other hand, a pipeline will be

poorly utilized while running a memory-bound

application. The pipeline resources are potentially

underutilized while the core waits for main memory.

A faster clock is of little use to the core while the

pipeline is stalled waiting for main memory.

A manager that is aware of which cores are

currently memory bound can choose to allocate

power to the better-utilized cores. These cores can

make use of faster clock frequencies to retire

instructions more quickly. This will improve the

overall throughput of the system. The memory-bound

cores will be set to lower power states. This allows

power to be saved without significantly degrading

performance.

Determining which cores are memory-bound is a

challenge. However, we propose the use of

microarchitectural statistics to allow the power

manager to reason about which cores are the most

memory-bound. Large numbers of L2 cache misses

and reorder buffer (ROB) stalls are both symptoms of

a core running a memory-bound application. Using

these statistics as inputs to a global power manager

allows it to determine which cores will make the best

use of the additional power and which cores to

reclaim power from if the chip power budget is not

being met.

2. MOTIVATION AND BACKGROUND

It has been shown that global power

management is a good approach for controlling the

power of a multi-core processor. For a multi-core

design, Sharkey et al. [9] show that trying to optimize

power and performance needs to be done at the chip

level. Trying to optimize each core’s power locally

cannot provide as much performance per unit power.

Global power managers can try to make

different power/performance trade-offs. Park et al.

[8] propose a global power management scheme that

makes a minimum performance degradation

guarantee and then attempts to save as much power

as possible. In such a scheme, keeping performance

degradation within the guaranteed window is the

most important concern. Isci et al. [4], on the other

hand, make a guarantee about maximum power

consumed. This scheme’s first concern is the power

budget. As long as the budget is met, the scheme will

then try to optimize for maximum performance.

These two examples show the different kinds of

power/performance goals that a power manager can

have.

Mutlu et al. [6] showed that long latency

operations such as L2 cache misses will eventually

fill the processor’s instruction window and cause the

pipeline to stall. Rather than use this observation to

perform prefetching and enhance performance, we

use this to find opportunities for saving power during

execution.

3. MICROARCHITECTURE-DIRECTED

POWER MANAGEMENT

Whereas previous global power management

policies were focused on optimizing for the system’s

clock frequency or power consumption, our proposed

policies focus on using the available power most

efficiently -- in other words, striking the right balance

between power and performance. We do this by

examining the behavior of the programs running, in

addition to the traditional way of targeting a given

power budget.

3.1 Program behavior statistics

By characterizing the behavior of the active

processes in the processor, we can base our power

management policies on how well a particular

program would respond to changes in the power state

for the core on which it is running. In particular, we

collect statistics that show the utilization rates for

each core. If a program is making good use of the

processor pipeline (i.e. few stalls and high

utilization), then it would have high potential to reap

significant benefits from an increased P-state, and

likewise a significant performance degradation if the

P-state is reduced. On the other hand, a program that

is often stalling and waiting for memory operations to

complete would not be able to utilize a higher P-state

well, and would not significantly degrade in

performance should the P-state be reduced.

Therefore, we chose to use in our power

manager a metric of how memory-bound a program

is. A memory-bound program is one that spends

many processor cycles waiting for memory accesses,

and thus has relatively low IPC. Such programs are

bottlenecked by the memory subsystem, and thus

would not respond well to changes in the processor

P-state.

To determine how memory-bound a particular

program (or phase of the program [10]) is, we

identified and studied a few different metrics: L2

cache misses and reorder buffer (ROB) stalls. The

intuition behind and how we use each of these

metrics are discussed in the following subsections.

3.1.1 L2 cache misses

A direct measure of how many memory accesses

a program makes is the number of misses in its last-

level cache, which is the L2 cache in our processor

model. All such misses generate at least one memory

access (i.e. one to bring in the new line, and possibly

another one to write back a dirty line that was

replaced), which takes a few hundred processor

cycles to complete in a modern-day 2-3GHz

microprocessor.

If the memory access was for instructions, then

the processor would have exhausted its supply of

instructions, and would therefore have to insert

bubbles into the pipeline until the memory request

returns. During this time, the processor is not well-

utilizing its execution resources.

On the other hand, if the memory access was for

data, then an out-of-order processor can continue

executing, assuming it can find additional

instructions with no dependencies on the requested

data, and as long as there is space in its ROB.

However, the size of the ROB in a typical

microprocessor would not be able to cover the entire

memory latency [6]. Once the ROB is full, the entire

processor pipeline is stalled and the processor must

wait for the memory access to return. Should this

happen very frequently, the program would not be

able to efficiently use the processor, and would be

considered memory-bound.

In order to provide a metric that is easy for the

power manager to work with, we use a formula to

convert the statistics we collect into a fraction in the

range of 0 to 1, representing how memory-bound a

particular program is. A higher number indicates the

program is more memory-bound. The formula when

characterizing the program using L2 cache misses is:

3.1.2 Reorder buffer stalls

Another way to determine memory-boundedness

is at the ROB itself, by measuring the number of

cycles when it is full. The ROB can be filled up if the

processor is waiting for some long-latency operation

to complete. If an operation is outstanding for an

extended time, it will eventually become the head of

the ROB, waiting to retire, and it will block all

subsequent entries from retiring. As more instructions

come in, the ROB will become full and the processor

would be unable to make further progress. Hence, the

more cycles a processor spends with a full ROB, the

more likely it is to be running a memory-bound

program.

The formula to determine memory-boundedness

is:

3.2. Exploiting memory-boundedness using

Amdahl’s Law

In the previous section, we identified various

indicators for memory-boundedness and proposed

several equations for computing the memory-bound

percentage of a program. The question is: how does

one utilize this information to generate an efficient

power management profile? To answer this question,

we turn to Amdahl’s Law, which is used to find the

overall speedup or slowdown to a system when only

one portion of the system is modified. In this

scenario, the entire system includes the cores and

system memory, and portion of the system that is

modified is the clock speed of the cores. DVFS only

modifies the frequency of the cores, whereas the

latency of a system memory access stays the same.

Therefore, if m is the portion of the computation that

is memory-bound, we can write:

The above equation demonstrates that if the

memory-boundedness of an application interval is

close to 0, then the net speedup of the program is

linear as frequency is changed. On the other hand, if

the application interval is very memory-bound, then

the net speedup of the program changes very little as

frequency is changed. Thus, we can exploit this fact

as follows: in the case of a memory-bound core, we

can scale the frequency and voltage down and see

negligible performance losses. In the case of a core

that is compute-bound, we can attempt to scale the

core up and benefit from near-optimal speedup.

3.3. The global power management framework

The power management policy is executed

during a set phase in the overall global power

manager algorithm. First, the global power manager

allows the cores to run for one time interval. During

this interval, each core collects the microarchitectural

statistics previously described and measures power

consumption. At the end of the interval, the power

manager reads in each core’s statistics and power

measurement counters. At this point, the power

manager policy is executed and the next DVFS state

for each core is determined. The cores are then

allowed to proceed. The power manager will wait

until the end of the next time interval before taking

any further action.

3.4. Proposed power management policies

We have devised several global power

management policies that attempt to exploit the

memory-boundedness property of an application.

These policies are variants of the policies presented

in [4], with the power manager attempting to

maximize a parameter while operating at a provided

power budget. However, our proposed policies

optimize for performance efficiency instead of pure

performance. We utilize our memory-boundedness

equations and Amdahl’s Law to improve

performance efficiency. In addition, instead of

attempting to use as much of the provided power

budget as possible, our policies may choose to

operate at a lower power level for that interval to

save even more power.

3.4.1. Microarchitecture-Directed Power

Management

This proposed scheme is not based on any of the

schemes presented in [4] and is designed for

maximum performance efficiency. First, the power

manager checks to see if the cores over or under

consumed power in the previous interval. Then it

generates a power consumption estimate for each

core in each of the available power states. Estimation

is done by using the frequency and voltage of each of

the core’s available power states to scale the power

measurement of the previous run interval. This

allows the core to project how much power will be

saved or consumed as the core moves between the

power states. The power manager also computes the

memory-bound metric for each core based on the

input statistics. A memory-bound threshold value,

determined empirically, is used to determine which

cores are highly memory-bound.

If the cores consumed less power than the

budget in previous run interval, then the power

manager searches the cores from least to most

memory bound. As it searches the cores, those cores

which are lower than the memory bound threshold

(i.e. those cores not considered memory bound) are

allowed to increase their power state by one for the

next interval as long as the estimated additional

power does not push the total power consumption

above the budget. It is possible to be under

consuming power while all cores are above the

memory bound threshold. In this case, the manager

assumes that no core would make efficient use of

additional power and saves the power rather than

allocating it.

If the cores consumed more power than the

budget in the previous run interval, then the power

manager begins searching by considering the cores

that are above the memory bound threshold. The

manager considers these cores from most to least

memory bound. As the manager examines the cores,

it drops them by one power-state and estimates how

much power will be saved, if the core is not already

in the lowest power state. Once the manager has

iterated through all the cores above the memory

bound threshold it checks if the projected power is

below the power budget. If it is then the manager has

finished setting each core’s power state for the next

run interval. If the projected power is still above the

power budget, the power manager iterates again over

the memory bound cores. This process repeats until

the power budget is met or all cores above the

memory bound threshold are in the lowest power

state.

If the power manager finishes iterating over the

cores above the memory bound threshold and the

power budget has still not been met, then the power

manager begins iterating over the cores below the

threshold. The process for iterating over the cores

below the threshold is the same as it was for the cores

above the threshold. By searching the lowly memory

bound cores second, we only lower the power of

highly utilized cores when there are no other options

to keep the chip within the power budget.

3.4.2. MaxEff

In addition to Microarchitecture-Directed Power

Management, we have designed a power

management policy that is based off the MaxBIPS

algorithm described in [4]. The algorithm predicts the

power and performance of each core at each DVFS

frequency. Then, the algorithm uses a brute-force

approach to test every possible core frequency

combination that fits under the power budget. The

combination with the highest net performance is

chosen to be used for the following program

execution interval.

However, several major changes were made.

When generating the performance prediction for each

core, Isci, et al. assumed that performance scales

linearly with clock speed. Instead, we use Amdahl’s

Law to generate a more accurate prediction that takes

into account the memory-boundedness of the

application. In addition, instead of optimizing for

performance, we optimize for an EDP (Energy-

Delay-Product) metric that provides a better

measurement for the performance efficiency. Finally,

we observed that MaxBIPS sometimes exceeds the

provided power budget due to inaccuracies in the

power prediction algorithm. We alleviate this by

dynamically changing the budget based on

cumulative power consumption: the power budget

will be lowered if previous intervals went over the

target budget. Likewise, the power budget will be

raised if previous intervals did not fully utilize the

target budget.

4. EXPERIMENTAL METHODOLOGY

4.1 Simulation infrastructure

In order to evaluate our proposed multicore

power management scheme, we looked for a

simulator that could model a multicore processor

system and be able to predict whole-system power.

Furthermore, it would need to be able to take into

account dynamically changing voltages and

frequencies. Unfortunately, no existing simulator

that’s available for research could meet such criteria.

Hence, we needed to develop our own simulation

infrastructure.

We chose to modify the existing Wattch [1]

power simulator, which is an expansion of

SimpleScalar [2]. SimpleScalar is a software-based,

cycle-accurate, microarchitectural-level simulator

which includes a detailed out-of-order target

processor model. The target model uses the DEC

Alpha ISA and resembles a modern day single-core

processor (see Table 1). The Wattch addition

includes power estimation for this target processor

model by modeling the energy usage of each

individual microarchitectural structure, such as a

cache, across each cycle.

To meet our simulation requirements, we added

the ability to model multiple cores, have them

synchronously run our global power management

policy, and dynamically adjust the frequency and

voltage of each core every interval. Because

SimpleScalar only supports a single target process

running on a single target processor, it would be very

difficult to provide the full-system support needed for

a multicore shared-memory target that supports

multithreaded programs. Thus, we decided to simply

run as many instances of SimpleScalar as cores in the

system we are modeling, therefore restricting our

evaluation to multi-programmed scenarios. To

achieve this, we used a Python script as the driver for

our simulator. It spawns a SimpleScalar process for

each target core, controls their execution rate, and

models our global power management policies. A

diagram of this simulation infrastructure is shown in

Figure 1.

In order to provide a synchronized point in

target time at which the global power manager is

activated, we use barrier synchronization for all the

cores at the end of each interval when the power

manager should run. Once all target cores

(SimpleScalar processes) have reached the barrier,

the global power manager performs its algorithm and

provides the next power state to each core. Then, all

cores execute until the end of the next interval. At the

end of the interval, each core outputs the appropriate

statistics collected during that interval, and waits for

the power manager at the barrier again.

4.2 Benchmarks

For evaluating our power management schemes,

we model a four-core system, where each core is as

described in Table 1. All cores are assumed to be

independent of one another and there are no shared

components. This implies that the processor has per-

core DVFS capabilities.

We picked a set of four benchmarks from the

SPEC CPU2006 [11] suite -- two integer and two

floating point workloads, which are described in

Table 2. All four benchmarks are run with their

reference inputs. For each benchmark, we will fast

forward to the starting point of the most

representative phase for it [7]. Each test runs until

one core has reached 250 million instructions

committed since the starting point. The length of

these tests means that cache-warming effects can

Pipeline width 4

Branch predictor 2K-entry bimodal

Branch misp penalty 3 cycles

BTB 512-entry 4-way

ROB 16-entry

Load-store queue 8-entry

L1 I-cache 512-set, direct-

mapped, 32-byte

line, 1-cycle latency

L1 D-cache 128-set, 4-way, 32-

byte line, 1-cycle

latency

Unified L2 cache 1024-set, 4-way, 64-

byte line, 6-cycle

latency

DRAM 50ns, 64-bit

I-TLB 16-entry, 4-way

D-TLB 32-entry, 4-way

Functional units 4 int ALU,

1 int mult/div,

2 load-store,

4 FP ALU,

1 FP mult/div

CPU nominal

frequency

3GHz

CPU nominal

voltage

1.5V

Table 1. Target processor configuration

Benchmark Type Description
Starting point (millions

of instructions)

401.bzip2 int compression 1528

436.cactusADM FP physics, general relativity 13068

450.soplex FP linear programming, optimization 1807

462.libquantum int physics, quantum computing 9974

Table 2. Benchmark description

Figure 1. Simulation infrastructure

effectively be ignored.

For an objective and balanced evaluation, we did

not pick any severely memory-bound or compute-

bound programs. Also, because SimpleScalar models

an Alpha machine, we needed the Alpha binary of

any benchmark we wanted to run. We were able to

acquire Alpha binaries for only a subset of the SPEC

CPU benchmarks, which did not include 429.mcf –

the most memory-bound of all SPEC benchmarks.

This means we were not able to explore the most

extreme instances of memory-bound programs.

Characteristics of each benchmark are available in

previous studies [3, 5].

5. RESULTS

This section compares our two proposed power

management schemes to the MaxBIPS-based power

management scheme described in [4]. We show

results for Microarchitecture-Directed Power

Management, using both ROB stall and L2 miss

statistics, and the MaxEff scheme. All results are

relative to a system with no power management with

all cores running in the highest power state.

Figure 2 compares the proposed power

management schemes in terms of power savings.

Microarchitecture-Directed Power Management

(MDPM) with the L2 miss metric saves the most

power. Microarchitecture-Directed Power

Management with the ROB stall metric saves the

second most. MaxBIPS saves the least amount of

power. The MaxBIPS scheme tries to stay as close to

the power budget as possible, so it is natural that it

saves the least amount of power. Recall that our

schemes allow the cores to consume less than the

power budget if there is low utilization across all

cores.

Figure 3 compares the performance degradation

of each scheme. Although Figure 2 showed that

MDPM with the L2 stall metric was the best policy in

terms of power savings, this policy does not do well

in terms of performance degradation. It often

underestimates the utilization of the cores, i.e.

estimates the applications to be more memory-bound

than they really are. This results in some cores

receiving less power than they can take advantage of.

Intuitively, instructions will only be blocked from

committing when a memory operation waiting on an

L2 miss reaches the head of the ROB. Furthermore,

because of the out-of-order engine, it is not until the

ROB becomes full that the pipeline stalls. In practice,

not all L2 misses result in this behavior. This means

that the L2 miss statistic is an overly conservative

estimate of how memory-bound an application is.

MDPM with the ROB stall metric and MaxEff

do better in terms or performance degradation.

MDPM with the ROB stall metric experiences the

lowest performance degradation at power budgets of

79 and 88 watts, while MaxEff experiences the

lowest performance degradation at a power budget of

96 Watts.

Figure 4 shows the power savings versus

performance degradation tradeoffs between the

various policies, where the lower left corner (high

power savings with minimal performance loss) is

optimal. MDPM with the L2 miss metric makes a

trade-off that is much more skewed toward power

savings. Both MDPM with the ROB stall metric and

MaxEff make a more balanced tradeoff between

power and performance, with MDPM having better

overall results. To fairly compare the evaluated

schemes, we propose a “performance efficiency”

metric, defined as the power-savings to performance-

lost ratio as shown in Figure 5. For the data points

simulated, MDPM with the ROB stall metric has the

best power-savings-to-performance-lost ratio at over

3% power savings per 1% performance degradation

(over 3 on the “performance efficiency” scale). The

results show that the number of L2 cache misses is

not a good indicator towards memory-boundedness,

performing worse than the baseline MaxBIPS

implementation. MaxEff, the MaxBIPS variant that

takes into account memory-boundedness, performs

better than MaxBIPS in all cases but still performs

worse than the MDPM implementation using the

ROB stall metric.

5.1 MaxBIPS reference results

Compared to the results obtained by Isci, et al.

[4] for their MaxBIPS scheme, our reference

MaxBIPS implementation did not perform as well in

our tests in terms of the power savings obtained for a

given percentage of performance degradation. There

could be several contributing factors.

First, Isci, et al. used four SPEC CPU 2000

benchmarks: 179.art, 181.mcf, 186.crafty, and

188.ammp. The benchmarks 179.art and 181.mcf are

the two most memory-bound applications in the

SPEC CPU 2000 suite, and 186.crafty and 188.ammp

are two compute-bound applications. Therefore,

because the authors used such extreme examples, the

MaxBIPS scheme was easily able to trade off the

power and performance of the memory-bound

benchmarks and assign them to the compute-bound

ones. Hence, they were able to observe very high

power savings without sacrificing performance on the

memory-bound programs. In contrast, we picked four

moderate applications which better represent typical

programs, and thus did not achieve the same

evaluation results as those seen by Isci, et al.

Second, we did not use the same target

microprocessor as that used by Isci, et al. While they

simulated a 5-wide PowerPC processor, we used a 4-

wide Alpha processor. Accordingly, they will have

different power and performance behaviors.

Finally, while Isci, et al. used Turandot and

PowerTimer to simulate and predict power, we relied

on SimpleScalar and Wattch. Due to the inherent

inaccuracies and differences between system-level

power simulators, the results may differ even with

identical implementations, benchmarks, and target

systems.

6. CONCLUSIONS

In this paper, we exploit the characteristics of a

memory-bounded program to develop high-efficiency

global power management algorithms. We

 Figure 2. Power savings Figure 3. Performance degradation

demonstrated that various microarchitectural

statistics correlate strongly with memory-

boundedness and developed algorithms to calculate

memory-boundedness based on these metrics. Our

experimental results demonstrate that MDPM with

the ROB stall metric makes the most balanced power

versus performance trade-off, performing up to 18%

better than the baseline MaxBIPS policy proposed by

Isci, et al [4].

REFERENCES

[1] D. Brooks, V. Tiwari, and M. Martonosi.

Wattch: A Framework for Architectural-Level

Power Analysis and Optimizations. In

Proceedings of the International Symposium on

Computer Architecture (ISCA-29), pp.83-94,

2000.

[2] D. Burger and T. Austin. The SimpleScalar

Tool Set, version 3.0. http://simplescalar.com/.

[3] K. Ganesan, D. Panwar, and L. K. John.

Generation, Validation and Analysis of SPEC

CPU2006 Simulation Points Based on Branch,

Memory and TLB Characteristics. In

Proceedings of the SPEC Benchmark

Workshop on Computer Performance

Evaluation and Benchmarking, 2009.

[4] C. Isci, A. Buyuktosunoglu, C. Y. Cher, P.

Bose, and M. Martonosi. An Analysis of

Efficient Multi-Core Global Power

Management Policies: Maximizing

Performance for a Given Power Budget. In

Proceedings of the 39th International

Symposium on Microarchitecture (MICRO-39),

pp.347-358, 2006.

[5] A. Jaleel. Memory Characterization of

Workloads Using Instrumentation-Driven

Simulation. 2007.

http://www.glue.umd.edu/~ajaleel/workload/

[6] Onur Mutlu. Efficient Runahead Execution

Processors. PhD Dissertation, HPS Technical

Report, TR-HPS-2006-007, July 2006.

[7] A. Nair and L. K. John. Simulation Points for

SPEC CPU 2006. In Proceedings of the

International Conference on Computer Design

(ICCD), pp.397-403, 2008.

[8] S. Park, W. Jiang, Y. Zhou, and S. Adve.

Managing Energy-Performance Tradeoffs for

Multithreaded Applications on Multiprocessor

Architectures. In Proceedings of

SIGMETRICS, 2007.

[9] J. Sharkey, A. Buyuktosunoglu, P. Bose,

Evaluating design tradeoffs in on-chip power

management for CMPs. In Proceedings of the

International Symposium on Low Power

Electronics and Design, 2007.

[10] T. Sherwood, E. Perelman, and B. Calder.

Basic Block Distribution Analysis to Find

Periodic Behavior and Simulation Points in

Applications. In Proceedings of the

International Conference on Parallel

Architectures and Compilation Techniques

(PACT), 2001.

[11] SPEC CPU2006. http://www.spec.org/.

Figure 4. Tradeoff of power and performance Figure 5. Performance efficiency

