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ABSTRACT 

In this paper we propose FreeFood, a novel 16-bit DSP designed 

for video decoding and other multimedia operations. FreeFood 

goes above and beyond the baseline implementation in order to 

reach the throughput required for H.264 decoding and other 

complex multimedia applications. Features include a dedicated 

multiply-accumulate unit, 64-bit SIMD unit, and stream buffers. 

Many other complex and novel pipelining schemes are 

implemented in order to hit our targeted 1.05GHz clock speed. 

FreeFood can sustain a maximum throughput of 4200 MIPS while 

consuming only 348mW with 1.2v on the standard single-Vt IBM 

130nm process. FreeFood’s main target is to provide 

uncompromising performance while maintaining reasonable 

power efficiency. 
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1. INTRODUCTION 
The objective of this project is to design FreeFood, a 16-bit RISC 

microprocessor in IBM 0.13 micron technology that can obtain a 

clock speed of 1GHz after accounting for clock skew. Besides 

implementing the baseline instructions, we support 4-way SIMD 

execution through multiple custom datapaths, as well as 

multimedia-friendly instructions such as pipelined multiply-

accumulate, vector load and store, permute, and others. Due to the 

unacceptably slow memory units provided by Memory Compiler, 

we decouple the pipeline with stream buffers in order to reach our 

clock speed goal. The processor is composed of the custom scalar 

datapath, custom vector datapath, and synthesized controller 

module. FreeFood is targeted towards digital signal processing for 

embedded applications, specifically for H.264 video decoding. 

2. MOTIVATION 
The goal of our project is to produce a useful microprocessor with 

a reasonable implementation specialized for high performance 

H.264 video decoding. In order to meet this high performance 

requirement, we wish to execute up to 4 instructions per cycle 

through a SIMD (Single Instruction Multiple Data) 

implementation, as well as a high clock rate of 1GHz. Although 

we are currently targeting H.264 video decoding, the proposed 

design is well-suited for a number of other DSP applications, such 

as image filtering, FFT, and audio processing. 

3. VIDEO DECODING BACKGROUND 
The H.264 codec is currently the most advanced and 

computationally intensive codec in commercial applications. As 

such, many older desktop systems do not have the capability to 

decode H.264 video streams in real-time. This problem is further 

exacerbated for hand-held (embedded) applications, where the 

computational performance and power budget is minimal. 

FreeFood will alleviate the burden of decoding the video from the 

main processor, exploiting data and memory parallelism. 

4. ARCHITECTURAL FEATURES 
Video decoding and other multimedia applications are 

characterized by a high degree of instruction and memory 

parallelism across loop boundaries. We implemented many 

architectural features in order to fully take advantage of the 

characteristics of the targeted code, which will be discussed in the 

following sub-sections. 

To exploit data parallelism, we implemented 4-way SIMD 

instructions, including 4-way loads and stores to exploit memory 

parallelism. Data parallelism can be further exploited through 

additional pipelining, thus improving overall throughput at the 

expense of latency. To increase the clock speed even further, we 

decoupled the instruction and data memory units from the main 

pipeline through use of a stream buffer. We also implement a 

multiply-accumulator, a popular functional unit for greatly 

enhancing the performance of multimedia accelerators. 

4.1 7-Stage Pipeline 
To maximize overall performance at the expense of latency, 

FreeFood has an aggressive 7-stage pipeline. This pipeline length 

enables FreeFood to clock at 1.05GHz for a maximum throughput 

of 4,200 MIPS. However, due to the 3 stages dedicated for 

instruction execution, dependent instructions must be placed with 

at least 3 non-dependent instructions in between. We claim that 

due to the parallel nature of the target code base, this restriction 

does not significantly affect the overall performance of the 

microprocessor. 

The seven stages perform the following functions: 

1. Fetch: Retrieves the instruction from the stream buffer 

for processing. 

2. Decode: Determines the functionality of the instruction. 

3. Register File: Reads from the register file. 



 2 

4. Pre-ALU: Launches the 3-cycle LW, SW, and MAC 

instructions. Performs ALU pre-computation. 

Reads/writes to the tri-state bus. 

5. ALU1: Performs ALU, shift, and logic operations. 

6. ALU2: Finishes the 3-cycle LW, SW, and MAC 

instructions. 

7. WB: Writes the calculated value to the register file. 

Section 5 will cover the individual pipeline stages in greater 

detail. 

4.2 Decoupled Memory Banks 
Since the slowest function units in FreeFood are the SRAM 

instruction and data arrays, we decided to decouple the memory 

units in order to remove the imposed clock speed restriction. The 

decoupled memory units take 3 cycles to read and write data. The 

read and write operations are not pipelined. 

To compensate for the 3-cycle read, we increased the number of 

memory banks from one to four, thus enabling up to four 

concurrent reads and writes. However, the 4-way read and write 

operations, named vector load and vector store, must modify a 

single aligned and continuous 4-word block. 

To compensate for the 3-cycle memory access, a stream buffer 

with branch prediction capability was implemented in the front 

end of the architecture. This performance-enhancing feature will 

be covered in-depth in Section 6. 

4.3 Vector Processing 
Vector instructions, or Single Instruction Multiple Data 

instructions, perform the same operation on different pieces of 

data. Each vector register contains four 16-bit values. We 

compute a total of four additions in the VADD instruction: A0 + 

B0 = C0, …, A3 + B3 = C3. Other instructions follow the 

same format, performing the same operation on multiple pieces of 

data. This instruction format enables high code density at the 

expense of flexibility. However, for our application, flexibility is 

not a concern due to the repetitive and parallel nature of the code. 

Higher degrees of parallelism can be extracted by unrolling 

multiple copies of loop iterations as well. 

Besides implementing vector versions of all basic arithmetic 

operations (add, subtract, shift) and memory operations (load, 

store), a tristate bus was implemented as a method for 

communication between the vector and scalar pipelines. 

4.4 Multiply-Accumulator 
Multimedia and DSP applications often need to perform multiply 

operations. These resulting values are then usually added together, 

or accumulated. Thus, to speed up the common case, we 

implemented a multiply-accumulator (MAC). 

The multiply-accumulator is closely modeled to the standard 

datapath. It features a 4-entry MAC register file, a 4-stage 

pipelined MAC operation, and register file forwarding. This 

complexity is necessary to achieve high clock frequencies.  

Due to the sheer complexity of the MAC operation, as well as the 

power and area penalty of synthesized logic, we decided to 

minimize MAC power consumption by stalling the pipeline when 

not in use. This simple feature prevents MAC dynamic power 

consumption when performing other operations, greatly reducing 

the overall power consumption of the chip. 

The MAC operation is available both in scalar and vector format. 

 

5. DATAPATH STAGE DESIGN 
In order to support a high clock frequency, FreeFood features an 

extremely aggressive 7-stage pipeline. The extended pipeline is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The FreeFood Architectural Pipeline. 
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based off the standard 4-stage pipeline: Fetch, Decode, 

ALU/MEM, and Write-Back. Note that in our target ISA, memory 

operations do not require a base plus immediate value.  

To intelligently extend the pipeline, we first predicted the 

bottlenecks. Two bottlenecks immediately stood out: the SRAM 

arrays used for instruction and data memory, as well as the 

synthesized multiply-accumulate logic. 

From the specifications, we knew that the SRAM instruction and 

data arrays will have a delay of up to 1.6ns. Therefore, we 

allocated 3 stages (3ns) for the load and store operations. The 

extra overhead is to account for pipeline stage overhead, large 

wiring capacitances, and arbitration logic.  

The MAC operation was also slow, requiring 1.6ns before 

pipelining. However, due to the MAC needing a special MAC 

register, we were able to completely decouple the MAC operation 

from the standard datapath. 

Due to the constraints imposed by the memory units and the need 

to prevent stalling in the pipeline to improve throughput, we 

decided to extend the ALU operation across three stages. To 

simplify the forwarding logic and to improve the clock frequency, 

we neglected to implement forwarding logic for instructions that 

do not require the full 3 cycles to complete (ALU, logic, shift). 

To further improve the clock speed, the register file and the 

decoder were put into their own separate stages. This was 

necessary due to the register file needing a 16-bit 1-hot encoded 

signal for its inputs. 

Thus, the 7-stage pipeline implemented in this project consists of 

the following stages: Fetch, Decode, Register File, Pre-ALU, 

ALU1, ALU2, and WB. 

The final clock speed achieved was 1.05GHz, assuming a clock 

uncertainty of 100ps. The critical path was within the controller. 

5.1 Fetch 
The Fetch stage retrieves the instruction from memory for 

processing. However, since the memory access is split over 3 

cycles, a buffering mechanism was necessary to improve overall 

throughput. 

A speculative stream buffer was implemented to improve 

performance. The buffer predicts the next 4-instruction block with 

the built-in branch predictor and branch target buffer. With 

perfect branch prediction, we can successfully hide all the 

memory latency from the rest of the pipeline. 

However, if the branch prediction mechanism misses, then an 

additional 4 cycle instruction memory miss penalty will be added 

in addition to the pipeline flush penalty. 

5.2 Decode 
The Decode stage configures the datapath control signals based on 

the instruction opcode. The immediate values are sign extended.  

Due to the fact that the register file requires 1-hot encoded 16-bit 

signals, the Decode stage also computes the signals required for 

the register file. Note that the register file signal decode can be 

done in parallel with the opcode decode. 

5.3 Register File 
The register file is the first custom designed pipeline stage of the 

datapath. It is a 16-word x 16-bit master-slave configuration, with 

each bit containing one master latch driving one of 16 slave 

latches. Each latch is controlled by TX gates followed by a 

bistable element with clock gated feedback to prevent write-in 

contention. The output of each slave is tied to two read port TX 

gates for RSOURCE and RDEST, sized for worst case delay of reading 

from both ports simultaneously. The slave latches are clock gated 

to minimize power consumption when idle, which comprises of 

15/16 slaves for each bit per cycle. 

Note that not all instructions use the register file values: some 

instructions have immediates, and some instructions require 0 or 

the next program counter (NPC) value. Also, we have register file 

forwarding, which will select the value currently being written 

into the register file if the destination register number is equal to 

at least one of the operands. 

 

 

Figure 2. Register File Layout 

 

5.4 Pre-ALU 
In the FreeFood architecture, some instructions require three 

cycles for calculation while others require only one. To prevent 

pipeline stalls, we have three separate ALU stages. This provides 

some flexibility for the faster operations. 

To simplify the adder during the main ALU stage, we choose 

between the operand and its negation. This is useful for the 

subtract opcode, which can be modeled as adding a negative 

number. However, note that negating a value in 2’s complement 

format involves adding 1 to the inverted value. We can leverage 

the power of the main ALU to perform this +1 operation. Thus, 

instead of calculating the complete negation of the operand, we 

simply calculate the Propagate and Generate values of the first bit 

and invert all other bits in the operand. These values are passed on 

through pipeline registers into the ALU1 stage. 

For more complex operations, having some form of 

communication between the vector and scalar pipelines will be 

necessary. Aside from being able to slowly communicate through 

the shared data memory, a fast communication path is provided in 

the form of a tristate bus. This tristate bus links together all the 

vector and scalar units. This tristate bus drives across 900µm of 

wire cap, so to account for the drive delay the bus is driven from 

the pipeline registers at the end of the register-file stage and into 

the pipeline registers at the end of the Pre-ALU stage. 
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The three-cycle slow operations for both the vector and scalar 

datapaths are also launched in the Pre-ALU: LW, SW, and MAC.  

5.5 ALU1 
During the ALU1 stage, the adder, shifter, and logic units are 

accessed. 

To minimize power consumption and area, we implemented a 

Sklansky sparse-tree adder. Within the parallel-prefix network of 

tree adders, the Sklansky adder trades off fanout in exchange for 

lower power and area. Compared to the Kogge-Stone adder, the 

Sklansky adder has 1/8th of the wiring capacitance but exponential 

fanout (compared a minimum fanout of 2 in the Kogge-Stone 

adder). However, the exponential fanout does not greatly affect 

the output capacitance of the internal nodes. This is due to wiring 

capacitance dominating the overall capacitance in the design. For 

example, the final level of the Sklansky adder has a fanout of 8. 

However, the wiring capacitance on the final level is roughly 

30fF. Compare this to the fanout capacitance of roughly 5 fF. 

With logical effort sizing on the critical path with highest fanout, 

we reached a delay of ~650ps, well within the 1ns cycle delay 

tolerance. Compare was also calculated as part of the tree and is 

needed for branch targets. 

The required bitwise logical operations (AND, OR, XOR) were 

also implemented in this stage using a three nand gate multiplexer 

to select between the operation. This is a fast and compact design 

and yielded delays faster than the actual adder. 

Finally, a barrel shifter serves as the final custom block in the 

ALU1 stage. Logical effort sizing and critical path delays were 

considered to minimize the delay of this block. A fully custom 

4:16 decoder was also designed since it was part of the critical 

path. Since the shifter outputs are driven by PTL NMOS’s, these 

were placed vertically since this results in the shortest wire with 

least drive capacitance. The critical path delay of the shifter was 

just over 650ps. 

 

 

Figure 3. Sklansky Adder / AND / OR / XOR / Compare Layout 

 

 

Figure 4. Barrel Shifter with Decoder Layout 

 

5.6 ALU2 
The main purpose of the ALU2 stage is to finish the data memory 

and MAC calculations and to mux between the various 

calculation results. The value is then stored in the pipeline register 

in preparation for writing the value back to the register file. 

5.7 Write Back 
The calculated result is written back into the register file. 

5.8   The Pipeline Registers 
Due to the low FO4 delay per stage in our design, the pipeline 

register delay contribution is significant. The pipeline registers 

were implemented as master-slave latches with TX gate muxes 

selecting the input sources (up to five MUX inputs). The latch 

design is identical to the register file latches. The layout was 

highly compact, with scan-chain imbedded into all the pipeline 

registers in both the datapaths and controller.  

6. DECOUPLED MEMORY BANKS 
One of our group’s main challenges was finding a method to 

decouple the slow memory banks without impacting overall 

performance. 

We deemed that an overall throughput of one memory access per 

cycle was necessary for performance. Therefore, to compensate 

for the 3-cycle non-pipelined memory access, we duplicated the 

memory banks 4 times (thus having 4 instruction memories and 4 

data memories) as a tradeoff between bandwidth and latency. 

Since the SRAM arrays were not pipelined, we could not find a 

suitable method to allow for more than one LW/SW operation per 

cycle. While methods exist for dealing with these issues 

(including duplicating the arrays to allow for multiple reads), we 

chose to allow for only one LW/SW operation per three cycles 

instead. This method saves considerable area compared to 

duplicating the SRAM arrays to allow for multiple outstanding 

accesses. Plus, since vector loads and stores are able to load or 

store four values at a time, the overall memory throughput is not 

impacted compared to a baseline non-decoupled memory pipeline. 

A greater challenge was dealing with the front-end instruction 

memory, since the fetch stage must be able to issue one 

instruction every cycle. A buffering mechanism is needed to 

convert the 4 instructions received every 3 cycles into a 

continuous 1 instruction/cycle instruction stream. A speculative 

instruction buffer was implemented for this purpose. 

6.1 The Stream Buffer 
We implemented a stream buffer in the Fetch stage that buffers 

the instructions coming from the instruction memory. The stream 

buffer acts as an L0 cache with the added advantage that no tag 

checks are required.  

On reset, the stream buffer is invalid. A request to the instruction 

memory (I-mem) is sent, which will arrive in 3 cycles. Each I-

mem request is for four aligned contiguous instructions. No 

forwarding was implemented; data from the I-mem must be placed 

into the stream buffer before use. The stream buffer is validated 

upon instruction arrival. While FreeFood’s pipeline consumes the 

instructions, the stream buffer speculatively sends the next request 

to the I-cache. Since the controller can consume a maximum of 4 

instructions per cycle, and it takes 3 cycles for the next set of four 

instructions to arrive, there should theoretically never be any 

cache misses aside from the first miss. 

However, on a branch taken, since the stream buffer does not 

store any tags, we cannot guarantee that the new branch location 

is contained within the stream buffer. Therefore, we invalidate the 

stream buffer and the instruction fetch stage is stalled similar to 

the state at reset. 
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To reduce the effect of this penalty occurred with every taken 

branch, we implemented a branch prediction mechanism with a 

branch target buffer. Due to the 4-entry instruction block 

granularity, we can only predict one branch in every aligned 4-

entry block. However, multimedia code has less than 1 branch 

every 4 instructions, so this restriction does not affect 

performance. 

The branch predictor was implemented as a hybrid bimodal-

gshare scheme. The bimodal predictor was implemented as a 16-

entry non-speculative update branch prediction scheme. The 

gshare predictor was implemented as a tagged 8-entry non-

speculative update with a 3-bit Global Branch History Register. If 

the tag misses, then the bimodal result is chosen as the branch 

prediction result. If the tag hits, then the gshare prediction result is 

used as the branch prediction result. 

7. INSTRUCTION EXTENSIONS 
With the addition of the vector unit, the controller will need to 

support many new instructions. 

7.1 WAIT 
The processor halts until “woken up” by an interrupt signal. 

7.2 MACx 
Performs a Multiply Accumulate operation, with X being a MAC 

register from 0 to 3. The value of the operation is only written into 

the MAC register. Available in both vector (VMACx) and scalar 

(SMACx) form. 

7.3 RSTMACx Ry 
Resets the MAC register X. Writes the value contained in X to a 

designated standard register r0-15. Available in both vector 

(VRSTMACx) and scalar (SRSTMACx) form. 

7.4 VVMOVx Ry, Rz 
Utilizes the tristate bus to broadcast a register value Ry from 

vector engine 0-3 (signified by x) to all other vector engines. The 

value is written to vector register Rz. 

7.5 SVMOV Rx, Ry 
Utilizes the tristate bus to broadcast register file value Rx from the 

scalar register file to vector register Ry. 

7.6 VSMOVx Ry, Rz 
Utilizes the tristate bus to transfer from vector register Ry with 

offset x to scalar register Rz. 

7.7 Additional Vector Extensions 
Additional vector instructions were implemented as vector 

versions of the baseline instruction set. The following instructions 

were added: 

 VADD – vector add 

 VSUB – vector subtraction 

 VAND – vector bitwise AND 

 VOR – vector bitwise OR 

 VXOR – vector bitwise XOR 

 VMOVI – vector move immediate 

 VMOV – vector move 

 VLSH – vector left shift 

 VLUI – vector load upper immediate 

In addition, two vector memory operations were added. They 

function as vector versions of the scalar equivalents, but have the 

added restriction of memory alignment. 

7.7.1 VLOAD (Vector Load) 
The VLOAD instruction loads an aligned 4-word (64-byte) block 

of memory into a vector register. The VLOAD instruction follows 

the same format as a scalar LOAD instruction. 

7.7.2 VSTORE (Vector Store) 
The VSTORE instruction stores the contents of a vector register 

into an aligned 4-word (64-byte) block of memory. The VSTORE 

instruction follows the same format as a scalar LOAD instruction.  

8. SYSTEM IMPLEMENTATION 
As shown in Figure 2, FreeFood is designed to be a DSP-type 

coprocessor that is controlled by a master processor through three 

16-bit FIFOs. 

We chose the OKI Semiconductor MS81V06160 16-bit high 

performance FIFO for FreeFood’s I/O. This product is designed 

for providing high-speed, large storage size buffers for use in 

digital multimedia systems. This FIFO can run at 100MHz, which 

is the clock speed of the I/O on FreeFood. 

The master processor provides FreeFood with the program (placed 

in the instruction cache) as well as the data (placed in the data 

cache). When the master processor has finished filling the caches 

of FreeFood, the master processor sends a reset signal to 

FreeFood, which then begins execution of the provided program. 

After the program has finished execution upon reaching the added 

WAIT instruction, FreeFood goes into sleep mode and sends an 

interrupt to the master processor. The master processor then 

processes the data by controlling the read/write FIFOs and 

modifying FreeFood’s instruction and data memories as 

necessary. Then, the master processor resets FreeFood (note that 

the reset signal does not reset the values in the register files) and 

pipeline execution resumes as normal. 

 

Figure 5. The FreeFood I/O Scheme 
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The communication between the I/O and memory is handled 

through the instruction and data arbiters. These synthesized logic 

blocks arbitrate requests from FIFO, scalar, and vector units. The  

arbiters are designed to handle the communication protocols for 

the OKI Semiconductor device. 

9. POWER CONSUMPTION 
 

 

Since FreeFood is designed as an embedded co-processor, power 

consumption is a concern. Table 1 depicts power consumption 

estimates from Synopsys PrimePower, a tool that accurately 

calculates the power consumption of synthesized logic. We used 

high effort to provide the numbers in this paper. Due to time 

constraints, we were unable to provide PrimePower with sample 

stimuli for its power calculations. Therefore, PrimePower relied 

on random inputs, which grossly overestimates power 

consumption in certain situations.  

For example, the Arbiter logic generally consumes minimal 

power. However, during FIFO I/O calculations, a much greater 

amount of the Arbiter activates for communication purposes. 

PrimePower does not take this into consideration when providing 

power estimates. 

The power consumption numbers for the 512-byte SRAM were 

provided by the official Artisan datasheets. 

To gain a greater understanding of the power distribution in 

FreeFood, consider the larger modules in Table 1: Inst/Data 

Memory, Vector Unit, and Scalar Unit. These modules are 

comprised of multiple basic building blocks. 

The Inst/Data Memory consists of four copies of the 512-byte 

SRAM combined with a single Arbiter. 

The Vector Unit consists of four copies of the multiply-

accumulator and four copies of the datapath. 

The Scalar Unit consists of a single copy of the multiply-

accumulator and a single copy of the datapath. 

The maximum power consumption number attempts to describe a 

possible power virus for the FreeFood system. Judging from the 

power consumption numbers, accessing the memory takes much 

less power than accessing the multiply-accumulator. Therefore, 

the VMAC instruction is the most expensive operation, not the 

memory access. Thus, the maximum power consumption number 

adds together the controller, the Inst Memory, the Vector Unit, 

and a single datapath. The single datapath is part of the scalar 

unit. However, since the datapath does not stall, then its power 

consumption must be considered in the final value. 

Our project does not have a clock tree. Therefore, it is impossible 

for us to calculate the exact power consumption of this network. 

Therefore, we estimate power consumption of the clock to be 20% 

of the total power consumption of the chip. This is reasonable 

because the final chip is only 1.67mm x 1.58mm and our clock 

speed is only 1.05GHz (compare this to the 3.7GHz processors on 

the market today). 

9.1 Low Power Logic Families 
To minimize power consumption while maintaining high 

performance, our team used only static CMOS and transmission 

gate logic families. Dynamic logic was not used due to its high 

power consumption due to its switching activity and dramatic 

increase in clock load. 

9.2 Sklansky Adder 
Research has shown that the Sklansky adder is the best adder 

choice for EDP. This is due to its minimal logic depth combined 

with 1/8th of the logic and wiring capacitance of the traditional 

Kogge-Stone tree adder.  

9.3 Stalling Multiply-Accumulator 
As shown in Table 1, the multiply-accumulate unit uses the 

greatest amount of power out of all the basic functional units. 

Therefore, to minimize average power consumption, we stall the 

multiply-accumulate pipeline registers. This prevents static power 

from being drawn while the multiply-accumulate unit is not in 

use. 

10. TIMING 
The delays for the blocks within the chip are as follows: 

 

Based on the above timings along with 100ps tolerances for clock 

uncertainty, FreeFood is estimated to run at 1.05GHz, with the 

bottleneck being in the Controller. The datapath critical path was 

in the ALU1 stage:  

TCQ (158ps) + TADDER (646ps) + TSETUP (150ps) + clock 

uncertainty (100ps) = 1054ps. 

However, the following stage, ALU2, consists of no logic outside 

of the MAC, which executes in parallel with the datapath. 

Therefore, we borrowed 200ps from this stage to remove the 

critical path. Unfortunately, we cannot do the same for the 

synthesized controller. Thus, the ultimate critical path is in the 

Component Power (in mW) Percentage 

Controller 10.64 mW 3.05% 

Arbiter 8.5 mW 2.29% 

Multiply-Accumulator 44.6 mW 12.79% 

Datapath 10 mW estimate 2.87% 

512-byte SRAM 10.79 mW 3.09% 

Inst/Data Memory 51.66mW 14.81% 

Vector Unit 218.4mW 62.7% 

Scalar Unit 54.6mW 15.65% 

Max Power 290.7mW 83.33% 

Max Power with CLK 348.84mW est. 100% 

Table 1. Power Consumption Estimates 

Component Delay Units 

Controller 850 ps 

Arbiter (MUX) 340 ps 

Arbiter (FIFO) 700 ps 

MAC 710 ps 

Adder 646 ps 

Shifter 659 ps 

Register File (TCQ) 407 ps 

Pipeline TSETUP 150 ps 

Pipeline TCQ 158 ps 

Table 2. Component Delay Estimates 
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Controller. A custom controller may allow us to achieve even 

higher frequencies pushing 1.25GHz. 

 

11. GLOBAL LAYOUT 
The layout of the entire chip is depicted in Figure 3. The chip is 

LVS and DRC clean. The area is 1.67mm x 1.58mm, designed on 

the IBM 130nm standard Vt 1.2v process. Since all four vector 

engines share the same inputs, we can reduce wiring by stacking 

the vector units side by side. The scalar units need slightly 

different inputs. Thus, we place the scalar unit on the other side of 

the controller. We were able to minimize the wiring by placing the 

burden on the arbiter: we placed the inputs and outputs of the 

arbiter such that we could connect each datapath to the arbiter 

with straight wires. Note that each vector engine consists of a 

scalar datapath plus a scalar multiply-accumulator. 

 

 

 

 

 

12. CONCLUSION 
We designed FreeFood, a 1.05GHz DSP with vector extensions 

capable of 4200 MIPS. FreeFood is power efficient, consuming 

only 348mW in the worst case. Many other complex and novel 

pipelining schemes are implemented in order to hit our targeted 

speed. FreeFood’s main target is to provide uncompromising 

performance while maintaining reasonable power efficiency. 
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