
 1

FreeFood: A 1GHz High-Performance 16-bit DSP with

SIMD Multimedia Extensions
Gautam Bhatnagher, Brent Climans, Andrea Pellegrini, Bo Xiao, Dan Zhang

University of Michigan
1301 Beal Avenue

Ann Arbor, MI 48109

{gautamb, climansb, apellegr, boxiao, danz} @ umich.edu

ABSTRACT

In this paper we propose FreeFood, a novel 16-bit DSP designed

for video decoding and other multimedia operations. FreeFood

goes above and beyond the baseline implementation in order to

reach the throughput required for H.264 decoding and other

complex multimedia applications. Features include a dedicated

multiply-accumulate unit, 64-bit SIMD unit, and stream buffers.

Many other complex and novel pipelining schemes are

implemented in order to hit our targeted 1.05GHz clock speed.

FreeFood can sustain a maximum throughput of 4200 MIPS while

consuming only 348mW with 1.2v on the standard single-Vt IBM

130nm process. FreeFood’s main target is to provide

uncompromising performance while maintaining reasonable

power efficiency.

Keywords

High performance, DSP, Video Encoding, H264, Multimedia.

1. INTRODUCTION
The objective of this project is to design FreeFood, a 16-bit RISC

microprocessor in IBM 0.13 micron technology that can obtain a

clock speed of 1GHz after accounting for clock skew. Besides

implementing the baseline instructions, we support 4-way SIMD

execution through multiple custom datapaths, as well as

multimedia-friendly instructions such as pipelined multiply-

accumulate, vector load and store, permute, and others. Due to the

unacceptably slow memory units provided by Memory Compiler,

we decouple the pipeline with stream buffers in order to reach our

clock speed goal. The processor is composed of the custom scalar

datapath, custom vector datapath, and synthesized controller

module. FreeFood is targeted towards digital signal processing for

embedded applications, specifically for H.264 video decoding.

2. MOTIVATION
The goal of our project is to produce a useful microprocessor with

a reasonable implementation specialized for high performance

H.264 video decoding. In order to meet this high performance

requirement, we wish to execute up to 4 instructions per cycle

through a SIMD (Single Instruction Multiple Data)

implementation, as well as a high clock rate of 1GHz. Although

we are currently targeting H.264 video decoding, the proposed

design is well-suited for a number of other DSP applications, such

as image filtering, FFT, and audio processing.

3. VIDEO DECODING BACKGROUND
The H.264 codec is currently the most advanced and

computationally intensive codec in commercial applications. As

such, many older desktop systems do not have the capability to

decode H.264 video streams in real-time. This problem is further

exacerbated for hand-held (embedded) applications, where the

computational performance and power budget is minimal.

FreeFood will alleviate the burden of decoding the video from the

main processor, exploiting data and memory parallelism.

4. ARCHITECTURAL FEATURES
Video decoding and other multimedia applications are

characterized by a high degree of instruction and memory

parallelism across loop boundaries. We implemented many

architectural features in order to fully take advantage of the

characteristics of the targeted code, which will be discussed in the

following sub-sections.

To exploit data parallelism, we implemented 4-way SIMD

instructions, including 4-way loads and stores to exploit memory

parallelism. Data parallelism can be further exploited through

additional pipelining, thus improving overall throughput at the

expense of latency. To increase the clock speed even further, we

decoupled the instruction and data memory units from the main

pipeline through use of a stream buffer. We also implement a

multiply-accumulator, a popular functional unit for greatly

enhancing the performance of multimedia accelerators.

4.1 7-Stage Pipeline
To maximize overall performance at the expense of latency,

FreeFood has an aggressive 7-stage pipeline. This pipeline length

enables FreeFood to clock at 1.05GHz for a maximum throughput

of 4,200 MIPS. However, due to the 3 stages dedicated for

instruction execution, dependent instructions must be placed with

at least 3 non-dependent instructions in between. We claim that

due to the parallel nature of the target code base, this restriction

does not significantly affect the overall performance of the

microprocessor.

The seven stages perform the following functions:

1. Fetch: Retrieves the instruction from the stream buffer

for processing.

2. Decode: Determines the functionality of the instruction.

3. Register File: Reads from the register file.

 2

4. Pre-ALU: Launches the 3-cycle LW, SW, and MAC

instructions. Performs ALU pre-computation.

Reads/writes to the tri-state bus.

5. ALU1: Performs ALU, shift, and logic operations.

6. ALU2: Finishes the 3-cycle LW, SW, and MAC

instructions.

7. WB: Writes the calculated value to the register file.

Section 5 will cover the individual pipeline stages in greater

detail.

4.2 Decoupled Memory Banks
Since the slowest function units in FreeFood are the SRAM

instruction and data arrays, we decided to decouple the memory

units in order to remove the imposed clock speed restriction. The

decoupled memory units take 3 cycles to read and write data. The

read and write operations are not pipelined.

To compensate for the 3-cycle read, we increased the number of

memory banks from one to four, thus enabling up to four

concurrent reads and writes. However, the 4-way read and write

operations, named vector load and vector store, must modify a

single aligned and continuous 4-word block.

To compensate for the 3-cycle memory access, a stream buffer

with branch prediction capability was implemented in the front

end of the architecture. This performance-enhancing feature will

be covered in-depth in Section 6.

4.3 Vector Processing
Vector instructions, or Single Instruction Multiple Data

instructions, perform the same operation on different pieces of

data. Each vector register contains four 16-bit values. We

compute a total of four additions in the VADD instruction: A0 +

B0 = C0, …, A3 + B3 = C3. Other instructions follow the

same format, performing the same operation on multiple pieces of

data. This instruction format enables high code density at the

expense of flexibility. However, for our application, flexibility is

not a concern due to the repetitive and parallel nature of the code.

Higher degrees of parallelism can be extracted by unrolling

multiple copies of loop iterations as well.

Besides implementing vector versions of all basic arithmetic

operations (add, subtract, shift) and memory operations (load,

store), a tristate bus was implemented as a method for

communication between the vector and scalar pipelines.

4.4 Multiply-Accumulator
Multimedia and DSP applications often need to perform multiply

operations. These resulting values are then usually added together,

or accumulated. Thus, to speed up the common case, we

implemented a multiply-accumulator (MAC).

The multiply-accumulator is closely modeled to the standard

datapath. It features a 4-entry MAC register file, a 4-stage

pipelined MAC operation, and register file forwarding. This

complexity is necessary to achieve high clock frequencies.

Due to the sheer complexity of the MAC operation, as well as the

power and area penalty of synthesized logic, we decided to

minimize MAC power consumption by stalling the pipeline when

not in use. This simple feature prevents MAC dynamic power

consumption when performing other operations, greatly reducing

the overall power consumption of the chip.

The MAC operation is available both in scalar and vector format.

5. DATAPATH STAGE DESIGN
In order to support a high clock frequency, FreeFood features an

extremely aggressive 7-stage pipeline. The extended pipeline is

Figure 1. The FreeFood Architectural Pipeline.

 3

based off the standard 4-stage pipeline: Fetch, Decode,

ALU/MEM, and Write-Back. Note that in our target ISA, memory

operations do not require a base plus immediate value.

To intelligently extend the pipeline, we first predicted the

bottlenecks. Two bottlenecks immediately stood out: the SRAM

arrays used for instruction and data memory, as well as the

synthesized multiply-accumulate logic.

From the specifications, we knew that the SRAM instruction and

data arrays will have a delay of up to 1.6ns. Therefore, we

allocated 3 stages (3ns) for the load and store operations. The

extra overhead is to account for pipeline stage overhead, large

wiring capacitances, and arbitration logic.

The MAC operation was also slow, requiring 1.6ns before

pipelining. However, due to the MAC needing a special MAC

register, we were able to completely decouple the MAC operation

from the standard datapath.

Due to the constraints imposed by the memory units and the need

to prevent stalling in the pipeline to improve throughput, we

decided to extend the ALU operation across three stages. To

simplify the forwarding logic and to improve the clock frequency,

we neglected to implement forwarding logic for instructions that

do not require the full 3 cycles to complete (ALU, logic, shift).

To further improve the clock speed, the register file and the

decoder were put into their own separate stages. This was

necessary due to the register file needing a 16-bit 1-hot encoded

signal for its inputs.

Thus, the 7-stage pipeline implemented in this project consists of

the following stages: Fetch, Decode, Register File, Pre-ALU,

ALU1, ALU2, and WB.

The final clock speed achieved was 1.05GHz, assuming a clock

uncertainty of 100ps. The critical path was within the controller.

5.1 Fetch
The Fetch stage retrieves the instruction from memory for

processing. However, since the memory access is split over 3

cycles, a buffering mechanism was necessary to improve overall

throughput.

A speculative stream buffer was implemented to improve

performance. The buffer predicts the next 4-instruction block with

the built-in branch predictor and branch target buffer. With

perfect branch prediction, we can successfully hide all the

memory latency from the rest of the pipeline.

However, if the branch prediction mechanism misses, then an

additional 4 cycle instruction memory miss penalty will be added

in addition to the pipeline flush penalty.

5.2 Decode
The Decode stage configures the datapath control signals based on

the instruction opcode. The immediate values are sign extended.

Due to the fact that the register file requires 1-hot encoded 16-bit

signals, the Decode stage also computes the signals required for

the register file. Note that the register file signal decode can be

done in parallel with the opcode decode.

5.3 Register File
The register file is the first custom designed pipeline stage of the

datapath. It is a 16-word x 16-bit master-slave configuration, with

each bit containing one master latch driving one of 16 slave

latches. Each latch is controlled by TX gates followed by a

bistable element with clock gated feedback to prevent write-in

contention. The output of each slave is tied to two read port TX

gates for RSOURCE and RDEST, sized for worst case delay of reading

from both ports simultaneously. The slave latches are clock gated

to minimize power consumption when idle, which comprises of

15/16 slaves for each bit per cycle.

Note that not all instructions use the register file values: some

instructions have immediates, and some instructions require 0 or

the next program counter (NPC) value. Also, we have register file

forwarding, which will select the value currently being written

into the register file if the destination register number is equal to

at least one of the operands.

Figure 2. Register File Layout

5.4 Pre-ALU
In the FreeFood architecture, some instructions require three

cycles for calculation while others require only one. To prevent

pipeline stalls, we have three separate ALU stages. This provides

some flexibility for the faster operations.

To simplify the adder during the main ALU stage, we choose

between the operand and its negation. This is useful for the

subtract opcode, which can be modeled as adding a negative

number. However, note that negating a value in 2’s complement

format involves adding 1 to the inverted value. We can leverage

the power of the main ALU to perform this +1 operation. Thus,

instead of calculating the complete negation of the operand, we

simply calculate the Propagate and Generate values of the first bit

and invert all other bits in the operand. These values are passed on

through pipeline registers into the ALU1 stage.

For more complex operations, having some form of

communication between the vector and scalar pipelines will be

necessary. Aside from being able to slowly communicate through

the shared data memory, a fast communication path is provided in

the form of a tristate bus. This tristate bus links together all the

vector and scalar units. This tristate bus drives across 900µm of

wire cap, so to account for the drive delay the bus is driven from

the pipeline registers at the end of the register-file stage and into

the pipeline registers at the end of the Pre-ALU stage.

 4

The three-cycle slow operations for both the vector and scalar

datapaths are also launched in the Pre-ALU: LW, SW, and MAC.

5.5 ALU1
During the ALU1 stage, the adder, shifter, and logic units are

accessed.

To minimize power consumption and area, we implemented a

Sklansky sparse-tree adder. Within the parallel-prefix network of

tree adders, the Sklansky adder trades off fanout in exchange for

lower power and area. Compared to the Kogge-Stone adder, the

Sklansky adder has 1/8th of the wiring capacitance but exponential

fanout (compared a minimum fanout of 2 in the Kogge-Stone

adder). However, the exponential fanout does not greatly affect

the output capacitance of the internal nodes. This is due to wiring

capacitance dominating the overall capacitance in the design. For

example, the final level of the Sklansky adder has a fanout of 8.

However, the wiring capacitance on the final level is roughly

30fF. Compare this to the fanout capacitance of roughly 5 fF.

With logical effort sizing on the critical path with highest fanout,

we reached a delay of ~650ps, well within the 1ns cycle delay

tolerance. Compare was also calculated as part of the tree and is

needed for branch targets.

The required bitwise logical operations (AND, OR, XOR) were

also implemented in this stage using a three nand gate multiplexer

to select between the operation. This is a fast and compact design

and yielded delays faster than the actual adder.

Finally, a barrel shifter serves as the final custom block in the

ALU1 stage. Logical effort sizing and critical path delays were

considered to minimize the delay of this block. A fully custom

4:16 decoder was also designed since it was part of the critical

path. Since the shifter outputs are driven by PTL NMOS’s, these

were placed vertically since this results in the shortest wire with

least drive capacitance. The critical path delay of the shifter was

just over 650ps.

Figure 3. Sklansky Adder / AND / OR / XOR / Compare Layout

Figure 4. Barrel Shifter with Decoder Layout

5.6 ALU2
The main purpose of the ALU2 stage is to finish the data memory

and MAC calculations and to mux between the various

calculation results. The value is then stored in the pipeline register

in preparation for writing the value back to the register file.

5.7 Write Back
The calculated result is written back into the register file.

5.8 The Pipeline Registers
Due to the low FO4 delay per stage in our design, the pipeline

register delay contribution is significant. The pipeline registers

were implemented as master-slave latches with TX gate muxes

selecting the input sources (up to five MUX inputs). The latch

design is identical to the register file latches. The layout was

highly compact, with scan-chain imbedded into all the pipeline

registers in both the datapaths and controller.

6. DECOUPLED MEMORY BANKS
One of our group’s main challenges was finding a method to

decouple the slow memory banks without impacting overall

performance.

We deemed that an overall throughput of one memory access per

cycle was necessary for performance. Therefore, to compensate

for the 3-cycle non-pipelined memory access, we duplicated the

memory banks 4 times (thus having 4 instruction memories and 4

data memories) as a tradeoff between bandwidth and latency.

Since the SRAM arrays were not pipelined, we could not find a

suitable method to allow for more than one LW/SW operation per

cycle. While methods exist for dealing with these issues

(including duplicating the arrays to allow for multiple reads), we

chose to allow for only one LW/SW operation per three cycles

instead. This method saves considerable area compared to

duplicating the SRAM arrays to allow for multiple outstanding

accesses. Plus, since vector loads and stores are able to load or

store four values at a time, the overall memory throughput is not

impacted compared to a baseline non-decoupled memory pipeline.

A greater challenge was dealing with the front-end instruction

memory, since the fetch stage must be able to issue one

instruction every cycle. A buffering mechanism is needed to

convert the 4 instructions received every 3 cycles into a

continuous 1 instruction/cycle instruction stream. A speculative

instruction buffer was implemented for this purpose.

6.1 The Stream Buffer
We implemented a stream buffer in the Fetch stage that buffers

the instructions coming from the instruction memory. The stream

buffer acts as an L0 cache with the added advantage that no tag

checks are required.

On reset, the stream buffer is invalid. A request to the instruction

memory (I-mem) is sent, which will arrive in 3 cycles. Each I-

mem request is for four aligned contiguous instructions. No

forwarding was implemented; data from the I-mem must be placed

into the stream buffer before use. The stream buffer is validated

upon instruction arrival. While FreeFood’s pipeline consumes the

instructions, the stream buffer speculatively sends the next request

to the I-cache. Since the controller can consume a maximum of 4

instructions per cycle, and it takes 3 cycles for the next set of four

instructions to arrive, there should theoretically never be any

cache misses aside from the first miss.

However, on a branch taken, since the stream buffer does not

store any tags, we cannot guarantee that the new branch location

is contained within the stream buffer. Therefore, we invalidate the

stream buffer and the instruction fetch stage is stalled similar to

the state at reset.

 5

To reduce the effect of this penalty occurred with every taken

branch, we implemented a branch prediction mechanism with a

branch target buffer. Due to the 4-entry instruction block

granularity, we can only predict one branch in every aligned 4-

entry block. However, multimedia code has less than 1 branch

every 4 instructions, so this restriction does not affect

performance.

The branch predictor was implemented as a hybrid bimodal-

gshare scheme. The bimodal predictor was implemented as a 16-

entry non-speculative update branch prediction scheme. The

gshare predictor was implemented as a tagged 8-entry non-

speculative update with a 3-bit Global Branch History Register. If

the tag misses, then the bimodal result is chosen as the branch

prediction result. If the tag hits, then the gshare prediction result is

used as the branch prediction result.

7. INSTRUCTION EXTENSIONS
With the addition of the vector unit, the controller will need to

support many new instructions.

7.1 WAIT
The processor halts until “woken up” by an interrupt signal.

7.2 MACx
Performs a Multiply Accumulate operation, with X being a MAC

register from 0 to 3. The value of the operation is only written into

the MAC register. Available in both vector (VMACx) and scalar

(SMACx) form.

7.3 RSTMACx Ry
Resets the MAC register X. Writes the value contained in X to a

designated standard register r0-15. Available in both vector

(VRSTMACx) and scalar (SRSTMACx) form.

7.4 VVMOVx Ry, Rz
Utilizes the tristate bus to broadcast a register value Ry from

vector engine 0-3 (signified by x) to all other vector engines. The

value is written to vector register Rz.

7.5 SVMOV Rx, Ry
Utilizes the tristate bus to broadcast register file value Rx from the

scalar register file to vector register Ry.

7.6 VSMOVx Ry, Rz
Utilizes the tristate bus to transfer from vector register Ry with

offset x to scalar register Rz.

7.7 Additional Vector Extensions
Additional vector instructions were implemented as vector

versions of the baseline instruction set. The following instructions

were added:

 VADD – vector add

 VSUB – vector subtraction

 VAND – vector bitwise AND

 VOR – vector bitwise OR

 VXOR – vector bitwise XOR

 VMOVI – vector move immediate

 VMOV – vector move

 VLSH – vector left shift

 VLUI – vector load upper immediate

In addition, two vector memory operations were added. They

function as vector versions of the scalar equivalents, but have the

added restriction of memory alignment.

7.7.1 VLOAD (Vector Load)
The VLOAD instruction loads an aligned 4-word (64-byte) block

of memory into a vector register. The VLOAD instruction follows

the same format as a scalar LOAD instruction.

7.7.2 VSTORE (Vector Store)
The VSTORE instruction stores the contents of a vector register

into an aligned 4-word (64-byte) block of memory. The VSTORE

instruction follows the same format as a scalar LOAD instruction.

8. SYSTEM IMPLEMENTATION
As shown in Figure 2, FreeFood is designed to be a DSP-type

coprocessor that is controlled by a master processor through three

16-bit FIFOs.

We chose the OKI Semiconductor MS81V06160 16-bit high

performance FIFO for FreeFood’s I/O. This product is designed

for providing high-speed, large storage size buffers for use in

digital multimedia systems. This FIFO can run at 100MHz, which

is the clock speed of the I/O on FreeFood.

The master processor provides FreeFood with the program (placed

in the instruction cache) as well as the data (placed in the data

cache). When the master processor has finished filling the caches

of FreeFood, the master processor sends a reset signal to

FreeFood, which then begins execution of the provided program.

After the program has finished execution upon reaching the added

WAIT instruction, FreeFood goes into sleep mode and sends an

interrupt to the master processor. The master processor then

processes the data by controlling the read/write FIFOs and

modifying FreeFood’s instruction and data memories as

necessary. Then, the master processor resets FreeFood (note that

the reset signal does not reset the values in the register files) and

pipeline execution resumes as normal.

Figure 5. The FreeFood I/O Scheme

 6

The communication between the I/O and memory is handled

through the instruction and data arbiters. These synthesized logic

blocks arbitrate requests from FIFO, scalar, and vector units. The

arbiters are designed to handle the communication protocols for

the OKI Semiconductor device.

9. POWER CONSUMPTION

Since FreeFood is designed as an embedded co-processor, power

consumption is a concern. Table 1 depicts power consumption

estimates from Synopsys PrimePower, a tool that accurately

calculates the power consumption of synthesized logic. We used

high effort to provide the numbers in this paper. Due to time

constraints, we were unable to provide PrimePower with sample

stimuli for its power calculations. Therefore, PrimePower relied

on random inputs, which grossly overestimates power

consumption in certain situations.

For example, the Arbiter logic generally consumes minimal

power. However, during FIFO I/O calculations, a much greater

amount of the Arbiter activates for communication purposes.

PrimePower does not take this into consideration when providing

power estimates.

The power consumption numbers for the 512-byte SRAM were

provided by the official Artisan datasheets.

To gain a greater understanding of the power distribution in

FreeFood, consider the larger modules in Table 1: Inst/Data

Memory, Vector Unit, and Scalar Unit. These modules are

comprised of multiple basic building blocks.

The Inst/Data Memory consists of four copies of the 512-byte

SRAM combined with a single Arbiter.

The Vector Unit consists of four copies of the multiply-

accumulator and four copies of the datapath.

The Scalar Unit consists of a single copy of the multiply-

accumulator and a single copy of the datapath.

The maximum power consumption number attempts to describe a

possible power virus for the FreeFood system. Judging from the

power consumption numbers, accessing the memory takes much

less power than accessing the multiply-accumulator. Therefore,

the VMAC instruction is the most expensive operation, not the

memory access. Thus, the maximum power consumption number

adds together the controller, the Inst Memory, the Vector Unit,

and a single datapath. The single datapath is part of the scalar

unit. However, since the datapath does not stall, then its power

consumption must be considered in the final value.

Our project does not have a clock tree. Therefore, it is impossible

for us to calculate the exact power consumption of this network.

Therefore, we estimate power consumption of the clock to be 20%

of the total power consumption of the chip. This is reasonable

because the final chip is only 1.67mm x 1.58mm and our clock

speed is only 1.05GHz (compare this to the 3.7GHz processors on

the market today).

9.1 Low Power Logic Families
To minimize power consumption while maintaining high

performance, our team used only static CMOS and transmission

gate logic families. Dynamic logic was not used due to its high

power consumption due to its switching activity and dramatic

increase in clock load.

9.2 Sklansky Adder
Research has shown that the Sklansky adder is the best adder

choice for EDP. This is due to its minimal logic depth combined

with 1/8th of the logic and wiring capacitance of the traditional

Kogge-Stone tree adder.

9.3 Stalling Multiply-Accumulator
As shown in Table 1, the multiply-accumulate unit uses the

greatest amount of power out of all the basic functional units.

Therefore, to minimize average power consumption, we stall the

multiply-accumulate pipeline registers. This prevents static power

from being drawn while the multiply-accumulate unit is not in

use.

10. TIMING
The delays for the blocks within the chip are as follows:

Based on the above timings along with 100ps tolerances for clock

uncertainty, FreeFood is estimated to run at 1.05GHz, with the

bottleneck being in the Controller. The datapath critical path was

in the ALU1 stage:

TCQ (158ps) + TADDER (646ps) + TSETUP (150ps) + clock

uncertainty (100ps) = 1054ps.

However, the following stage, ALU2, consists of no logic outside

of the MAC, which executes in parallel with the datapath.

Therefore, we borrowed 200ps from this stage to remove the

critical path. Unfortunately, we cannot do the same for the

synthesized controller. Thus, the ultimate critical path is in the

Component Power (in mW) Percentage

Controller 10.64 mW 3.05%

Arbiter 8.5 mW 2.29%

Multiply-Accumulator 44.6 mW 12.79%

Datapath 10 mW estimate 2.87%

512-byte SRAM 10.79 mW 3.09%

Inst/Data Memory 51.66mW 14.81%

Vector Unit 218.4mW 62.7%

Scalar Unit 54.6mW 15.65%

Max Power 290.7mW 83.33%

Max Power with CLK 348.84mW est. 100%

Table 1. Power Consumption Estimates

Component Delay Units

Controller 850 ps

Arbiter (MUX) 340 ps

Arbiter (FIFO) 700 ps

MAC 710 ps

Adder 646 ps

Shifter 659 ps

Register File (TCQ) 407 ps

Pipeline TSETUP 150 ps

Pipeline TCQ 158 ps

Table 2. Component Delay Estimates

 7

Controller. A custom controller may allow us to achieve even

higher frequencies pushing 1.25GHz.

11. GLOBAL LAYOUT
The layout of the entire chip is depicted in Figure 3. The chip is

LVS and DRC clean. The area is 1.67mm x 1.58mm, designed on

the IBM 130nm standard Vt 1.2v process. Since all four vector

engines share the same inputs, we can reduce wiring by stacking

the vector units side by side. The scalar units need slightly

different inputs. Thus, we place the scalar unit on the other side of

the controller. We were able to minimize the wiring by placing the

burden on the arbiter: we placed the inputs and outputs of the

arbiter such that we could connect each datapath to the arbiter

with straight wires. Note that each vector engine consists of a

scalar datapath plus a scalar multiply-accumulator.

12. CONCLUSION
We designed FreeFood, a 1.05GHz DSP with vector extensions

capable of 4200 MIPS. FreeFood is power efficient, consuming

only 348mW in the worst case. Many other complex and novel

pipelining schemes are implemented in order to hit our targeted

speed. FreeFood’s main target is to provide uncompromising

performance while maintaining reasonable power efficiency.

13. ACKNOWLEDGMENTS
Our thanks go to Joel VanLaven and Wei Hsiang Ma for

providing extremely useful advice for all areas of our project.

14. REFERENCES
[1] Peleg, A.; Weiser, U., "MMX technology extension to the

Intel architecture," Micro, IEEE , vol.16, no.4, pp.42-50,

Aug 1996

[2] Wiegand, T.; Sullivan, G.J.; Bjntegaard, G.; Luthra, A.,

"Overview of the H.264/AVC video

coding standard," Circuits and Systems for Video

Technology, IEEE Transactions on vol.13, no.7, pp. 560-

576, July 2003

[3] "Draft ITU-T recommendation and final draft international

standard of joint video specification (ITU-T Rec.

H.264/ISO/IEC/AVC)," Joint Video Team (JVT) of ISO/IEC

MPEG and ITU-T VCEG, JVT-G050, 2003.

[4] Jih-Ching Chiu; I-Huan Huang; Chung-Ping Chung, "Design

of instruction stream buffer with

trace support for X86 processors," Computer Design, 2000.

Proceedings. 2000 International

Conference on , vol., no., pp.294-299, 2000

[5] Patil, Dinesh; Azizi, Omid; Horowitz, Mark; Ho, Ron;

Ananthraman, Rajesh, "Robust Energy-Efficient Adder

Topologies," Computer Arithmetic, 2007. ARITH '07. 18th

IEEE Symposium on , vol., no., pp.16-28, 25-27 June 2007

Figure 6. The Scalar Datapath Layout

Figure 7. The Layout of FreeFood

(SDP = Scalar Datapath, SMAC = Scalar MAC)

