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Abstract: The stable marriage (SM) problem has a wide variety of practical applications,1

ranging from matching resident doctors to hospitals, to matching students to schools, or more2

generally to any two-sided market. In the classical formulation, n men and n women express3

their preferences (via a strict total order) over the members of the other sex. Solving a SM4

problem means finding a stable marriage where stability is an envy-free notion: no man and5

woman who are not married to each other would both prefer each other to their partners or6

to being single. We consider both the classical stable marriage problem and one of its useful7

variations (denoted SMTI) where the men and women express their preferences in the form8

of an incomplete preference list with ties over a subset of the members of the other sex.9

Matchings are permitted only with people who appear in these preference lists, an we try to10

find a stable matching that marries as many people as possible. Whilst the SM problem is11

polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via12

a local search approach, which exploits properties of the problems to reduce the size of the13

neighborhood and to make local moves efficiently. We evaluate empirically our algorithm14

for SM problems by measuring its runtime behaviour and its ability to sample the lattice15

of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms16

of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.17

Experimental results suggest that for SM problems, the number of steps of our algorithm18

grows only as O(n log(n)), and that it samples very well the set of all stable marriages. It19

is thus a fair and efficient approach to generate stable marriages. Furthermore, our approach20

for SMTI problems is able to solve large problems, quickly returning stable matchings of21

large and often optimal size despite the NP-hardness of this problem.22

Keywords: local search, stable matching, sampling, ties and incomplete preference lists23
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1. Introduction24

The stable marriage problem (SM) [16] is a well-known problem of matching men to women to25

achieve a certain type of “stability”. Each person expresses a strict preference ordering over the members26

of the opposite sex. The goal is to match men to women so that there are no two people of opposite sex27

who would both rather be matched with each other than with their current partners. The stable marriage28

problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals,29

sailors to ships, primary school students to secondary schools, as well as in market trading. Surprisingly,30

such a stable marriage always exists and one can be found in polynomial time. Gale and Shapley give an31

algorithm, which is linear in the size of the input, to solve this problem based on a series of proposals32

of the men to the women (or vice versa) [6].33

There are many variants of the traditional formulation of the stable marriage problem. Some of the34

most useful in practice include incomplete preference lists (SMI), that allow one to model unacceptability35

for certain members of the other sex, and preference lists with ties (SMT), that model indifference in the36

preference ordering. With a SMI problem, the goal is to find a stable marriage in which the married37

people accept each other. It is known that all solutions of a SMI problem have the same size (that38

is, number of married people) [43]. In SMT problems, instead, solutions are stable marriages where39

everybody is married. Both of these variants are polynomial to solve. In real world situations, both40

ties and incomplete preference lists may be needed. Unfortunately, when we allow both, the problem41

becomes NP-hard [31]. In a SMTI (Stable Marriage with Ties and Incomplete lists) problem, there may42

be several stable marriages of different sizes, and solving the problem means finding a stable marriage43

of maximum size.44

In this paper we investigate the use of a local search approach to tackle both the classical and the45

NP-hard variants of the problem. In particular, when we consider the classical problem, we investigate46

the fairness of stable marriage procedures based on local search, i.e., we investigate how well these47

procedures sample the lattice of stable marriages. On the other hand, for SMTI problems, we focus48

on efficiency in terms of time and effectiveness at finding large stable marriages. Our algorithms are49

based on the same schema: they start from a randomly chosen marriage and, at each step, we move to a50

neighbor marriage by minimizing the distance to stability, which is measured by the number of unstable51

pairs. To avoid redundant computation due to the possibly large number of unstable pairs, we consider52

only those that are undominated, since their elimination minimize the distance to stability. Random53

moves are also used, to avoid stagnation in local minima. The algorithms stop when they find a solution54

or when a given limit on the number of steps is reached. A solution for an SMTI instance is a perfect55

stable matching (that is, a stable marriage with no singles), whereas, for an SM instance, a solution is56

just a stable marriage.57

For the SM problem, we performed experiments on randomly generated problems with up to 500 men58

and women. It is interesting to notice that our algorithm always finds a stable marriage. Also, its runtime59

behaviour shows that the number of steps grows as little as O(n log(n)) [28]. We also tested the fairness60
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of our algorithm at generating stable marriages, measuring how well the algorithm samples the set of all61

stable marriages. As it is non-deterministic, it should ideally return any of the possible stable marriages62

with equal probability. We measure this capability in the form of an entropy that should be as close to63

that of an uniform sample as possible. The computed entropy is about 70% of that of an uniform sample,64

and even higher on problems with small size.65

For the SMTI problem, we performed experiments on randomly generated problem instances of size66

90 and in some cases also of size 100. We observe that our algorithm is able to find stable marriages with67

at most two singles on average in tens of seconds at worst. The SMTI problem has been tackled also in68

[12], where the problem is modeled in terms of a constraint optimization problem and solved employing69

a constraint solver. This systematic approach is guaranteed to find always an optimal solution. However,70

our experimental results show that our local search algorithm in practice always appears to find optimal71

solutions. Moreover, it scales well to sizes much larger than those considered in [12]. An alternative72

approach to local search is to use approximation methods.73

The paper is an extended and revised version of [7,8,11].74

2. Related work75

In this paper we consider the fairness of the methodology to generate stable marriages. Other works76

have considered the fairness with the meaning of finding a stable marriages where the overall happiness77

of the persons is maximized. One kind of fairer stable marriage that has been considered, is the minimum78

regret stable marriage [15,28]. The regret for each person is the position in his/her preference list of the79

persons to whom he/she is married. The regret of a marriage M is the maximum regret of any person.80

Another way characterize the overall happiness of a marriage is to consider sum the regret of every81

person. The egalitarian stable marriage [21] minimize the total sum of the regrets. Both minimum82

regret and egalitarian stable marriage can be found in polynomial time [15,21]. In [44] Roth and Vande83

Vate show that, beginning from an arbitrary marriage, and satisfying a blocking pair at random, we84

will eventually reach a stable marriage with probability one. Our local search approaches exploit this85

result by building sequences of blocking pairs removal that rapidly lead to stability thanks to the use of86

undominated blocking pairs.87

In this paper we consider also the solution of stable marriage problems with ties and incomplete88

lists. It is known that weakly stable matchings may have different cardinality. Furthermore, finding the89

maximum (or minimum) cardinality weakly stable matching for a given instance of SMTI is NP-hard.90

This holds even if the ties are at the tails of lists and on one side only, and each tie has length 2 [31],91

though the largest matching is at most twice the size of the smallest [31]. It has also been established that92

these problems are not approximable within δ, unless P=NP, for some δ > 1, even if the preference lists93

are of constant length, there is at most one tie per list, and the ties occur on one side only [18]. Above94

we noted that a maximum cardinality weakly stable matching is at most twice the size of a minimum95

cardinality weakly stable matching. Therefore, if we break all ties in an arbitrary way and apply the GS96

algorithm to the resulting instance of SMI we get what is simultaneously an approximation algorithm97

for the problem of finding a maximum (resp., minimum) stable matching with a performance ratio of 2.98

In [18,45] an improved performance bound is shown for instances of SMTI with sparse ties. Three other99
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pieces of work relating to approximating maximum cardinality weakly stable matchings have appeared100

in the literature. In [19], Halldorsson et al. present a randomised approximation algorithm with expected101

performance guarantee 10
7

for instances of SMTI in which ties occur on one side only, there is at most one102

tie per list, and each tie has length 2. In [17], the same authors present an approximation algorithm with103

performance guarantee 2
(1+ 1

L2 )
for instances of SMTI in which ties occur on one side only, and each tie104

has length at most L. Additionally, they show a ratio of 13
7

where ties are allowed on both sides, and are105

of length 2. In [24] Iwama et al. present an approximation algorithm for a general instance of SMTI with106

guarantee 2−c log(n)
n

, for an instance of size n, where c is an arbitrary positive constant. Recently, in [26]107

Iwama et. al improve the approximation ratio to 25
17

for instances with one-sided ties. This approximation108

ratio also holds for the hospitals/residents problem (i.e., many-one variant) with one-sided ties (see [42]109

for the relationship between approximability of the stable marriage problem and the hospitals/residents110

problem). Other approximation results with a higher ratio have been shown in [25,27,35]. A detailed111

overview of approximation algorithms is presented on pages 136-137 of [30].112

In our paper we consider a local search approach to solve SMTI instances. Other local search methods113

have been presented for SMTI instances but in terms of parameterized complexity in the framework114

introduced by [5]. In SMTI instances the parameter can be the number of ties, the maximum or the115

overall length of ties [33]. In [33] the authors investigate the applicability of a local search algorithm116

for the problem and they examine the possibilities for giving an FPT algorithm or an FPT approximation117

algorithm for finding an egalitarian or a minimum regret stable matching. In general, few papers have118

investigated the connection of parameterized complexity and local search, although attention to this topic119

has been increasing recently [32]. In [34] the framework of parameterized complexity is used to deal120

with the Hospitals/Residents with Couples problem, a variant of the classical Stable Marriage problem.121

This is the extension of the Hospitals/Residents problem where residents are allowed to form pairs and122

submit joint rankings over hospitals. In this problem the authors consider the number of couples as a123

parameter, they apply a local search approach, and examine the possibilities for giving FPT algorithms124

applicable in this context.125

In [12], Gent and Prosser give an exhaustive empirical study of the stable marriage problem with126

ties and incomplete lists, using a constraint programming encoding of the problem. Then, the encoded127

problem can be solved using off the shelf CP technology. They present results for the decision problem128

“Is there a stable matching of size n?” and for the optimization problem of finding a maximum or129

minimum cardinality stable matching. In particular, regarding the optimization problem of finding the130

largest stable marriage, their complete method (based on the solution of the CP encoding of the problem131

using the Choco constraint programming toolkit [29]) finds stable marriages of size 9.3 (in average)132

considering problems of size 10 with no ties. When the amount of ties increases the size increases as133

well. Our local search approach obtains very similar results using a test set generated in the same way.134

Gent and Prosser in [13] give a SAT encoding of the stable marriage problem with ties and incomplete135

lists. Using such an encoding they obtain very good results in the decision problem of whether there is136

a perfect matching. Even though in our experiments we often find a perfect matching we consider a137

different problem from the one solved in [13].138

In [3] Brito and Meseguer, propose a distributed approach to the stable marriage problem with139

ties and incomplete lists with the aim of keeping preference lists private for privacy reasons. They140
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extend some specialized centralized algorithms (such as the Extended Gale Shapley algorithm) to the141

distributed case. Moreover, they provide a generic distributed constraint programming model. In142

their experimental evaluation, they consider the communication effort and the computational cost (in143

terms of constraint checks) which are not applicable to our centralized approach. However, they show144

also the maximum cardinality of the marriages found by their algorithms considering SMTI instances.145

Considering problems of the same size, probability of ties and, incompleteness they used, we obtain146

marriages of very similar cardinality.147

In [22] Irving and Manlove present two heuristic approaches to find the largest stable matching in148

the context of the hospital resident-oriented (HR) problems with incomplete lists and ties only in the149

hospitals’ preference lists. One of the algorithms is based on the hospital-oriented version of Gale-150

Shapley algorithm and the other one is based on the resident version. Heuristics are used to decide how151

breaking ties in order to maximize the size of the returned marriage. In fact, the ways in which ties are152

broken can significantly affect the size of the stable matching found and, in the extreme case, there may153

be two matchings differing in size by a factor of 2 [31]. When hospitals have capacity equal to 1, the154

problem becomes an SMTI instance with ties on one side only, thus the algorithms proposed in [22] can155

also be used to solve such restricted SMTIs.156

In [2] the authors give complexity and approximation results regarding the problem of finding a157

maximum cardinality matching that admits the smallest number of blocking pairs in an SMI instance.158

They show that such a problem is NP-hard. Our experimental results show that our local search approach159

is able to find marriages of large size and with a very small number of blocking pairs within a small160

number of steps.161

In our local search approach we exploit the Gale-Shapely stable matching procedure. The GS162

algorithm is computationally easy to manipulate and favors one gender over the other. In [36,37] it163

is shown that there exist stable marriage procedures which are NP-hard to manipulate and that voting164

rules which are NP-hard to manipulate can be used to define stable marriage procedures which are165

themselves NP-hard to manipulate. Moreover, it is shown how to use voting rules to make any stable166

marriage procedure gender neutral. Manipulation issues have been also considered in the context of167

stable matching procedures with weighted preferences where new notions of stability and optimality168

have been provided [38–40]. Besided manipulation, stability, and optimality, also uniqueness of weakly169

stable matchings has been studied in the context of stable matching procedures with partially ordered170

preferences [9,10].171

3. Background172

In this section we give some basic notions about the stable marriage problem. In addition, we present173

some basic notions about local search.174

3.1. Stable marriage problem175

A stable marriage (SM) problem instance [16] consists of matching members of two different sets,176

usually called men and women. When there are n men and n women, the SM problem is said to have177

size n. Each person strictly ranks all members of the opposite sex. The goal is to match the men with178
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the women so that there are no two people of opposite sex who would both rather marry each other than179

their current partners. If there are no such pairs (called blocking pairs) the marriage is “stable”.180

Definition 1 (Marriage) Given an SM instance P of size n, a marriage M is a one-to-one matching181

of the men and the women. If a man m and a woman w are matched in M , we write M(m) = w and182

M(w) = m.183

Definition 2 (Blocking pair) Given a marriageM , a pair (m,w), wherem is a man and w is a woman,184

is a blocking pair iff m and w are not partners in M , but m prefers w to M(m) and w prefers m to185

M(w).186

Definition 3 (Stable Marriage) A marriage M is stable iff it has no blocking pairs.187

A convenient and widely used SM representation is showed in Table 1, where each person is followed188

by his/her preference list in decreasing order.189

Table 1. An example of an SM instance of size 8.

men’s preference lists women’s preference lists
1: 5 7 1 2 6 8 4 3 1: 5 3 7 6 1 2 8 4
2: 2 3 7 5 4 1 8 6 2: 8 6 3 5 7 2 1 4
3: 8 5 1 4 6 2 3 7 3: 1 5 6 2 4 8 7 3
4: 3 2 7 4 1 6 8 5 4: 8 7 3 2 4 1 5 6
5: 7 2 5 1 3 6 8 4 5: 6 4 7 3 8 1 2 5
6: 1 6 7 5 8 4 2 3 6: 2 8 5 4 6 3 7 1
7: 2 5 7 6 3 4 8 1 7: 7 5 2 1 8 6 4 3
8: 3 8 4 5 7 2 6 1 8: 7 4 1 5 2 3 6 8

For example, Table 1 shows that man 1 prefers woman 5 to woman 7 to woman 1 and so on. It is190

known that, at least one stable marriage exists for every SM problem. For a given SM instance, we can191

define a partial order relation on the set of stable marriages.192

Definition 4 (Dominance) Let M and M ′ be two stable marriages. M dominates M ′ iff every man has193

a partner in M who is at least as good as the one he has in M ′.194

Under the partial order given by the dominance relation, the set of stable marriages forms a distributive195

lattice [28]. Gale and Shapley give a polynomial time algorithm (GS) to find the stable marriage at the196

top (or bottom) of this lattice [6]. The top of such lattice is the male optimal stable marriage Mm, that is197

optimal from the men’s point of view. This means that there are no other stable marriages in which each198

man is married with the same woman or with a woman he prefers to the one in Mm. The GS algorithm199

can also be used to find the female optimal stable marriage Mw (that is the bottom of the stable marriage200

lattice), which is optimal from the women’s perspective, by just replacing men with women (and vice201

versa) before applying the algorithm. A clear way to represent this lattice is a Hasse diagram representing202

the transitive reduction of the partial order relation. Figure 1 shows the Hasse diagram of the SM in Table203

1.204
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Figure 1. The Hasse diagram of the set of all stable marriages for the SM in Table 1.

A common concern with the standard Gale-Shapley algorithm is that it unfairly favors one sex at the205

expense of the other. This gives rise to the problem of finding “fairer” stable marriages. Previous work206

on finding fair marriages has focused on algorithms for optimizing an objective function that captures the207

happiness of both genders [15,21]. A different approach is to investigate non-deterministic procedures208

that can generate a random stable marriage from the lattice with a distribution that is as uniform as209

possible.210

In [1] the authors use a Markov chain approach to sample the stable marriage lattice. More precisely,211

the edges of the lattice dictate exactly how to formalize the moves to walk from one stable marriage to212

another one, so that there are at most a linear number of moves at each step, these are easily identifiable,213

and they form reversible moves that connect the state space and converge to the uniform distribution.214

Unfortunately, Bhatnagar et al. show that this random walk has an exponential convergence time, which215

would appear to suggest that the approach may not be feasible in practice.216

In this paper we also consider a variant of the SM problem where preference lists may include ties and217

may be incomplete. This variant is denoted by SMTI [23]. Ties express indifference in the preference218

ordering, while incompleteness models unacceptability only for certain partners.219

Definition 5 (SMTI marriage) Given a SMTI problem instance with n men and n women, a marriage220

M is a one-to-one matching between men and women such that partners accept each other. If a man m221

and a woman w are matched in M , we write M(m) = w and M(w) = m. If a person p is not matched222

in M we say that he/she is single.223

Definition 6 (Marriage size) Given a SMTI problem instance of size n and a marriageM , its size is the224

number of men (or women) that are married.225

Definition 7 (Blocking pairs in SMTI problems) Consider a SMTI problem instance P , a marriage226

M for P , a man m and a woman w. A pair (m,w) is a blocking pair in M iff m and w accept each227

other and m is either single in M or he strictly prefers w to M(m), and w is either single in M or she228

strictly prefers m to M(w).229
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Definition 8 (Weakly Stable Marriages) Given a SMTI problem instance P , a marriage M for P is230

weakly stable iff it has no blocking pairs.231

As we will consider only weakly stable marriages, we will simply call them stable marriages. Given a232

SMTI problem instance, there may be several stable marriages of different size. If the size of a marriage233

coincides with the size of the problem, it is said to be a perfect matching. Solving a SMTI problem234

instance means finding a stable marriage with maximal size. This problem is NP-hard [31].235

3.2. Local search236

Local search [20] is one of the fundamental paradigms for solving computationally hard combinatorial237

problems. Local search methods in many cases represent the only feasible way for solving large and238

complex instances. Moreover, they can naturally be used to solve optimization problems.239

Given a problem instance, the basic idea underlying local search is to start from an initial search240

position in the space of all solutions (typically a randomly or heuristically generated candidate solution,241

which may be infeasible, sub-optimal or incomplete), and to improve iteratively this candidate solution242

by means of typically minor modifications. At each search step we move to a position selected from a243

local neighborhood, chosen via a heuristic evaluation function. The evaluation function typically maps244

the current candidate solution to a number such that the global minima correspond to solutions of the245

given problem instance. The algorithm moves to the neighbor with the smallest value of the evaluation246

function. This process is iterated until a termination criterion is satisfied. The termination criterion is247

usually the fact that a solution is found or that a predetermined number of steps is reached, although248

other variants may stop the search after a predefined amount of time.249

Different local search methods vary in the definition of the neighborhood and of the evaluation250

function, as well as in the way in which situations are handled when no improvement is possible. To251

ensure that the search process does not stagnate in unsatisfactory candidate solutions, most local search252

methods use randomization: at every step, with a certain probability a random move is performed rather253

than the usual move to the best neighbor.254

4. Local search on Stable Marriages255

We now present an adaptation of the local search schema to deal with the classical stable marriage256

problem. Then, we will point out the aspects that have to be changed to deal with SMTI problems.257

Given an SM instance P , we start from a randomly generated marriage M . Then, at each search step,258

we compute the set BP of blocking pairs in M and compute the neighborhood, which is the set of all259

marriages obtained obtained by removing one of the blocking pairs in BP from M . Consider a blocking260

pair bp = (m,w) in M , m′ = M(w), and w′ = M(m). Then, removing bp from M means obtaining a261

marriage M ′ in which m is married with w and m′ is married with w′, leaving the other pairs unchanged.262

To select the neighbor M ′ of M to move to, we use an evaluation function f :Mn → Z, whereMn is263

the set of all possible marriages of size n, and f(M) = nbp(M). For each marriage M , nbp(M) is the264

number of blocking pairs in M , and we move to one with the smallest value of f .265

To avoid stagnation in a local minimum of the evaluation function, at each search step we perform a266

random walk with probability p (where p is a parameter of the algorithm), which removes a randomly267
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chosen blocking pair in BP from the current marriage M . In this way we move to a randomly selected268

marriage in the neighborhood. The algorithm terminates if a stable marriage is found or when a maximal269

number of search steps or a timeout is reached.270

This basic algorithm, called SML, has been improved in the computation of the neighborhood,271

obtaining SML1. When SML moves from one marriage to another one, it takes as input the current272

marriage M and the list PAIRS of its blocking pairs and returns the marriage in the neighborhood of273

M with the best value of the evaluation function, i.e. the one with fewest blocking pairs. However,274

the number of such blocking pairs may be very large. Also, some of them may be useless, since their275

removal would surely lead to new marriages that will not be chosen by the evaluation function. This276

is the case for the so-called dominated blocking pairs. Algorithm SML1 considers only undominated277

blocking pairs.278

Definition 9 (Dominance in blocking pairs) Let (m,w) and (m,w′) be two blocking pairs. Then279

(m,w) dominates (from the men’s point of view) (m,w′) iff m prefers w to w′. There is an equivalent280

concept from the women’s point of view.281

Definition 10 (Undominated blocking pair) A men- (resp., women-) undominated blocking pair is a282

blocking pair such that there is no other blocking pair that dominates it from the men’s (resp., women’s)283

point of view.284

It is easy to see that, if M is an unstable marriage, (m,w) a men- (resp., women-) undominated285

blocking pair in M , m′ = M(w), w′ = M(m), and M ′ is obtained from M by removing (m,w), there286

are no blocking pairs in M ′ in which m (resp., w) is involved. This property would not be true if we287

removed a dominated blocking pair. This is why we focus on the removal of undominated blocking pairs288

when we pass from one marriage to another in our local search algorithm.289

Considering again the SM in Table 1 and the marriage 2 7 4 8 6 3 5 1. The blocking pair (m8, w4)290

dominates (from the men’s point of view) (m8, w2). If we remove (m8, w2) from the marriage, (m8, w4)291

will remain. On the other hand, removing (m8, w4) also eliminates (m8, w2). Thus, removing (m8, w4)292

is more useful than removing (m8, w2).293

By using the undominated blocking pairs instead of all the blocking pairs, we also limit the size of the294

neighborhood, since each man or woman is involved in at most one undominated blocking pair. Hence295

we have at most 2n neighbor marriages to evaluate.296

Let us now analyse more carefully the set of blocking pairs considered by SML1. Consider the case in297

which a man mi is in two blocking pairs, say (mi, wj) and (mi, wk), and assume that (mi, wj) dominates298

(mi, wk) from the men’s point of view. Then, let wj be in another blocking pair, say (mz, wj), that299

dominates (mi, wj) from the women’s point of view. In this situation, SML1 returns (mz, wj) because it300

computes the undominated blocking pairs from men’s point of view (which are (mi, wj) and (mz, wj))301

and, among those, maintains the undominated ones from the women’s point of view ((mz, wj) in this302

case). The removal of (mz, wj) automatically eliminates (mi, wj) from the set of blocking pairs of the303

marriage, since it is dominated by (mz, wj). However, the blocking pair (mi, wk) is still present because304

the blocking pair that dominated it (i.e. (mi, wj)) is not a blocking pair any longer. We also consider a305

procedure that will return in addition the blocking pair (mi, wk), so to avoid having to consider it again306
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in the subsequent step of the local search algorithm. We call SML2 the algorithm obtained from SML1307

by using this new way to compute the blocking pairs.308

Since dominance between blocking pairs is defined from one gender’s point of view, at the beginning309

of our algorithms we randomly choose a gender and, at each search step we change the role of the two310

genders. For example, in SML1, if we start by finding the undominated blocking pairs from the men’s311

point of view and, among those, we keep only the undominated blocking pairs from the women’s point312

of view, in the following second step we do the opposite, and so on. In this way we ensure that SML1313

and SML2 are gender neutral.314

Summarizing, we have defined three algorithms, called SML, SML1, and SML2, to find a stable315

marriage for a given SM instance. Such algorithms differ only by the set of blocking pairs considered to316

define the neighborhood.317

5. Local search for SMTI problems318

To adapt the SML algorithm to solve problems with ties and incomplete lists it is important to recall319

that an SMTI instance may have several stable marriages of different size. Thus, solving an SMTI320

problem instance means finding a stable marriage with maximal size. If the size of the marriage coincides321

with the size of the problem, it is said to be perfect and the algorithm can stop before the step limit.322

Otherwise the algorithm returns the best marriage found during search, defined as follows: if no stable323

marriage has been found, then the best marriage is the one with the smallest value of the evaluation324

function; otherwise, it is the stable marriage with fewest singles.325

The SML algorithm is therefore modified in the following ways:326

• the evaluation function has to take into account that some person may be not married, so we use:327

f(M) = nbp(M) + ns(M), where, for each marriage M , ns(M) is the number of singles in M328

which are not in any blocking pair.329

• When we remove a blocking pair (m,w) from a marriage M , their partners M(m) and M(w)330

become single.331

• The algorithm performs a random restart when a stable marriage is reached, since its neighborhood332

is empty (because it has no blocking pairs).333

We call LTIU the modified algorithm for SMTI problems, obtained from SML by the above334

modifications and by using undominated blocking pairs.335

6. Experiments336

We tested our algorithms on randomly generated sets of SM and SMTI instances. For SM problems,337

we generated stable marriage problems of size n using the impartial culture model (IC) [14] which338

assigns to each man and to each woman a preference list uniformly chosen from the n! possible total339

orders of n persons. This means that the probability of any particular ordering is 1/n!.340

For SMTI problems, we generated problem instances using the same method as in [12]. More341

precisely, the generator takes three parameters: the problem’s size n, the probability of incompleteness342
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p1, and the probability of ties p2. Given a triple (n, p1, p2), a SMTI problem instance with n men and n343

women is generated, as follows:344

1. For each man and woman, we generate a random preference list of size n, i.e., a permutation of n345

persons;346

2. We iterate over each man’s preference list: for a man mi and for each women wj in his preference347

list, with probability p1 we delete wj from mi’s preference list and mi from wj’s preference list.348

In this way we get a possibly incomplete preference list.349

3. If any man or woman has an empty preference list, we discard the problem and go to step 1.350

4. We iterate over each person’s (men and women’s) preference list as follows: for a man mi and for351

each woman in his preference list, in position j ≥ 2, with probability p2 we set the preference for352

that woman as the preference for the woman in position j − 1 (thus putting the two women in a353

tie).354

Note that this method generates SMTI problem instances in which the acceptance is symmetric. If355

a man m does not accept a woman w, m is removed from w’s preference list as well. This does not356

introduce any loss of generality because m and w cannot be matched together in any stable marriage.357

7. Results on SM problems358

We measured the performance of our algorithms in terms of number of search steps. For these tests,359

we generated 100 SM problem instances for each of the following sizes: 100, 200, 300, 400 and 500.360

In the following we show only the results of our best algorithm, which is SML2. We studied how fast361

SML2 converges to a stable marriage, by measuring the ratio between the number of blocking pairs and362

the size of the problem during the execution. Figure 2(a) shows that SML2 has a very simple scaling363

behavior. Let us denote by 〈b〉 the average number of blocking pairs of the marriage found by SML2 for364

SM problem instances of size n after t steps. Then the experimental results shown in Figure 2(a) have365

a very good fit with the function 〈b〉 = an22−bt/n, where a and b are constants computed empirically366

(a ≈ 0.25 and b ≈ 5.7). Figure 2(a) shows that the analytical function 〈b〉 has practically the same curve367

as the experimental data. The figure shows also that the average number of blocking pairs, normalized368

by dividing it by n, decreases during the search process in a way that is independent of the size of the369

problem.370

We can use function 〈b〉 to conjecture the runtime behavior of our local search method. Consider371

the median number of steps, tmed, taken by SML2. Assume this occurs when half the problems have372

one blocking pair left and the other half have zero blocking pairs. Thus, 〈b〉 = 1
2
. Substituting this373

value in the equation for 〈b〉, taking logs, solving for tmed, and grouping constant terms, we get tmed =374

cn(d+ 2 log2(n)) where c and d are constants. Hence, we can conclude that tmed grows as O(n log(n)).375

We then fitted this equation for tmed to the experimental data (using c ≈ 0.26 and d ≈ −5.7). The376

result is shown in Figure 2(b), where we see that the experimental data have the same curve as function377

tmed. This suggests that we can use such an equation to predict the number of steps our algorithms needs378

to solve a given SM instance.379
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Figure 2. Results using SML2.
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7.1. Sampling the stable marriage lattice380

We also evaluated the ability of SML2 to sample the lattice of stable marriages of a given SM problem.381

To do this, we randomly generated 100 SM problems for each size between 10 and 100, with step 10.382

Then, we ran the SML2 algorithm 500 times on each instance. To evaluate the sampling capabilities of383

SML2, we first measured the distance of the found stable marriages (on average) from the male-optimal384

marriage (the one that would be returned by the GS algorithm).385

Given a SM problem instance P , consider a stable marriage M for P . The distance of M from Mm386

is the number of arcs from M to Mm in the Hasse diagram of the stable marriage lattice for P . This387

diagram can be computed inO(n2+n|S|) time [15], where S is the set of all possible stable marriages of388

a given SM instance. For each SM problem instance, we compute the average normalized distance from389

the male-optimal marriage considering 500 runs. Notice that normalizations is needed since different390

SM instances with the same size may have a different number of stable lattices. Then, we compute the391

average Dm
1 of these distances over all the 100 problems with the same size, which is therefore formally392

defined as Dm = 1
100

∑100
j=1

1
500

∑500
i=1

dm(Mi,Pj)

dm(Mi,Pj)+dw(Mi,Pj)
, where dm(Mi, Pj) (resp., dw(Mi, Pj)) is the393

distance of Mi from the male (resp., female)-optimal marriage in the lattice of an SM instance Pj . If394

Dm = 0, it means that all the stable marriages returned coincide with the male-optimal marriage. On the395

other extreme, if Dm = 1, it means that all stable marriages returned coincide with the female-optimal396

one. Figure 3(a) shows that, for the stable marriages returned by algorithm SML2, the average distance397

from the male-optimal is around 0.5.398

This is encouraging but not completely informative, since an algorithm which returns the same stable399

marriage all the times, with distance 0.5 from the male-optimal would also haveDm = 0.5. To have more400

informative results, we consider the entropy of the stable marriages returned by SML2. This measures401

the randomness in the solutions. Let f(Mi) be the frequency that SML2 finds a marriage Mi (for i in402

[1, |S|]) that is: f(Mi) = 1
500

∑500
j=1 1Mi

(j), where 1Mi
(j) is the indicator function that returns 1 if in403

1With this measure we want to evaluate how far from the two extremes of the lattice are the marriages we find. However,
it possible to give other definitions of stable matchings that belong to the middle of the lattice such as the one presented in
[4].
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the j-th execution the algorithm finds Mi, and 0 otherwise. The entropy E(P ) for each SM instance P404

(i.e., for each lattice) of size k is then: E(P ) = −
∑

i=1∈{1..|S|} f(Mi) log2(f(Mi)). In an ideal case,405

when each stable marriage in the lattice has a uniform probability of 1/k! to be reached, the entropy is406

log2(|S|) bits. On the other hand, the worst case is when the same stable marriage is always returned, and407

the entropy is thus 0 bits. As we want a measure that is independent of the problem’s size, we consider408

a normalized entropy, that is E(P )/ log2(|S|), which is in [0,1].409

As we have 100 different problems for each size, we compute the average of the normalized entropies410

for each class of problems with the same size: En = 1
100

∑100
i=1E(Pi)/ log2(|Si|), where Si is the set of411

stable marriages of Pi.412

Figure 3(b) shows that SML2 is not far from the ideal behavior. The normalized entropy starts from413

a value of 0.85 per bit at size 10, decreasing to just above 0.6 per bit as the problem’s size grows.414

Figure 3. Sampling with SML2.
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Considering both Figures 3(b) and 3(a), it appears that SML2 samples the stable marriage lattice415

very well. Considering also the distance Dm (Figure 3(a)), the possible outcomes appear to be equally416

distributed along the paths from the top to the bottom of the lattice.417

To better evaluate the sampling capability of our approach, here we compare it to a Markov chain418

approach (MC) [1], defined by using rotations exposed in each stable marriage.419

More precisely, suppose that Mi is current marriage. Then the next marriage Mi+1 is computed420

follows:421

• (i) with probability 1/3: it randomly chooses a man and, if he is part of a woman-improving422

rotation ρ, it moves to Mi+1 =Mi/ρ;423

• (ii) with probability 1/3: it randomly chooses a man and, if he is part of a man-improving rotation424

ρ, it moves to Mi+1 =Mi/ρ;425

• (iii) with probability 1/3, it moves to Mi+1 =Mi.426

Since a rotation and its inverse contain the same people, and the probability of picking a particular427

rotation is proportional to the number of couples it contains, this Markov chain is reversible. This428
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approach converges in exponential time to the uniform distribution over the stable marriages. We429

consider the entropy and distance from the male-optimal of MC computed on executions where we vary430

the number of steps from 10 to 200. While the entropy of MC increases quite rapidly, the distance from431

the top of the lattice (i.e., from the male-optimal) increases more slowly (see Fig. 4(a) and Fig. 4(b)).432

For each problem instance in the test set, we start MC from the male-optimal marriage and take the433

stable marriage returned by MC after exactly the same number of steps needed by our algorithm to find434

a stable marriage for that instance. Then we measure and compare the entropy and the distance from the435

male-optimal for MC to those of our algorithm (SML2). While the entropy of MC is roughly the same436

as that of our algorithm, the distance from the male-optimal achieved by our approach (about 0.5) is on437

average higher that that achieved by MC (about 0.2) (see Fig. 4(c)).438

Summarizing, our approach is efficient and it has sampling capabilities comparable with a Markov439

chain approach considering the same number of steps, and may even perform slightly better considering440

the distance measured from the top or the bottom of the lattice.441

8. Results on SMTI problems442

We generated random SMTI problem instances of size 100, by letting p2 vary in [0, 1.0] with step443

0.1, and p1 vary in [0.1, 0.8] with step 0.1 (above 0.8 the preference lists start to be empty). For each444

parameter combination, we generated 100 problem instances. Moreover, the probability of the random445

walk is set to p=20% and the search step limit is s=50000.446

We start by showing the average size of the marriages returned by LTIU. In Figure 5(a) we see that447

LTIU almost always finds a perfect marriage (that is, a stable marriage with no singles). Even in settings448

with a large amount of incompleteness (that is, p1 = 0.7 - 0.8) the algorithm finds very large marriages,449

with only 2 singles on average.450

We also consider the number of steps needed by our algorithm. From Figure 5(b), we can see that451

the number of steps is less than 2000 most of the time, except for problems with a large amount of452

incompleteness (i.e. p1 = 0.8). As expected, with p1 > 0.6 the algorithm requires more steps. In some453

cases, it reaches the step limit of 50000. Moreover, as the percentage of ties rises, stability becomes454

easier to achieve and thus the number of steps tends to decrease slightly. From the results we see455

that complete indifference (p2=1) is a special case. In this situation, the number of steps increases456

for almost every value of p1. This is because the algorithm makes most of its progress via random457

restarts. In these problems every person (if accepted) is equally preferred to all others accepted. The458

only blocking pairs are those involving singles who both accept each other. Hence, after a few steps all459

singles that can be married are matched, stability is reached, and the neighborhood becomes empty. The460

algorithm therefore randomly restarts. In this situation it is very difficult to find a perfect matching and461

the algorithm therefore often reached the step limit.462

The algorithm is fast. It takes, on average, less than 40 seconds to give a result even for very difficult463

problems (see Figure 5(c)). As expected, with p2 = 1 the time increases for the same reason discussed464

above concerning the number of steps.465

Re-considering Figure 5(a) and the fact that all the marriages the algorithm finds are stable, we notice466

that most of the marriages are perfect. From Figure 5(d) we see that the average percentage of matchings467
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Figure 4. Average runtime entropy of MC (a), average runtime distance from the male-
optimal of MC (b), Local Search vs. MC in terms of entropy and distance from the male-
optimal (c).
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Figure 5. LTIU varying p2 for different values of p1.
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that are perfect is almost always 100% and this percentage only decreases when the incompleteness is468

large. We compared our local search approach to the one in [12]. In their experiments, they measured469

the maximum size of the stable marriages in problems of size 10, fixing p1 to 0.5 and varying p2 in [0,1].470

We did similar experiments, and obtained stable marriages of a very similar size to those reported in471

[12]. This means that although our algorithm is incomplete in principle, it always appears to find an472

optimal solution in practice, and for small sizes it behaves like a complete algorithm in terms of size of473

the returned marriage. However, it can also tackle problems of much larger sizes, still obtaining optimal474

solutions most of the times.475

We also considered the runtime behavior of our algorithm. In Figure 6(a) we show the average476

normalized number of blocking pairs and, in Figure 6(b), the average normalized number of singles of477

the best marriage as the execution proceeds. Although the step limit is 50000, we only plot results for478

the first steps because the rest is a long plateau that is not very interesting. We show the results only479

for p2 = 0.5. However, for greater (resp., lower) number of ties the curves are shifted slightly down480

(resp., up). From Figure 6(a) we see that the average number of blocking pairs decreases very rapidly,481

reaching 5 blocking pairs after only 100 steps. Then, after 300-400 steps, we almost always reach a482

stable marriage, irrespective of the value of p1. Considering Figure 6(b), we see that the algorithm starts483

with more singles for greater values of p1. This happens because, with more incompleteness, it is more484
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Figure 6. LTIU runtime behaviour (p2=0.5).
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difficult for a person to be accepted. However, after 200 steps, the average number of singles becomes485

very small no matter the incompleteness in the problem.486

Looking at both Figures 6(a) and 6(b), we observe that, although we set a step limit s = 50000, the487

algorithm reaches a very good solution after just 300-400 steps. After this number of steps, the best488

marriage found by the algorithm usually has no blocking pairs nor singles. This appears to be largely489

independent of the amount of incompleteness and the number of ties in the problems. Hence, for SMTI490

problem instances of size 100 we could set the step limit to just 400 steps and still be reasonably sure491

that the algorithm will return a stable marriage of a large size, no matter the amount of incompleteness492

and ties.493

9. Local search by swapping ties494

In previous sections we have presented two local search algorithms which start from a random495

marriage and try to converge to a stable marriage with maximum size by removing blocking pairs. In496

this section we present another local search approach suggested by Prosser [41] to find the largest stable497

marriage of a given SMTI instance I . This approach is based on the observation that, by breaking all498

ties, I becomes an SMI instance, say I ′, and a stable marriage in I ′ is also stable in I , since we are499

considering weak stability. Furthermore, we recall that all stable marriages of a given SMI have the500

same size, and one of them can be found in polynomial time using the Gale Shapley algorithm.501

More precisely, we consider SMTIs with ties of length two (the problem of finding a maximum size502

stable matching still remains NP-hard in this special case of SMTI [31]), and we associate a weight in503

[0,1] to each way of breaking a tie. Initially, such weights are all set to 0.5.504

Our method, which is described in Algorithm LST, works as follows. It takes as input an SMTI505

instance P , an integer max steps and a random walk probability p. First, it breaks the ties in P thus506

obtaining the SMI instance Q, then it repeats a sequence of actions as long as the number of steps507

is lower than max steps. The first of these actions is to compute GS(Q) that finds the male optimal508

stable matching M of Q by applying the Gale Shapley algorithm to the SMI instance Q. If the returned509

marriage M is perfect, then the algorithm returns this marriage. Otherwise, if rand() ≤ p, i.e., if the510

random number in interval [0,1] generated by the function rand() is lower than or equal to the random511
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walk probability p, then it selects a random tie in P , and assigns this tie to tie neighbest, it applies the512

procedure swap tie(Q, ti) which returns an SMI instance Q that is obtained by Q where the order of the513

elements in tie ti in P is swapped. Then, it finds the male optimal stable matching M of Q and it recalls514

the size of M as max neigh size and M as M neighbest. Otherwise, if rand(p) > p, for every allowed515

tie (see the next paragraph) in P , it applies the procedure swap tie(Q, ti) which returns an SMI instance516

R that is obtained by Q where the order of the elements in tie ti in P is swapped. Then, it finds the517

male optimal stable matching M of R. If M is the best stable matching found in the neighbourhood518

then it recalls that tie as tie neighbest and that marriage as M neighbest. After having considered all519

the allowed ties, it moves to a new SMI instance Q obtained from Q and tie neighbest by applying the520

procedure swap tie(Q,tie neighbest). If the size of the obtained stable matching is larger than the overall521

best one obtained so far it increases the weight of tie neighbest by 0.05, otherwise it decreases the weight522

of tie neighbest by 0.05.523

We can have different versions of the algorithm LST depending on the meaning of the sentence524

allowed tie t in P in line 12. We consider as “allowed” the ties which have a weight greater than a525

fixed threshold or certain percentage of ties with highest weight. In this way we speed up the search by526

reducing the size of the neighborhood. We call LSTt (where t is the threshold) the algorithm that limits527

the neighborhood via a threshold and LSTk (where k is the percentage of best ties considered) the other528

one.529

9.1. Experimental evaluation530

We generated SMTI problem instances as in previous section except for the probability of ties (p2).531

For example, if we generate a problem of size n=100, with probability of incompleteness p1=0.1 and532

probability of ties p2=0.2, then, since p1=0.1, the average length of preference lists will be 90 and, since533

p2=0.2, each preference list will have about 9 ties of length 2.534

We generated 100 problems for each combination of n, p1 and p2 varying n in {10, 30, 50, 70, 90},535

p1 in [0.1, 0.8] and p2 in [0.1, 1.0] and fixing a limit of 20000 steps.536

We ran our algorithms LSTt and LSTk on this test set and we also compare the results against our537

LTIU algorithm.538

We first measured the average size (normalized w.r.t. the size of the problem) of the stable marriages539

returned by our algorithms. All three algorithms, find larger marriages when the number of ties increases540

and when the incompleteness in preference lists decreases. In fact, with more ties and longer preference541

lists, there is less probability of having a blocking pair and more chances for singles to get married.542

For instance, Figure 7(a) shows the results for LSTk when n=10 and k=50%. The results for LSTt and543

LTIU are very similar. Only for p1=0.7-0.8 and high values of p2 LTIU finds slightly smaller marriages.544

Figure 7(b) shows a comparison of the three algorithms on problems of size 10 and 30.545

For n=10, the size of the marriages vary at most of only 0.02 comparing LSTk versus LSTt (LTIU
gives practically the same results as LSTt) when we vary the size of the problems. We can also notice
that the size of the marriages tends to increase when the size of the problems increases. For instance,
Figure 7(c) shows the results for LSTt and it easy to see that, for the same values of the other parameters,
it finds larger marriages as n increases. The same results are obtained by the other algorithms. We
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Algorithm 1: LST
input : a SMTI problem instance P , an integer max steps, a probability p of random walk
output: a marriage

Q← breakties(P )

steps← 0

max size← −1
repeat

max neigh size← −1
M ← GS(Q)

if M is a perfect matching then
return M

if rand() ≤ p then
tie neighbest← a random tie in P
Q← swap tie(Q, ti)

M ← GS(Q)

max neigh size← |M |
M neighbest←M

else
foreach allowed tie ti in P do

R← swap tie(Q, ti)

M ← GS(R)

if |M | > max neigh size then
max neigh size← |M |
M neighbest←M

tie neighbest← ti

Q← swap tie(Q, tie neighbest)

if max neigh size > max size then
max size←max neigh size

Mbest ←M neighbest

increase weight of tie neighbest

else
decrease weight of tie neighbest

steps← steps+ 1

until steps ≥ max steps;
return Mbest

conjecture that the reason for this behavior is that, considering SMI instances, the probability of having
a certain person in at least one preference list, say Pl, is very high even with small sizes and a lot of
incompleteness. More precisely, the probability of having a person p in at least one preference list in an
SMI of size n, denoted by Pl(n, p1), is 1− pn1 . Moreover, the probability to be in exactly k lists is:

[
(1− p1)k · pn−k1

](n
k

)
(1)
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Figure 7. Normalized average size of marriages for LSTk, LSTt and LTIU.
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(a) Normalized average size of marriages found by LSTk
using k = 50% on SMTIs of size 10.
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(b) Normalized average size for LSTk, LSTt and LTIU
on problems of size 10 and 30. Fixing p1=0.8, k = 50%

and t = 0.5.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

n
o

rm
a

liz
e

d
 a

v
e

ra
g

e
 m

a
rr

ia
g

e
 s

iz
e

p2

n=10
n=30
n=50
n=70
n=90

(c) Normalized average size for LSTt varying n and
fixing p1=0.8 and t = 0.5.

Then, the probability to be in at least k lists is:

n∑
i=k

{[
(1− p1)i · pn−i1

](n
i

)}
(2)

Finally, since our generator rejects problems with empty preference lists, in our test set each person is
always in at least one preference list. Thus the probability to be in at least k lists becomes:

P (n, p1, k) =

∑n
i=k

{[
(1− p1)i · pn−i1

] (
n
i

)}
1− pn1

(3)

For example, Figure 8 shows how slowly P (n, p1, 5) decreases when varying p1 for different values546

of n. Thus, in general, the probability for a person to be in more than one preference list rises with the547

size of the problem. Therefore, having a perfect matching or a marriage with very high cardinality is548

more probable in bigger problems than in smaller ones.549

We then considered the average number of steps needed by the algorithms to finish their execution.550

As can be expected, the number of steps increases as the incompleteness p1 rises. This happens for all551
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Figure 8. Probability for a person to be in at least 5 preference lists varying p1.
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algorithms and all problems sizes, and it is more clear as n increases. This can be seen for example in552

Figure 9(a) that shows the average number of steps for LSTt on problems of size 10 and in Figure 9(b)553

that shows the results for n=30.554

Figure 9(c) shows that the number of steps needed by LSTt for p1=0.8 decreases as n increases.555

Moreover, it decreases as the amount of ties (p2) increases. This behavior is the same for the other556

algorithms and is due to the increased probability of finding a perfect matching on larger problems. For557

instance, Figure 9(d) shows how steps vary considering problems of size n=30 and n=90.558

We also measured the execution time of our algorithms. The execution time is mainly influenced by559

the size and nature of the neighborhood that has to be explored at each search step. The neighborhood560

used by LTIU depends on blocking pairs and so it is larger in problems with few ties. On the other hand,561

the neighborhoods defined for LSTt and LSTk are bigger as the number of ties arises. For these reasons,562

the execution time of LTIU tends to slightly decrease as p2 increases no matter the size of the problem563

for fixed values of p1 (see Figure 10(a)). Figures 10(b) and 10(c) show respectively the execution time564

of LSTk and LSTt. In both cases the execution is longer as p2 becomes larger. The difference is that the565

size of the neighborhood in LSTt varies dynamically according the weights of the ties and the threshold566

t. This speeds up drastically the algorithm and, as we can see, the execution time of LSTt is about half567

of the execution time of LSTk.568

Summarizing, both LSTk and LSTt are effective in terms of the size of the returned marriages but,569

when we take into account also the execution time, LSTt has to be preferred.570

10. Conclusions and future work571

We have presented a local search approach for solving the classical stable marriage (SM) problem572

instances and its variant with ties and incomplete lists (SMTI). Our algorithm for SM problem instances573

has a simple scaling and size independent behavior and it is able to find a solution in a number of steps574

which grows as little as O(n log(n)). Moreover it samples the stable marriage lattice reasonably well575

also when compared with a Markov chain approach. It is thus a fair method to generate random stable576

marriages We also provided an algorithm for SMTI problems which is both fast and effective at finding577

large stable marriages for problems of sizes not considered before in the literature. The algorithm was578

usually able to obtain a very good solution after a small amount of time.579
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Figure 9. Average number of steps for LSTt, LSTk, and LTIU.
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(a) Average number of steps for LSTt for n=10.
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(b) Average number of steps for LSTt for n=30.
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(c) Average number of steps for LSTt varying n and
fixing p1=0.8.

 0

 5000

 10000

 15000

 20000

 25000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

a
v
e

ra
g

e
 s

te
p

s

p2

LSTk n=30
LSTk n=90
LSTt n=30
LSTt n=90
LTIU n=30
LTIU n=90

(d) Average number of steps for LSTk, LSTt, and LTIU
on problems of size 30 and 90. Fixing p1=0.8, k = 50%

and t = 0.5.

Notice that it is important to validate our local search techniques on larger problem instances. We plan580

to do that in our future research. Moreover, we intend to compare the algorithms shown in Section 9 with581

Algorithm ShiftBrk in [17]. We plan also to apply a local search approach also to the hospital-resident582

problem and to compare our algorithms to the ones in [22], where residents express their preferences in583

strict order and hospitals allow ties in their preferences and have a finite number of posts each.584
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29. F. Laburthe. Choco, a constraint programming kernel for solving combinatorial optimization651

problems. http://choco-solver.net.652

30. D. F. Manlove. Algorithmics of Matching Under Preferences . World Scientific Publishing, 2013.653

31. D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable654

marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.655

32. D. Marx. Local search. Parameterized Complexity News, 3:7–8, 2008.656

33. D. Marx and I. Schlotter. Parameterized complexity and local search approaches for the stable657

marriage problem with ties. Algorithmica, 58(1):170–187, 2010.658

34. D. Marx and I. Schlotter. Stable assignment with couples: Parameterized complexity and local659

search. Discrete Optimization, 8(1):25–40, 2011.660

35. E. McDermid. A 3/2-approximation algorithm for general stable marriage. In Proceedings of661

ICALP (1), volume 5555 of LNCS, pages 689–700. Springer, 2009.662

36. M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Manipulation and gender neutrality in stable663

marriage procedures. In Proc. AAMAS’09, volume 1, pages 665–672, 2009.664

37. M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Manipulation complexity and gender neutrality in665

stable marriage procedures. Jornal of Autonomous Agents and Multi-Agent Systems, 22(1):183–199,666

2011.667

38. M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Stability in Matching Problems with Weighted668

Preferences. In Proc. ICAART’11, pages 45–53. SciTePress, 2011.669

39. M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Weights in stable marriage problems increase670

manipulation opportunities. In Proc. TARK’11 - Best Poster Award, 2011.671

40. M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Stability and Optimality in Matching Problems672

with Weighted Preferences. In Agents and Artificial Intelligence 2011 - ICAART’11 - Revised673

Selected Papers, pages 319–333. CCIS 271 Springer-Verlag, 2012.674

41. P. Prosser. Private communication. 2010.675

42. D. Manlove R. W. Irving. Approximation algorithms for hard variants of the stable marriage and676

hospitals/residents problems. J. Comb. Optim, 16(3):279–292, 2008.677

43. A. E. Roth. On the allocation of residents to rural hospitals: A general property of two-sided678

matching markets. Econometrica, 54(2):425427, 1986.679

44. A. E. Roth and J. H. V. Vate. Random paths to stability in two-sided matching. Econometrica,680

58(6):1475–1480, 1990.681

45. S. Scott. A study of stable marriage problems with ties. PhD thesis, University of Glasgow, 2005.682

c© September 4, 2013 by the authors; submitted to Algorithms for possible open access683

publication under the terms and conditions of the Creative Commons Attribution license684

http://creativecommons.org/licenses/by/3.0/.685


	Introduction
	Related work
	Background
	Stable marriage problem
	Local search

	Local search on Stable Marriages
	Local search for SMTI problems
	Experiments
	Results on SM problems
	Sampling the stable marriage lattice

	Results on SMTI problems
	Local search by swapping ties
	Experimental evaluation

	Conclusions and future work
	Acknowledgements

