VoCaLS: Vocabulary & Catalog of Linked
Streams

Riccardo Tommasini'®, Yehia Abo Sedira'’, Daniele Dell’Aglio?, Marco
Balduini'**, Muhammad Intizar Ali?, Danh Le Phuoc?, Emanuele Della
Valle!?, Jean-Paul Calbimonte®

!Politecnico di Milano, DEIB, Milan, Italy
“{name.lastname}@polimi.it | "yehiamohamed.abosedera@mail.polimi.it
2University of Zurich, Zurich, Switzerland
dellaglio@ifi.uzh.ch
3Insight Center for Data Analytics, National University of Ireland, Galway, Ireland
ali.intizar@insight-centre.org
4Technichal University of Berlin, Berlin, Germany
danh.lephuoc@tu-berlin.de
SUniversity of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
jean-paul.calbimonte@hevs.ch

Abstract. The nature of Web data is changing. The popularity of news
feeds and social media, the rise of the Web of Things, and the adoption
of sensor technologies are examples of streaming data that reached the
Web scale. The different nature of streaming data calls for specific solu-
tions to problems like data integration and analytics. There is a need for
streaming-specific Web resources: new vocabularies to describe, find and
select streaming data sources, and systems that can cooperate dynami-
cally to solve stream processing tasks. To foster interoperability between
these streaming services on the Web, we propose the Vocabulary & Cat-
alog of Linked Streams (VoCaLS). VoCaLS is a three-module ontology to
(i) publish streaming data following Linked Data principles, (ii) describe
streaming services and (iii) track the provenance of stream processing.

1 Introduction

Streams have become increasingly more relevant in several scenarios, including
sensor data analytics, social networks, or the Internet of Things. Handling the
variety and velocity dimensions together has proven to be hard, and the Semantic
Web community has answered to these challenges producing languages, models,
systems, and benchmarks under the Stream Reasoning umbrella [12]. Despite
the progress that Stream Reasoning efforts constitute, the interest in exploring
stream publication and consumption mechanisms on the Web has only recently
gained attention [14,23]. As opposed to traditional static and stored RDF data,
streams are produced and consumed in a different way, focusing on the live-
ness and dynamics of the data, and often requiring alternative protocols and
mechanisms for dealing with data velocity. Systems that consume streams for

2 Sedira et al.

processing (e.g., reasoning, filtering, learning, event detection) require standards
for interchanging data about the streams, including endpoint information, pro-
cessing capabilities, data structure, pull and push retrieval options, and querying
specificities.

Different studies have partially tackled these problems in the past [4,24],
although there is still no general agreement on a shared set of principles, as it is
the case with static Linked Data. A set of challenges and requirements regarding
the availability of streams on the Web has been presented in [14], providing a
road-map towards a Web of Data Streams. Further examples in this scope include
generic RESTful service interfaces for streaming data, such as in [6,24]; or the
RSP Service Interface [3], providing a programming API for continuous query
engines. Other approaches adopted a Linked Data-based publishing strategy [20],
although in practice they show the inadequacy of static data publishing for
this purpose. Also, systems like TripleWave [22] allow live provisioning of RDF
stream data through push and pull mechanisms, thus generating live RDF stream
endpoints. Nevertheless, in all these cases, metadata about the streams and their
access points and methods have used ad-hoc description vocabularies or project
specific ontologies.

This paper presents a (i) set of requirements that take into account recent
challenges and issues; (ii) it describes a Vocabulary for Cataloging and Linking
Streams and streaming services on the web (VoCaLS!). Last but not least, the
paper (iii) draws a road map towards the creation of a catalog that would make
streams discoverable, accessible, and reusable. VoCaLsS is an emerging resource
that standardizes the mechanisms to publish and consume semantic streams
on the Web. This includes not only the publication of streams but also the
consumption and processing, regardless of implementations details and design
choices of different RDF Stream Processing (RSP) and Stream Reasoning sys-
tems and languages. This vocabulary constitutes a foundational step towards
the long-term goal of allowing Web-centered interactions among RDF Stream
processing services. VoCaL.S has been engineered as a collaborative effort, fol-
lowing the discussions and results of the work of the W3C RSP Community
Group?. The vocabulary has been made openly available through a permanent
URI, it has been submitted to the Linked Open Vocabularies (LOV) reposi-
tory [26], it is published under a CC-BY 4.0 license, and its documentation is
made available through the Widoco toolset [17]. Furthermore, the ontology itself
has been designed in a generic manner, so that it can be reused and combined
with domain-specific and technology-specific vocabularies.

The remainder of the paper is structured as follows: we in Section 2, we
discuss some motivating use-cases. We present the requirements analysis in Sec-
tion 3. We show reused vocabularies Section 4 before introducing the VoCaLsS
modules and how to combine them with other vocabularies in Section 5. Section 6
describes the related work, while Section 7 concludes the paper and presents the
roadmap.

! VoCaL$S URI: https://w3id.org/rsp/vocals#
2 https://www.w3.org/community/rsp/

VoCaLS: Vocabulary & Catalog of Linked Streams 3

2 Use-Cases

In this section, we describe three use-cases that motivate the design and the
adoption of a vocabulary for describing streams and streaming services.

2.1 Stream Discovery & Selection in Smart Cities

Smart cities are one of the early adopters of IoT technologies and subsequently
of stream processing. Since many publisher and consumers coexist in city sensor
networks, middlewares and semantic technologies are commonly used to enable
automated discovery and integration [16,18]. The publishers purpose is making
the stream findable to the middleware, while the consumers intent is finding
and selecting the proper streams that solve a given information need. Therefore,
urban data streams are enriched with semantic annotations; their selection is
automated using technologies that interpret descriptions.

The most significant hindrance to this approach is centralization. Middle-
wares often rely on a central repository of stream descriptions, because interop-
erability requires a standardized interfaces. With the adoption of a shared vocab-
ulary, the decentralized automated discovery would be possible at the Web scale.
As for Linked Datasets, stream provisioning services will be able to exchange de-
scriptions to agents requests on-demand, reducing the middleware load.

2.2 Streaming Service Discovery & Federation

Federating a query to a remote stream endpoint is a desirable feature for a situa-
tion where data are naturally distributed. This is particularly true for streaming
sources, where the time required to gather the data might overcome the respon-
siveness requirements posed by an information-need.

To make RDF Stream Processing (RSP) federation work in practice, we
should follow the example of the Linked Data community. SPARQL query feder-
ation relies on protocols and dataset descriptions such as VoID [1] and DCat [21].
To support interactions between query engines on the Web, we need (i) standard-
izing the language, (ii) fixing the protocols and, last but not least, (iii) agreeing
on the vocabulary to describe various resources.

Looking at the RSP state-of-the-art, (i) Dell’Aglio et al [13] provided a refer-
ence model that unifies RSP languages and reconcile the execution semantics of
existing RSP engines [5,19]. (ii) Balduini et al [3] designed a set of RESTful APIs
that regulate how to interact with an RDF Stream Processing (RSP) engine in
a declarative way.

The missing building block is (iii) the adoption of a shared vocabulary to
publish the streams and describe the services. Languages, APIs, and vocabular-
ies together would foster interoperability between different implementation and
instances of RSP Services, which up to this point has not happened yet.

4 Sedira et al.

2.3 Reproducibility of Empirical Research

Benchmarking is a relevant research topic within the Stream Processing com-
munity. Ontologies, datasets, and queries were proposed so far as benchmarks
to evaluate engines performance and processing capabilities. Recent efforts tried
to formalize an experimental environment that could make empirical research
systematic and foster experiment reproducibility [25]. In this context, cataloging
available streams, profiling the features of the engine, and tracking the prove-
nance of the experiment as used queries and obtained results, would improve the
research outcomes, fostering reproducibility and repeatability.

3 Requirements Analysis

In this section, we present our requirement analysis for VoCaLS. Building on
our previous results [13,14,23], we have identified a series of challenges that have
to be addressed to comply with the needs of stream processing scenarios. This
analysis also takes into account the use cases discussed in the W3C RSP Com-
munity Group, as well as the general requirements®. We organized the challenges
in three main topics: Publication & discovery, Access & processing, and Prove-
nance & licensing.

Publication & discovery. This aspect refers to the description of streams and
streaming services, shared according to the Linked Data principles [7], for the
creation of catalogs and discovery endpoints. In particular, a stream description
should (C1) characterize the contents of a (RDF) stream content and (C2) de-
scribe the characteristics of the stream source. Moreover, a streaming service
description should (C3) describe available endpoints from which streams can be
accessed /processed /generated. In this scope, such a vocabulary should be able
to answer to questions such as:

— What is the identifier /address of a stream?

— Who created, maintains and/or publishes the stream?

— How frequently is the stream content produced?

— Where is located the vocabulary describing the stream content?

Access & processing. These challenges focus on descriptions of protocols and
APIs to obtain data from the streams, communicate with the streaming services
and manipulate the data. To serve the necessity of managing streaming data
in real-time, it is crucial to (C4) describe the capabilities of streaming services,
such as stream processing engines and reasoners, in terms of their features (e.g.
available operators, entailment regimes, etc.). It is also needed to (C5) maintain
the order of elements in the stream. Moreover, it is important to (C6) allow the
selection of stream partitions and windows, which can be dumped, transmitted
or filtered, enabling time-series analysis and replay. Questions relevant to this
scope include:

3 https://w3id.org/rsp/requirements

VoCaLS: Vocabulary & Catalog of Linked Streams 5

— Where can I access the live stream?

Where can I access the stream as a static dataset?

— Where can I access the history of the historical stream as a static dataset?
— Where can I access the stream starting from a point in the past?

— What is the preceding element of a given stream element?

Provenance & Licensing. These challenges refer to tracking the transforma-
tions that involve streaming data, and those that occur on the streams, as well
as contracts that regulate data access by actors involved in such transformations
(C7). Questions in this scope include:

— How can we describe the process that generated the stream?
— How can we describe the process that generated the stream windows?
— Which datasets or streams were used to derive the stream?

To support our requirement analysis, we investigated how the community per-
ceives the challenges, we identified. Therefore, we designed a survey* that aims
at gathering more precise information about the perception of stream metadata
needs, and the relation between Streaming Data and Linked Data. The hypothe-
sis we started from was that current vocabularies for static/stored (Linked) Data
are not enough to satisfy scenarios involving streaming data. We therefore for-
mulated 18 questions (not counting those with multiple options), which aim at
(i) investigating the potential impact of a vocabulary resource (3 questions), (ii)
probing the relevance of specific challenges (8 questions), and (iii) quantifying
the knowledge of the survey respondents on the indicated themes (7 questions).

We collected 34 answers® mainly from the Stream Reasoning and Linked
Data communities. We asked the participants to self-evaluate their competences
on Linked Data, Stream Processing, and Stream Reasoning. Moreover, we cross-
checked their answers with simple technical questions. As a result, the survey
respondents showed an equally distributed knowledge of the two domains (Linked
Data and Stream Reasoning). Although only 11% of them declared to be confi-
dent with vocabularies like DCAT, VoID, and DCTerms, they all acknowledged
the Linked Data principles.

From the investigation, it emerges that for 55% of the respondents Streaming
Data are highly relevant research-wise (5 points on a maximum of 5). Moreover,
35% of the respondents have a high interest in Linked Data. This suggests that
being the respondents equally distributed between the two communities, Stream-
ing Data is relevant to the Linked Data community too. The survey also shows
that 51% respondents evaluated the challenges we presented at least as impor-
tant or crucial. Nevertheless, most of the challenges resulted to be unsatisfiable
or not entirely addressed by the most popular Linked Data vocabularies, e.g.,
VoID. Indeed, excepting C3 and C7, for which respectively 45% and 51% of the
respondents positively answered, all the remaining challenges collected mostly
uncertain answers (i.e., Maybe/I Don’t Know). All the results are reported in
Table 1.

4 https://ysedira.github.io/vocals/survey.md
® https://goo.gl/zsEJXe

6 Sedira et al.

Relevance VoID Adequacy
Challenges| U M IDK I C Yes No IDK/Maybe
C1 0.00% 6.06% 3.03% 30.30% 60.61%||18.18% 15.15% 66.67%
C2 0.00% 9.09% 21.21% 54.55% 15.15%||27.27% 18.18% 54.55%
C3 0.00% 6.06% 6.06% 54.55% 33.33%||45.45% 9.09% 45.45%
C4 0.00% 18.18% 6.06% 33.33% 42.42%|| 3.03% 45.45% 51.52%
C5 0.00% 9.09% 12.12% 63.64% 15.15%||18.18% 18.18% 63.64%
C6 6.06% 9.09% 27.27% 48.48% 9.09% ||33.33% 9.09% 57.58%
Cc7 0.00% 21.21% 27.27% 45.45% 6.06% ||51.52% 9.09% 39.39%

Table 1. Challenges Relevance and VolD adequacy to solve them. Legend: U:Useless;
M:Marginal; IDK:I Don’t Know; I:Important; C:Crucial.

Last but not least, we considered that one of the main differences between
streaming and static data is related to the protocols required to access them [23].
Our idea was confirmed by 61% of the survey respondents that agreed (29%) or
strongly agreed (32%) with our statement.

Furthermore, we specifically asked our respondents to evaluate with a score
from 1 to 5 the nature of streaming data as pull-based (1) or push-based (5). 21 %
of the respondents consider streaming data as naturally push-based against the
9% that consider them as pull-based. 35% percent of the respondents are inclined
to push-based (4) against the 6% (2). The remaining 29% of the respondents
expressed a neutral vote (3).

Supported by the results we acquired, we formulate the following require-
ments for our vocabulary to satisfy. VoCaLS must:

R1 enable the description of streams, i.e., characterizing their content, relevant
statistics, and the license of use;

R2 enable the description of streaming services, i.e., characterizing their capa-
bilities, their APIs, and the license of use;

R3 enable historical stream processing/analysis and replay, i.e., allowing stream
storage and dumping of stream samples;

R4 enable provenance tracking at any level, i.e., characterizing stream (a) cre-
ation, (b) publication, and (c¢) storage; but also denoting manipulation and
management concerning to existing theoretical frameworks;

R5 tame velocity for streaming data management, i.e., prioritize push-based
content provisioning to pull-based one, and encouraging the adoption of an
active stream processing paradigm;

R6 tame variety for streaming data management, i.e., do not bind the specifi-
cation to any domain specific vocabulary, e.g., SSN [11] for IoT or SIOC [8]
for Social Media, and to any specific data models, e.g., RDF Streams.

In general, the survey results show that the requirements we collected jus-
tify the introduction of a new vocabulary dedicated to describing the different
aspects that are only partially covered by existing vocabularies. The limita-
tions of current vocabularies are related to the fact that streaming data requires
different (potentially multiple) access methods, going beyond pull and one-off
query mechanisms. It is also evident that unlike traditional Linked Data, RDF

VoCaLS: Vocabulary & Catalog of Linked Streams 7

streams cannot be just de-referenced. Indeed, data items have to be recovered
in a streaming fashion or at least partitioned in windows. Finally, RDF stream
services often have different features and operators that may result in differ-
ent types of streaming results. Differences among systems in this respect have
been studied in the past [13], although there are no vocabularies available that
represent this type of information.

4 Background & Vocabulary Reuse

In this section, we describe related vocabularies that VoCaLS reuses, and those
that inspired part of its design.

Dataset description vocabularies were designed primarily with static and
stored (linked) data in mind. However, they provide metadata descriptions for
any sort of datasets published on the Web. Indeed, they have found a wide use
not only within the Semantic Web community but also the wider Open Data
movements all over the world.

The Data Catalog Vocabulary (DCAT) [21] is an RDF vocabulary designed
to foster interoperability among data web published catalogs. It focuses on de-
scribing how datasets are accessible and distributed. From DCAT, we extended
the notions of Distribution, Dataset and Catalog.

The Dublin Core Terms (DCterms)® is the first vocabulary made to de-
scribe both physical and Web resources, and provides fifteen generic terms to ad
dataset metadata. The properties title, creator, subject, description can be used
in combination with VoCaLS, since they do not directly refer to datasets.

The Vocabulary of Interlinked Datasets (VoID) [1] aims at describing RDF
datasets and cross-dataset links. VoID’s use-cases comprise dataset discovery,
selection and query optimization. From VolD, properties related to data-dumps,
features, and specific static resources can be used.

The SPARQL Service Description (SD)7 is a W3C recommendation that
contains the necessary terminology to describe SPARQL endpoints and, thus, it
is relevant w.r.t. VoCaLS Service Description. VoCaLS does not extend SPARQL-
related terms from SD on purpose, since we consider more appropriate to main-
tain the specification unbiased. However, SD can be reused in several streaming
scenarios, due to the similarity between some SPARQL and RSP operations.
Indeed, SD properties like entailment regime, and supported languages can be
used with VoCaLS.

The Provenance Ontology (PROV-0) allows to describe agent-entity-activity
relations that captures the semantics of transformations. VoCaLS Provenance
modules extends PROV-O adding some minimal nomenclature that simplifies
the usage of this pattern in the context of streaming data processing.

5 http://dublincore.org/documents/dcmi-terms/
" https://www.w3.org/TR/sparqlii-service-description/#

8 Sedira et al.

We discuss now two vocabulary drafts that were then merged into VoCaLS.
In fact, we decided to re-design the whole vocabulary, considering the limitations
of these two early attempts:
The Vocabulary of Interlinked Streams (VolIS) [23] extends VoID around
four challenges—Discovery, Access, Recall, and Provenance—to model stream
interlinking. VoIS is an ontology that provides the classes to publish streams
attaching a static description, and allows defining several access methods (e.g.,
WebSockets, RSP engine) that can be attached to the description.
The Web Stream Processing (WeSP) [14] refines the idea of SLD, and is
currently implemented in a set of systems, such as TripleWave [22] and CQELS.
WeSP comprises a vocabulary to exchange RDF streams on the Web that is
built on top of DCAT and the SPARQL SD. It allows describing the stream:;
some models for stream serializations, and communication protocols.

Given that both VoIS and WeSP have still little or no adoption, and con-
sidering their compatibility issues with other vocabularies such as DCAT, we
preferred not to reuse terms from them and design VoCaLS from scratch.

5 Vocabulary of Linked Streams

In this section we present the design of VoCaLS. The vocabulary is organized in
three modules: VoCaLS Core, which describes the core elements of the vocabu-
lary, VoCaLS Service Description, which describes RDF' stream service descrip-
tions, and VoCaLS Provenance, focused on streaming data transformation and
manipulation. We will introduce each module separately, along with illustrative
examples.

5.1 Core Vocabulary

dcat:Distribution dcat:Dataset deat dataset dcat:Catalog
* &

<<subClassOf>>

StreamEndpoint

,,,,,,,,,,,,,,,,,,,,,,

<<subClassOf>>

StreamDescriptor

hasEndpoint

FiniteStreamPartition

Stream
<<subClassOf>>

RDFStream

hasPartition

Fig. 1. VoCaLS Core module

VoCaLS Core concepts are based on an extension of DCAT to represent
streams on the Web. As depicted in Figure 1 and presented in Listing 1.1,
the model introduces the basic abstractions to represent streams. A (i) vo-
cals:StreamDescriptor is a document accessible via HTTP that holds meta-
data about the stream and its contents. A (ii) vocals:Stream represents a Web
stream, i.e., an unbounded sequence of time-varying data elements [13] that
might be findable and accessible on the Web, and which can be consumed via a
(ili) vocals:StreamEndpoint. An example of Stream Endpoint is available in

VoCaLS: Vocabulary & Catalog of Linked Streams 9

Listing 1.1, line 8. Finally, a (iv) vocals:FiniteStreamPartition is a portion
of the stream available for regular Linked Data services to access and process its
content.

<> a vocals:StreamDescriptor , vsd:CatalogService ;
dcat:dataset :MilanTrafficStream .
:MilanTrafficStream a vocals:RDFStream ;
vocals:hasEndpoint :MilanTrafficStreamEndpoint ;
dct:title "Milan Traffic Stream"” “xsd:string ;
dct:publisher <www.3cixty.eu>;
dct:description "Aggregated stream produced by traffic sensors in Milan
"“~xsd:string .
:MilanTrafficStreamEndpoint a vocals:StreamEndpoint ;
dct:license <https://creativecommons.org/licenses/by-nc/4.0/> ;
dct:format frmt:JSON-LD ;
dcat:accessURL "ws://example.org/traffic/milan".

Listing 1.1. An RDF Stream and Endpoint descriptions using VoCaLS. Prefixes have
been omitted.

VoCaLS Core module enables stream producers to publish metadata to de-
scribe streams (R1). It also provides a way to represent and describe finite stream
partitions that facilitate historical stream processing (R3). With such metadata
available on the Web, consumers can discover and select streams relevant to their
tasks: for instance, a consumer can retrieve all available endpoints for a given
stream, as per Listing 1.2.

SELECT 7endpoint
WHERE {
:traffic_stream a vocals:Stream ;
vocals:hasEndpoint 7endpoint .

Listing 1.2. SPARQL query retrieving a StreamEndpoint.

5.2 Streaming Service Description

VoCaLS Service Description focuses on offering a way to publish metadata re-
lated to various streaming services and their capabilities, enabling consumers to
discover and select services suitable to their needs. The vsd:StreamingService
is an abstraction to represent a service that deals with data streams of any type.
Continuous query engines, stream reasoners, and RDF stream publishers are
valid examples.

As depicted in Figure 2, three classes of RDF streaming services were iden-
tified, although others could be added if needed: (i) vsd:CatalogService, a
service that may provide metadata about streams, their content, query end-
points and more. (ii) vsd:PublishingService, which represents a service that
publishes RDF streams (e.g. TripleWave in Listing 1.3), possibly following a

10 Sedira et al.

Linked Data compliant scheme, and (iii) vsd:ProcessingService, which mod-
els a stream processing service that performs any kind of transformation on
streaming data, e.g. querying, reasoning, filtering, as in Listing 1.5. These ser-
vices include the possibility of specifying push-based publishing paradigms (R5).

resultFormat
Publishing! StreamingService & frmt:Format
subClassOf
teredB
vocal:RDF Stream registeredBy P . ice ubClgssQf RDFStreaming defaultSDS sDs

Service

hasFeature namedTimeVaryingGraph

describedBy defaultGraph

(@ ice RDFStreaming TimeVaryingGraph

Feature

Fig. 2. VoCaLS Service Description classes subset describing RDF streaming services.

:trplwvl a vsd:PublishingService ;
vsd:hasFeature vsd:replaying ;
vsd:hasFeature vsd:filtering ;
vsd:resultFormat frmt:JSON-LD

Listing 1.3. RSP Publishing description using VoCaLS. Prefixes omitted.

Figure 3 shows how VoCaLS Service Description can be used to describe dif-
ferent services, associating each service to the various vsd:RDFStreamingFeature
it provides, such as what is the reporting policy [13] used by the query engine,
which type of time is control is applied, and what the timestamp associated with

each stream element represents.

RE a vsd:CatalogService;
vsd:resultFormat frmt:Tuttle;
vsd:availableStream :Filtered_S1
vsd:availableGraph :G1

:TW a vsd:PublishingService;
vsd:hasFeature vsd:replaying;
vsd:hasFeature vsd:transform;

vsd:resultFormat frmt:JSON-LD;

vsd:registeredStream :S1

RSP
Engine

Filtered_RDF_S1

:RE a vsd:ProcessingService;
vsd:hasFeature vsd:filtering;
vsd:hasFeature vsd:windowing;
vsd:hasReportingPolicy vsd:periodic;
vsd:hasTimeControl vsd:external;
vsd:resultFormat frmt:Turtle;
vsd:registeredStream :RDF_S1.

Non
RDF
Stream

TripleW
ave

Fig. 3. Describing RDF streaming services using VoCaLS Service Description

VoCaLS Service Description makes streaming services annotation straight-
forward. For instance, Listing 1.5 shows an example of Service Description that
uses VoCaLS to describe an instance of the C-SPARQL engine. The running

VoCaLS: Vocabulary & Catalog of Linked Streams 11

SELECT 7?sv
WHERE {
?sv vsd:hasFeature vsd:filtering ;
vsd:registeredStream :RDF_S1 .
X

Listing 1.4. SPARQL query to retrieve service having vsd:filtering capabilities and
stream :RDF_S1 registered

:csparql a vsd:ProcessingService ;
vsd:hasFeature vsd:windowing, :timestamp_function;
vsd:availableGraphs [a vsd:TimeVaryingGraph] ;
vsd:hasRegisteredStreams [a vocals:RDFStream]
:timestamp_function a vsd:RDFStreamingRSFeature ;
dcterms:description "Takes an RDF Triple and returns its timestamp."
vsd:windowing a vsd:RDFStreamingFeature .

Listing 1.5. RSP Engine description using VoCaLS. Prefixes have been omitted.

engine can perform vsd:windowing and wsd:filtering, and it currently registered
one RDF Stream. Another example, the RSP engine in Figure 3 has RDF_S1
stream registered and can perform filtering and windowing operations. By using
VoCalLS Service Description, these services and their features can be published
on the web (R2), thus allowing consumers to access service descriptions and se-
lect services suitable for their needs, as in the query in Listing 1.4 Moreover,
VoCalLsS is extensible and, thus, service-specific extensions are possible, e.g., in
Listing 1.5, line 7 a custom feature describes a C-SPARQL timestamp function.

5.3 Stream Transformation Provenance

VoCaLS Provenance module focuses on tracking the provenance of stream pro-
cessing services, i.e., tracing the consequences of operations performed over the
streams. The module defines four main classes: (i) vprov:R2ROperator refers
to operators that produce RDF mappings (relations) from other RDF map-
pings [2], e.g., sum and count. (ii) vprov:R2SOperator represents operators
that produce a stream from a relation [2], for instance replaying a static dataset
as a stream. (iii) vprov:S2ROperator refers to operators that produce relations
from streams, e.g., windowing.

Finally, (iv) vprov:Ss2soperator allows describing operators that produce a
stream from another stream. To represent the most common operators, VoCal.S
Provenance already contains several subclasses of the four generic ones presented
above, e.g., vprov:WidowOperator, or vprov:FilterOperator.

SELECT ?res 7op
WHERE { 7op a vprov:Operator; prov:uses 7res.
?str prov:wasGeneratedBy :traffic_stream }

Listing 1.6. SPARQL query sources and operations generating a stream.

12 Sedira et al.

prov:wasGeneratedBy

prov:Entity prov:uses prov:Activity |] $2S0perator
E’# | Prov” 3
hasOutput coubClassOis | <<subClassOf> R2ROperator
contains |
tainedT |
Task conamedin S B R2SOperator
S— S2ROperator

vsd:Operation

Operator

performs

Fig. 4. VoCaLS Provenance subset for RDF stream processing operators.

Through VoCaLS Provenance, the provenance of a stream can be modeled
(R4), enabling queries that indicate resources contributed to the stream or which
operations were executed, as shown in Listing 1.6.

Listing 1.7 illustrates how to track the provenance of a stream that was gener-
ated as the result of vprov: Task which contains a sequence of vprov:Operators.
The execution order of a set of operators is represented in a linked list by
vprov:followedBy and vprov:precededBy

:tl a vprov:Task; vprov:contains :opl,:op2,op3 ; vprov:hasOutput :out.
:opl a vprov:S2R0Operator; prov:uses :in_stream.

:op2 a vprov:R2ROperator; prov:uses :wl; vprov:precededBy :opl.

:op3 a vprov:R2S0Operator; prov:uses :rl; vprov:precededBy :op2.

:wl a vsd:Window; prov:wasGeneratedBy :opl.

:rl a vocals:FiniteStatePartition; prov:wasGeneratedBy :op2.

:out a vocals:RDFStream; prov:wasGeneratedBy :op3.

Listing 1.7. Example of RSP operations using VoCaL.S Provenance.

5.4 Combining VoCaLS with Other Vocabularies

In the following, we show how VoCaLS can be combined with existing vocab-
ularies (R6). This is especially useful to describe the stream content. In fact,
VoCalLS only focus is annotating the stream and streaming services metadata,
rather then modeling the annotations within the streams. On the other hand,
other ontologies such as SSN [11] and SAO [18] are important resources to de-
scribe what is streaming on. In Listing 1.8, we used these to vocabularies to
enrich the stream description of Listing 1.1. The SSN ontology is used to repre-
sent the source device, and the observation data (event:Event) it produces. The
SAO ontology is used to characterize information about the output of a stream
observation (Stream Event).

:CadornaTrafficStream a ssn:0utput, vocals:Stream .
:TrafficFlowSensing a ssn:sensing, sao:StreamEvent ;
prov:used :CadornaTrafficFlow ;
ssn:hasOutput :CadornaTrafficStream.

VoCaLS: Vocabulary & Catalog of Linked Streams 13

:CadornaTrafficSensor a ssn:SensingDevice ;
ssn:observes :TrafficFlow ;
ssn:implements :TrafficFlowSensing .
:CadornaTrafficFlow a ssn:0ObservationValue, sao:StreamData ;
prov:wasDerivedFrom :CTObservation .
:CTObservation a ssn:0Observation, vsd:TimeVaryingGraph, event:Event ;
ssn:observedProperty :TrafficFlow ;
ssn:observationResult :CTSensorQOutput ;
event:time [a time:Instant ;
time:inXSDDateTime "2013-01-01T00:00:00"""xsd:dateTime]

Listing 1.8. VoCaLS with SAO and SSN Ontologies. Prefixes omitted.

6 Related Work

In this section, we position VoCaLS within the state of the art. We discuss how
existing solutions already addressed some of the challenges that we presented
in Section 3. Moreover, we use our requirement analysis to highlight differences
and commonalities between them. Table 2 summarizes the comparison.
Linked Stream Data (LSD) [24].

This work proposed a mech-

anism to identify and access Requirements|R1 R2 R3 R4.a R4.b R4.c R5 R6
data streams coming from TSD v ~ v v
sensor networks. LSD takes SLD v v v v

into account temporal and [DN ~ o~~~
spatial aspects and it enables SAQ ~ ~ ~ v
discovery using URIs that (CES v v v
models sensors, time, space VoCalLS S Y v v v v v Y

and their combinations. Au-

thors did not propose any pro- Table 2. Requirements vs State-of-the-Art. Symbol
tocol extensions w.r.t. Linked Legend: Empty cell, i.e. not covered; ~, i.e. partially
Data. Therefore, LSD supports $8¢888ithrduglf Q%ning protocols, i.e., active
paradigm. The problem of storing relevant portions of the stream is not dis-
cussed, while provenance tracking is possible for data sources using descriptions
but not for stream publishing or transformations.

Streaming Linked Data (SLD) [6]. Barbieri et al. proposed SLD to publish
Streaming Linked Data using an RSP engine. The approach is based on two con-
cepts: the Stream Graph (or S-Graph) and Instantaneous Graph (or I-Graph).
The S-Graph is a document that refers to stream elements and contains other
relevant information. Indeed, it enables stream discovery and can partially track
the provenance of the RSP engine activity. The I-Graph identifies an element of
the stream. Although SLD does not propose any protocol extension, the RSP
engine privileges the active paradigm to publish the stream. Nevertheless, they
do not discuss how to dump stream portions nor how to track the provenance
of the transformation.

14 Sedira et al.

Linked Data Notifications (LDN) [10] is a W3C recommendation® that
aims at making Web Notifications de-referenceable, persistent, and reusable,
i.e., compliant with Linked Data principles. Such a protocol orchestrates the
communication between senders, receivers and consumers. Accessing the stream
contents might be possible using LDN since it is not bounded to any specific
transmission protocols, although the communication methods between consumer
and receiver are RESTful. LDN enables the tracking of the provenance of the
involved actors, but not specifically stream transformations. Although a first
attempt to specialize LDN for RDF streams was presented in [9] neither dis-
covery of streams and services nor stream finite portions are within the scope
of the work, which targets communication/sharing between actors rather than
exploration and querying.

Stream Annotation Ontology (SAO) [18]. SAO can be used to express the
features of stream elements, i.e., StreamFEvents, but not Streaming services. SAO
allows publishing derived data about IoT streams, and it deals with represen-
tation of aggregated data. However, the vocabulary does not aim at describing
transformations in depth. Provenance tracking is possible to some extent for
temporal relations. SAO can be combined with other vocabularies to enrich the
description of sensor data.

Complex Event Services (CES)[15]. Gao et al. proposed CES to support
smart cities applications’ development using semantic technologies. The ontol-
ogy extends OWL-S to support automated discovery and integration of sensor
streams. It was designed to describe event services and requests, therefore it can
be used to annotate streaming services. However, there is no distinction between
streams publisher and consumers. Provenance tracking is possible at the level
of transformation by distinguishing primitive and complex event services. The
ontology is designed to be used in combination with the ACEIS middleware and
other vocabularies (SSN).

7 Conclusion

In this paper, we introduced VoCaLS, a vocabulary for describing RDF streams,
streaming services, and stream transformations. VoCaLsS is designed to allow the
publication, discovery, consumption, and provision of RDF streams. It includes
the capability of describing streaming services; the operations and features that
they support, and the workflows that detail how streaming data is generated or
processed.

The design of VoCaLS has followed a community-driven approach, starting
from the W3C RSP Community group results, and a requirement analysis de-
scribed in Section 3 The challenges presented in this work and the potential
impact of this ontology have been supported by the survey described in the pa-
per, which added to the analysis of the state of the art, show the timeliness and
adequacy of VoCaLS. The proposed ontology has been designed as a generic re-
source, which can be combined with domain-specific vocabularies (e.g. for IoT),

8 https://linkedresearch.org/ldn/

VoCaLS: Vocabulary & Catalog of Linked Streams 15

and reuses and inherits elements from widely used vocabularies such as DCAT
and VoID. Furthermore, VoCaLS is also the result of the evolution and merge
of two independent preliminary works [23,14] in this area.

VoCaLS has been published following well-principled practices for the publi-
cation of the vocabulary, including the set up of permanent URIs, the availability
of full open documentation using Widoco, the availability of sources in Github?,
its inclusion in the LOV repository, and the setup of redirects for serving different
ontology formats.

Road Map: Regarding the adoption and sustainability plans for VoCalLS, several
steps have been taken in this direction. First, given that the establishment of
a common vocabulary is one of the main goals of the W3C RSP Community
Group, we have started the process of elevating this vocabulary as an official
Group Note. The adoption and support from the authors, as a relevant part of
this community, will contribute positively to this endeavor. Once this step is
achieved, the RSP Community Group is expected to take the responsibility for
maintenance, updates and dissemination.

Second, an important goal is to foster the adoption of VoCaLS within relevant
communities. For this purpose we initiated the creation of a catalog of streams
descriptions'?. We started annotating all the historical streams that where pub-
lished for benchmarking purposes. Moreover, we developed a simple utility!'! to
support the annotation of new streams. Finally, in order to lead by example, we
have launched the integration of VoCaLS within relevant services and software
available for the RSP community: the RSP Services, RSPLab, and TripleWave.

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: Workshop on Linked Data on the Web, LDOW (2009)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121-142 (2006)

3. Balduini, M., Della Valle, E.: A restful interface for RDF stream processors. In:
ISWC (Posters & Demos). vol. 1035, pp. 209-212. CEUR-WS.org (2013)

4. Balduini, M., Della Valle, E., Dell’Aglio, D., Tsytsarau, M., Palpanas, T., Con-
falonieri, C.: Social listening of city scale events using the streaming linked data
framework. In: ISWC. vol. 8219, pp. 1-16 (2013)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql:
a continuous query language for rdf data streams. Intl. J. Semantic Computing
4(01), 3—25 (2010)

6. Barbieri, D.F., Della Valle, E.: A proposal for publishing data streams as linked
data - A position paper. In: LDOW (2010)

7. Berners-Lee, T., Bizer, C., Heath, T.: Linked data-the story so far. IISWIS 5(3),
1-22 (2009)

9 https://github.com/ysedira/vocals
10 https://github.com/ysedira/vocals/tree/master/catalog
" https://github.com/ysedira/stream-annotation-tool

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Sedira et al.

Breslin, J.G., Decker, S., Harth, A., Bojars, U.: Sioc: an approach to connect web-
based communities. Intl J of Web Based Communities 2(2), 133-142 (2006)
Calbimonte, J.P.: Linked data notifications for rdf streams. In: Proc. of the Web
Stream Processing (WSP) Workshop at ISWC. pp. 66-73 (2017)

Capadisli, S., Guy, A., Lange, C., Auer, S., Sambra, A.V., Berners-Lee, T.: Linked
data notifications: A resource-centric communication protocol. In: ESWC (1). vol.
10249, pp. 537-553 (2017)

Compton, M., Barnaghi, P., Bermudez, L., GarciA-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., et al.: The ssn ontology of the w3c
semantic sensor network incubator group. J Web semantics 17, 25-32 (2012)
Della Valle, E., Ceri, S., Van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Syst. (6), 83-89
(2009)

Dell’Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: Rsp-ql semantics: a
unifying query model to explain heterogeneity of rdf stream processing systems.
Intl. J. on Semantic Web and Information Systems (IJSWIS) 10(4), 17-44 (2014)
Dell’Aglio, D., Le Phuoc, D., Le-Tuan, A., Ali, M.I., Calbimonte, J.P.: On a web
of data streams. In: ISWC DeSemWeb (2017)

Gao, F., Ali, M.I., Curry, E., Mileo, A.: Automated discovery and integration of
semantic urban data streams: The ACEIS middleware. Future Generation Comp.
Syst. 76, 561-581 (2017)

Gao, S., Scharrenbach, T., Bernstein, A.: The clock data-aware eviction approach:
Towards processing linked data streams with limited resources. In: European Se-
mantic Web Conference. pp. 6-20. Springer (2014)

Garijo, D.: Widoco: a wizard for documenting ontologies. In: International Seman-
tic Web Conference. pp. 94-102. Springer (2017)

Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., Barnaghi, P.M.: A
knowledge-based approach for real-time iot data stream annotation and processing.
In: 2014 IEEE International Conference on Internet of Things, Taipei, Taiwan,
September 1-3, 2014. pp. 215-222 (2014)

Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: ISWC, pp.
370-388 (2011)

Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware
framework for scalable management of linked streams. J. Web Semantics 16, 42-51
(2012)

Maali, F., Cyganiak, R., Peristeras, V.: Enabling interoperability of government
data catalogues. In: Electronic Government, 9th IFIP WG 8.5 International Con-
ference, EGOV 2010. pp. 339-350 (2010)

Mauri, A., Calbimonte, J.P., Dell’Aglio, D., Balduini, M., Brambilla, M., Valle,
E.D., Aberer, K.: TripleWave: Spreading RDF Streams on the Web. In: ISWC. pp.
140-149 (2016)

Sedira, Y.A., Tommasini, R., Della Valle, E.: Towards vois: a vocabulary of inter-
linked streams. In: ISWC DeSemWeb (2017)

Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: SSN. pp.
148-157. CEUR-WS. org (2009)

Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: Rsplab: RDF stream
processing benchmarking made easy. In: ISWC. pp. 202-209 (2017)
Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalén, M., Vatant, B.: Linked
open vocabularies (lov): a gateway to reusable semantic vocabularies on the web.
Semantic Web 8(3), 437-452 (2017)

