1

Total stable (T-stable) models have been first introduced to define the semantics of
normal (not disjunctive) logic programs [11]. General programs may have zero, one
or more T-stable models. This means that there are programs which do not have
semantics and programs which have a nondeterministic semantics (programs with
multiple stable models). Subsequently, stable models have been extended to partial
interpretations (P-stable models corresponding to the three-valued stable models of

Deterministic Semantics for
Disjunctive Logic Programs

Gianluigi Greco, Sergio Greco, Ester Zumpano

DEIS Department
Universita della Calabria
87030 Rende, Italy

{ggreco, greco, zumpano}@si.deis.unical.it

Abstract

In this paper we propose a deterministic semantics for disjunctive logic
programs based on partial stable models. Deterministic models are (partial)
stable models which are not contradicted by any other stable model, i.e. M is
a deterministic model if there is no stable model N such that M UN is not an
interpretation. For instance, for not disjunctive programs, the well-founded
model which coincides with the intersection of all partial stable models, is a
deterministic model.

The deterministic semantics of disjunctive programs is based on the as-
sumption that atoms appearing in the head of disjunctive rules may be un-
defined also if the body of the rule is true, whenever we are not able to say
with certainty which atoms are true and which atoms are false. Under such
an assumption, all programs have at least one deterministic model and there
exists a deterministic model, called max-deterministic, which contains all the
others deterministic models; this model, consisting of the maximal set of true
and false atoms which does not contradict others partial models, defines the
semantics of disjunctive programs.

Introduction

Work partially supported by a MURST grant under the projects “Data-X” and “D2I ”and by

the CNR Research Institute ISI.

Arria-GuLr-ronupyr ZUuul

[19] and the strongly-founded models of [24]). Every program has at least one partial
stable model and their intersection is a model (namely the well-founded model).

Total stable models have been further extended for disjunctive programs [12, 20].
In particular, every disjunctive program may have zero or multiple models and
positive (negation free) programs have at least one stable model. Partial stable
models have been extended for disjunctive programs too and every program has at
least one partial model [8].

The fact that a program may have several P-stable models does not necessarily
impose a non-deterministic semantics [2]; indeed, various types of deterministic se-
mantics are known, e.g. the possibility semantics (based on the union of all models)
and the certainty semantics (based on their intersection). For not disjunctive pro-
grams, certainty semantics is actually captured by one P-stable model only, namely,
the well founded model [29], that coincides with the intersection of all P-stable mod-
els. On the other hand, possibility semantics cannot be captured by a single P-stable
model since the union of all P-stable models is not in general a model.

A P-stable model M is deterministic if for each other P-stable model N, N U M
is an interpretation, i.e. M does not contradict any other P-stable model [24]. The
family of deterministic models admit a minimum (the well founded model) and a
maximum (the maz-deterministic model). Thus, the max-deterministic model is
defined as the maximum of the family of deterministic P-stable models, i.e. it
includes each model in the family and, therefore, it coincides with the union of all
deterministic models. Actually, the family of deterministic models has the structure
of a complete lattice: the bottom of the lattice coincides with the well-founded
model, while the top of the lattice is the max-deterministic.

However, disjunctive stable models have a strange anomaly since there are pro-
grams which have the same semantics under total stable model semantics and dif-
ferent semantics under the partial stable model semantics.

Consider, for instance the following two programs P; = {a <~ —b, b+ —a} and
P, ={a VDb «}. Under the total stable model semantics, both P, and P, have two
stable models: M; = {a, —b} and M, = {—a, b}, that is, they have different syntax
but the same semantics. The motivation of this is that stable (and minimal) model
semantics interprets the disjunction in the head of the rule of P, as ’exclusive’ and,
therefore, P, could be rewritten as P;.

Moreover, if we consider partial stable models, P; has three models, namely
M, My and M3 = {} whereas P, has two minimal models: M; and M,. Thus, P
and P, have now different semantics, P; has a deterministic model (M3) whereas P,
does not have deterministic semantics.

In this paper we propose a simple variation of partial stable model semantics for
disjunctive logic programs which interprets exclusive disjunction in the same way,
independently from the syntax (e.g. P; and P, above have the same semantics, i.e.
the same set of partial stable models).

The following example presents another program where disjunction is interpreted
in a different way under total and partial semantics:

DL EIVIVILINID 11U DELMIAIN1IUVD UV DVIDJUINU L1V E LUGLIU FRUGRANID

Example 1.1 Consider the following program P;

aVb <+

¢ <~ —d, a, b.
d — —C.

e — —e.

Total stable model semantics interprets the first rule as an exclusive disjunction but,
because of the last rule, P; has not total semantics since it only has the two P-stable
models M; = {a,—b,—¢,d} and My = {—a,b,~c,d}. By rewriting, the first rule
into the two rules

a <« —b.
b « -—a.

we get a not disjunctive program P, which has four partial stable models, namely:
My, My, M3 = {} and M, = {—c,d}. The models M3 and M, are deterministic
because the atoms in these two models are not contradicted by any other model (for
instance, the model M, is deterministic since there is no model containing either c
or =d). Moreover, the program does not have total stable model since we cannot
assign truth value to e. O

Deterministic stable models for not disjunctive programs have been proposed
in [25] and their complexity and expressivity has been studied in [14]. Observe
that for not disjunctive programs, the deterministic semantics is strongly connected
with intrinsic stable models and intrinsic fixpoint introduced by Fitting [9, 10].
More specifically, deterministic stable models coincide with intrinsic stable models
[9] (based on intrinsic fizpoint [10]) whereas the max-deterministic model coincides
with the prudently brave model [9] based on the largest intrinsic fixpoint [10]. In
this paper we extend definitions and results on deterministic semantics to disjunctive
programs.

We recall that for disjunctive programs deterministic semantics have been pro-
posed as well. We mention here the static semantics proposed by Przymusinski in
[21] and the disjunctive well-founded semantics D-WFS proposed by Brass and Dix
in [4]. The two semantics are based on very different intuitions and are constructed
by completely different means. While D-WEFS is defined as the least semantics that
is invariant under certain natural program transformations, the static semantics is
obtained by first translating a logic program into a belief theory in the Autoepistemic
Logic of Beliefs (AEB) and then constructing its least static expansion (defined as
the least fixed point of a natural monotonic operator). Although the two semantics
derive from very different ideas, both of them have been shown to share a number
of natural and intuitive properties and, in particular, both of them extend the well-
founded semantics of normal logic programs [5]. The deterministic semantics here
studied is different and based on a different interpretation of disjunctive rules.

The rest of the paper is organized as follows. In Section 2 we recall basic concepts
on the syntax and semantics of disjunctive logic programming. In Section 3 we intro-
duce weak partial stable models for disjunctive programs. In section 4 we present an

Arria-GuLr-ronupyr ZUuul

exact characterization of the nondeterministic semantics for disjunctive programs.
In Section 5 we introduce deterministic semantics for disjunctive programs. Finally,
in Section 6, we present our conclusions.

2 Preliminary Definitions

A (disjunctive) rule r is a clause of the form
Ay V-V A By, By~ Cy, e 2O, k+m+n>0.

A,y Agy By, - -+, B, C1, - - -, Cy, are atoms of the form p(tq,...,t,), where p is a
predicate of arity h and tq,..., 1, are terms. A term is either a constant, a variable
or a structure of the form f(¢y,...,t;) where f is a function symbol and t4,...,t,
are terms. The disjunction A; V ---V A, is the head of r, while the conjunction
By,---, B, C,---,~C, is the body of r. Moreover, if kK = 1 we say that the rule
is normal, i.e. not disjunctive or V-free, whereas if n = 0 we say that the rule is
positive, i.e. —-free.

We denote by Head(r) the set { A, ..., Ay} of head atoms, and by Body(r) the set
{Bi, -+, By, Cy,---,—Cy} of body literals. We often use upper-case letters, say
L, to denote literals. As usual, a literal is an atom A or a negated atom —A; in the
former case, it is positive, and in the latter negative. Two literals are complementary,
if they are of the form A and —A, for some atom A. For a literal L, =L denotes its
complementary literal, and for a set S of literals, =S = {—=L | L € A}. Moreover,
Body™(r) and Body~(r) denote the set of positive and negative literals occurring in
Body(r), respectively.

A (disjunctive) logic program is a finite set of rules. A —-free (resp. V-free)
program is called positive (resp. normal). A term, (resp. an atom, a literal, a rule
or a program) is ground if no variables occur in it.

The Herbrand Universe Up of a program P is the set of all ground terms which
can be constructed by using function symbols and constants appearing in P, and
its Herbrand Base Bp is the set of all ground atoms constructed from the predicates
appearing in P and the ground terms from Up. A rule 7’ is a ground instance of
a rule r, if r' is obtained from r by replacing every variable in 7 with some ground
term in Up. We denote by ground(P) the set of all ground instances of the rules in
P.

Given a program P and two predicate symbols (resp. ground atoms) p and ¢, we
write p — ¢ if there exists a rule where ¢ occurs in the head and p in the body or
there exists a predicate (resp. ground atom) s such that p — sand s — ¢. If p — ¢
then we say that g depends on p; also we say that ¢ depends on any rule where p
occurs in the head. A predicate (resp. ground atom) p is said to be recursive if
p— p.

An interpretation of P is any subset of Bp. The value of a ground atom L
w.r.t. an interpretation I, value;(L), is true if L € I and false otherwise. The
value of a ground negated literal =L is —walue;(L). Assuming the order false <

DL EIVIVILINID 11U DELMIAIN1IUVD UV DVIDJUINU L1V E LUGLIU FRUGRANID

true, the truth value of a conjunction of ground literals C' = Lq,...,L, is the
minimum over the values of the L;, i.e. walue;(C) = min({valuer(L;) | 1 <
i < n}), while the value value;(D) of a disjunction D = L; V ... V L, is its
maximum, i.e. wvaluer(D) = maz({valuer(L;) | 1 < i < n}); if n = 0, then
valuer(C) = true and value;(D) = false. Finally, a ground rule r is satisfied by I
if valuer(Head(r)) > valuer(Body(r)). Thus, a rule r with empty body is satisfied
by I if valuer(Head(r)) = true whereas a rule r' with empty head is satisfied by I if
valuer(Body(r)) = false. An interpretation M for P is a model of P if M satisfies
each rule in ground(P). We also assume the existence of the two predefined atoms
T and F whose truth value is true and false, respectively (valuer(T) = true and
valuer(F) = false for all interpretations I).

Minker proposed in [18] a model-theoretic semantics for positive programs P,
which assigns to P the set of its minimal models MM (P), where a model M
for P is minimal, if no proper subset of M is a model for P. Accordingly, the
program P = {a V b +} has the two minimal models {a} and {b}, i.e. MM(P) =
{ {a}, {0} }.

The more general disjunctive stable model semantics also applies to programs
with (unstratified) negation [12, 20]. Disjunctive stable model semantics generalizes
stable model semantics, previously defined for normal programs [11].

Definition 2.1 For any interpretation M, denote with P™ the ground positive
program derived from ground(P) i) by removing all rules that contain a negative
literal —a in the body and @ € M, and ii) by removing all negative literals from the
remaining rules. An interpretation M is a (disjunctive) total stable model of P if

and only if M € MM (PM). a

For normal P, the total stable model semantics assigns to P the set TS(P) of
its total stable models. It is well known that stable models are minimal models (i.e.
TS(P) € MM(P)) and that for negation free programs minimal and stable model
semantics coincide (i.e. TS(P) = MM(P)).

2.1 P-stable Models

As for total stable models [11, 20], the definition of partial stable models requires
that every positive literal in an interpretation must be derivable from the rules
possibly using negative literals as additional axioms.

For total interpretations foundness alone is sufficient to characterize (2-valued)
stable models, which are indeed defined as the total founded interpretations of the
program [11, 12, 20]. However, as for normal programs [24], foundness alone is
not sufficient to single out partial stable models, as some conditions on the false
literals are needed. Intuitively, what must be imposed on the false literals for a
founded interpretation I to be a (partial) stable model is the consistency with the
closed world assumption. In other words, every false literal in I must be definitely
not derivable from the rules of the program (assuming I), and no further literal

Arria-GuLr-ronupyr ZUuul

must be declarable false without violating some rule of the program. We assume
here that atoms may also be undefined and the following order among truth values:
false < undefined < true. We also assume the existence of the predefined atom
U whose truth value is undefined (i.e. value;(U) = unde fined for all interpretation

D).

Definition 2.2 Let P be a disjunctive program and let M be a partial interpreta-
tion. Then, PM denotes the ground program derived from ground(P) by replacing
every negative body literal =C' with its truth value in 7, i.e. by replacing every —-C
which is true (resp. false, undefined) in I with T (resp. F, U).

A (partial) interpretation M for P is a (partial) stable model for P if M is a
minimal model for PM. O

Observe that in the construction of P rules having F in the body can be deleted
and that the atom 7' can be deleted from the body of rules. Therefore, the above
definition of PM generalizes the definition of P™ introduced in the previous subsec-
tion.

2.2 Restricted Classes of P-stable Models

As for normal (V-free) logic programs [23], P-stable models are grouped into three
main families: T-stable, M-stable, and L-stable models.

Definition 2.3 [8] A P-stable model M is:
(a) T-stable (Total stable) if M is a total interpretation;

(b) M-stable (Mazimal stable) if there exists no P-stable model N of P such that
ND>M.

(c) L-stable (Least-undefined stable) if the set of its undefined atoms is minimal, i.e.
there exists no P-stable model N of P such that N > M. a

Note that the T-stable models coincide with the 2-valued (total disjunctive) sta-
ble models of [20]. Given a program P, the class of all partial (resp. total, maxi-
mal, least-undefined) stable models of P will be denoted by PS(P) (resp. TS(P),
MS(P), LS(P)) or simply by PS (resp. TS, MS, LS) if the program P is under-
stood.

Example 2.4 The P-stable models of the program P; in Example 1.1 are M; =
{a, =b, ¢, d} and M, = {—a, b, —c, d} which also are M-stable and L-stable
but not T-stable since the atom e is undefined. However, if we delete the last rule
defining e, both the models M; and M; become T-stable.

Consider the following program Ps.

a < b

b + —a
cVd <« a

d <c¢

DL EIVIVILINID 11U DELMIAIN1IUVD UV DVIDJUINU L1V E LUGLIU FRUGRANID

The P-stable models of P, are: M; = {b, —a, —¢, —-d}, My = {a, d, —b, —c},
Mz = {—c} and My = {}. M; and M, are also M-stable models, while Mj is not
(as it is a subset of the P-stable model M;, as well as of Mj). Both M; and M,
are also L-stable models for P,. Moreover, M; and M, are also T-stable models, as
they are total interpretations. O

It is worth noting that an L-stable is not total in general. For instance, both the
L-stable models M; and M, of Example 1.1 are not T-stable.

3 Weak partial stable models

Disjunctive rules express a sort of nondeterminism. Take for instance the disjunctive
rule a V b <. The standard minimal model semantics states that there are two
minimal models M; = {a, b} and M, = {—a,b}. Thus, under the certain version
of minimal model semantics we conclude that both a and b are undefined since
the literals a, b, ma and —b do not belong to all models. Moreover, as observed
in the introduction, both minimal and stable model semantics interpret the above
disjunction as exclusive and it could be rewritten into a not disjunctive program; the
rewritten program also has a further model M3 in which both a and b are undefined.

In this paper we propose a variation of partial stable model semantics called
weak partial (WP) stable model semantics, based on a different interpretation of
disjunctive rules.

Definition 3.1 An interpretation M for a disjunctive program P is a weak partial
model for P, if M is a P-stable model for the program w(P) derived from P by
rewriting every disjunctive rule r

a1 V---Vag (—bl,...,bn
into the rule r’
a1 V---Vag <—b1,...,bn,U

where U denotes the predefined unknown value. O

Observe that the above rule ' is satisfied if max({val(a1), ..., val(ag)}) >
min({val(by), ...,val(b,), undefined}).

Analogously, a WP-stable model M for a program P is:
(a) WT-stable (Weak Total stable) if M is a T-stable model for w(P);
(b) WM-stable (Weak Mazimal stable) if M is a M-stable model for w(P);

(¢) WL-stable (Weak Least-undefined stable) if M is a L-stable model for w(P).

Arria-GuLr-ronupyr ZUuul

The family of all weak partial (resp. weak total, weak maximal, weak least-
undefined) stable models of P will be denoted by WPS(P) (resp. WTS(P),
WMS(P), WLS(P)) or simply by WPS (resp. WTS, WMS, WLS) if the pro-
gram P is understood.

Lemma 3.2 For every disjunctive program P
1. PS(P) C WPS(P),
2. TS(P) CWTS(P),
3. MS(P) C WMS(P) and
4. LS(P) CWLS(P). O

The above proposition states that every P-stable (resp. T-stable, M-stable, L-
stable) model for P is also WP-stable (resp. WT-stable, WM-stable, WL-stable).
Moreover, for maximal stable model semantics we also have that every weak maximal
stable model is also maximal stable.

Theorem 3.3 For every disjunctive program P, MS(P) = WMS(P). O

Since TS(P) C LS(P) € MS(Q) and WTS(P) C WLS(P) C WMS(Q), we

have the following corollary.

Corollary 3.4 For every disjunctive program P
1. TS(P) = WTS(P) and
2. LS(P) = WLS(P). O

Moreover, for normal (not disjunctive) programs partial stable models and weak
partial stable models coincide.

Corollary 3.5 For every normal program P, PS(P) = WTS(P). O

4 Non-Deterministic Stable Models

The family of WP-stable models is never strictly non-deterministic and, therefore,
it is necessary to identify the maximal subfamily that has this property.

Recall that for every program P, a WP-stable model of P is M-stable (weak
mazimally stable) if it is not a proper subset of any other P-stable (WP-stable)
model of P.

Theorem 4.1 For each logic program P, (WPS(P),C) is a (not empty) Noethe-
rian meet semi-lattice,! whose top elements are all M-stable models for P. O

LA meet (i.e.lower) semilattice is Noetherian if does not contain any infinitely ascending chain,
i.e.every chain has a top element.

DL EIVIVILINID 11U DELMIAIN1IUVD UV DVIDJUINU L1V E LUGLIU FRUGRANID

The bottom of the semilattice (WPS(P),C) is a weak partial model called
well-founded.

Theorem 4.2 For every logic program P, any two distinct models in WMS(P)
(and MS(P)) are mutually exclusive. O

We next show that WMS captures non-determinism because the union of any
two WM-stable models is not an interpretation.

Corollary 4.3 For every logic program P, WPS(P) is a deterministic family if
and only if (WMS(P)| = 1. O

Every subfamily of WMGS with multiple elements is strictly non-deterministic
and WTS C WMS.

5 Deterministic WP-Stable Models

In the previous section, we have shown that the family of WM-stable models cap-
tures the whole potential non-determinism of WP-stable models and that any non-
deterministic semantics for logic programs should refer to this family, or to some
desirable subfamily, such as that of T-stable models or L-stable models. In this sec-
tion, we study the properties of the family of WPS models which are deterministic.

Definition 5.1 A WP-stable model M for a program P is said to be deterministic
if there is no WP-stable model NV for P such that M U N is not consistent. O

In the following WPS-deterministic models are denoted by WDS models.

Theorem 5.2 A WP-stable model of a logic program P is WDS if and only if it is
contained in the intersection of all WM-stable models of P. O

We point out that, as shown in the next two examples, the intersection of all
WDM-stable models need not to be a P-stable model or, even, a model at all.

Example 5.3 Consider the following program:

aVb <«

d1 — a.

d2 < b.

u <~ —qi, qs.

There are three WP-stable models: M; = {b,—a, qs,qi, u}, My = {a, b,
qQi, e, u} and M3 = {}. M; and M, are M-stable and also T-stable. The inter-
section of M; N My = {—u} is not a weak partial model. The only WDS model is
the empty set. O

Arria-GuLr-ronupyr ZUuul

Example 5.4 Consider the following program:

a.
pVvVq < a.
r ~ P
T ~ q.

Here there are two M-stable models M; = {a,p,r,—~q} and My = {a,q,r,—p}. In
this case, their intersection {a,r} is a model but not WP-stable. The only WDS
model is M3 = {a}. Thus, both a and r are deterministic implications but only a is
founded (supported). a

We next prove that the family of WDS models, has an additional property: there
exists a maximum element in the family which, therefore, can resolve all differences
among WDS models.

Theorem 5.5 For every logic program P, (WDS, C) is a complete lattice. O

Thus, for any two WDS models My, My , MiN M, and M;UM, are both determin-
istic models. The top of the lattice of WDS models for a program P will be called
the mazimum deterministic model for P (denoted by MDS) whereas the bottom is
called well-founded (denoted by WF). Well-founded and max-deterministic models
for disjunctive programs generalize well-founded and max-deterministic models for
not disjunctive programs.

Proposition 5.6 Let P be a disjunctive program. Then
1. The well-founded model M 1is the least WDS model of P,
2. WDS is neither empty nor strictly non-deterministic. O

Traditionally, for not disjunctive programs, researchers seeking a canonical de-
terministic semantics for logic programs have focused on the notion of well-founded
model, which is both the smallest P-stable model and the intersection of all P-stable
models. A more general approach consists in taking the agreement set among all its
M-stable models, and find P-stable models that belong to this agreement set [25].

Example 5.7 Consider the following program:

bVcec <« a.

P <~ b, —p.
dVe < a, p.
q <~ —d, —q.
a.

The P-stable models are: M; = {a}, My = {a,b,—c}, M3 = {a, b, c,p},
M4 = {a" _|b’ C’ _|p’ _|d’ e}’ M5 = {a" _|b’ C’ _|p’ d’ _|e7 _‘q}'
M is the well-founded model and is contained in every WP-stable model. M,

M, and My are mutually exclusive; M3 is mutually exclusive with M, but not with
M, and Ms5. O

DL EIVIVILINID 11U DELMIAIN1IUVD UV DVIDJUINU L1V E LUGLIU FRUGRANID

Note that the maximum WDS model is M-stable if and only if [MS]| = 1.

Example 5.8 Take the following logic program:

aVb <«
e < —a,b.
a — —e.

Here there exists only one M-stable model {a, —b, —e}, which is then the maximum
WDS model. The well-founded model is the empty set since it is unable to realize
that the program is deterministic as the third rule is always false. O

The significance of the MDS model can be appreciated through the following
example based on Raymond Smullyan’s puzzles [27].

Example 5.9 An island is inhabited by knights and knaves: the knaves always lie,
while the knights always tell the truth. A pair of individuals, a and b, are asked
about their nature and individual a answers: “Only one of us is a knight”. What
can be inferred about individual b?

Each individual is either a knight or a knave and there are individuals: a and b:

ind(a).
ind(Db).
knight(X) V knave(X) <

If a is knight then he tells the truth; so b is different, i.e. a knave. On the other
hand, if a is a knave, and, therefore a liar, then b must be of the same kind, i.e. a
knave:

knave(b) < knight(a).
knave(b) < knave(a).

The above program has two T-stable models: M; = {ind(a), ind(b), knight(a),
knave(b), —knave(a), ~knight(b)} and M, = {ind(a), ind(b), knave(a), knave(b),
—knight(a), —knight(b)}.

The max-deterministic P-stable model instead is: M3 = {ind(a), ind(b), knave(b),
—knight(b)}, while the well-founded model is My;={ind(a), ind(b)}.

The max-deterministic model is capable of drawing all deterministic implications
which follow from the given rules — in this case, the conclusion is that individual
b is a knave, no matter what individual a is. On the other side, the well-founded
model is not able to draw any conclusion. O

Observe that the WDS models trade off undefinedness for expressivity and com-
putability. At one extreme, the bottom of the lattice, we find the well-founded
model, which ensures better computability at the expense of more undefinedness.
At the other extreme, the top of the lattice, we find the maximum deterministic

Arria-GuLr-ronupyr ZUuul

model, whose clear semantic advantage and high expressive power are counterbal-
anced by an higher computational complexity. It is interesting to observe that, while
well-founded models capture the certainty semantics of WDS models (i.e. the well
founded model consists of all ground literals that are in every WPS-deterministic
model), maximum WDS models capture the possibility semantics (i.e. the maxi-
mum WDS model consists of all ground literals that are in some WDS model).

Proposition 5.10 For every disjunctive program P, every deterministic stable model
for P is also W D-stable. O

Theorem 5.11 Let P be a disjunctive program and M a WDS-stable model for P,
then for every P-stable model N for P, M U N 1s consistent. O

The above theorem is important since it states that W P-deterministic models do
not contradict P-stable models, i.e. what is inferred by W P-deterministic models
do not contradict what is inferred by P-stable models.

6 Conclusions

In this paper we have proposed a generalization of deterministic semantics for dis-
junctive logic programs. We have introduced WP-stable models, a generalization of
P-stable models for normal programs and have identified subclasses of nondetermin-
istic models (namely MS models) and deterministic models (namely WDS models).
Deterministic WP-stable models trade off minimal undefinedness to achieve deter-
minism, but in different degrees. At the bottom, we find the well-founded model,
which ensures better computability at the expense of more undefinedness. At the
top, we find the max-deterministic model. Thus, the max-deterministic model de-
fines the deterministic semantics for (disjunctive) logic programs.

References

[1] ABiTEBOUL, S., HuLL, R., AND VIANU, V. (1994), Foundations of
Databases. Addison-Wesley.

[2] ABITEBOUL, S., SIMON, E.; AND VIANU, V. (1990), Non-deterministic lan-
guages to express deterministic transformations. Proc. of the 9th ACM Sympo-
stum on Principles of Database Systems, pp. 218-229.

[3] BARAL, C., AND SUBRAHMANIAN, V.S.; (1992), Stable and Extension Class

Theory for Logic Programs and Default Logic. Journal of Automated Reasoning,
8, pp. 345-366.

[4] BraAss, S., AND Dix, J. (1994), A Disjunctive Semantics Bases on Unfolding
and Bottom-Up Evaluation. GI Jahrestagung, pp. 83-91.

DL EIVIVILINID 11U DELMIAIN1IUVD UV DVIDJUINU L1V E LUGLIU FRUGRANID

[6] Brass, S., Dix, J., NIEMELA, 1., Przymusinskl, T. C. (2001), On the
equivalence of the static and disjunctive well-founded semantics and its com-
putation. Theoretical Computer Science, 258(1-2), pp. 523-553.

[6] DuNg, P. (1991), Negation as Hypotheses: An Abductive Foundation for
Logic Programming. Proc. Int. Conf. on Logic Programming, MIT Press, pp.
3-17.

[7] EITER, T., GOTTLOB, G. AND MANNILA, H. (1997), Disjunctive Datalog.
ACM Transaction on Database Systems, 22(3), pp. 364-418.

[8] EITER, T., LEONE, N., SACCA, D. (1998), Expressive Power and Complexity
of Partial Models for Disjunctive Deductive Databases. Theoretical Computer
Science, 206(1-2), pp. 181-218.

[9] FrrTING, M. (1994), On prudent bravery and other abstractions. Unpublished
manuscript.

[10] FrrTING, M. (1985), A Kripke-Kleene Semantics for Logic Programs. Journal
of Logic Programming, 2(4), pp. 295-312.

[11] GELFOND, M., AND LirscHITZ, V. (1988), The Stable Model Semantics for
Logic Programming. Proc. of the 5th Int. Conf. on Logic Programming, pp.
1070-1080.

[12] GELFOND, M., AND LiFscHITZ, V. (1991), Classical Negation in Logic Pro-
grams and Disjunctive Databases. New Generation Computing, 9, pp. 365-385.

[13] GRECO, S., AND SAccA, D. (1997), ’Possible is Certain’ is desirable and
can be expressive. Annals of Mathematics and Artificial Intelligence, 19, pp.
147-168.

[14] GRECO, S. AND SACCA, D. (1999), Deterministic Semantics for Datalog™

Complexity and Expressive Power. Information and Computation, 153(1), pp.
81-98.

[15] GRECO, S., SACCA, D. AND ZANIOLO, C. (2001), Extending stratified dat-
alog to capture complexity classes ranging from P to QH. Acta Informatica,
37(10), pp. 699-725.

[16] Lroyp, J. W. (1987), Foundations of Logic Programming. Springer-Verlag,
Berlin.

[17] MAREK, W., AND TRUSZCYNSKI, M. (1991), Autoepistemic Logic. Journal
of the Association for Computing Machinery, 38(3), pp. 588-619.

[18] MINKER, J. (1982), On Indefinite Data Bases and the Closed World Assump-
tion. Proc. 6th Conf. on Automated Deduction, Lecture Notes in Computer
Science, Vol. 138, Springer, pp. 292-308.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Arria-GuLr-ronupyr ZUuul

PrzyMUsINSKI, T. C. (1990), Well-founded Semantics Coincides with Three-
valued Stable Semantics. Foundamenta Informaticae, 13, pp. 445-463.

Przymusinskl, T. C. (1991), Stable Semantics for Disjunctive Programs.
New Generation Computing, 9, pp. 401-424.

Przymusinski, T.C. (1995), Static Semantics for Normal and Disjunctive
Logic Programs. Annals of Mathematics and Artificial Intelligence, 14(2-4),
pp- 323-357.

SaccA, D. (1996), Multiple Total Stable Models are Definitely Needed to
Solve Unique Solution Programs. Information Processing Letters, 58(5), pp.
249-254.

SaccA, D. (1997), The Expressive Powers of Stable Models for Bound and
Unbound Queries. Journal of Computer and System Science, 54(3), pp. 441-464.

SAaccA, D., AND ZANIOoLO, C. (1990), Stable Models and Non-Determinism
in Logic Programs with Negation. Proc. ACM Symposyum on Principles of
Database Systems, pp. 205-218.

SAccA, D., AND ZANIOLO, C. (1997), Deterministic and Non-Deterministic
Stable Models. Journal of Logic and Computation, 7(5), pp. 555-579.

ScHLIPF, J. S. (1990), The Expressive Powers of the Logic Programming

Semantics. Proc. ACM Symposyum on Principles of Database Systems, pp. 196-
204.

SMULLYAN, R. M. (1978), What is the name of this book?: The Riddle of
Dracula and Other Logical Puzzles. Prentice Hall.

ULLMAN, J. D. (1988), Principles of Database and Knowledge Base Systems,
Computer Science Press.

VAN GELDER, A., Ross, K. AND SCHLIPF, J. S. (1991), The Well-Founded
Semantics for General Logic Programs. Journal of the Association for Comput-
ing Machinery, 38(3), pp. 620-650.

You J. H., AND YuaN, L. (1995), On the Equivalence of Semantics for
Normal Logic Programming. Journal of Logic Programming, 22(3), pp. 211-
222.

