Quantum Constraint Programming

Alessandra Di Pierro and Herbert Wiklicky

Dipartimento di Informatica, Universit4 di Pisa, [taly
Department of Computing, Imperial College, London, UK

Abstract

Quantum computers are hypothetical machines which can perform many
calculations simultaneously based on quantum-mechanical principles that al-
lows a single bit to coexist in many states at once. This enormous potential of
quantum computing has attracted substantial interest, especially during the
last decade, and initiated a whole new field of research. As a contribution to
this research we address the problem of the design of high level languages for
programming quantum computers, and the definition of an appropriate for-
mal semantics for such languages. To this purpose we consider the Constraint
Programming paradigm and we show how computations in this paradigm can
be seen as physical processes obeying the laws of quantum mechanics.

1 Introduction

Quantum Computing is currently one of the hottest topics in computer science,
physics and engineering. One of the reason for such an interest is the dramatic
miniaturisation in computer technology over the past 40 years, which will inevitably
force (if the trend continues) the use of quantum physics to describe the elementary
operations of a computer. The by now already flourishing research in quantum
computing has arisen in anticipation of this inevitable step.

If technological issues have started the studies of the new computational model,
the discovery of its potential has made the interest continuously increasing, espe-
cially after the presentation of Shor’s quantum factorisation algorithm [30], and
Grover’s search algorithm [14]. These algorithms heavily exploits quantum mechan-
ical phenomena. Thanks to quantum effects like superposition and entanglement, a
function can be evaluated on a quantum machine so as all the outputs are computed
in the time taken to evaluate just one output classically. Although a measurement
of the final superposed state can yield only one output, it is still possible to obtain
certain joint properties of all the outputs. As a consequence of this quantum paral-
lelism, Shor and Grover’s algorithms are faster than any known classical algorithm
designed for solving the same problems.

A mathematical model for quantum computation cannot be developed by ignor-
ing the connections between physics and computation. Contrary to the classical
theory of computation pure mathematics is not sufficient and quantum mechanics

APPIA-GULP-PRODE 2001

becomes an essential ingredient of a model for a quantum computer. Indeed, first
stated by Benioff [1] and Feynman [11], this idea was finally formalised by Deutsch
[7], whose Quantum Turing Machine (QTM) makes full use of superposition and
quantum mechanical interactions to accomplish its basic operations. Some of the
foundational work goes back to the early 1970s, like Charles Bennett’s work on re-
versible computation [2] and Samuel Eilenberg’s notion of a general machine model
using linear operators so-called linear machines [10, 34].

Quantum Turing Machines represent a basic model for quantum computation
like Turing Machines for classical computation. The classical theory of computation
provides however additional high-level descriptions of computation, by means of
programming languages. Research in languages and their semantics is still at a very
early stage in quantum computing where algorithms are still described by means
of pseudo-code or similar low-level description like “quantum circuits”. In fact,
as the latter represents a universal language for describing quantum computations,
implementing an algorithm in quantum computing is at this stage like programming
a Turing Machine. Although this is in principle always possible it is quite a tedious
task.

In this paper we propose the use of Constraint Programming as a high level
language for implementing quantum algorithms. In particular, we consider a simple
declarative constraint language and we provide it with an operational semantics
which describes the computation of a program in the language as the evolution of a
(closed) quantum system, that is a system subject to the laws of quantum mechanics.

The central idea for such a description is the notion of a quantum transition
system. This is defined via a transition relation in the style of Plotkin’s “Structured
Operational Semantics” [25], where transitions represent unitary transformations of
states, and the states of the system are described by vectors in a Hilbert space.
The result of a computation in such a transition system has to be defined according
to the quantum mechanical notion of physical observables. Roughly, in a quantum
system one has to distinguish between the final state in the evolution of the system
(computation in the transition system), and its measurement, which allows us to
(partially) observe the information encoded in the final state. This observation
destroys the current state.

We will model our notion of computational observables in terms of the (physically
un-observed but complete) final state instead of the (physically observed but incom-
plete) measurements. This corresponds to modelling a computation as a black box,
leaving it open which particular method the user wishes to adopt in order to observe
the outputs.

2 Quantum Mechanics

The history of quantum mechanics started nearly exactly 100 years ago, when on
the 14th December 1900, Max Planck coined the term in a talk on so-called black
body radiation [31]. The theory was developed fully by Erwin Schréodinger (based
on so-called wave function) and Werner Heisenberg (based on infinite matrices) in
the mid 1920s, and after that combined (and shown to be equivalent) in particular

Quantum Constraint Programming

by John von Neumann and Garrett Birkhoff [4, 33].

2.1 Physical Concepts

We recall a few epistemological concepts at the base of the postulates of the standard
formulation of quantum mechanics:

1. The physical state of a system encodes all information needed to describe the
system uniquely (within a certain physical theory).

2. Physical observables are certain entities or properties — like mass, electrical
charge, velocity, etc — which we associate with a physical system.

3. The measurement of an observable for a given system relates its state to a
measurement result corresponding to the observable in question.

For quantum mechanics it is essential to keep the state and the observables as
separate notions. The measurement process is the conceptual bridge between the
“true” state of a system and the “classical” information we can obtain about the
system. The axiomatic formulation of quantum mechanics using a Hilbert space
based mathematical model relates these concepts. We refer to [16] for such an
axiomatic formulation as well as for any mathematical notions we will use throughout
the paper.

2.2 Quantum Mechanical Postulates

The three basic axioms or postulates of quantum physics are the following:

1. The information describing the state of an (isolated) quantum mechanical sys-
tem is represented mathematically by a normalised vector in a complex Hilbert
space H.

2. A physical observable is represented mathematically by a self-adjoint operator
A acting on H.

3. The exrpected result of measuring an observable A of a system in state © € ‘H
is given by: (A4), = (¥, AZ) = (£|AZ)

We can refine the postulate 3 above in order to give a more detailed description
of what can possibly happen when we measure a certain observable (applying the
so-called spectral theorem for self-adjoint operators):

3’ The only possible results obtained by measuring the physical observable A are
the eigenvalues \; of A.

3” The probability of measuring)\, for a system in state ¥ is given by the inner
product: Pr(A = \,, %) = (Z|P,%) = (¥|P,|Z) with P, the (orthogonal)
projection corresponding to A,,.

APPIA-GULP-PRODE 2001

The result of measuring an observable A for a system in state Z, produces two
effects: first we obtain one of the possible measurement results \,, i.e. one of the
eigen-values of A, and secondly the system is “reduced”, i.e. the new state of the
system is now P,Z. Each of such pairs of effects takes place with a probability
given by (Z|P,Z). Measurements are therefore idempotent and irreversible (unless
P =1d).

One of the basic problems for physics is to determine the time evolution of a
system, e.g. how the state of a system changes according to the physical constraints.
The dynamics of a (closed) quantum system is described by a differential equation,
the so-called Schrodinger Equation:

Az .

) i HZ,
where the self-adjoint operator H represents the physical observable “energy”. It is
usually referred to as the Hamiltonian operator H of the system. The solution to
this equation is given by the operator U; = exp(itH).

Theorem 1 For any self-adjoint operator A the operator

) o .A n
exp(iA) = €' = Z (Zn')
n=0)

1S a unitary operator.

Therefore, the time evolution of a closed, non-measured quantum system is given
by a unitary operator U. The true difficulty for a physicist is to calculate U for
various concrete operators H, while conceptually the time evolution of the system
is particularly simple. It is deterministic and reversible, as U~! = U*.

For further discussions of the physical background we mention just a few of the
hundreds of monographs on the subject, like Feynmann’s lectures [12] for an hands-
on approach, or [20] and [16] for a presentation of the mathematics of the standard
formulation. There exists also an elegant, abstract C*-algebraic formulation of quan-
tum mechanics, e.g. [32] or [5].

3 Quantum Constraint Programming

Constraint Programming (CP,[21]) is a programming paradigm built upon con-
straints and constraint solving, in which computational problems are modelled as
constraint problems which can be solved by a variety of techniques. The most pop-
ular approach to CP is Constraint Logic Programming (CLP, [17]) which was intro-
duced to build user-defined constraints and for modelling constraint problems. An-
other important approach is Concurrent Constraint Programming (CCP,[29]) which
extends CLP by allowing the parallel execution of concurrent processes, and intro-
duces concurrency through an asynchronous communication between processes by
way of constraint entailment. Both programming paradigms are provided with a

Quantum Constraint Programming

A = stop | tell(c) | Dy pit Ai | |l As | proc

Table 1: Syntax of PCLP

clear and elegant mathematical semantics which represents a major advantage of
these languages.

We show that Constraint Programming can be used as a high level specification
of quantum computation, by presenting an implementation of a simple constraint
programming language in a quantum setting. We do so by defining for this language
an operational semantics which reflects the mathematical model used in quantum
mechanics to represent the state and the evolution of a quantum system.

3.1 The Language

The constraint programming language we consider in this paper is a simplified ver-
sion of Probabilistic Concurrent Constraint Programming (PCCP), which was intro-
duced by the authors in [8, 9] on the base of Concurrent Constraint Programming
(CCP) [29].

For the sake of simplicity, we assume here a minimal version of PCCP where
both the hiding operator and the prefixing guard, ask, are removed. The latter
simplification allows us to concentrate on a synchronisation-free sublanguage which
corresponds roughly to a probabilistic version of Constraint Logic Programming
(CLP). Thus, we we will refer to it as PCLP. Procedure calls are simplified by
considering parameterless predicates and abstracting from the parameter passing
operation. The syntax of a PCLP agent A is given in Table 1. In tell(c), c is a finite
constraints in a constraint system C modelled as a complete lattice with respect to
the entailment between constraints [29, 6]. We will indicate by LI the least upper
bound in C.

The basic PCLP agent is the primitive for communication tell, which is used to
add information to the common store (see [6] for a description of the CCP execu-
tion model). The stop agent is introduced for convenience to indicate successful
termination. Nondeterminism is introduced in the form of a probabilistic choice,
D?:l p; + A;, where the p;’s represent “classical” probabilities and express the like-
lihood that agent A; is chosen for execution [9]. The parallel construct, ||, A,
expresses the simultaneous execution of its components. Procedures are supposed
to be defined in a declarations section, declarations being of the form proc < A,
where A is an agent.

3.2 The Quantum Computational Model

We model the execution of a PCLP program as the evolution of a quantum me-
chanical system. The nature of quantum mechanical processes restricts the way we
can represent data, and what we can do to manipulate/change it, i.e. in order to

APPIA-GULP-PRODE 2001

compute. Data must be represented via the state of a quantum system. In quantum
physics, the state of a quantum system is described by a vector in a Hilbert space.
Moreover, any computational step may only be either a unitary transformation (i.e.
a quantum evolution of the system or data in question) or a projection (i.e. a clas-
sical measurement of the system). While the first type of computational step is
deterministic and reversible, the second one is probabilistic (i.e. we can only specify
a set of possible projections which will be performed, depending on the state of the
system) and irreversible (the measurement “collapses” or “reduces” the state of the
system).

In computational terms, the unitarity condition corresponds to model the execu-
tion of a program as a reversible process: Given the outcome of a computation and
the program, it is always possible to reconstruct the input uniquely.

In PCLP, tell is the only effective computational step. Thus, in order to formally
define a quantum model for PCLP, we need to represent such basic agent as a
unitary operator on an appropriate Hilbert space construction on the constraint
system. This construction will be given in Section 3.4.

3.3 Reversible tell

The first step in the “quantisation” of the tell operation is to make it classically
reversible, so that from the result of its application we can reconstruct the initial
state. More precisely, given the resulting store d' after the application of tell(c), we
have to be able to reconstruct the initial store d such that (tell(c),d) — (stop, d').

In the classical case, where we represent the store by a single constraint, we
cannot “undo” the effect of tell(c) as the initial store d is not uniquely determined
by d'. All we know is that

(tell(c),d) — (stop,d =dUc),

but we cannot conclude from d' = d U ¢ that the initial store was d. For example, d
could be true or ¢ and in both cases we would get d' = c.

To overcome this problem we will represent the store by a multi-set of constraints,
e.g. s ={c,d,e,e,...}. Formally, we will represent a multi-set of constraints by a
mapping s : C — N, such that s(c) is the multiplicity of constraint ¢ € C. The effect
of adding a constraint is then simply to increase the multiplicity of that constraint:

(tell(c), s) —» (stop, s’ = sU {c]})

(where ‘U’ denotes the multi-set union). This allows us to uniquely reconstruct the
initial state: If the store s’ is the one resulting after the execution of tell(c), then
we can conclude that the initial state is s = s'\ {c} (where ‘\’ denotes the multi-set
difference).

Proposition 1 The operation tell(c) applied to a multi-set store s is reversible.

The usual representation of the store as a single constraint d can be reconstructed
from the multi-set representation s simply as the least upper bound of the constraints

Quantum Constraint Programming

in s, i.e. d =[]s. Obviously, it is impossible to construct a unique s for a given
d. Note that the store true, which usually indicates the initial store, could be
represented in this case by an empty multi-set { |} or by {truel.

The next step is to define tell(c) as a unitary operator on the constraint system.
This represents the set of all computational states which, according to the postulates
of quantum mechanics (see Section 2), must be normalised vectors in a Hilbert space.
We refer to the Appendix for the formal definition of a Hilbert space.

3.4 Quantum Constraint System

We will assume that the constraint systems C underlying PCLP are finite. A quan-
tum representation of C by means of a Hilbert space must accommodate the multi-set
based representation of the stores introduced in Section 3.3 for the definition of tell
as a reversible operator. To this purpose we consider the complex free vector space
V(C) over the constraint system, formally defined by:

V() = {Zxc-c | z. € C},

ceC

where the coefficients x, encode the multiplicity of constraint c¢. Since C is finite,
V(C) is a Hilbert space. In order to guarantee the linearity of the operator tell , we
will represent the multiplicities as exponentials exp(ni), where n is the multiplicity
and i is the imaginary number (i = —1).

With this representation, for each multi-set of constraints s there is a unique
vector § € V(C) which represents s.

Definition 1 Let s : C — N be a multi-set of constraints. The vector in V(C)
representing s is defined as

ﬁ S exp(s(0)i) e,

where |C| is the cardinality of C.

The factor —— is a normalisation factor which guarantees that every multi-set

Vel

is represented by a normalised vector in V(C).

Example 1 The multi-set s = {c,c,e, f} will be represented by the vector ¥ =
ﬁ(exp(%)@’%— exp(0)d + exp(i)é+ exp(i) f) = 5(exp(2i), 1, exp(i), exp(i)) in the free
complex vector space, C*, over C = {c,d, e, f}.

The basic identity: exp(m +n) = exp(n) exp(m) will now guarantee the linearity
of the operator representing tell(c).

As we already mentioned, the correspondence between constraints and multi-sets
of constraints is not one-to-one. It is nevertheless possible to obtain a bijection when
equivalence classes of multi-sets are considered. More precisely, we can define an
equivalence on multi-sets as follows:

s~ tiff |_|c=|_|c.

cEs c€Et

APPIA-GULP-PRODE 2001

We can now associate to each constraint ¢ € C the equivalence class of the multi-
set {c}. As a consequence, the representation of a constraint ¢ € C as a vector in
V(C) is unique modulo the natural extension of the equivalence ~ to vectors in V(C).

3.5 Unitary tell

A unitary representation of the tell agent can be obtained by defining it as the
diagonal matrix:
Uc = Z Edd + exp (i)Ecca
d#c
where the unit matrices E.; are matrices with zero entries except a 1 in row ¢ and
column d.

Example 2 Assume a constraint system C of cardinality n, with the enumeration
{a,b,c,d,...} Then the tell(c) operator corresponds to the matriz

e 0 0 0 1000
0 ¢ 0 0 010 0
U.=| 0 0 ¢ 0 | 00¢€ 0
0 0 0 ¢ 0001

The effect of the execution of tell(c) in the store {c,d}} is then the vector:

1
1
1 i 1 28

Uc'— € =)
N vno| o

that is the store {c,c,d}.
The adjoint operator of U, is given by:

Uz = Z Eu + eXp(_i)Ecc
d#c

Since U, U} = Id holds, U, is a unitary operator.

A geometric intuition behind the representation of tell by the operator U, is
obtained by recalling that complex numbers of the form exp(iz), with € R, cor-
respond to points on the unit circle in the complex plain, or complex numbers with
absolute value |exp(iz)| = 1 (cf. Figure 1). Therefore, the multiplication of any
complex number z with exp(ix) corresponds to a rotation of z on the imaginary unit
circle by an angle of x radians.

With our representation of the multiplicity, the effect of tell(c) is a rotation by
1 radiant of the multiplicity of c.

Quantum Constraint Programming

exp(iz)

exp(ir) = —1 1 ="exp(2in)

Figure 1: The Unit Circle in C.

Note that this representation of the multiplicity via rotations is unique, period-
icity notwithstanding: It can never happen that exp(in) = exp(im) for any n,m
such that n # m. A simple geometrical explanation of this assertion is as follows:
The equation exp(in) = exp(¢m) holds if and only if n — m = 2kx holds too. In
particular, as the equation exp(in) = exp(i0) can never hold for any n, we can find
out whether a given constraint ¢ is in the store, by simply checking whether its
multiplicity is different from 0.

4 Quantum Operational Semantics

In order to define a quantum operational semantics for PCLP we now introduce the
notion of quantum transition system (QTS), which describe the general behaviour
of a quantum system in terms of a transition relation among the system configura-
tions. We will then consider a special kind of QTS which combines purely quantum
transitions with an external probabilistic choice. This kind of QTS which we call
probabilistic quantum transition system will be used to model computations in PCLP.

4.1 Quantum Transition System

The fact that we have to represent data by vectors in a Hilbert space leads us to
introduce the following definition of a quantum configuration.

Let L be a language with T representing its generic syntactic agent, and let H
be a complex Hilbert space.

Definition 2 A quantum configuration C € Conf as a pair C = (T, Z) of an agent
T and a vector ¥ € H.

Most literature assumes a two dimensional Hilbert space C? to represent so-called
QBits, and then considers a tensor product H = R C? as the computational states
(the so-called quantum register), [3, 22, 28|.

However, since quantum computers are still far from receiving an effective reali-
sation, and it is still an open question what physical phenomena might one day be

APPIA-GULP-PRODE 2001

exploited to implement a quantum computer, we will refer in our model to a generic
Hilbert space.

Definition 3 A quantum transition system is a pair (Conf, —,) of a set of quan-
tum configurations and a labelled transition relation, —,C Conf x Conf, on Conf,
which we denote by Cy —, Cs. A transition can be of one of the two forms: Fither

(To, Zo) —1 (Th, 71) = (11, Uy)
with U a unitary operator on H, or
(T, To) —q; (T3, Ti) = (T;, Pidy)

where the P; (for i € I, a finite or infinite index set) are pairwise orthogonal pro-
jections on ‘H and g; is given by the inner product ¢; = (¥|P;¥) = (¥|P;|Z) .

Note that we can have either a (unique) unitary transition from a configuration
(Tb, Zo) or several projection transitions. If Z is normalised, then the sum:

Zqi = (@Pi|#) < L.

7

If the set of projections {P;} is complete on H, i.e. H = P, P;(H) or Y, P; =1d,
then). ¢; = 1. In general, we will require that), ¢; = 1 for all quantum transitions
stemming from a configuration (7, Z). This corresponds to assume that there is
either only a single unitary transition, or a complete set of projection transitions

{P:}.

4.2 Probabilistic QTS

If we think of a quantum computer as a black box which we are not allowed to
interact with (e.g. by measuring it), we can still combine several such boxes in
various ways without any classical interaction in order to eventually obtain different
results. In particular we can look at computations where an “external”, classical
choice is made among several possible continuations of a computation. This classical
choice could be modelled as a non-deterministic choice, but we will consider here
only a probabilistic version.

A black box can be represented by a QTS where only unitary transitions are
allowed. A probabilistic transition system is then a quantum transition system
where transitions are of the form

<A0:~fo> —p; <Alaf1> = <AZ?UZfO>)

where {p;} is the distribution associated to the classical choice. We require — as
usual — that the sum of classical probabilities related to the transitions from one
configuration (A, Zy) add up to one, i.e. Y . p; = 1.

Definition 4 A probabilistic quantum transition system is a QTS where only uni-
tary transitions or classical probabilistic choices occur.

Quantum Constraint Programming

RO (stop,) —1 (stop, Id %)
R1 (tell(c), ¥) —, (stop, U, &)
R2 <|:|?:1 bi: Ai7~f> —p, <Aj’f>

(4;,8) — (45,7
(e 48— (llieqani 4 | 4 27)

R4 (proc,Z) — (A, T) with proc: —A € P

R3

Table 2: A probabilistic quantum transition system for PCLP

4.3 Quantum Operational Semantics for PCLP

The definition of a quantum operational semantics for PCLP can now be given by
means of the probabilistic quantum transition system in Table 2.

Both the probabilistic choice and the parallel construct are modelled classically,
as in (P)CCP. In particular parallelism is modelled as interleaving, which simulates
parallelism on a single processor. However, we observe that, due to the absence of
synchronisation in our model all different schedulings produce the same result; thus
the sequential execution of all the A;’s is equivalent to any other interleaving.

The only true “quantum operation” is the tell operation which is realised via the
operator U, introduced in Section 3.5.

Definition 5 A computational path for a program P starting in state ¥ is a finite
sequence of transitions

(Ao, To) —p, (A1, UiZo) —p, (A2, Uadh) ... —, (An, Undn),
where Ag = P, & = %y and for each i € {1,...,n}, &; = U;... Uy U 4.

Given a program P, we can represent a computational path for P by a tuple
(U, p) where U = U, ... UyU; =[], U; is the multiplication of the matrices U,
and p = [[, p; is the product of the probabilities associated to the transitions in
a computational path for P. We will denote by Comp(P, Z) the set of all computa-
tional paths for P starting in state &

We can now define a quantum operational semantics for a program in PCLP as
a distribution on vectors in V(C), each representing a final state in a computational
path starting from store true.

Definition 6 The computational observables of a program P 1is the set of all final
states of computational paths for P starting with true and their associated probabil-
ities:

O(P) = {{Utrue, p) | (U, p) € Comp(P, true)}.

APPIA-GULP-PRODE 2001

An alternative way to formulate these observables could be via density matrices
[13, 16, 27], which represent a convenient language quite popular in quantum me-
chanics. Following Gleason’s Theorem [13], such a formulation would be equivalent
to our formulation in terms of state vectors.

Example 3 Let us consider a simple constraint system C = {c,d,cld} and two
agents A = tell(c) || tell(d) and B = tell(c Ll d). If we represent the store true by
the empty multi-set, i.e. by the vector true = (1,1,1) € C*, we obtain the following
quantum observables for A:

O(A4) = {{1, (exp(i), exp(i), 1)) }

as we have:
1 0 0 e 00 1 et
U, -U.-true=1] 0 € 0 010 1 | =1 ¢
0 0 1 0 01 1 1

In a similar way we obtain for B the following observables:

O(B) = {(1, (1, Lexp(i))) }

because:
1 00 1 1
Upy-true=| 0 1 0 11)=
0 0 € 1 e’

Although O(A) and O(B) are different, it is easy to check that the lub of all con-
straints with non-real coefficients is the same. In fact the multi-set {c, d} represented
by (exp(i),exp(i), 1) and the multi-set {c U d} represented by (1,1,exp(i)) have the
same lub, namely c Ll d.

5 Conclusions and Related Work

Although concrete realisations of quantum computers may be years ahead, we think
it is time to start in this area investigations in semantics, in particular on high-level
quantum languages. Our optimistic view is that in this way we can anticipate all
the hard work which in classical computing has been necessary to gradually progress
from COBOL and Fortran to more high-level languages.

Most work on quantum computation use so-called “quantum circuits” to de-
scribe, specify, and reason about quantum algorithms. These are basically graphical
representations of networks of so-called “quantum gates”, i.e. standard (unitary)
operators. They specify a concrete receipt how to build more complicated quantum
processes out of a few basic (hypothetical) building blocks. The abstraction level
using such a kind of “quantum programming language” is obviously very low, and
comparable to the use of boolean circuits or assembler languages. At this level there
are obviously severe problems in describing higher level aspects, like data structures,
etc.

Quantum Constraint Programming

Up to now, the only two higher level attempts to define a true quantum program-
ming language we are aware of are two imperative languages: The first approach
by Omer in Vienna [23, 24] has a C-like syntax while a second proposal by Sanders
and Zuliani in Oxford [28] is based on Dijkstra’s guarded-command language. In
both cases a formal syntax is specified, but the semantics is discussed in a quite
informal and ad-hoc way. Omer essentially provides an implementation which simu-
lates a quantum computer, while Sanders and Zuliani refer to an explicit QBit based
representation. Their main motivation is to provide a language for formally spec-
ifying quantum algorithms like Grover’s search algorithm and Shor’s factorisation
algorithm.

In our work we aim at a more general objective, namely the development of a
semantical framework which could also allow for the study of the expressive pos-
sibilities and limitations of quantum programming languages. Ultimately, we aim
to develop appropriate quantum semantical notions, tools and methodologies (like
quantum type systems, quantum program logics, etc.) which generalise (or repre-
sent the analogous of) the ones available for classical languages. The definition of a
quantum operational semantics based on the notion of a quantum transition system,
and the discussion of a quantum version of a declarative programming language pre-
sented in this paper intends to be a first step towards the development of a quantum
semantics.

References

[1] Paul A. Benioff. The computer as a physical system: A microscopic quan-
tum mechanical Hamiltonian model of computers as represented by Turing
machines. Journal of Statistical Physics, 22(5):563-591, 1980.

[2] Charles H. Bennett. Logical reversibility of computations. IBM Journal of
Research and Development, 17(6):525-532, 1973.

[3] Gennady P. Berman, Gary D. Doolen, Ronnie Mainieri, and Vladimir I.
Tsifrinovich. Introduction to Quantum Computers. World Scientific, Singa-
pore, 1998.

[4] Garrett Birkhoff and John von Neumann. The logic of quantum mechanics.
Annals of Mathematics, 37:823-843, 1936. in [15].

[5] Ola Bratteli and Derek W. Robinson. Operator Algebras and Quantum Statis-
tical Mechanics, volume 1 — C*- and W*-Algebras, Symmetry Groups, Decom-
position of States. Springer Verlag, New York — Heidelberg — Berlin, 1979.

[6] Frank S. de Boer, Alessandra Di Pierro, and Catuscia Palamidessi. Nonde-
terminism and Infinite Computations in Constraint Programming. Theoretical
Computer Science, 151(1):37-78, 1995.

[7] David Deutsch. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proceedings of the Royal Society of London, A400:97-117,
1985.

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

APPIA-GULP-PRODE 2001

Alessandra Di Pierro and Herbert Wiklicky. An operational semantics for
Probabilistic Concurrent Constraint Programming. In P. Iyer, Y. Choo, and
D. Schmidt, editors, ICCL’98 — International Conference on Computer Lan-
guages, pages 174-183. IEEE Computer Society Press, 1998.

Alessandra Di Pierro and Herbert Wiklicky. Quantitative observables and av-
erages in Probabilistic Concurrent Constraint Programming. In K.R. Apt,
T. Kakas, E. Monfroy, and F. Rossi, editors, New Trends in Constraints, num-
ber 1865 in Lecture Notes in Computer Science, Berlin — Heidelberg — New
York, 2000. Springer Verlag.

Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic
Press, New York — London, 1974.

Richard P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(6/7):467-488, 1982.

Richard P. Feynman, Robert B. Leighton, and Mattew Sand. The Feynman
Lectures on Physics — Quantum Mechanics, volume 3. Addison-Wesley, Read-
ing, Massachusetts, 1965.

Andrew M. Gleason. Measures of closed subspaces of a Hilbert space. Journal
of Mathematics and Mechanics, 6:885—893, 1957. reprint in [15].

Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of STOC’96 — Symposium on the Theory of Computing, pages
212-219, Philadelphia, Pennsylvania, 1996. ACM.

Clifford A. Hooker, editor. The Logico-Algebraic Approach to Quantum Me-
chanics, volume I — Historical Evolution. Reidel, Dordrecht — Bosten, 1975.

Chris J. Isham. Lectures on Quantum Theory — Mathematical and Structural
Foundations. Imperial College Press, London, 1995.

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.
The Journal of Logic Programming, 19 & 20:503-582, May 1994.

Richard V. Kadison and John R. Ringrose. Fundamentals of the Theory of
Operator Algebras, volume I — Elementary Theory of Pure and Applied Mathe-
matics. Academic Press, New York — London, 1983.

Richard V. Kadison and John R. Ringrose. Fundamentals of the Theory of
Operator Algebras, volume II — Advanced Theory of Pure and Applied Mathe-
matics. Academic Press, Orlando — London, 1986.

George W. Makey. The Mathematical Foundations of Quantum Mechanics.
W.A. Benjamin, New York — Amsterdam, 1963.

Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Intro-
duction. MIT Press, Cambridge, Massachusetts — London, England, 1998.

Quantum Constraint Programming

[22] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, 2000.

(23] Bernhard Omer. A procedural formalism for quantum computing. Techni-
cal report, Department of Theoretical Physics — Technical University Vienna,
Vienna, 1998.

[24] Bernhard Omer. Quantum programming in gcl. Technical report, Institute of
Information Systems — Technical University Vienna, Vienna, 2000.

[25] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, 1981.

[26] Viktor V. Prasolov. Problems and Theorems in Linear Algebra, volume 134
of Translation of Mathematical Monographs. American Mathematical Society,
Providence, Rhode Island, 1994.

[27] John Preskill. Quantum information and computation. Technical Report 229,
California Institute of Technology, http://theory.caltech.edu/"preskill,
September 1998.

[28] Jeff W. Sanders and Paolo Zuliani. Quantum programming. In R. Backhouse
and J.S. Nuno Oliveira, editors, Proceedings of MPC 2000, Mathematics of
Program Construction - 5th International Conference, volume 1837 of Lecture
Notes in Computer Science, pages 80-99. Springer-Verlag, 2000.

[29] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Semantics foun-
dations of concurrent constraint programming. In Proceedings of POPL’91 -
Symposium on Principles of Programming Languages, pages 333-353. ACM,
1991.

[30] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings of FOCS’94 — Symposium on Foundations of
Computer Science, pages 124-134, Santa Fe, New Mexico, 1994. IEEE Press.

[31] Max Tegmark and John Archibald Wheeler. 100 years of quantum mysteries.
Scientific American, 284(2):54-61, 2001.

[32] Walter Thirring. A Course in Mathematical Physics — Quantum Mechanics of
Atoms and Molecules, volume 3. Springer-Verlag, New York — Wien, 1981.

[33] John von Neumann. Mathematical Foundations of Quantum Mechanics. Prince-
ton University Press, Princeton, 1955.

[34] Herbert Wiklicky. Quantitative computation by Hilbert machines. In C.S
Calude, J. Casti, and M.J. Dinneen, editors, UMC’98 — Unconventional Models
of Computation, pages 200-220, Singapore, 1998. Springer Verlag.

[35] Koésaku Yosida. Functional Analysis. Springer Verlag, Berlin — Heidelberg —
New York, sixth edition, 1980.

APPIA-GULP-PRODE 2001

A Quantum Mathematics

As a reference for some the most important notions related to Hilbert space we
provide in this appendix a list of definitions. For more detailed explanations we refer
to the standard text books on linear algebra, Hilbert spaces, functional analysis, or
operator theory (e.g. [26, 35, 18, 19]).

A.1 Linear Spaces

Definition 7 A vector space or linear space over a field K is a set V together with
two operations: scalar product .-.: KxV +— V and vector addition . +.: VXV — V;
and a null vector ¢ € V satisfying the following azioms (VZ,§ € V and Vo, 5 € C):

1.

~—~

7+2)=(T+9)+7

> L
8y

XD @
)
+
AR
e
I
R
81
+
=
81

8. 1%=7
with 1 the (multiplicative) identity in K.

For K = R we speak of a real vector space, and for K = C we have a complex
vector space. The standard examples of finite dimensional vector spaces are R" and

C".

Definition 8 A (complez) vector space V is called a normed vector space if there
is a real valued function ||.|| on V that satisfies (VZ,5 €V and Vo € C):
1|2 >0
2. ¥ =0iff ¥=0
3. |lod]| = lal [|Z]
47+ 71 < 7] + 171
The function ||.|| is called norm on V.
Definition 9 A (complex) vector space V is called an inner product space (or pre-

Hilbert space) if there is a complez-valued function (.,.) on V x V that satisfies
(VZ, 4,2 €V and Va € C):

Quantum Constraint Programming

1 (@,3) >0 (by (5) we have: (Z,7) € R)
2. (7,7) =0 if T=7

3. (Z,af) = a(Z,)

4- (2,7+2) =(2,9) + (7, 2)

5. (Z,9) = (4, %)

where ~ denotes the complex conjugation. The function (.,.) is called an inner prod-
uct on V.

Note that in physics the inner product is often denoted by (.|.) (which also makes
it somehow easier to distinguish it from pairs (.,.)). Furthermore, there is some
inconsistency regarding the issue if the inner product is linear in the first argument
or in the second, cf. axiom (4).

Definition 10 An inner product space H which is complete with respect to the

canonical metric d(Z,9) = /(¥ — §,Z —)) is called a Hilbert space.

Theorem 2 Any two (separable) Hilbert spaces are isomorphic iff they have the
same dimension.

Any (separable) Hilbert space is isomorphic to (>(I) = {(z:)iez | ez |2i|* < 00},
where T is a countable (index) set. A Hilbert space of finite dimension n is isomor-
phic to C".

A.2 Linear Operators

Definition 11 A map T between two vector spaces V and W is called linear if it
satisfies (VZ,5 € V and Ya € K):

1. T(Z+79) = T(Z+ T(9)
2. T(az) = oT(Z).

The set of all linear maps between two vector spacesV and W is denoted by L(V, W).
If V =W we call T a (linear) operator on V.

Theorem 3 Given (bounded, linear) operator T on a Hilbert Space H, then there
erists a unique, so-called adjoint operator T* satisfying:

(T(z),y) = (z, T"(y))

For finite dimensional operators, i.e. n X n matrices, the adjoint operator is given
as the transpose conjugate matrix, i.e. (t;;)* = tj;.

Definition 12 A (bounded, linear) operator A on a Hilbert Space H is called self-
adjoint or hermitian iff
A" =A.

APPIA-GULP-PRODE 2001

Definition 13 A (bounded, linear) operator U on a Hilbert Space H is called uni-
tary iff
U'U=U0U"=1Id

where Id denotes the identity operator.

Definition 14 A (bounded, linear) operator P on a Hilbert Space H is called pro-
jection iff
P’=PP=P.
A (bounded, linear) operator P on a Hilbert Space H is called orthogonal projec-
tion iff
P’=P=P"

Note that in the physical literature, projections usually refers to orthogonal pro-
jections.

The the so-called spectral theorem for self-adjoint operators allows us to “decom-
pose” any self-adjoint (or hermitian) operator as a unique sum of projections:

Theorem 4 A self-adjoint (or hermitian) operator A (on a finite dimensional Hilbert
space) can be represented uniquely as a linear combination of (orthogonal) projec-
tions: A =Y ApPp, where A\, € R are the so-called eigen-values of A.

