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Abstract

In this paper we push forward the idea of applying the abstract inter-
pretation concepts to the problem of verification of programs. We consider
the theory of abstract verification as proposed in [6, 5] and we show how
it is possible to transform static analyzers with some suitable properties to
obtain automatic verification tools based on sufficient verification conditions.
We prove that the approach is general and flexible by showing three differ-
ent verification tools based on different domains of types for functional, logic
programming and CLP programming. The verifier for functional programs
is obtained from a static analyzer which implements one of the polymorphic
type domains introduced by Cousot [9]. The one for logic programs is obtained
from a static analyzer on a type domain designed by Codish and Lagoon [3],
while the verifier for CLP programs is obtained starting from the type ana-
lyzer described in [17].

1 Abstract Interpretation

Abstract interpretation [10, 11] is a general theory for approximating the semantics
of discrete dynamic systems, originally developed by Patrick and Radhia Cousot, in
the late 70’s, as a unifying framework for specifying and validating static program
analyses. The abstract semantics is an approximation of the concrete one, where
exact (concrete) properties are replaced by approximated properties, modeled by an
abstract domain. The framework of abstract interpretation can be useful to study
hierarchies of semantics and to reconstruct data-flow analysis methods. It can be
used to prove the safety of an analysis algorithm. However, it can also be used to
systematically derive “optimal” abstract semantics from the abstract domain.
From the very beginning, abstract interpretation was shown to be useful for the
automatic generation of program invariants. Even more recently [12, 14, 8], it was
shown to be very useful to understand, organize and synthesize proof methods for
program verification. In particular, we are interested in one specific approach to the
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generation of abstract interpretation-based partial correctness conditions [21, 24],
which is used also in abstract debugging [1, 7, 2].

2 Verification and Abstract Interpretation

The aim of verification is to define conditions which allow us to formally prove
that a program behaves as expected, i.e., that the program is correct w.r.t. a given
specification, a description of the program’s expected behavior.

In order to formally prove that a program behaves as expected, we can use a se-
mantic approach based on abstract interpretation techniques. This approach allows
us to derive in a uniform way sufficient conditions for proving partial correctness
w.r.t. different properties.

Assume we have a semantic evaluation function 7, on a concrete domain (C, C),
whose least fixpoint lfp(7p) is the semantics of the program P. The ideas behind
this approach are the following.

e As in standard abstract interpretation based program analysis, the class of
properties we want to verify is formalized as an abstract domain (A, <), re-
lated to (C,C) by the usual Galois connection v : C - A and v : A — C
(abstraction and concretization functions). The corresponding abstract se-
mantic evaluation function TS is systematically derived from 7,, o and 7.
The resulting abstract semantics 1fp, (7) is a correct approximation of the
concrete semantics by construction, i.e., a(lfpe(75)) < lfp, (7), and no ad-
ditional “correctness” theorems need to be proved.

e An element S, of the domain (A, <) is the specification, i.e., the abstraction
of the intended concrete semantics.

e The partial correctness of a program P w.r.t. a specification S, can be ex-
pressed as

a(lfpc(7p)) < So- (2.1)

e Since condition (2.1) requires the computation of the concrete fixpoint seman-
tics, this condition is not always effectively computable. Then, we can prove
instead the condition

fp, (T5) < Sa (2.2)

which implies partial correctness '. Note that the new verification condition

does not require the computation of the concrete fixpoint semantics. However
an abstract fixpoint computation is still needed.

e A simpler condition, which is sufficient 2 for (2.2) and, therefore, for partial
correctness to hold, is

75 (Sa) < Sa- (2.3)

Note that this is Park’s fizpoint induction condition [22].

!Since, by correctness, a(Ifpe(7p)) < fp, (T2), (2.2) implies (2.1).
’In fact T9(Sa) < S, implies lfp, (T2) < S, since the specification S, is a pre-fizpoint of the
abstract semantic evaluation function 7,5.
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Following the above approach, we can define a verification framework parametric
with respect to the (abstract) property we want to model. Given a specific prop-
erty, the corresponding verification conditions are systematically derived from the
framework and guaranteed to be indeed sufficient partial correctness conditions.

An important result is that, following our abstract interpretation approach, the
issue of completeness of a verification method can be addressed in terms of properties
of the chosen abstract interpretation. In general, in fact, given an inductive proof
method, if a program is correct with respect to a specification S (i.e., if (2.1) is
satisfied) the sufficient condition (2.3) might not hold for S. However, if the method
is complete, then when the program is correct with respect to S, there exists a
property X, stronger than S, which verifies the sufficient condition. [21, 24] proved
that the method is complete if and only if the abstraction is precise with respect to
Tp, that is if a(lfpc(7Tp)) = Up, (7). This approach allows us to use some standard
methods (see for example [20]), which allow us to systematically enrich a domain
of properties so as to obtain an abstraction which is fully precise (- F = F* -
«) w.r.t. a given function F. Since full precision w.r.t. the semantic function 7,
implies precision with respect to 7, these methods can be viewed as the basis for
the systematic development of complete proof methods.

3 Sufficient Verification Conditions

As we have already pointed out, trying to prove condition (2.1) leads to a non
effective verification method. This is due to the fact that (2.1) requires the com-
putation of the concrete fixpoint semantics, which, in general, is not effective. A
verification method based on condition (2.2) is effective only if the abstract domain
is Noetherian or otherwise if we use widening operators to ensure the termination of
the computation of the abstract fixpoint semantics. This is the approach adopted,
for example, in the verifier of the Ciao Prolog Development System 3.

Even if the methods based on condition (2.2) may seem stronger than the meth-
ods based on condition (2.3), this is not always the case. When the domain is
non-Noetherian the use of widening operators leads to an unavoidable loss of pre-
cision, which, in some case, makes condition (2.2) weaker than condition (2.3).
We will show an example of this in the case of the polymorphic type domain
for functional languages considered in Section 4.2. In particular we will show
that, using a verification method based on condition (2.2) with the ML widen-
ing, it is not possible to prove that the function in Figure 1 on page 4 has type
(‘a = ‘a) = (‘a = ‘b) — int — ‘a — ‘b while it is possible using condition (2.3).
Moreover, even when the abstract domain is Noetherian, the computation of the
abstract fixpoint semantics may be very expensive.

On the contrary, the inductive verification method based on (sufficient) condi-
tion (2.3) does not require to compute fixpoints. Therefore proving T2(S,) < S, is,
in general, not expensive even for complex abstract domains. Moreover, when the
function 75 can be viewed as the union of functions 7, defined on the primitive
components of a program, using condition (2.3) has another advantage. Proving

3 Available at URL: http://www.clip.dia.fi.upm.es/Software/Ciao/
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let rec f f1 gn x =
if n=0 then g(x)
else f(f1) (function x -> (function h -> g(h(x)))) (n-1)

Figure 1: The recursive function f.

condition 75 (S,) < S, boils down to verify 75 ,(S,) < S, for every ¢ € P. In this
case, this allows us to prove condition (2.3) compositionally. For example, in logic
programming the condition 7%(S,) < S, can be verified by proving for each clause
c € P, T ,(Sa) < S,. This approach is also useful for abstract debugging [7]. If, in
the compositional proof of 75(S,) < S, we fail in the program component ¢, there
is a possible bug in c.

For all the above reasons, we consider verification methods based on condi-
tion (2.3). Therefore, in order to derive effective verification methods we need to
choose an abstract domain (A, <) where

e the intended abstract behavior (specification) S, € A has a finite representa-
tion;
e < is a decidable relation.

This allows us to use, in addition to all the Noetherian abstract domains used in
static analysis, non-Noetherian domains (such as polymorphic type domains for func-
tional languages), which lead to finite abstract semantics, and finite representations
of properties.

Hence, every time we have a static analysis computed by a fixpoint abstract se-
mantics operator, we can systematically construct a verifier based on conditions (2.3).
We only need to realize the < operation on the abstract domain A. The verifier
is a tool which applies once the abstract fixpoint semantic operator to the user
specification S, € A and verifies that the result is indeed < S,,.

In this paper we show how easy this process can be by showing three different
examples. All verification tools we will present here are obtained by starting from
static analyzers defined on type domains. We prove that our approach is very general
and flexible by defining verifications tools for three different paradigms: Functional
Programming, Logic and Constraint Logic Programming. In particular, the verifi-
cation tool for functional programming, presented in Section 4, is obtained from a
static analyzer which implements one of the polymorphic type domains introduced
by Cousot in [9].

The verification tool for logic programming, presented in Section 5, is obtained
from a static analyzer on a type domain designed by Codish and Lagoon [3].

Finally, the verifier for CLP programs, presented in Section 6, is obtained starting
from the type analyzer described in [17].
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4 Type inference in higher order functional lan-
guages via abstract interpretation

As we will show in the following, the “higher-order types” abstract domain is non-
Noetherian. This is therefore a typical case of application of our approach based on
the effective sufficient condition (2.3), which does not require fixpoint computations.

Our language is a small variation of untyped A-calculus as considered in [9]. [9]
shows that several known type systems and corresponding type inference algorithms
can systematically be derived from (the collecting version of) a concrete denotational
semantics. The main advantage of the abstract interpretation approach to type
inference is that the type abstract interpreters are correct, by construction, w.r.t.
the concrete semantics. This means that “the type of the concrete value computed
by the concrete semantics is in general more precise than the type computed by
the type abstract interpreter”. As it is often the case with abstract interpretation,
approximation is introduced by abstract computations. By looking at the relation
between the concrete semantics and the abstract interpreters, we can reason about
the relative precision of different type inference algorithms.

The traditional point of view of type systems is quite different, since type inference
is viewed as an extension of syntactic analysis. Namely, the (concrete) semantics
is only defined for those programs which can be typed. Traditional type inference
algorithms do also introduce approximation. However this cannot be directly related
to a concrete semantics, because the latter is based on the result of type inference.
The result is that there exist programs which cannot be typed, yet would have
a well-defined concrete semantics, i.e., there exist non typeable programs which
would never go wrong, if provided with a concrete semantics with “ dynamic” type
checking. Let us look at a couple of examples, where we use the ML syntax.

The ML expression

let rec f f1 gn x =
if n=0 then g(x)
else f(f1) (function x -> (function h -> g(h(x)))) (n-1) x fi
in £ (function x -> x+1) (function x -> x+1) 10 5;;

This expression has type (’a -> ’a) -> ’b
but is here used with type ’b.

(taken from [9]) which is an application of the function f of Figure 1 on page 4,
cannot be typed by the ML type inference algorithm. By using a concrete se-
mantics with “dynamic” type checking, we would obtain a correct concrete result
(-: int=16).

The expression is indeed a type correct application of the function f f; g n x =
g(fI*(z)) which has the type (‘a — ‘a) = (‘a — ‘D) — int — ‘@ — ‘b. As we
will see in the following, the function cannot be typed by the ML type inference
algorithm, because of an approximation related to recursive functions. The same
approximation does not allow the ML algorithm to type the expression

# let rec f x = x and g x = f (1+x) in f £ 2;;
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This expression has type int -> int but is here used with type int

Because of the approximation related to the “syntactic” mutual recursion, the type
assigned to f is int — int rather than ‘e — ‘a. Again a concrete semantics with
dynamic type checking, would compute a correct concrete result (-: int=2). The
abstract interpreter considered in the next section, succeeds in correctly typing
the above expressions and is, therefore, more precise than the ML type inference
algorithm.

4.1 A type abstract interpreter

Following the approach in [9], we have developed (and implemented in OCAML [23])
several abstract interpreters for inferring principal types, represented as Herbrand
terms with variables, for various notions of types (monomorphic types a la Hindley,
let polymorphism and polymorphic recursion).

For the current presentation we will represent programs using the syntax of ML.
Since we will sometimes compare our results with those obtained by the ML type
inference algorithm, we will just consider the let-polymorphic abstract interpreter
4 which corresponds to the ML type system.

The language has one basic type only: int. Types are Herbrand terms, built with
the basic type int, variables and the (functional) type constructor —.

The actual domain of the abstract interpreter is more complex, and contains
explicitly quantified terms and constraints. For the sake of our discussion, abstract
values will simply be (equivalence classes under variable renaming of) terms. The
partial order relation is the usual instantiation relation, i.e., t; < 5 if ¢5 is an instance
of t;. Note that the resulting abstract domain is non-Noetherian since there exist
infinite ascending chains.

Our let-polymorphic type interpreter turns out to be essentially equivalent to the
ML type inference algorithm, with one important difference, related to the abstract
semantics of recursive functions. Such a semantics should in principle require a least
fixpoint computation. However since the domain is non-Noetherian, the fixpoint
cannot, in general, be reached in finitely many iterations. The problem is solved in
the ML type inference algorithm, by using a widening operator (based on unification)
after the first iteration. Widening operators [13] give an upper approximation of the
least fixpoint and guarantee termination by introducing further approximation. We
apply the same widening operator after k iterations. This allows us to get often the
least fixpoint and, in any case, to achieve a better precision.

The “let” and “let rec” constructs are handled as “declarations”; the abstract
semantic evaluation function for declarations has the following type

semd : declaration — env — int — enw,

4The abstract syntax of the language, together with the concrete semantics, the imple-
mentation of the abstract domain and the resulting abstract interpreter can be found at
http://www.di.unipi.it/"levi/typesav/pagina.html.
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where env is the domain of abstract environments, which associates types to identi-
fiers and the integer parameter is used to control the approximation of the widening
operator.

We now show the analysis of a recursive function pi which computes [['=" f(n).
The result is an environment where the function identifier pi is bound to its inferred

type.

# semd (let rec pi f a b =
if (a - (b +1) = 0) then 1 else (f a) * (pi f (a +1) b))[] 0;;

- :env = [ pi <~ (int -> int) -> int -> int -> int ]

Consider now the recursive function f in Figure 1 on page 4. The evaluation of
the abstract semantic evaluation function semd with the control parameter set to
0, gives us the result of the ML inference algorithm, i.e., f cannot be typed.

# semd(let rec f f1 gn x =
if n=0 then g(x)
else f(f1) (function x -> (function h ->g(h(x)))) (n-1) x f1) [1 0;;

- :env = [ £ <- Notype ]

However, the application of semd with the control parameter set to 3 computes the
(following) right type for function f, which is indeed the least fixpoint.

# semd(let rec f f1 gn x =
if n=0 then g(x)
else f(f1) (function x —> (function h -> g(h(x)))) (n-1) x f1)[] 3;;

- :env=[f<- (Ca->"’a) -> (Ca->"’b) ->int -> ’a -> ’b ]

Setting the control parameter to —1, will allow us to compute the least fixpoint
without even using the widening operator.

4.2 From the type interpreter to the type verifier

Once we have the abstract semantic evaluation function semd, we can easily use it for
program verification, by taking an abstract environment as specification (abstraction
of the intended semantics). Assume we want to verify a declaration d w.r.t. a
specification S, by “implementing” the sufficient condition (2.3) (T%(Sa) < Sa)
where, < is the lifting to abstract environments of the partial order relation on
terms. The application of the abstract semantic evaluation to the specification can
be implemented as follows:

1. if d = (let f = e) is the declaration of a non recursive function f, semd d s k
returns a new environment S’, where f is bound to the type computed by
assuming that all the global names have the types given in the specification.
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2. if d = (let rec f = e) is a declaration of a recursive function f, semd (let f =
e) s k returns a new environment S’, where f is bound to the type computed,
by assuming that all the global names and f have the types given in the
specification. In other words, we take the type for f given in the specification
and we evaluate once the body of the recursive function, to get a new type
for f. Note that we abstractly execute the recursive function body just once
and we do not compute the fixpoint. Note also that the control parameter
is possibly used only for approximating fixpoints corresponding to recursive
functions occurring within e.

We are then left with the problem of establishing whether S’ < S. Since S’ can
only be different from S in the denotation of f, we can just show that S(f) is an
instance of S'(f). The verification method can then be implemented by a function
checkd : declaration — specification — int — bool consisting of three lines of ML
code.

We have also implemented the verification condition (2.2) (lfp, (75) < S,) by an
even simpler ML function checkdf.

It is worth noting that both checkd and checkdf allow us to verify a program
consisting of a set of function declarations in a modular way. Each declaration is
verified in a separate step, by using the specification for determining the types of
global identifiers.

In the following section we show and discuss some examples.

4.3 Examples

We show now two examples of verification (through checkd) of pi: in the second
example, the verification fails since the type given in the specification is too general.

# checkd (let rec pi f a b =
if (a - (b +1) = 0) then 1 else (f a) * (pi f (a +1) b))
[ pi <- (int -> int) -> int -> int -> int ] 0;;

- : bool = true

# checkd (let rec pi f a b =
if (a - (b +1) = 0) then 1 else (f a) * (pi f (a +1) b))
[ pi <- (°’a -> ’a) -> ’a -> ’a -> ’a ] 0;;

- : bool = false

We can consider also the verification of the traditional identity function 7d. Note that
1d is also correct w.r.t. a specification which is an instance of the correct principal

type.
# checkd (let id x = x)[ id <- ’a -> ’a ] 0;;

- : bool = true
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# checkd (let id x = x)[ id <- int -> int ] 0;;

- : bool = true

Now we verify a function, which is intended to compute the factorial and which
is defined by a suitable composition of pi and id. In the verification, we use the
specification rather than the semantics for p: and id. Note that if we take a wrong
specification for id, we cannot prove the type correctness of fact.

# checkd (let fact = pi id 1) [ pi <- (int->int)->int->int->int;
id <= ’a -> ’a; fact <- int -> int ] 0;;

- : bool = true

# checkd (let fact = pi id 1) [ pi <= (int->int)->int->int->int;
id <= ’a -> ’b -> ’a; fact <- int -> int ] 0;;

- : bool = false

Now we show an example involving polymorphism, where two occurrences of the
polymorphic function id take different instances of the type in the specification.

# checkd (let g = id id) [ id <- ’a -> ’a; g <- ’b -> ’b ] 0;;
- : bool = true

# checkd (let g = id id)
[ id <= ’a -> ’a; g <- (b => ’b) => (b -> ’b) ] 0;;

- : bool = true

In Figure 2 on page 10 we consider again the recursive function f of Figure 1 on
page 4. We now show that if we use the verification condition defined by checkdf
(with widening control parameter set to 0), we fail in establishing the correctness
w.r.t. the principal type (since, as we have already shown, the ML type inference
algorithm fails). On the contrary, the verification condition defined by checkd suc-
ceeds.

In Figure 3 on page 11, we show some aspects related to the incompleteness
of the verification method defined by checkd, still in the case of the function f
of Figure 2 on page 10. In fact, checkd fails to establishing the correctness of f
w.r.t. a specification in which all the variables in the principal type are instantiated
to int. If we use the stronger verification method, based on the computation of
the fixpoint (condition (2.2), without widening), we succeed. The last example
shows that if we verify a specific application of f, we succeed again even with
checkd, because the recursive definition, being inside a declaration, leads anyway to
a fixpoint computation.

Let us finally consider the issue of termination. The recursive function in the
first example of Figure 4 on page 12 is not typed by ML. If we try to verify it w.r.t.



ArriaA-GuLr-rnupyr ZUuul

# checkdf(let rec f f1 gn x =

if n=0 then g(x)

else f(f1) (function x -> (function h -> g(h(x)))) (n-1) x f1)
[ £f<- (Pa->’a) > (’a->"’b) > int -> ’a -> ’b ] 0;;

- : bool = false

# checkd(let rec f f1 gn x =

if n=0 then g(x)

else f(f1) (function x -> (function h -> g(h(x)))) (n-1) x f1)
[ f <- (’a > ’a) > (’a -> ’b) -> int ’a => ’b ] 0;;

|
A\

- : bool = true

Figure 2: Verification of the recursive function f.

a specification assigning to it the type ‘e — ‘a, we correctly fail by using both the
verification method based on condition (2.3) and the verification method based on
condition (2.2) with widening. If we apply the condition (2.2) without widening,
the verification process does not terminate.

5 Type verification in logic languages via abstract
interpretation

In this section we will show an example of transformation of an analyzer into a veri-
fier for logic programming. As in the case of functional programming we will consider
an abstract domain of types. This abstract domain of types for logic programming
was introduced in [3]. In order to formally introduce this domain, we have first to
define the abstraction from concrete terms to type terms 7 : Terms — TypeTerms.
Type terms in this domain are associative, commutative and idempotent. They are
built using a binary set constructor 4+ and a collection of monomorphic and poly-
morphic description symbols. The monomorphic symbols are constants (e.g. num /0,
nil/0) and the polymorphic symbols are unary (e.g. list/1, tree/1). Intuitively, the
description symbols represent sets of function symbols in the corresponding concrete
alphabet. For example, the description symbol list might be defined to represent
the cons/2 symbol in the concrete alphabet and the description of the constant num
might represent the symbols 0, 1, etc.
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# checkd(let rec f f1 gn x =

if n=0 then g(x)

else f(f1) (function x -> (function h -> g(h(x)))) (n-1) x f1)
[ £ <- (int -> int) -> (int -> int) -> int -> int -> int ] 0;;

- : bool = false
# checkdf(let rec f f1 gn x =
if n=0 then g(x)
else f(f1) (function x -> (function h -> g(h(x)))) (n-1) x f1)

[ £f <- (int -> int) -> (int -> int) -> int -> int -> int ] (-1);;

- : bool = true

# checkd(let g = (let rec f f1 gn x
if n=0 then g(x)
else f(f1) (function x -> (function h -> g(h(x)))) (n-1) x f1
in f) (function x -> x + 1))
[ g <- (int -> int) -> int -> int -> int ] (-1);;

- : bool = true

Figure 3: Verification of the recursive function f.

The abstraction function is defined by induction on terms:

(

X if ¢ is the variable X
num if ¢ is a number
nil ift =]

7(t) == < list(7(t1)) + 7(t2) if ¢t = [t1]to]
void if t = void
tree(T(t1)) + 7(t2) + 7(t3) if t = tree(ty, t2, t3)
other otherwise

\

Thus, the abstractions of terms [—3,0,7], [X,Y], [X|Y] and tree(2, void, void) are
list (num)—+nil 5, list(X)+1list(Y)+nil, list(X)+Y and tree(num)+wvoid respectively.

Abstract atoms are simply built with abstract terms, and 7(p(ti,...,t,)) =
p(7(t1),--.,7(ty)). Our abstract domain will be the types domain D,, which is the
power-set of abstract atoms ordered by set inclusion.

57([-3,0,7)) = list(1(=3)) +7([0,7]) = list(num) + list(7(0)) +7([7]) = list(num) + list(num) +
List(T(7)) + 7([]) = list(num) + list(num) + list(num) + nil = list(num) + nil
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# let rec £ x = £f;;
This expression has type ’a -> ’b but is here used with type ’b

# checkd (let rec £ x =f) [ £ <-’a > ’a] 0;;

: bool = false

# checkdf (let rec f x = f)[ f <- ’a -> ’a ]10;;
- : bool = false

# checkdf (let rec f x = £f)[ f <- ’a -> ’a 1(-1);;
Interrupted.

Figure 4: Verification of the non terminating function f.

5.1 From the type analyzer to the type verifier

We have already discussed how, once we have the abstract semantic evaluation
function 7, we can easily define a verification method based on condition (2.3).
Actually, depending on the chosen evaluation function 7%, we can prove partial
correctness of a program w.r.t. different properties. For example, we can prove
that a program P is correct w.r.t. the intended types of the successful atoms or
w.r.t. the intended types of the computed answers and so on. More concrete the
semantic evaluation functions lead to stronger verification methods. Here, in order
to show some interesting examples we consider a very strong method: the I/0 and
call correctness method over the type domain. It is obtained by instantiating the 7
semantic evaluation function of condition (2.3) with an abstract semantic operator
which is able to model the functional type dependencies between the initial and the
resulting bindings for the variables of the goal plus information on call patterns.

Specifications are therefore pairs of pre and post conditions, which describe the
intended input-output type dependencies. They are formalized as partial functions
from GAtoms (the set of all generic atoms) to the domain D, (denoted by A, :=
[GAtoms — D,]) and are ordered by C, the pointwise extension of C on A, .

Proving condition (2.3) guarantees that for every procedure the post condition
holds whenever the pre conditions are satisfied and that the pre conditions are
satisfied by all the procedure calls. It is worth noting that the verification conditions,
obtained in this case from condition (2.3) are a slight generalization of the ones
defined by the Drabent-Maluszynski method [16].

We have developed a prototype verifier ® which is able to test our verification con-
ditions on the types domain. The verifier is obtained by using the existing abstract

6 Available at URL: http://www.dimi.uniud.it/~comini/Projects/PolyTypesVerifier/.
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operations defined in the type analyzer implemented by Lagoon 7. The verification
method can then be implemented by a function verifylOcall : clause — InputSpec —
OutputSpec — bool consisting in several Prolog predicates which implement condi-
tion (2.3) in case of a 7% function which models the type dependencies of I/0 and
call pattern [6]. The code turns out to essentially compute ACI-unification between
the abstractions of the atoms of a clause and all the matching items of the specifi-
cation. Since the C operation on A, is the pointwise extension of subset inclusion,
the resulting set (which is necessarily finite) is then checked to be a subset of the
specification.
In the following section we show and discuss some examples.

5.2 Examples

The queens program of Figure 5 on page 14 is proved to be correct w.r.t. the
following intended specification w.r.t. the type domain A, .

([ queens(X,Y) — { queens(nil + list(num), T), queens(nil,T') }

perm(X,Y) — {perm(nil + list(num), T), perm(nil, T)}
Sli= delete(X,Y) — { delete(T, nil + list(num), U), delete(T, nil,U) }
! safe(X,Y) — {safe(nil + list(num)), safe(nil) }
noattack (num, nil, num),
L noattack(X.Y, Z) { noattack (num, nil + list(num), num)}
( queens(nil, nil),
queens(X, Y) — queens(nil + list(num), nil + list(num))
perm(nil, nil),
perm(X,Y) — perm(nil + list(num), nil + list(num))
S9 = delete(num, nil + list(num), nil),
delete(X,Y) { delete(num, nil + list(num), nil + list(num))
safe(X,Y) — {safe(nil + list(num)), safe(nil) }

noattack (num, nil, num),
L noattack(X.Y, Z) { noattack(num, nil + list(num), num)}

As we have already pointed out, the verification method based on condition (2.3)
is compositional. Therefore, in order to perform the I/O and call correctness veri-
fication, we apply the predicate verifylOcall to the clause to be verified and to the
pre-post program specifications (both given as lists of type atoms). In this way, if
the predicate verifylOcall returns false we can have a hint on the clause that may
be wrong.

In the following, for the sake of readability, we have chosen to skip the specification
arguments in the calls to the tool (except for the first). We can now prove that the
queens program is correct w.r.t. the I/O and call correctness conditions.

| ?- verifyIOcall( (queens(X,Y) :- perm(X,Y), safe(Y)),
[queens(nil+list (num),U), queens(nil,U),

"Available at URL: http://www.cs.bgu.ac.il/ mcodish/Software/aci-types-poly.tgz.
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cl: queens(X,Y) :- perm(X,Y), safe(Y).

c2: perm([],[]).
c3: perm([X|Y],[VIRes]) :- delete(V,[X|Y],Rest), perm(Rest,Res).

c4: delete(X, [XIY],Y).
c5: delete(X,[FIT],[FIR]) :- delete(X,T,R).

c6: safe([]).
c7: safe([X|Y]) :- noattack(X,Y,1), safe(Y).

c8: mnoattack(X,[],N).
c9: noattack(X,[FIT],N) :(- X =\=F, X=\=F + N, F =\=X + N,
N1 is N + 1, noattack(X,T,N1).

Figure 5: The queens program

perm(nil+list (num),U), perm(nil,U),
delete(T,nil+list(num),U), delete(T,nil,U),
safe(nil+list(num)), safe(nil),
noattack(num,nil,num), noattack(num,nil+list(num),num)],
[queens(nil+list(num) ,nil+list(num)), queens(nil,nil),
perm(nil+list(num) ,nil+list(num)), perm(nil,nil),
delete(num,nil+list(num) ,nil+list(num)),
delete(num,nil+list(num),nil),
safe(nil+list(num)), safe(nil),
noattack(num,nil,num), noattack(num,nil+list(num),num)]).
Clause is OK.

| ?7- verifyIOcall((perm([1,[1)), [...1, [...D]).

Clause is OK.

| ?- verifyIOcall((delete(X,[XIY],Y)), [...1, [...]).

Clause is OK.

| ?- verifyIOcall((delete(X,[F|T],[FIR]) :- delete(X,T,R)),

C...1, [...D.

Clause is OK.

| ?- verifyIOcall((safe([X|Y]) :- noattack(X,Y,1), safe(Y)),

(..., [...D.

Clause is OK.

| ?- verifyIOcall( (noattack(X,[F|T],N) :- X =\=F, X =
F =\= X+N, N1 is N+1, noattack(X,T,N1)), [...], [...]).

Clause is OK.

Note that if we change the order of the atoms in the body of clause c1 we obtain
the clause
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cl’: queens(X,Y) :- safe(Y), perm(X,Y)

which can no longer be proved correct w.r.t. the considered specification. Indeed,
now Y in the call safe(Y’) is not assured to be a list of numbers. The tool detects
that there is something potentially wrong

| ?- verifyIOcall((queens(X,Y):-safe(Y),perm(X,Y)), [...1,[...1).
Clause may be wrong because call safe(U) (atom number 1 of body)
is not in the call-specification.

6 Type verification in constraint logic languages

Another example of the transformation methodology of an analyzer is [4], where the
resulting tool is employed to diagnose CHIP programs w.r.t. type information. Types
are over-approximations of program semantics. This is the descriptive approach to
types. The abstract domain is a space of types, described by a restricted class of
CLP programs called regular unary constraint logic (RULC) programs [17]. This
class is a generalization to constraint logic programming of regular unary programs
(used by [19, 18]). Thus, the specification S is a RULC program and the abstract
immediate consequence operator is the one operating on RULC programs of [17].
If the type generated for the head of a clause ¢ by 7,(S5) is not a subtype of the
corresponding predicate in S, then the clause is responsible of generating wrong
type information. S is given “by need” by querying the user about the correctness
of the actual semantics (which is computed by the analyzer) and (in case is needed)
about the intended types.

A prototype ® of the type diagnoser has been implemented as an extension of the
type analyzer of CHIP programs of [17]. The actual implementation of both the
diagnoser and the analyzer provides a more user-friendly syntax for types. Types
are acquired and presented using the regular term grammar formalism (see e.g. [15]).

Consider the wrong CHIP version of the queens program of Figure 6 on page 16.
The call safe(X,T,K1) in the recursive definition of safe has been replaced by
the wrong call safe(T,Y,K1). The :-entry declaration says that the predicate
nqueens/2 should be called with an integer term as first argument and any term
as second argument.

The interaction with the call-success diagnoser is as in the following.

Do you like Call-Type constraint_queens(list(anyfd))? YES

Do you like Call-Type safe(list(anyfd),list(anyfd),int)? NO
What should it be? anyfd, list(anyfd), int.

Do you like Succ-Type safe(list(anyfd),[],int)? NO
What should it be? anyfd, list(anyfd), int.

Do you like Succ-type constraint_queens( ([]|[anyfd]) )? NO

8 Available at URL: http://www.ida.liu.se/ pawpi/Diagnoser/diagnoser.html.




ArriaA-GuLr-rnupyr ZUuul

:-entry nqueens(int,any) .
nqueens (N,List) :- length(List,N), List::1..N,

constraint_queens(List),
labeling(List,0,most_constrained,indomain) .

constraint_queens ([X|Y]):- safe(X,Y,1), constraint_queens(Y).
constraint_queens([]1).

safe(X, [YIT] ,K) :- noattack(X,Y,K), K1 is K+1, safe(T,Y,K1).
safe(_,[1,.).

noattack (X,Y,K):- X #\= Y, Y #\= X+K, X #\= Y+K.

Figure 6: The CHIP queens program

what should it be? 1list(anyfd).
Do you like Succ-Type noattack(anyfd,anyfd,int)? YES

Diagnoser WARNING: Clause
safe(X, [YIT], K) :- noattack(X, Y, K), K1 is K + 1, safe(T, Y, K1).
suspiciuos because of atom safe(T, Y, K1).

Do you like Call-Type noattack(list(anyfd),anyfd,int)? NO
What should it be? anyfd, anyfd, int.

Do you like Succ-Type nqueens(nnegint, ([]|[anyfd]) )? NO
What should it be? int, list(int).

end of diagnosis, no (more) warnings.

Thus we are warned about the (only) incorrect clause of the program.

7 Conclusions

Based on the theory of abstract verification, as proposed in [6, 5], we have shown
how it is possible and “easy” to transform static analyzers (with suitable properties)
into automatic verifiers. In this paper we have presented three different verification
tools based on different type domains for functional, logic and CLP programming.
However, our abstract verification approach is very general and flexible. Existing
static analyzers can be transformed into verification tools dealing with different
abstract domains for different programming paradigms, provided the analyzers are
defined as construction of abstract fixpoint semantics.
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