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Abstract

Formal Set Theory is generally concerned with pure sets and decidability
results for some classes of formulas are well-known. In practical applications,
instead, it is common to assume the existence of a number of primitive objects
(also called atoms), that can be members of sets but behave differently from
them. If these entities are viewed as member-less, standard extensionality
axioms must be revised. However, decidability results can be proved via re-
duction to the pure case and direct goal-driven algorithms have been already
proposed. An alternative approach of modeling atoms that allows to retain
original extensionality was proposed by Quine: atoms are self-singletons. In
this paper we face the satisfiability problem in this case: we show the decid-
ability of 3*V-formulas and we develop a goal-driven unification algorithm.

Keywords: Set-hyperset theories, Satisfiability problem, Syllogistics, Prenex
sentences, Quantifier elimination, Unification.

1 Introduction

With his proof [13] that the classical set theory ZFC is complete w.r.t. V*3- / 3*V-
sentences, Gogol was one of the few forerunners of a very fruitful stream of research
on computable set theory initiated twenty years ago.

Reverse logic revealed that Gogol’s decidability result does not depend on strong
assumptions (such as the axiom of choice or the subset axioms [12]), while algorith-
mic analysis assessed that his 3*V-provability problem belongs to the NP-complete
complexity class, cf. [16].

Generalizations of Gogol’s result consist in

e treating larger and larger collections of formulas in set theory [4, 6], by naive
reference to a standard and well-understood universe of sets such as the von Neu-
mann hierarchy, or its sub-hierarchy of the hereditarily finite sets first investi-
gated by Ackermann;

e seeking a syllogistic decomposition of the input formula r (cf., e.g., [5, 17]),
so as to fully classify those set assignments for the existential variables that
make r true;
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e adjusting the decision algorithm to, or enhancing it [3], under, varied axiomatic
assumptions, e.g. by shifting the focus from regular set theory to hyperset
theory [18].

Applications of Gogol’s result include the design of a unification algorithm for sets
that nicely fits into Constraint Logic Programming with Sets [11]. The latter algo-
rithm was shown in [10] to be generalizable to a variety of set-theoretic contexts,
and in particular to a hyperset context [7].

Formal Set Theory is generally concerned with pure sets. Namely, members of
sets are sets themselves. () denotes typically the unique set devoid of elements.
In practical applications, it is common to assume the existence of a number of
primitive objects (also called atoms), that can be members of sets but, generally,
are not supposed to contain elements. Problems related to sets with atoms (also
called hybrid sets) can be reduced to the pure case using rather standard reductions
(see, e.g. [15]). However, when developing a constraint solver to deal with the hybrid
case, practical considerations lead to a direct solution of the problems. This is the
approach adopted, for instance, in [11] where the language C LP(SET) is presented:
atoms are there viewed as standard first-order terms that can not contain elements.
A third approach to the handling of hybrid sets is justified by the following citation:

Thereupon the question arises how to interpret ‘y € z’ where z is an individ-
ual. The convention that first suggests itself and has commonly been adopted
in the literature is that in such a case ‘y € 2z’ is simply false for all y; indi-
viduals do not have members. But there is a different convention that proves

much more convenient --- none of the utility of class theory is impaired by
counting an individual, its unit class, the unit class of that unit class, and so
on, as one and the same thing. ([21], pp. 30-31)

In this paper we tune up a decision algorithm for 3*V-sentences, already adapted
in [18] from [13] to very weak set/hyperset theories devoid of atoms, to sets with
atoms. Atoms are treated here as self-singleton sets, as suggested above and this
constitutes a novelty; indeed, to date the work in computable set theory treats atoms
as member-less entities (which are not sets, and hence differ from @). One can see as
a drawback in the traditional approach that it forcibly brings into play ‘colored’ sets
in order to ensure a smooth treatment of unification, thus disrupting both elegance
and intuitive appeal of the extensionality axiom.

We will discover, by the end, that the set unification algorithm of [8] can be
painlessly adapted to sets with self-singleton atoms. This result discloses a viable
alternative to the approach adopted in {log} for handling atoms in a logic program-
ming language with sets. Indeed, it can be seen as a new foundational contribution
to the design of theories suitably supporting programming with sets.

In Section 2 we describe the weak set theory needed for the scope of the work.
In the subsequent Section 3 we show how to develop a decidability test for a class
of formulas of the language used. Then, in Section 4 we develop a goal-driven
unification algorithm for our theory. In Section 5 we draw some conclusions.
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2 Set Axioms

In this section we will describe an axiomatization suitable for the purposes of the
research carried on in this paper. This axiomatization can be considered as

e a subtheory of standard Zermelo-Skolem-Fraenkel (cf. [12, 14]),
e a subtheory of Aczel’s hyperset theory (cf. [1, 2]), and

e a tiny theory of sets ultimately based on atoms.

Despite being rather weak, the theories to be specified will be able to ‘judge’
every 3*V-sentence r, by entailing either r or —r as a theorem.

We will characterize atoms by a monadic predicate ur. Atoms are viewed here, in
agreement with [21], as self-singletons (i.e., entities a fulfilling the identity a = {a})
in a universe which, save for what regards them, is well-founded by membership.

A weak theory of sets can be based on the axioms of extensionality, null set,
single-element addition and removal, which are (see, e.g., [18]):!

(E) ViweX veY)— X =Y,
(N) dzVvov ¢z,

(W) JuVv(vew+veX Ve =Y),
(L) Vv (velveXAv#£Y).

To inject atoms into a set theory, one has to restate (E) w.r.t. the formulation
seen above. If atoms were viewed as entities devoid of members, then (E) should be
revised, since an atom and the null set (), although distinct, would have the ‘same’
members. For us, the distinguishing feature of an atom a is the fulfillment of the
condition a = {a}. An advantage is that (E) needs no change.

However something must be stated about well-foundedness (or non well-foundedness)
of sets. A usual way to assert well-foundedness is via the regularity axiom:

(R) FrVo(r=XVvreX)A-(verAveX))

We need to revise (R) because its formulation allows to entail ~3z ur(z). The
revised version (R') of (R), and a plenitude axiom (ensuring that there exist atoms
at will), are as follows:

(R dr ((r =XV(ur(r)AreX))ANVveX)(ver — ur(v))) :
(De) (Fueu)(Vve X) (udgv).

For a very weak, and yet useful, theory of sets with atoms, only the axioms (E),
(N), (W), and (L) need to be added.

Notice that if we were to postulate scarcity =3z ur(z) instead of plenitude, this
new (R') would become equivalent to (R). At any rate, even in the new context
the role of (R) remains the one of forbidding the formation of genuine membership
cycles:

1 Capital letters denote universally quantified variables.
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Lemma 2.1 It follows from the definition of ur and from the azioms (E), (N),
(W), (L), and (R'), that for every natural number n,
(A™)  XpeX e-eX,e€Xo—ur(Xg)AXy = X; =---= X,,.

Proof:  (Sketch) After constructing (by (N),(W)) the set X, = {Xj,..., X}, one
can treat the two cases (Jv € X,)ur(v) and (—3v € X,)ur(v) separately, and
(R’) intervenes only in the latter. O

The axiom (Dg¢), called anti-diagonal in [6] is needed for the decidability proce-
dure:

(Dg) dz(z¢ 2N (VxeY)(z ¢x))
This property follows from the other existing axioms:
Lemma 2.2 The statement (Dg¢) ensues from (E), (N), (W), (L), and (R).

Proof:  (Sketch) Given Y, we are to find a z such that both z ¢ z and -3z s.t.
z€x Az €Y hold. In view of (AW), it suffices to take z = Y \ {Y}. O

3 A Decision Technique for 3*V-Sentences on Sets

In this section we present a two-phase decision technique to test 3*V-sentences for
satisfiability over sets with atoms. First, we introduce a technique that enables
one to reduce the provability problem for 3*V-sentences to the same problem for
(equivalent) formulas involving bounded quantifiers only. Secondly, in Sec. 3.2 we
describe a decision algorithm for proving or refuting formulas of the latter kind.

3.1 Quantifier-bounding technique

Let us start by outlining a technique, introduced in [16, 18|, for re-expressing any
given sentence in the predicates = and €, of the form dz;---dz, Yy p, with p
devoid of quantifiers, constants, and functors, as a sentence which involves restricted
universal quantifiers Vy € z; instead of the unrestricted Vy.

The postulates on pure sets, as well as those on pure hypersets, were exploited
in order to rewrite the given sentence into equivalent form

(Fzy,... a$n)(p1 AN ApgA(Vy € z1)pgri A---AN(Vy € xn)pg+n) .
Here we will see how to adapt the same technique to sets with atoms.

Atom elimination. Let &y = dz;---dx, Vyp be the input formula. In p we now

admit constant symbols (denoting atoms). Let ay,...,a; be all the distinct
constants occurring in p and let 2,41, ..., 2,1, be new distinct variables. Then
a formula ®, equivalent to ®; can be defined as follows:?
p[a'l ~ Tpgly---5 A~ $n+k]/\
¢, =p Jri--dzpVy ( +k +k
e " R Nicnir (Ti € T3 A /\?:i+1 Ti # T;) )
P

2By p|z ~ y] we denote the formula obtained by replacing all occurrences of x with y in p.
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Quantifier bounding. In this stage, by moving inward the universal quantifier,
the formula @, is rewritten as to yield a formula ®, of the form:

N Bly ~ @] A
N;(Vy € zj)g;A
An(Vy € y)rpA

Ne(Vy & y)s

where p is the subformula of ®; as defined in the previous stage. Observe that
in the third conjunct of ®, (i.e., A, (Vy € y)ry), the constraint y € y forces y
to be an atom, while the constraint y ¢ y ensures that y is not an atom in s,.
Let us explain this rewriting process by means of a simple example (for the
general description see also [18]).

Dy =p dzq-- 'Elxn—l—k

Example 3.1 Consider the formula (i.e., let n + k£ = 2 in the above ®,):
(I)l = E|.’l?15|.’l?2vyﬁ

where p is a Boolean combination of literals v 7 v with u, v in {z1, z5,y} and
7 a predicate symbol in {=, €}. For any given assignment of values to the
variables z; and x5 satisfying ®;, the formula must hold for each possible
values of y. A particular y may be equal either to z; or to x5, or it may be
the case that y € x,, or y € x5, and so on. We proceed by case analysis,
first by splitting Vy p into various mutually exclusive sub-cases, and then by
processing each of them. More precisely, we start by observing that (by the
Boolean tautology AV BV (A A—B)) it holds:

<I>1EEleE|x2Vy((y=x1/\;5) V (y=xz2AD) V &y;é:vl/\y#xg/\ﬁl)

!

P

Similarly, we have that

p'z((yéxl/\p') V (y €xzo AD) V&yéxl/\y¢x2/\p'l)

pll

and moreover
P = ( (yeynp") v (ygynp") )

To sum up, we have that

y=1 /\p)\/

YETIAY F X1 ANY # Ta AP)V
YEYANYE T ANy g oo ANy # 1 ANy # 22 AP)V

(
(y =
&y = dzdx,Vy Eyeﬂh/\y#xl/\y;éh/\p)
(
(y¢y/\y¢xl/\ygé;c?/\y#xl/\y#@/\p)
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By exploiting the properties of universal quantification, the formula ®; can be
proved equivalent to ®5 below:

ply ~ z1]A

ply ~ o)A

(Vy € 21)(y # 21 Ay # 22 = D)A

(Vy € 22)(y # 21 ANy # 22 = D)A
Myey)lydaoi ANyd xo Ny #x1 ANy # 29 = P)A
Vydy)yg o Ay¢aoNy# s Ay #x3— D)

(I)Q =Def 3:51 3552

We will see in the following that the particular form of the 3rd-6th conjuncts
will allow us to further simplify the formula p.

Self-singleton treatment. Consider a formula ®, as obtained in the preceding
step. Conjuncts of the kind ply ~ z;] and (Vy € z;)g; in ®,, are already in
the desired form. In presence of self-singletons, the treatment of the conjuncts
(Vy € y)ry, and (Vy ¢ y)s, differs from the one presented in [18].

The elimination of both the quantifiers of the form (Vy € y)ry, and (Vy ¢ y)se
crucially depends on the following lemma:

Lemma 3.2 (Diagonalization) Sets with atoms fulfill both the law

(/\0<j§m /\m<g§n Xj 7& Xg) - (Ely g_ﬁ y) ((/\0<i§n ) §é XZ) A

(Ye) Powren 8 2 X) A Nosem X5 € 9) A Npeoer Xo €9))

with m, n integers, 0 < m < n, and the law
(Ye) By e y)(Nocicn Xi ZYyAy ¢ Xi).

Proof:  The proof is strongly based on the laws (Dg¢) and (D¢). The only
deviation worth of notice w.r.t. the similar result in [18] lies in the elimination
of the forms (Vy € y) r,. We know that 7, has the form A _,., (X; #y Ay ¢
X;) — ¢', and since

(Vyey)(/\ y¢ Xi » N\ Xg¢y>

0<i<n 0<g<n

holds, we can reduce (Vy € y)r, to a formula ¢”, obtainable from ¢' by
replacing X, € y by false forg=1,...,n. O

The final formula can be obtained from ®, by exploiting the above lemma and
in virtue of the form of r, and s, as described by the following algorithm:

1. Consider a formula of the form (Vy y) (A;(y # x:i Ay € x;) — ¢) where
€ is either € or ¢ and ¢ is an unquantified conjunction of literals on the
variables 1, ..., %k, y and predicate symbols = and €. W.l.o.g. we can
assume that ¢ is in conjunctive normal form, namely ¢ = Dy A--- A D,.
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2. This allows us to distribute the A over V and to consider separately for-
mulas of the form

Y =Vy (yﬁyAA(y#xiAy¢xi)+D>

where D is a finite disjunction of positive and negative literals of the form
umv with m in {=, €} and u, v variables from z1,..., Tp 1k, ¥

3. The consequent D in v can be simplified by exploiting the premises of
the implication. There are several cases to take care of:

(a)
(b)

(c)

The literals of the form y = y,y # y are replaced by true and false,
respectively.

The literals of the form y € y,y ¢ v,y € z;,y ¢ x5,y = x5,y #
x;: are replaced by true or false, depending on the premisses of the
implication.

If at least one of the disjuncts of D has been replaced by true, then
the whole 1 can be replaced by true. Otherwise, if all literals of D
have been replaced by false, then v is replaced by false.

Any disjunct in D in which y does not occur (e.g., literals of the form
x; T xj, with 7 is in {=, €}), can be moved outside of the scope of
the quantifier Vy in 9.

Let 9’ be the formula obtained from ¢ by performing the steps
(3a)—(3d). Moreover, let D' be the homologous of D in 7.

As in step (3c), if all literals in D’ are false, we can replace ¢’ by
false, if one of them is true, by true.

At this point all literals in ¢’ are of the form z; € y or x; ¢ y. We

consider separately the two possible cases y € y and y ¢ y:

y € y: This means that y is forced to be an atom and thus y = {y}
holds. Each literal of the form z; € y can be replaced by false,
since the premises impose x; # y. Therefore, if there are no
literals of the form z; ¢ y then ¢’ is simply equivalent to false;
otherwise, (only literals of the form z; € y are in ¢') ¢’ is provably
equivalent to true by using the law (Y¢) of Lemma 3.2.

y ¢ y: ¢ is of the form:

vy (y¢yA/\(y7éfviAy¢wi)—> (\/ zj €YV \/fﬂj¢y>>

JEF1 JEF

where F; and F; are sets of indices among {1,...,n+k}. There
are two cases:

i. If one between F; and F; is empty, it is immediate to check
that the formula is false.

ii. Otherwise, replace ¢’ by the disjunction \/;cz, ez, Ti = ;.
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Correctness of this rewriting step follows from (Y¢) of Lemma 3.2.
As an example of how (Y¢) enters into play, consider the simple
case of the formula:

Vy W yNy# i ANy x) AN(y#xoAy¢ay) >x €YyVay ¢y)

Two cases:

e if ©1 = w9 then the r.h.s. of the implication become equivalent
to 1 € y V 1 ¢ y, hence to true.

e Otherwise, if 1 # x5, by (Y¢) the whole formula is equivalent
to false

3.2 Decision technique for sentences with restricted univer-
sal quantifiers

A satisfiability decision procedure for finite conjunctions of formulas

(Vyr € wy) -+ (YYm € W) P

where m > 0, y1,..., ¥y, are variables distinct from one another and distinct from
the variables w;, and p is a propositional combination of atomic formulas of the two
kinds u = v, u € v (u,v variables), is described in [6]. We will indicate below the
changes needed to adapt that procedure to sets with self-singleton atoms. As in
Sec. 3.1, we can also start with constants representing atoms in the input formula r
and eliminate them at the very beginning.

From now on, we indicate by r the result of atom elimination and by zi,...,z,
the distinct free variables in r. Moreover, we put zo =p.; 0.

Let us begin by considering the case of r quantifier-free. W.l.o.g., we can assume
that 7 is a conjunction of literals u = v, u # v, u € v, and u ¢ v, where each u and
v stands for either a variable or (). We determine the finest equivalence relation ~
between the symbols zq, z1, ..., x, such that

e z; ~ x; when z; = z; belongs to ;

® 7, ~ x;, when there is a membership cycle z;, € z;, € --- € ;, € 24, in T,
and w;, € v, Zj, € T}y, ..., Tj,_, € Tj,, and z; € w;, belong to r, for some
h and k.

The satisfiability test consists in checking that r contains no literals u # v with
u ~ v; no literals u € v with v ~ ); and no pair u € v, u’ ¢ v’ of literals with u ~ v’
and v ~ v'. If the test is successful, then sets .A(z) can be assigned to variables so as
to satisfy r, as follows: a directed graph G whose nodes are the ~-classes and whose
edges represent membership relations directly drawn from 7 is built up. The graph
is acyclic save for self-loops; nodes with self loops are put in a 1-1 correspondence
N — a™) with atoms;? finally, one defines A as follows:

3In particular, if a variable x originates from the elimination of an atom b, and N is the ~-class
of z, then we take a(™ = b.
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a™ if N has a self-edge,
AN] =< {a™, 0} if N has no entering edge and ) is not in NV,
{A[M] : MGN} otherwise.

Let us now move to the case when at least one conjunct of the input formula r is
quantified. In order to decide r:

e We conjoin with r the condition

/\ /\ (xi#mj_)\/(mn+h€xi<_>xn+h¢xj))a
1=0

=0 j=i+1 h=1

where z,41,..., %9, are new variables (witnessing differences among the sets
Ti, Tj)-

e By proceeding inside-out, we replace each sub-formula of the form (Vy € w)p
by

/\(a:Z € w — ply ~ x4)).

e When no quantifiers are left, the disjuncts of a DNF-formula tautologically
equivalent to the resulting r are tested for satisfiability as explained above,
until a test leads to success or no disjunct remains.

The completeness proof of the method goes along the guidelines of [6].

A technique for obtaining an exhaustive decomposition of any given conjunction
r of the form

g g+n
Apvin N\ (Vy€a)p
j=1 1=g+1

has been designed in [18] for the case of pure set/hyperset theories. Intuitively, this
technique amounts to exhaustively generating all possible interpretations satisfy-
ing r. Results are presented (cf. [18, 6]) in order to ensure that this search can be
safely restrained within a finite portion of the search space.

A further advance in our work should consist in adapting the original technique
to deal with self-singletons. As result we would obtain an effective method to rewrite
the formula r as an (equivalent) finite disjunction. Such a disjunctive decomposition
would encode all possible manners one can satisfy r and, ideally, it should be repre-
sented as a finite family of substitutions. This would give way to the introduction
of an algorithm able to solve the unification problem for sets with atoms, through a
finite family of templates encompassing all possible solutions to the given instance
of the problem. Algorithms of this kind are basic components of any theory-based
deduction system.
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4 Unification Algorithm for Sets with Atoms

In this section we develop a unification algorithm for the theory considered in Sec. 2.
We assume the standard notions of first-order term, substitution, mgu, etc. [20].
In the context of axiomatic set theory, two terms s and ¢ denoting sets are said to
be unifiable if there is a substitution ¢ such that so and to represents the same set.
In this case we say that o is a solution of s = t. However, determining whether
two terms s,t which denote sets are unifiable, amounts to establishing whether
the existential closure of the formula Vy(y € s <> y € t) is valid. Under the
assumptions that we are about to make, the latter sentence is easily brought to the
F*V-form considered above, so that it can be submitted to the decision algorithm
already seen. Instead, in what follows, we directly face the unification problem by
developing a goal-driven unification algorithm.

To denote finite sets we fix a first-order signature ¥ = {0, {- |-}, c1, ¢, ... }, where
each ¢; is assumed to fulfill ¢; = {c;}, i.e., to be self-singleton. If 2 and y are terms
denoting sets, then {z|y} denotes the set whose elements are ‘a’ plus those of
the set y (cf. the axiom (W)). As a notational convenience, we denote the term
{t1 [ {ta| ---{tn|t}}} by {t1,10,...,t,|t}, and simply by {t1,ts,...,t,} when t is
. When n = 0, {t1,to,...,t, |t} is simply ¢. Moreover, t is said to be the tail
of the term {t1,ts,...,t,|t}, provided that {-|-} is not the main functor of ¢. In
the algorithm, uppercase letters represent variables; IV stands for a newly generated
variable; r, s, t, possibly subscripted, stand for generic terms; and c,d represent
constant symbols drawn from among the ¢;s. With ¢[X] we denote a term having
X as subterm.

We will make use of the monadic predicate symbol ur to state that certain terms
designate atoms. Thus, ur(t) implies ¢t = {t}. For instance, if X is a variable, ur(X)
is satisfiable; ur({c, d}), ur() are false formulas.

A substitution o is a solution of a system F if all the equations of F are simul-
taneously satisfied by 0. A system F is said to be in solved form if it consists only
of equations of the form X = ¢, with X not occurring in ¢ nor elsewhere in £. A
system in solved form uniquely identifies a substitution which is trivially a solution
of itself.

The unification algorithm Unify described in Fig. 1 consists of mutually exclusive
rewriting rules that are non-deterministically applied to E until E reaches a solved
or fail is obtained. Briefly,

e Action (1) removes obvious identities.

e Action (2) is but a rearrangement aimed at making the formulation of the
other rewriting rules simpler.

e Action (3) performs occur-check, to ensure well-foundedness. The presence of
atoms allows many more solution possibilities than the standard (well-founded)
case. For instance, X = {X,{X}} admits X = ¢ as a solution for any atom
¢, since {c,{c}} = {c,c} = {c} = ¢. Action (3) also expands some equations
involving atom variables.

e Action (4) applies substitution.
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(1) t=tAE} —» E
t=XAFE
(2.1) tis notavariable} X=inE
t=cAFE
(2:2) t is neither a variable nor a constant d } ¢c=tNE
(3.1 X ={to,..,tn | X}AE } —» X ={to,...,t,| N}AE
X = {tg,.. ., t;[X],.- -, tn |t} AE n
(3.2) L) ) Nio X =t; NEA
tis avariable Y, X ZY, or () DY = v
(i)Y = X
Add ur(X) to U
X = {to,...,ta} AE v,
(3.3) ur(X) € U = Nieo X =tAE
X:{to,...,tnlc}/\E n 1. _
(3.4) ur(X) €U = Ao X =t ANX=cAE
) X=YAE| _ BX/YJAX=Y
) X occurs in E,ur(X), X 2Y Add ur(Y) to U
X=cANE
(4.2) X occurs in E, — E[X/JANX=c
X=tANFE
(4.3) X occurs in E, X not in ¢ and not ur(X) = BIX/MAX =t
c={t1,...,tn |d} ANE .
(5.1) c#dn>0 —  fail
(5.2) c=0ANE } — fail
(5.3) 0={s|t}AE } ~ fail
(5.4) {s|t}=0AE } — fail
(6.1) c={to,.-.,tn|[Y}AE } = AL, c=t; AEA
(@)Y =0v
(i)Y = ¢
c={to,...,tn |t} ANE n
(6.2 tis cor 0 = Nig¢=tAE
(7.1) {to,.. s tm [ X} ={th,.. ., L[ X}ANE } +—
select arbitrarily i in {0,...,n}; choose one among:
() Aty tm | XY ={th, -t tiy, ..t | X} Ao =t; A E
(@)  A{to,...,tm | X} ={tos. - ti_1,tip,.. .t | X} Ato =t ANE
(t53) {t1,-- -, tm | X} ={ty,---,th | X} Ato=t; NE
() {t1,- - tm | N}={ty,-. ,th IN}AX ={tc | N}AE
(7.2) {t|s}={t'"|s'}NE o
| tail(s) and tail(s’) are not the same variable
(i) s=sAt=t'ANE
(i) {t|s}=sAt=tAE
(ie) s={t'"|'INt=t'ANE
(iv) s={t'|IN}A{t|N}=s'AE

Figure 1: Set unification rewriting rules
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e Action (5) leads to failure when the empty set is compared to non-empty
entities, or when two distinct atoms are compared.

e Action (6) deals with atoms. Notice that atoms behave like variables X for
which ur(X) is assumed to hold.

e Action (7) is the non-deterministic treatment of set-set equalities (cf. [8, 11]).

We assume that there is a set U (the store) where facts of the form ur(X) are
stored. At the beginning of the execution we assume that U is empty. The algorithm
checks if X is stored in U before applying a substitution to it. Moreover, at the end
of the process, we will use the store U to compute/filter the solutions. Precisely, we
say that o is a substitution consistent w.r.t. the store U if o(X) = ¢; (an atom) for
each variable X s.t. ur(X) is in U.

Lemma 4.1 Let E be a system and E1, ..., By be the equation systems non-deter-
manistically obtained after h > 0 steps of Unify, and Uy, ..., Uy be the corresponding
stores. Then,

1. if 0 is a solution of E;, consistent w.r.t. the store U;, then it is also a solution
of E.

2. if 0 1s a solution of E, then, there exists 1, 1 < 1 < k, such that o can be
expanded to the variable of E; that are not in E so that it is a solution of E;
consistent w.r.t. U;.

Proof:  (Sketch) Correctness of cases (7.1), and (7.2) follows from [11]. Cases
(1) and (2) hold trivially. Let us analyze the other cases:

(3) (3.1) For one side, if o is a solution of X = {ty,...,t,| X}, then ¢/ = o U
{N/o(X)} is clearly a solution of X = {to,...,t, | N}. For the other side, the
result follows from the fact that {¢o, ..., tn, %0, ..., tn |0(N)} = {to,-- ., tn |o(N)},
for any value of o(NV).

(3.2) The unique case in which X is admitted to be a subterm of itself is when
it is an atom. The rewriting rule reflects this fact. Here the constraint ur(X)
is added to the store U.

(3.3), (3.4) The constraint ur(X) forces X to be an atom. The rewriting rule
is accordance with this fact.

(4) This rule consists in substitution application. The checking and updating of the
store allow to guarantee correctness.

(5) These are all failure steps. For instance, An atom ¢ cannot be equivalent to
{...|d} or to d, for any other atom d, by (E). Similar considerations apply
to the other three cases.

(6) Similarly to actions (3.3)/(3.4), if ¢ is an atom any solution of it must satisfy
the equations on the r.h.s.
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The algorithm is fully non-deterministic and it is easy to find a sequence of
actions leading to non-termination. However, as shown in [8, 11] for the unification
algorithm presented there, a simple deterministic strategy (e.g., by adopting a stack
strategy for the selection rules of equations introduced by action (7)) can be devised
to ensure termination.

Lemma 4.2 The algorithm Unify can be implemented so as to ensure termination.

Proof: ~ The termination proof can be carried on by following the lines of the
termination proof of the set unification algorithm described in [11]. a

Theorem 4.3 Given a system E, Unify(E) always terminates either returning fail
or a system in solved form. If it terminates with fail in all of the non-deterministic
computation, then the system is unsatisfiable. Otherwise, the set of its solutions is
represented by the systems E1, ..., E} returned, together with their stores.

Proof: Immediate by the Lemmas 4.1 and 4.2. O

Example 4.4 Consider the system
E=X={X,Y}, Y ={a},Z={Z}
One possible computation yields
EFi=X=a,Y=0a

with the store
U =ur(X),ur(Y),ur(Z)

Any substitution that extends the substitution induced by E; by mapping Z to a
constant (an atom) is consistent w.r.t. the store and is also a solution of E.

5 Conclusions

Various approaches can be adopted in axiomatizing hybrid set/hyperset theories
(i.e., set theories involving atoms). Consequently, a priori, the unification problem—
as well as the decision problem—should be faced in different manners. On the one
hand, as mentioned, reduction to the pure case constitutes the simpler (naive) solu-
tion. On the other hand, a treatment involving the notion of colored set seems to be
more viable, since it may offer greater practical advantage in real implementations.
For instance, multisets with colors are shown (cf. [9]) to be suitable to implement
P-systems (the abstract model behind membrane computing [19]).

In this paper we introduced an alternative treatment which models atoms as
self-singletons, following a proposal of Quine. Both the decision problem, for 3*V-
sentences, and the unification problem have been solved by slightly modifying tech-
niques previously designed for the case of pure (or colored) sets/hypersets. Hence,
we shown that each of the three different approaches to hybrid sets can be treated
by exploiting essentially the same general techniques.
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