AND/OR Trees for the Learning of Functional

Logic Programs

C. Ferri-Ramirez ~ J. Herndndez-Orallo M.J. Ramirez-Quintana
DSIC, UPV, Camino de Vera s/n, 46020 Valencia, Spain.

{cferri, jorallo,mramirez}@dsic.upv.es

Abstract

In this paper, we present the implementation of a method for generating
very expressive decision trees over a functional logic language. The method
is based on several partitions which allow us the induction of nested and
recursive functions and the use of background knowledge. The construction of
the decision tree is guided according to the MDL principle. Hence, the search
space is covered in a short-to-long fashion. Moreover, a multiple decision tree
is obtained rather than a single tree. We show that the method is suitable for
classification problems.

Keywords: Decision Trees, Inductive Functional Logic Programming
(IFLP), Inductive Logic Programming (ILP), Minimum Description Length
(MDL).

1 Introduction

Given a concept t, a decision tree maps a set of examples of ¢ into leaves, such that
all the nodes on one level define a partition of the examples, and the children of
a node define a partition of the examples covered by that node. In general, each
path from the root to a leaf corresponds to a conjunction of conditions, whereas a
decision tree represents a disjunction of such conjunctions. Hence, trees can also be
represented as sets of conditional rules to improve their readability. Decision trees
have been used as classifiers. Most systems (CART [1], ID3 [15], C4.5 [17], FOIL
[16]) that induce decision trees construct the tree from the root to the leaves, given
a set of cases (examples). Each case is described by a vector of attribute values,
which represents a mapping from attribute values to classes. The attributes can be
continuous or discrete. Systems for inducing decision trees are usually based on the
generation of partitions or splits. Generally, there are two kinds of splits: splits for
discrete values and splits for continuous values.

This work has been partially supported by CICYT under grant TIC 98-0445-C03-C1 and
Generalitat Valenciana under grant GV00-092-14.

In the Functional Logic Programming (FLP) paradigm, conditional programs are
sets of rules, and, hence, they can also be represented as trees. The context of this
work is the generation of a conditional FLP program (a hypothesis) from examples
(an evidence). Let us consider a simple example of the induction of the member
function.

Example 1 Given the evidence:

(e; : member

ey : member
es : member(c, \) = false
eq : member

(
(
(
(. .
Bt = es member%a, msgz.ns
(
(

-~

eg . member

e7 : member ,

es : member(c,ins(ins(ins(\,b), a), c)) = true

eg : member(a,ins(ins(ins(\, b),a),b)) = true
)=t

\

The following program P can be constructed

(1) member(X,)\) = false
(1) member(X,ins(Z, X)) = true
(731) member(X,ins(L, W)) = member(X,L) «W # X

Note that the last rule has a disequality in its condition. There are extensions of
FLP which are able to handle disequalities as constraints [7, 9]. The following table
shows the number of examples that each rule of P covers directly (i.e. eramples
that can be proven with only this rule) and the number of examples for which that
rule is required (i.e. examples that can be proven with this rule jointly with others),
respectively.

‘ Rule ‘ Direct Cover ‘ Required ‘

1 2 5
ii 3 5
1ii 5 5

Table 1: Number of examples that a rule covers directly and indirectly
(it is required).
In the following figure, we show the tree corresponding to the previous program.

‘ member(X, Y) = R‘

Y=\ Y=ins(Z,W)
=X W# X

‘ R= member(X, L) ‘

Figure 0: Decision tree for the member problem.

2

We can represent the tree as a set of program rules as follows:

member(X,Y)=R<Y =\ R = false
member(X,Y)=R<«<Y =ins(Z,W),W = X, R = true
member(X,Y)=R <Y =ins(Z,W),W # X, R = member(X, L)

For the sake of readability, this program can be easily written as the above program
P. Note that in the generation of this tree, the function result has been left as a
variable (R) in order to include recursion.

In this paper we introduce a method to construct a decision tree given an evi-
dence, which will result in a (conditional) FLP program. We extend the scope of
traditional decision trees taking into consideration the constructor-based data types
of the attributes of the function to be learned. Therefore, we include these con-
structor symbols of the data types as another split criterion. We call this approach
Constructor-based Decision-Tree Learning (CDTL) since the idea is to use the type
information of the functions to generate the trees. For the learning of a target func-
tion f, the training sample is composed of ground equations whose left-hand sides
are terms of the form f(...) and whose right-hand sides are the function result (the
class in decision-tree terminology). The root node of the tree is an equation of the
form f(Xy,...,X, 1) = X,. Likewise, since we consider functional logic languages,
the result of the function (X,,) is also considered as another discrete attribute to be
tested in our method. It allows for the induction of nested and recursive functions
as well as the use of background knowledge in the definition of the target function.
This approach extends the framework for the induction of functional logic languages
defined in [6] making it conditional and capable of inducing functions with high arity
more efficiently.

The proposed decision-tree algorithm follows a short-to-long search. The split
criterion is based on the Minimum Description Length (MDL) principle [18]. Tt
differs from other approaches whose quality criteria are based on discrimination, as
in [1, 17]. Tt also differs in the way the search space (an AND/OR tree) is traversed,
producing an increasing number of solutions for increasing provided time.

The paper is organised as follows. In Section 2, we introduce some basic notions
about functions and the Inductive Functional Logic Programming (IFLP) frame-
work. Section 3 defines the set of partitions and establishes the criterion used for
generating the tree. The algorithm and its implementation is presented in Section
4. Section 5 includes some experimental results. Finally, Section 6 presents the
conclusions.

2 Preliminaries and Notation

We briefly review some basic concepts about equations, £-unification and the IFLP
framework. Let S be a set (of sorts', also called types). An S-sorted signature ¥
is an S* x S-sorted family (¥, ;jw € S*,s € S). f € ¥, is a function symbol
of arity w and type s; the arity of a function symbol expresses which data sorts it

LA sort is a name for a set of objects.

expects to see as input and in what order, and the s expresses the type of data it
returns. Also, we consider ¥ as the disjoint union ¥ = CWF of symbols ¢ € C, called
constructors, and symbols f € F, called defined functions. Let X be a countably
infinite set of variables. Then T (X, X) denotes the set of terms built from 3 and
X, and T(C, X) is the set of constructor terms. The set of variables occurring in a
term ¢ is denoted Var(t). A term t is a ground term if Var(t) = 0. A substitution is
defined as a mapping from the set of variables X" into the set of terms 7 (X, X'). An
equation is an expression of the form [= r where [and r are terms. [is called the
left-hand side (lhs) of the equation and r is the right-hand side (rhs). An equational
theory £ (which we call program) is a finite set of equational clauses of the form
l=r <« ey,...,e, with n > 0 where ¢; is an equation, 1 < ¢ < n. The theory
(and the clauses) are called conditional if n > 0 and unconditional if n = 0. In what
follows, a program P defines a signature Xp which is composed by the function
symbols that appear in P.

IFLP [6] can be defined as the functional (or equational) extension of ILP. The
goal is the inference of a theory (a functional logic program P) from evidence (a
set of positive and optionally negative ground equations E) using a background
knowledge theory (a functional logic program B). The rhs of the equations in E are
normalised w.r.t. the background theory B and to the theory P, which is meant
to be discovered (target hypothesis). In [6], an approximation to the induction of
unconditional functional logic programs has been presented based on two operators:
Consistent Restricted Generalisation (CRG) and Inverse Narrowing. Informally, a
CRG of an equation e is another equation which generalises e without introducing
extra variables on the rhs and which is consistent with the evidence.

3 Constructor-Based Decision-Tree Learning

In this section, we define the kinds of splits that we consider for the construction of
decision trees. As stated before, our method exploits each data type in a different
fashion. Hence, first of all, let us define the possible types we are going to deal with
in our approach. Table 2 shows these types.

Kind | Description Type Example Attribute Ex. | Order
UDF | Unordered Discrete Finite {red, green,blue} | green -
UDI | Unordered Discrete Infinite Lists cons(\, a) -
ODF | Ordered Discrete Finite {low, med, high} | low <
ODI | Ordered Discrete Infinite Naturals 4 <
C (Ordered) Continuous (Infinite) | [0.0 ...360.0] 47.34 <
U Undefined Type - - -
R Restricted (Dummy) Type 2 Elements of a List | a -

Table 2: Kind of types allowed.

For the unordered types, there is no need to know or to give the exact type of an
attribute, because the possible values can be obtained from the evidence.

2This type is useful for avoiding partitions on types which are irrelevant.

Next, in Table 3, we define the possible partitions (splits) that can be made
according to the types (consider an equation f(X1,..,X,_1) = X, and 1 < i < n).
Note that, in IFLP, the attribute tests are expressed as equations.

| Partition on Attribute X; (Split) Kinds of Types Applicable
1 X, = ay | Xz = Qa2 | . | Xz = ag Finite (udf,odf)
2 | Xi=co|. ... | Xs=cr(Y1,...,Y,) Constructor based (udi) and (u)
3 | X; <t| X;>t’where t is a threshold Ordered (odf,odi) and Continuous (c)
4 | X; =Y whereY € {X;,...,X,}and Y # X;* | Discrete (udf,udi,odf,odi) and (u,r)
5 | Xi=al|X;#a udf,odf,odi,c,u
6 |a1=fY1,---,Y0) ...]an=fM,...,Ys) all
where 31Y; € {X1,..., X}
7| Xi=f(Vh,...,Y) all
8 |a1=9gM,....,Y0) |...lan=9(M1,...,Y,)... | all
where AY; € {X1,...,X,} and g € ¥p
9 | X;=9(1,...,Y,) where g € ¥p all

Table 3: Splits allowed.

All partitions, except 4, 7 and 9, split the example set into disjoint subsets. Note
that partitions 4, 7 and 9 have only one child to avoid non-disjoint partitions. The
9 kinds of partitions entail an extension of other systems such as ID3, FOIL and our
CRG method, as is shown in Table 4.

| ID3 FOIL CRG CDTL
1 X X X X
2 - X X
3 X X - X
4 - X X X
) - - - X
6 - X - X
7 - - - X
8 - X - X
9 - - - X

Table 4: Comparison between splits allowed by CDTL w.r.t. ID3, FOIL,
and CRG methods.

With the previous partitions the adaptation of classical split criteria, such as those
used by C4.5 / FOIL or CART, would not be suitable, because these measurements
are devised to reward partitions which correctly discriminate the class of the result,
be it a predicate or a function. However, this may be misleading for recursive
functions where this recursive call appears directly on the rhs of a rule; for instance,
the lhs of the rule sum(X,s(Y)) = s(sum(X,Y)) does not make any bias on the
distribution of the result of the function sum. Consequently, a criterion based on
this discrimination or on a distribution change would never select the partitions
which are needed to generate the previous rule.

3X; > t represents a constraint which can be handled by a constraint solver which can solve
linear real inequalities ([10]).

4There are extensions of the functional logic programming which are able to handle disequalities
as constraints ([7, 9]).

As we have stated in the introduction, one proper way to order the search space is
by the description length of the hypothesis. By definition, a top-down construction
of a decision tree is short-to-long, since it adds conditions and after a partition is
made the tree is larger to describe. However, this is not sufficient. The idea is to
devise a split criterion such that partitions that presumably lead to shorter trees
should be selected first.

There exists a suitable paradigm for performing this search: the MDL principle. If
we assume P(h) = 275" where K(-) is the descriptional (Kolmogorov) complexity
of a hypothesis h, and P(E|h) = 2-¥(FI") with E being the evidence, we can obtain
the so-called maximum a posteriori (MAP) hypothesis as follows [8].

hyap = argmazpey P(R|E) = argmingey(K(h) + K(E|h))

This last expression is the MDL principle, which means that the best hypothesis
is the one which minimises the sum of the description of the hypothesis and the
description of the evidence using the hypothesis.

Initially, when there is only the root of the tree, the hypothesis is empty and
the length of its description (K (()) is almost zero, while the description of the data
(K (E|0)) is large. At the end of the construction of the decision tree, the description
of the hypothesis K(h) may be large, and each branch constitutes a rule of the
program, while the description of the data by using the tree, i.e. K(E|h), will have
been reduced considerably. If the resulting tree is good, the term K(h)+ K(E|h) is
smaller than initially.

The construction of the tree is made in the following greedy way: we select the
split with less cost from all possible splits (split criterion) and the other nodes
remain suspended; the generation of the tree stops when all nodes are closed (i.e.
the class is consistent with all the examples that fall into that node) (stop criterion);
for the generation of more solutions, from all the suspended nodes (nodes which can
be split), we select the node with less relative MDL cost of coding the whole set of
examples that fall into it (node activation criterion). Hence, the result of this process
is a multi-tree rather than a tree. Finally, we also define a solution tree selection
criterion, in our case, the shortest tree, i.e., the one which minimises K (h).

4 CDTL Algorithm

The approach described in the previous sections has been implemented in a machine
learning system for the induction of FLP programs. This application reuses some
parts (narrowing solver and parser) of our previous work on the IFLP framework,
the FLIP system [2]°.

The initial purpose of this work was to overcome the limitations of the FLIP sys-
tem. This implementation, based on the IFLP framework described in [5, 6], allows
for the learning of functional logic programs from positive and negative evidence,
and (optionally) from background knowledge. Although the experimental results
were promised, this framework is limited by the use of the CRG generalisation oper-
ator because it produces a huge amount of equations from a simple example. For this

5This software is public available at [3].

reason, its application for the learning of concepts with a large number of arguments
or examples is not suitable. A first attempt to improve the behavior of the system
was the extension of the IFLP algorithm in order to make it incremental [4]. In
this way, the new version of the FLIP system was able to deal with problems whose
evidence was composed by a (considerably) large number of examples. Nevertheless,
one of the most interesting fields of application of machine learning is data mining,
and (unfortunately) the use of the previous IFLP framework is difficult due to the
size of this kind of problems.

Considering these limitations we decided to redesign the IFLP framework by
using decision trees as the basis of the learning mechanism. As we have described in
the previous section, we have used the MDL principle to guide several phases of the
tree generation. For the implementation of the framework we use a tree based on
AND/OR graphs [12, 14], a well known structure from Artificial Intelligence. In this
tree, the OR-nodes represent the possible splits to be applied at this point (Table 3),
whereas the AND-nodes are filled with the branches obtained by the application of
the partition defined by its parent OR-node. Once an OR-node is selected to be split
(the active node), the set of OR-nodes at the same level are labelled as suspended
nodes. Figure 1 illustrates a piece of the AND/OR tree for the playtennis example
[11], a classical classification problem where the system have to learn if it is possible
to play a tennis match depending on weather conditions.

‘PIaytennis(Xl,X2.X3.X4)=X5 ‘

Partition 1 Partition 5
Argument 1 Argument 3
Playtennis(X1,X2.X3.X4)=X5 Playtennis(X1,X2.X3.X4)=X5
X1=overcast X1=sunny
Playtennis(X1,X2.X3.X4)=X5 Playtennis(X1,X2.X3.X4)=X5
Playtennis(X1,X2.X3.X4)=X5 ay < .) i < .)
X1=rain X3=high X3<>high

Figure 1: Section of the AND/OR tree for the playtennis example.

The CDTL algorithm is based on a recursive function that develops just the best
suspended OR-node for each new tree. To produce more than just one tree, we store
the suspended OR-nodes in a list:

Procedure GenerateAOtree
Input: atree an AND-node
Output: an AND/OR tree with a solution

begin
if leaf (atree)
begin
propagate_costs(atree. father)
exit
end

listotree = generate_partitions(atree)//build the partitions
Compute_cost(listotree) [/compute the cost of each partition
ORnode = extract_best(listotree)/ [select the best OR-node suspended
ORnode.active = true [/set the selected OR-node active
suspended_list.store_suspended(listotress) [/store the suspended nodes
childrenA = O Rnode.children
while childrenA # ()

childA = extract(childrenA)

Generate AOtree(childA)
endwhile
end

When the first-solution tree is completed, the search of the next solution is
restarted exploring the tree from the best suspended OR-node according to the node
activation criterion, which selects the suspended node with lowest ratio between the
information cost of this node and the information cost of the best node at the same
level. This process can be repeated as many times as desired until the complete
search space is traversed (the whole AND/OR tree is developed). Nevertheless, it is
suitable to limit the number of OR-nodes to exploit through a parameter Numdtree,
because the complete generation of the tree could be very expensive for complex
problems.

Therefore, the multi-tree algorithm is the following:

Procedure CDTL

begin
init(atree)/ /init the tree with an equation with all the arguments open
GenerateAOtree(atree) [/call the recursive function
while Numtree > 0
ORnode = extract_best(suspended_list)/ [extract the best OR-node
childrenA = O Rnode.children
while childrenA # 0
childA = extract(childrenA)
GenerateAOtree(childA)

endwhile
Numtree = Numtree — 1
endwhile
best_order_search(atree)/ /show the solution
end

of OR-nodes The extraction of the solution program must be done by selecting
the best tree according to the selection tree criterion, but this process requires that
the information of the costs of the nodes hanging from each active OR-node has
been updated. This is the reason for the function propagate_cost: when a leaf is
found, we must propagate cost information to the ancestor nodes.

The Numtree value is specified by the user. However, it could be interesting to
establish heuristics that could set automatically this value depending on the problem
to be learned (i.e. number and size of the function arguments, size of the evidence).
Another possibility could be to establish a stop criterion based on the cost of the
generated trees. For example, the search could be interrupted when the new trees
do not improve the cost of the current best tree in several consequent solutions.

The algorithm presented so far may resemble an A* or an AO* algorithm [12].
These algorithms are guided by an optimistic estimate (a function h(z)) of the cost
of the rest of the tree to be constructed. If this estimate plus the cost that is carried
so far (g(x)) is greater than the best g(z)+ h(z) of another branch, the search jumps
to the other branch and retakes the search. A* and AO* ensure the best solution
provided the heuristic function is well-defined. However, this method performs a lot
of jumps from side to side in the tree and usually explores a great number of nodes.

In our case, we explore a very limited number of nodes, and we ensure that a
solution is output quickly, and the rest of time is devoted to explore the AND/OR
tree for better solutions. This allows a more appropriate handling of resources and
better response time of the algorithm.

4.1 Example

Let us illustrate the previous procedure with the most classical example of decision
trees [11]. The purpose is to classify the days in which the weather for playing tennis
is good or bad. The evidence is:

(ey : playtennis(overcast, hot, high, weak) = yes

ez : playtennis(rain, mild, high, weak) = yes

es : playtennis(rain, cool, normal, weak) = yes

ey : playtennis(overcast, cool, normal, strong) = yes
es : playtennis(sunny, cool, normal, weak) = yes
e : playtennis(rain, mild, normal, weak) = yes

e7 : playtennis(sunny, mild, normal, strong) = yes
es : playtennis(overcast, mild, high, strong) = yes
eg : playtennis(overcast, hot, normal, weak) = yes
e1o : playtennis(sunny, hot, high, weak) = no

e11 : playtennis(sunny, hot, high, strong) = no

e1s : playtennis(rain, cool,normal, strong) = no
e13 : playtennis(sunny, mild, high, weak) = no

| €14 : playtennis(rain, mild, high, strong) = no

7

Figure 2 shows the AND/OR tree generated by the CDTL algorithm. The OR-
nodes selected are surrounded by a dotted line, and the rest OR-Nodes at the same
label are suspended. The AND-nodes doubly surrounded correspond to the leaves
of the tree. For the sake of simplicity we only consider partition 1, and we do not
show the application of this partition on the output class when the AND-node is a
leaf.

The following functional-logic program corresponds to the rules extracted from
the AND/OR tree of Figure 2. Note that conditions have been included into the
equations. This program covers the whole evidence.

playt(overcast, X2, X3, X4) = yes
playt(rain, X2, X3, weak) = yes
playt(rain, X2, X3, strong) = no
playt(sunny, X2, normal, X4) = yes
playt(sunny, X2, high, X4) = no

\ Argument 1 |

Playtennis(X 1,X2.X3.X4)=X5 |

Partition 1
Argument 2

Partition 1
Argument 4

Partition 5
Argument 5

Partition 1
Argument 3

| Playtennis(X1,X2.X3.X4)=X5

X1=rain
Partition 1 Patition 1 | 1 Partition 1!
Argument 2 Argument 3 . Argument 4 !
I

Playtennis(X1,X2.X3.X4)=X5
X1=overcast,X5=yes

| Playtennis(X 1,X2.X3.X4)=X5

Partition 5
Argument 5

X1=sunny
Patition 1 | 1 Partition 1! Partition 1 Partition 5
Argument 2 . Argument 3 ! Argument 4 Argument 5
1

Playtennis(X1,X2.X3.X4)=X5
X1=rain,X4=strong,X5=no

Playtennis(X1,X2.X3.X4)=X5
X1=rain,X4=weak,X5=yes

Playtennis(X1,X2.X3.X4)=X5 Playtennis(X1,X2.X3.X4)=X5
X1=sunny,X3=high,X5=no X1=sunny,X3=normal,X5=yes

5 Experiments

Figure 2: AND/OR tree for the playtennis example.

We have performed different experiments which show that our multi-tree approach
pays off in practice.

We include some examples concerning to the learning of programs for classification
problems. All the examples were extracted from the UCI repository [13] and are well-
known by the machine learning community. A short description of these problems
is included in Table 5.

Problem

Arguments

Classes

Examples

Description

playt

4

2

14

Simple data set that contains the conditions
where it is possible to play a tennis match

lenses

4

4

24

Database for fitting contact lenses.

tic-tac-toe

8

2

958

This database encodes the complete set of
possible board configurations at the end
of tic-tac-toe games.

house-votes

16

453

This data set includes votes for each of the
U.S. House of Representatives Congressmen
on the 16 key votes identified by the CQA
in 1984.

cars

1728

Car Evaluation Database, this model
evaluates cars according to a concept
structure.

nursery

12960

Nursery Database was derived from a
decision model originally developed to rank
applications for nursery schools in Slovenia.

Table 5: Description of the classification problems used in the experi-

ments.

Table 6 contains the results of the experiments: the number of rules of the solution
program and the time (in seconds) required for the learning process depending on the

10

Table 6: Time required and number of rules generated in the learning of

Numtree 1 5 10

Example Time | Rules || Time | Rules Time | Rules
playt 0.05 10 0.17 5 0.23 5
lenses 0.13 10 0.22 10 0.28 9
tic-tac-toe 2.66 398 8.9 344 13.53 344
house-votes 4.47 58 || 19.86 52 43.73 52
cars 1.67 316 5.31 304 6.82 304
nursery 22.06 | 1109 87.2 988 || 161.81 965

some classification problems.

Numtree parameter. The experiments were executed on a Pentium III 733 mhz with
128 MB of memory running Linux version 2.2.16. The experiments demonstrate that
the system is able to induce programs from a complex evidence (i.e. large number
of examples and many parameters), and it is able to deal with large programs too.

Figure 3 shows in detail the induction process depending on Numiree.

increase of the number of trees generated allows us to get shorter programs. However,
it also influences on the system performance.

Seconds

Figure 3: Time required and number of rules generated for the nursery

175+

150 -

125

100 -
75+
50+
25

Nursery

2 3

4

5
Numtree

6

problem, depending on Numdiree.

7

11

8

1125
~1100 D
=}
1075 —
(o)
-1050 =
Rl
-1025 £
o
-1000 Z
975
m Seconds
950
¢ Number of
"925 | rules
—-900
10

The

6 Conclusions and future work

Machine learning provides a very interesting approach for generating programs that
are difficult or impossible to be generated by hand. Programs with a large number
of rules depending on different values of the arguments, estimated classifiers and
any model that must compress a huge evidence composed of ground facts can be
addressed by automated inductive techniques.

In this paper we have explored the construction of functional logic trees by the
use of different partitions. These partitions are based on non-overlapping conditions.
Consequently, the generated programs are confluent. These partitions are optional
and allow us to parametrise the kind of programs to be generated: with recursion,
with negation, with real numbers constraints, etc., according to the user’s needs or
the final language that will run the program. Moreover, the search politics permits
a better and more customisable handling of resources, depending on the complexity
of the problem and the time the user wants to devote for generating the program.

With respect to expressiveness, we plan to better study the treatment of the
recursive partitions in order to ensure termination of the programs which are gen-
erated. As future work, we are also extending the stop criterion to handle evidence
with noise. The MDL principle has been successfully used to prune trees in order to
avoid overfitting noisy data. In our case, branches leading to exceptions which are
costly to be described should not be exploited in order to produce more general pro-
grams where some branches have examples of different classes. Another extension
in this sense would be the generation of programs with probabilistic rules.

References

[1] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth Publishing Company, 1984.

[2] C. Ferri, J. Herndndez, and M.J. Ramirez. The FLIP system: From theory to imple-
mentation. Technical report, Department of Information Systems and Computation,
Valencia University of Technology, 2000.

[3] C. Ferri, J. Hernindez, and M.J. Ramirez. @ The FLIP system homepage.
http://www.dsic.upv.es/"flip/, 2001.

[4] C. Ferri, J. Herndndez, and M.J. Ramirez. Incremental Learning of Functional Logic
Programs. In Proc. of the Fifth Int. Symposium on Functional and Logic Program-
ming, pages 231-247, 2001.

[6] J. Herndndez and M.J. Ramirez. Inverse Narrowing for the Induction of Functional
Logic Programs. In Proc. Joint Conference on Declarative Programming, APPIA-
GULP-PRODE’98, pages 379-393, 1998.

[6] J. Herndndez and M.J. Ramirez. A Strong Complete Schema for Inductive Functional
Logic Programming. In Proc. of the Ninth International Workshop on Inductive Logic
Programming, ILP’99, volume 1634 of LNAI pages 116-127, 1999.

12

[7]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Kuchen, F. Lopez-Fraguas, J. J. Moreno-Navarro, and M. Rodriguez-Artalejo.
Implementing a Lazy Functional Logic Language with Disequality Constraints. In
Joint Int. Conf. and Symp. on Logic Prog., pages 207-224. MIT Press, 1992.

M. Li and P. Vitdnyi. An Introduction to Kolmogorov Complexity and its Applications.
2nd Ed. Springer-Verlag, 1997.

F.J. Lépez-Fraguas. A general scheme for constraint functional logic programming.
In H. Kirchner and G. Levi, editors, Proc. of the Third Int’l Conf. on Algebraic and
Logic Programming ALP’92, volume 632 of Lecture Notes in Computer Science, pages
213-227. Springer-Verlag, 1992.

W. Lux. Adding linear constraints over real numbers to curry. In Proc. of the 5th
Int’l Symp. on Functional and Logic Programming FLOPS’01, volume 2024 of Lecture
Notes in Computer Science, pages 185-200. Springer-Verlag, 2001.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
N.J. Nilsson. Artficial Intelligence: a new synthesis. Morgan Kaufmann, 1998.

University of California. UCI Machine Learning Repository Content Summary.
http://www.ics.uci.edu/ "mlearn/MLSummary.html.

J. Pearl. Heuristics: Intelligence search strategies for computer problem solving.

Addison-Wesley, 1985.

J. R. Quinlan. Induction of Decision Trees. In Readings in Machine Learning. Morgan
Kaufmann, 1990.

J. R. Quinlan. Learning Logical Definitions from Relations. Machine Learning,
5(3):239-266, 1990.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

J. Rissanen. Modelling by the shortest data description. Automatica-J.IFAC, 14:465—
471, 1978.

13

