Reusable Monadic Semantics of Logic Programs
with Arithmetic Predicates

J. E. Labra Gayo J. M. Cueva Lovelle M. C. Luengo Diez
A. Cernuda del Rio

Department of Computer Science, University of Oviedo
C/ Calvo Sotelo S/N, 3307, Oviedo, Spain
{labra,cueva,candi,guti}@lsi.uniovi.es

Abstract

We present a combination of modular monadic semantics and generic pro-
gramming concepts that improves the reusability of semantic specifications.

The computational structure is defined as the composition of several monad
transformers, where each monad transformer adds a new notion of computa-
tion to a given monad. The abstract syntax is defined as the fixed point of
several non-recursive pattern functors. In the case of several syntactic cate-
gories, it is possible to define many sorted algebras and n-catamorphisms.

As an application, we combine the kernel of a pure logic programming
language with independently specified arithmetic expressions obtaining a logic
programming language with arithmetic predicates.

Keywords: Programming Language, Logic programming, Semantic speci-
fication, Interpreter, Monad, Reusability

1 Introduction

Traditional denotational semantics was developed with the aim to identify the main
notions of programming languages in a formal setting. Although it has been applied
to describe a number of simple languages, it has rarely been used in the design of
practical ones [26]. Some reasons for this situation could be its lack of modularity
and reusability [23]. Reusable monadic semantics is an attempt to solve those prob-
lems combining modular monadic semantics with generic programming concepts.

Modular monadic semantics was proposed in [20, 19] where they use monads
and monad transformers to separate values from computations and to capture the
different notions of computation like environment access, global state, input-output,
non-determinism, etc.

In a different context, generic programming [2] has been developed into a complete
discipline from the study of the calculational properties of recursive datatypes and
patterns.

APPIA-GULP-PRODE 2001

The combination of modular monadic semantics and generic programming was
firstly proposed by L. Duponcheel [6], allowing the independent specification of the
abstract syntax, the computational monad and the domain value. Following that
approach, we developed a Language Prototyping System [12, 13, 14, 17] where we
also apply monadic catamorphisms, which facilitate the separation between recursive
evaluation and semantic specification. In [16] we extend our previous work to handle
mutually recursive syntactical categories using many sorted algebras and in [15] we
apply that work to the semantics of logic programming languages. In this paper we
describe the combination of logic programming features with arithmetic predicates
which are independently described. The main advantages of this approach are the
automatic derivation of an interpreter from the semantic description, as well as
the modularity and reusability of the descriptions which allow to obtain a whole
programming language from independently specified semantic building blocks.

It is assumed that the reader has some familiarity with a modern functional
programming language. Along the paper, we use Haskell notation with some freedom
in the use of mathematical symbols and declarations. As an example, the predefined
Haskell datatype

data Either ab = Lefta | Rightb
will be used as

a8 £ La | RB

2 Modular Monadic Semantics

The notion of monad was taken by E. Moggi [22] from Category Theory and was
later adapted to a functional programming setting by P. Wadler [25].

Definition 1 (Monad) A monad can be defined as a type constructor M with two
operations

return : a — Ma
(>=) :Ma— (a— MB) = M3

which satisfy

¢ >= return =c
(return a)>=k =k a
(m>=f)>=h =m>=\a.f a>=h)

A monad M encapsulates the intuitive notion of computation where M o can be
considered as a computation M that returns a value of type «. In Haskell, monads
can be defined using constructor classes [9] and it is also possible to use first-class
polymorphism [10]. In the rest of the paper, we simply define the type constructor

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

and the corresponding operations. In this paper, we will also use the operator (=)
defined as

>) : Ma—MB—->MgB

CL> C = >= AJ?.CQ

Example 1 The simplest monad is the identity monad

[dMa 2«
return = A\T.T
m>=f =fzx

It is possible to define monads that capture different kinds of computations,
like partiality, nondeterminism, side-effects, exceptions, backtracking, continuations,
interactions, etc. [22, 3].

Example 2 The environment reader monad adds the following operations

rdEnv : M Env
mEnv :Env > Ma— Ma

Example 3 The state transformer monad adds the operations

update : (State — State) — M State
fetch M State
set : State — M State

Example 4 The backtracking monad adds two operations to handle backtracking

failure : M « — failure failing computation
(W) :Ma—-Ma—>Ma — m Um, executes my, if it fails, executes my

All of the above kinds of monads must satisfy a number of observational laws,
which are described in more detail in [19, 7, 18].

When describing the semantics of a programming language using monads, the
main problem is the combination of different classes of monads. In general, it is not
possible to compose two monads to obtain a new monad [11]. Nevertheless, a monad
transformer 7 can transform a given monad M into a new monad 7y that has new
operations and maintains the operations of M. The idea of monad transformer is
based on the notion of monad morphism that appeared in Moggi’s work [22] and
was later proposed in [20].

APPIA-GULP-PRODE 2001

Definition 2 (Monad transformer) A monad transformer is a type constructor
T with an associated operation lift : M o — Ty « that transforms a monad M into
a new monad Ty and satisfies

lLift . returny = returng,
lift (m >=m k) = (lift m) >=x, (lift . k)

When defining a monad transformer 7, it is necessary to specify the operations
return, (>=), lift and the specific operations that the monad transformer adds.
The definition of monad transformers is not straightforward because there can be
some interactions between the intervening operations of the different monads. These
interactions are considered in more detail in [19, 20] and in [7] it is shown how to
derive a backtracking monad transformer from its specification. In the rest of the
paper we suppose that we have defined three monad transformers: 7g,, transforms
any monad into an environment reader monad, Tg;.. transforms any monad into
a state transformer monad, and Ty, transforms any monad into a backtracking
monad. These definitions can be found in [17, 16, 15].

3 Arithmetic Expressions

In this section, we present the semantics of a simple arithmetic expressions language.
The presentation is done in an incremental way. Firstly, we specify terms (constants
and additions) and secondly, we add factors (multiplications). At the same time,
we introduce the basic concepts of functor, algebras and catamorphisms.

3.1 Extensible abstract syntax

Functors allow the extensible definition of the abstract syntax.

Definition 3 A functor F can be defined as a type constructor that transforms val-
ues of type « into values of type F a and a function
mapr : (o — B) = F o — F B which preserves identities and composition.

The fixed point of a functor F can be defined as
pF = In (F (uF))

A recursive datatype can be defined as the fixed point of a non-recursive functor
that captures its shape.

Example 5 The following inductive datatype for arithmetic expressions
Term = N Int | Term + Term
can be defined as the fized point of the functor T

Tz = NInt|z+=

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

Term = uT
where mapy st
mapt t(a—=B) = (Ta—TH)

mapr f (Nn) =n
mapr f (21 + 22) =f o + [1

Definition 4 (Sum of two functors) The sum of two functors F and G, F & G
15 defined as
F® Gz £ Fz| Gz
where mape g S
MAPE @ G c(a—=p)—>(FeGa— (FoG)p
mapeocf (Lw) = L (mape f o)
mapegc f (Rz) = R (mapg f z)
Using the sum of two functors, it is possible to extend recursive datatypes.
Example 6 We can define a new pattern functor for variables
Fzr =2z xz
and the composed recursive datatype of terms and factors can easily be defined as

Erpr = (T @ F)

3.2 Reusable Semantic Specification

Definition 5 (F-Algebra) Given a functor F, an F-algebra is a function
vp:Fa—a
where a is called the carrier.

Definition 6 (Homomorphism between F-algebras) A homomorphism between
two F-algebras ¢ : Fa — a and Y :F 5 — B s a function h : o — [which sat-

1sfies

h.o = 1.mapeh

! In the rest of the paper, we omit the definition of map functions as they can automatically
be derived from the shape of the functor.

APPIA-GULP-PRODE 2001

We consider a category with F-algebras as objects and homomorphisms between
F-algebras as morphisms. In this category, In : F(uF) — pF is an initial object, i.e.
for any F-algebra ¢ : Fa — « there is a unique homomorphism (¢) : uF — «
satisfying the above equation.

() is called fold or catamorphism and satisfies a number of calculational prop-
erties [2, 4]. It can be defined as:

() : (Fa = a) = (uF — «)
(#) (Inz) =@ (mapr (¥) z)

Example 7 We can obtain a simple evaluator for arithmetic expressions defining
a T-algebra whose carrier is the type M Int, where M is, in this case, any kind of
monad.

o1 : T(MInt) — M Int
o1 (Num n) = return (1 n)
o1 (e1 + e) = e>=Avi.ex>=Avy.return(v; + vy)

Applying a catamorphism over o1 we obtain an interpreter for terms:

Inter rerm @ Term — M Int
Inter 7erm = (07)

The operator @ allows to obtain a (F & G)-algebra from an F-algebra ¢ and a
G-algebra 1)

®: (Fo—a)—» (Ga—a)—> (FO&G)a—
(p@¥)(Lz) = ¢z
(P @ ¢)(Re) =4z

Example 8 The above definition allows to extend the evaluator of example 7 to
terms and factors without modifying previous definitions. We only specify the se-
mantics of variables with the following F-algebra

©OF : F(M Int) - M Int
O (e1 X eg) = e;>>=Avy.eg>=Awg.return(v; X vy)

And the new interpreter of expressions is automatically obtained as:
Inter gy, © Ezpr — M Int

InterEzpr = ([(PT Y SOF])

The theory of catamorphisms can be extended to monadic catamorphisms [12, 14,
17] which allow to separate the recursive evaluation from the semantic specification.

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

4 Pure Logic Programming Language

4.1 Term representation

Prolog terms are defined as

Term = C Name — Constants
| V Name — Variables
| F Name [Term] — Compound terms

Facts and rules will be represented as local declarations, leaving the goal as an
executable expression. We will use the functor P to capture the abstract syntax of
the language. Our abstract syntax assumes all predicates to be unary, this simplifies
the definition of the semantics without loss of generality.

P g =Def Name Name g g — Definitions

| g Ny — Conjunction

| gV g — Disjunction

| I(Name — g) — Free variables
| call Name Term — Predicate call
| Term = Term — Unification

| ?Name (Name — g) — Goal

Example 9 The Prolog program

p(a).
p(f(z)) < p(z)

with the goal ? p(z) could be codified as

Defpv(v=aVIAz.v=[f(z) A call pz)) (?z(Az.call p x))

4.2 Computational Structure

The computational structure will be described by means of a monad, which must
support the different operations needed. In this sample language, we need to capture
backtracking, environment access and global state modification. The global state in

this simple case is only needed as a supply of fresh variable names. The resulting
monad will be

Comp = (Eack . Env . TS‘tate) 10

we used the predefined /0O monad as the base monad in order to facilitate the
communication of solutions to the user. We use the following domains

Database = Name — (Name, Comp Subst) — Clause Definitions
Env £ (Database, Subst) — Environment

APPIA-GULP-PRODE 2001

State £ Int — Global state

We suppose that we have the following operations to lookup and update values
in the database.

lkppp : Database — Name — (Name, Comp Subst)
updpp : Database — Name — (Name, Comp Subst) — Database

4.3 Unification

In this section we present an algorithm adapted from [8] where a polytipic unification
algorithm is developed. Genericity is obtained through the definition of type classes
and the corresponding instance declarations. We omit those declarations for brevity
and just assume that we have the following functions:

wsVar : Term — Bool — Checks if a term is a variable
topEq : Term — Term — Bool — Checks top equality of two terms
args : Term — [Term] — list of arguments of a term

A substitution could be represented as an abstract datatype Subst with the fol-
lowing operations:

lkps : Name — Subst — Maybe Term — lookup
upds : Name — Term — Subst — Subst — update

where Maybe is the predefined datatype which could be defined as:

A

Maybe a = Just o | Nothing
The unification algorithm will be:

Term — Term — Subst — Comp Subst
wsVar ty AN wsVart, At == = return o
wsVart, = bindt tho

unifys :
|
|
| isVart, = bindt ty o
|
|

unifys t1 to o

topEqtity = umiTstitr o
otherwise = failure

untTs : Term — Term — Subst — Comp Subst
uniTs ty ty 0 = foldr f (return o) (zip (args t,) (args t2))
where
[(a1, a2) 1 = r>=Xo".unifys a; ay o’

bind : Name — Term — Subst — Comp Subst
bind vto = case lkps v o of
Nothing — return (upds v t o)
Just t' — unifys t t' 0 >=Ao’.return(upds v t o')

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

4.4 Semantic specification

The semantic specification consists of the following P-algebra that takes the com-
putational structure Comp Subst as carrier.

©p : P (Comp Subst) — Comp Subst
wp (Def px g1 go) = rdEnv>=X\(p,0).
inEnv (updpp p p (2, 91)) g

op (91 A) = rdEnv>=\(p, o).
G>>=Ao'.
inEnv (pa OJ) g2

op (g1 V g) = rdEnv>=\(p, o).

inEnv (p,0) g1 U inEnv (p,0) go
wp (3 1) = update (+1)>=An — f (mkFree n)
wp (call p t) = rdEnv>=X\(p,0).

let (z,9) = lkppp pp
in unifys (C) t o>>=M\o'. inEnv (p,0’) g

op (t1 = to) = rdEnv>=M\(p, 0).
unifys t1 tr o

op (?zf) = update (+1) >=An.
[(mkFree n) >=M\o.
putAnswer z (o v)) >=Ay.
return o

The following auxiliary definitions have been used?.

e mkFree : Int — Name, creates a fresh variable name from a given integer

e putAnswer : Name — Term — Comp (), writes the value of a variable and
asks the user for more answers.

The Prolog language is defined as the fixed point of P
Prolog & uP
and the interpreter is automatically obtained as a catamorphism

Inter protog : Prolog — Comp Subst
Inteerlog = ([QOP])

2The detailed definition of the auxiliary functions could be included in the full paper

APPIA-GULP-PRODE 2001

5 Prolog + Arithmetic Predicates

Arithmetic predicates open a new semantic world in logic programming languages.
Other semantic specifications of Prolog [24, 5] often avoid these predicates as they
can interfere with the understanding of the particular aspects of Prolog. In our
approach, it is possible to reuse the independent specifications of pure logic pro-
gramming and arithmetic expressions and combine them to form a new language.
In order to combine two syntactic categories (goals and expressions), we will extend
previous definitions of algebras to 2-sorted algebras in the following section.

5.1 2-sorted abstract syntax and bicatamorphisms

Definition 7 (Bifunctor) A bifunctor F is a type constructor that assigns a type
F a B to a pair of types o and B and an operation

bimapr : (« =) = (8—6) = (Faf — Fvyd)

The fixed point of two bifunctors F and G is a pair of values (uFG,usFG) that
can be defined as:

PG = Ini (F (1uFG) (1oFG))
pFG £ Iny (G (FG) (12FG))

Example 10 The syntax of a simple imperative language with two mutually re-
cursive syntactical categories, expressions and commands, could be modelled by the
following bifunctors.

Eec =e + e | Num Int | Var Name
Cec =Name := e | ¢; ¢ | Whileec

and we can obtain commands as the fized point of E and C
Comm =u, EC
Definition 8 (Two-sorted algebra) Given two bifunctors F and G, a two-sorted

F, G-algebra is a pair of functions (¢ :Faf — «, ¥ :Gaf — B) where a, are
called the carriers of the two-sorted algebra.

It is possible to define F, G-homomorphisms and a new category where (Iny, Iny)
form the initial object. This allows the definition of bicatamorphisms as:
(-)1 : (Fapf — a) - (Gap — p) - (mFG — «)
(0:¥)1 (Im z) = ¢ (bimapr (¢, ¥)1 (¢, ¥)2 7)

(- D2 : (Fap —» a) » (Gap — B) = (1FG — B)
(I(pa ¢D2 (In? '/E) = w (bimap@ (I@,Tﬁ])l ([%w]b SU)

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

Example 11 We could define the semantics of the imperative language of exam-
ple 10 by defining the following two sorted E, C-algebra (see [16] for details).

og : E (M Int) (M () > M Int
Ye : E(MInt) (M () = M()

And we could automatically obtain the corresponding interpreter as a bicatamor-
phism.

Inter comm : Comm — M ()
InterComm = (IQD]E: dJ(C])Z

The sum of two functors will be useful to break the specification of a syntactical
category into several parts.

Definition 9 (Sum of two bifunctors) The sum of two bifunctors F and G is a
new bifunctor FHG

FBG)aB £ FapB| Gap
where the bimap operator is

bimaprme (=)= (B—-0)— (FBEG)ap— (FEG)v)
bimapgag [g (Lz) = L (bimaprsc [g)
bimapyme f g (Rz) = R (bimapwmg f g 7)

Two-sorted algebras can be extended using the following operators

H):Faf—-a)—=>(Gapf—a)— FHG) af -«
(01 B @) (Lz) = 1z
(¢2 B1 ¢2) (Rz) = ¢z

(H):FaB—08)—= (GaB—p)— FEG) af—p
(Y1 Bz o) (Lx) = thz
(Y2 Bz) (Rz) = ¢

5.2 From functors to bifunctors

When specifying several programming languages, it is very important to be able
to share common blocks and to reuse the corresponding specifications. In order to
reuse specifications made using single-sorted algebras in a two-sorted framework, it
is necessary to extend functors to bifunctors.

Given a functor F, we define the bifunctors F? and F3 as:

FPaB £ Fa
Faf 2 Fp

APPIA-GULP-PRODE 2001

where the bimap operations are defined as

bimape2 f gz =[x
bimapez f gz =gz

Given a single sorted algebra, the operators (-)? and (_)3 obtain the corresponding
two-sorted algebras

()} : (Fa—a)—Faf—a
Olz = oz

(J3: FB—=8)=FapB—p
O3T = P

5.3 Adding Arithmetic Predicates to Prolog

We define the bifunctor A which captures the predicates is and =:=3.
Age = Termise | e == e
The semantic specification is defined as the following two sorted algebra.

©a : A (Comp Subst) (Comp Int) — Comp Subst
o (tise) = e>=)\v.
rdEnv>>=M\(p, o).
unifys t (cnv v) o
oa (1 == &) = e>=\vy.
€= \1y.
rdEnv>=M\(p,0).
if v; == v, then
return o
else
failure

where cnv : Int — Term converts an integer into a constant term.
The extended language can be defined as

Prolog™ £ py (P2 B, A) (T @ F)2
and the corresponding interpreter is obtained as a bicatamorphism

Inter projog+ : Prolog™ — Comp Subst
Inter prog+ = (0p; B @a, (01 @ @F)g]h

30ther arithmetic predicates could easily be added

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

6 Conclusions and Future Work

The proposed approach allows the development of reusable semantic specifications of
programming languages as an integration of modular monadic semantics and generic
programming concepts.

Modular monadic semantics allows to identify the computational structure through
the notion of monad. Monads are used to distinguish between values and computa-
tions. In the case of logic programming languages, the value is the answer substitu-
tion, while the computation encapsulates the notions of backtracking, environment
access, fresh name supply, etc. Monads can incrementally be defined using monad
transformers, where each transformer adds a given notion of computation. In this
way, to add new computational features, like the control mechanisms of Prolog it is
only needed to change the corresponding transformer [7].

Generic programming concepts allow the definition of extensible abstract syn-
tax of a programming language identifying the shape of the different entities using
non-recursive pattern functors. Semantic specifications are independently defined
through algebras that take the computational structure as carrier. This allows to
automatically obtain the interpreter as a catamorphism.

The proposed approach has been implemented in a Language Prototyping Sys-
tem [1]. The system consists of a domain specific meta-language embedded in Haskell
and it also contains an interactive framework for language testing. This approach
offers easier development and the fairly good type system of Haskell. Nevertheless,
there are some disadvantages like the mixture of error messages between the host
language and the metalanguage, Haskell dependency and some type system limita-
tions. We are currently planning to develop an independent meta-language. Some
work in this direction has been already done by E. Moggi [21].

The Language Prototyping System has been used to specify imperative, func-
tional, object-oriented and logic programming languages [16, 17, 18, 15]. All the
specifications share common blocks, like arithmetic expressions. Future work can be
done in the specification of other features and in the integration between different
blocks leading to cross-paradigm programming language designs.

References

[1] Language Prototyping System. http://1lsi.uniovi.es/~labra/LPS/LPS.
html, 2001.

[2] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens.
Generic programming - an introduction. In S. Swierstra, P. Henriques, and
Jose N. Oliveira, editors, Advanced Functional Programming, volume 1608 of
Lecture Notes in Computer Science. Springer, 1999.

[3] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In International Sum-
mer School On Applied Semantics APPSEM’2000, Caminha, Portugal, 2000.

[4] R. Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

APPIA-GULP-PRODE 2001

E. Borger and D. Rosenzweig. A mathematical definition of full prolog. Science
of Computer Programming, 1994.

Luc Duponcheel. Writing modular interpreters using catamorphisms, subtypes
and monad transformers. Technical Report (Draft), Utrecht University, 1995.

Ralf Hinze. Deriving backtracking monad transformers. In Roland Backhouse
and Jose N. Oliveira, editors, Proceedings of the 2000 International Conference
on Functional Programming, Montreal, Canada, September 2000.

P. Jansson and J. Jeuring. Polytypic unification. Journal of Functional Pro-
gramming, 8(5):527-536, 1998.

Mark P. Jones. A system of constructor classes: overloading and implicit higher-
order polymorphism. Journal of Functional Programming, 5(1):1-35, January
1995.

Mark P. Jones. First-class Polymorphism with Type Inference. In Proceedings of
the Twenty Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Paris, France, January 15-17 1997.

Mark P. Jones and L. Duponcheel. Composing monads. YALEU/DCS/RR
1004, Yale University, New Haven, CT, USA, 1993.

J. E. Labra. An implementation of modular monadic semantics using folds
and monadic folds. In Workshop on Research Themes on Functional Program-
ming, Third International Summer School on Advanced Functional Program-
ming, Braga - Portugal, 1998.

J. E. Labra, J. M. Cueva, and C. Luengo. Language prototyping using modu-
lar monadic semantics. In 8rd Latin-American Conference on Functional Pro-
gramming, Recife - Brazil, March 1999. Available at http://1si.uniovi.es/
“labra/LPS/Clapf99.ps.

J. E. Labra, J. M. Cueva, M. C. Luengo, and A. Cernuda. Modular development
of interpreters from semantic building blocks. Nordic Journal of Computing,
8(3), 2001. To appear.

J. E. Labra, J. M. Cueva, M. C. Luengo, and A. Cernuda. Specification of
logic programming languages from reusable semantic building blocks. In Inter-
national Workshop on Functional and (Constraint) Logic Programming, Kiel,
Germany, September 2001. University of Kiel. To appear.

J. E. Labra, J. M. Cueva Lovelle, M. C. Luengo Diez, and B. M. Gonzilez. A
language prototyping tool based on semantic building blocks. In Eight Inter-
national Conference on Computer Aided Systems Theory and Technology (EU-
ROCAST’01), volume 2178 of Lecture Notes in Computer Science, Las Palmas
de Gran Canaria — Spain, February 2001. Springer Verlag.

Reusable Monadic Semantics of Logic Programs with Arithmetic Predicates

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J.E. Labra, M.C. Luengo, J.M. Cueva, and A. Cernuda. LPS: A language
prototyping system using modular monadic semantics. In Mark van den Brand
and Didier Parigot, editors, Flectronic Notes in Theoretical Computer Science,
volume 44. Elsevier Science Publishers, 2001.

Jose E. Labra. Modular Development of Language Processors from Reusable
Semantic Specifications. PhD thesis, Dept. of Computer Science, University of
Oviedo, 2001. In spanish.

Sheng Liang and Paul Hudak. Modular denotational semantics for compiler con-
struction. In Programming Languages and Systems — ESOP’96, Proc. 6th Eu-
ropean Symposium on Programming, Linkoping, volume 1058 of Lecture Notes
in Computer Science, pages 219-234. Springer-Verlag, 1996.

Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and mod-
ular interpreters. In 22nd ACM Symposium on Principles of Programming
Languages, San Francisco, CA. ACM, January 1995.

E. Moggi. Metalanguages and applications. In A. M. Pitts and P. Dybjer,
editors, Semantics and Logics of Computation, Publications of the Newton In-
stitute. Cambridge University Press, 1997.

Eugenio Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, Edinburgh University, Dept. of Computer Science, June
1989. Lecture Notes for course CS 359, Stanford University.

Peter D. Mosses. Theory and practice of action semantics. In 21st Int. Symp.
on Mathematical Foundations of Computer Science, volume 1113, pages 37—
61, Cracow, Poland, Sept 1996. Lecture Notes in Computer Science, Springer-
Verlag.

T. Nicholson and N. Foo. A denotational semantics for prolog. ACM Transac-
tions on Programming Languages and Systems, 11(4):650-665, 1989.

Philip Wadler. The Essence of Functional Programming. In Proceedings of the
19th Symposium on Principles of Programming Languages, pages 1-14, Albu-
querque, New Mexico, January 19 — 22, 1992. ACM Press.

David A. Watt. Why don’t programming language designers use formal meth-
ods? In Seminario Integrado de Software e Hardware - SEMISH’96, pages 1-6,
Recife, Brazil, 1996. University of Pernambuco.

