
Folding by Similarity

F. J. Galán and J. M. Cañete
Dept. de Lenguajes y Sistemas Informáticos.

Facultad de Informática. Av. Reina Mercedes s/n. 41012.
Sevilla. Fax:34 954557139, Voice: 34 954552773

E-mail: galanm@lsi.us.es

Abstract

A formal specification can describe software models which are difficult
to program. Transformational methods based on fold/unfold strategies have
been proposed to palliate this problem. The objective of applying transfor-
mations is to filter out a new version of the specification where recursion may
be introduced by a folding step. Among many problems, the ”eureka” about
when and how to define a new predicate is difficult to find automatically. We
propose a new version of the folding rule which decides automatically how to
introduce new predicates in a specification. Our method is based on finding
similarities between formulas represented as parsing trees and it constitutes
an assistance to the complex problem of deriving recursive specifications from
non recursive ones.

Keywords: specification transformation, program synthesis, correctness

preservation, program specification.

1 Introduction

Usually, a specification describes software models which are difficult to program.
Systematic construction of programs from specifications is known as program syn-
thesis. A huge variety of synthesis mechanisms have been developed [BSW90],
[BD77], [DeK94], [Dro88], [Fle95], [Smi90], [AFM99]. In this work, we are interested
in transformational mechanisms; a sequence of meaning-preserving transformation
rules (e.g. unfolding, folding, universal instantiation, abstraction, predicate defini-
tion, etc.) is applied to a specification until a program is obtained. The objective of
applying transformations is to filter out a new version of the specification where re-
cursion may be introduced by a folding step. However, among many others problems,
deciding about when and how to define a new predicate (i.e. recursive predicate) is
difficult to find automatically. Fold/unfold transformations represent an important
investigation subject in the literature [ArD95], [BD77], [Par90], [PrP93], [PeP94],
[TaS84]. Basically, unfolding represents the replacement of an atom by its defini-
tion and folding represents the inverse operation of replacing a subformula by an
atom. In the following example, the context S defines a (many-sorted) first-order

APPIA-GULP-PRODE 2001

language with types Nat (natural numbers) constructed from the function symbols
0 and s and Seq(Nat) (sequences of natural numbers) constructed from the function
symbols empty and conc. It defines also the meaning of relation symbols such as =
(identity between natural numbers), nocc (number of occurrences of an element in
a sequence) and perm (permutations of a sequence of natural numbers).

S = {Types : Nat generated by 0, s Seq(Nat) generated by empty, conc

D= : 0 = 0⇔ true 0 = s(x)⇔ false

s(x) = 0⇔ false s(x) = s(y)⇔ x = y

Dnocc : nocc(e, empty, z)⇔ z = 0
nocc(e, conc(x, Y), s(z))⇔ x = e ∧ nocc(e, Y, z)
nocc(e, conc(x, Y), z)⇔ ¬x = e ∧ nocc(e, Y, z)

Dperm : perm(L, S)⇔ (nocc(a, L, z)⇔ nocc(a, S, z))}

Dperm is not closed to the structure of a program (i.e. there is not any explicit
recursion). Following a transformational synthesis process for Dperm (e.g. applying
universal instantiation on variables L, S and z in Dperm, we obtain D1 and then
unfolding D1 w.r.t. nocc(b, conc(v, V), s(k)) and nocc(b, conc(w,W), s(k))) atoms
using second axiom in Dnocc) we reach expressions such as D2:

D1 : perm(conc(v, V), conc(w,W))⇔ (nocc(b, conc(v, V), s(k))
⇔

nocc(b, conc(w,W), s(k)))
D2 : perm(conc(v, V), conc(w,W))⇔ ((v = b ∧ nocc(b, V, k))

⇔
(w = b ∧ nocc(b,W, k)))

Two questions arise at this point, (a) Is it possible to introduce recursive pre-
dicates in D2? and (b) How can we do it? It is difficult to achieve an ”automatic
answer” to these questions. Our method follows a constructive approach. A compari-
son based on the notion of similarity between D2 and Dperm is needed to decide about
first question. Only if first question is answered affirmatively then a similarity-based
folding rule is applied to D in order to answer second question.

Our work is explained in the following manner. Section 2 defines the form of our
specifications and a non-constructive characterization of the folding rule is presented.
Section 3 defines the concept of similarity. Basically, it represents an automatic
method for deciding which subformulas produce recursion. In section 4, we describe
a similarity based folding rule which preserves correctness, and finally, in section 5
we establish conclusions.

2 Preliminary Definitions

In this section, the syntax and semantics of our specifications and a non-constructive
definition of the folding rule are presented. The use of the folding rule is intended
to introduce recursion in a specification.

Folding by Similarity

Definition 2.1 (Syntax of a Formula) A many-sorted (typed) first order lan-
guage is assumed to write our formulas. A formula Qτ1x1...Qτn

xnF where Qτi
xi

is a universal or existential quantifier defined on a type τi, xi is different from xj

for i 6= j, and F contains no quantifier, is said to be in prenex normal form. We
consider that, when possible, all quantifiers in a formula are ordered following a
lexicographic order defined on the names of their respective types.

For example, ∀Nata∀Natz∀Seq(Nat)L∀Seq(Nat)S(nocc(a, L, z)⇔ nocc(a, S, z)) is in pre-
nex normal form where all quantifiers have been ordered following a lexicographic
order defined on the names of their respective types.

In the following, we assume that all our formulas are in prenex normal form,
this does not represent any restriction due to the existence of an effective procedure
for transforming any first-order formula into an equivalent one in prenex normal
form [Men87]. For legibility reasons, we omit τ subscripts when a type can be in-
duced clearly in a formula and expressions such as Qτx...QτzF can be collapsed into
equivalent expressions Qτx, ..., zF . For example, the formula ∀Nata∀Natz∀Seq(Nat)L-
∀Seq(Nat)S(nocc(a, L, z)⇔ nocc(a, S, z)) can be collapse into the equivalent formula
∀Nata, z∀Seq(Nat)L, S(nocc(a, L, z)⇔ nocc(a, S, z)). In addition, when possible, uni-
versal quantifiers are omitted in the front of a formula.

Definition 2.2 (Substitution) A (ground) variable substitution is the pair (v, t)
where v is a variable and t is a (ground) term. A substitution σ is a set of variable
substitutions. Let X = {x1, ..., xn} and Y = {y1, ..., yn} be two sets of variables where
xi is different from xj and yi is different from yj for i 6= j. Let QX = {Qτx1

, ...,-
Qτxn

} and QY = {Qτy1
, ..., Qτyn

} be two sets of quantifiers for variables in X and Y

respectively. We say that σ = {(x1, y1), ..., (xn, yn)} is a renaming substitution which
agrees w.r.t. quantifications iff (a) X ∩ Y = ∅ and (b) Qτxi

= Qτyi
with i = 1..n.

Definition 2.3 (Specification) An if-and-only-if axiom is a formula of the form
r(x1, ..., xn)⇔ R(y1, ..., ym) (e.g. axioms for =, nocc and perm relation symbols in
S). The symbol r is called the defined symbol. The atom r(x1, ..., xn) is called the
left-hand side of the axiom and the (sub)formula R(y1, ..., ym) is called the right-hand
side of the axiom. A specification for a relation symbol r is the set Dr of all axioms
with the same defined symbol. In the following, we use Dr,n to identify the nth axiom
in Dr.

Definition 2.4 (Context) A context C is a set of types and specifications for re-
lation symbols. Types are constructed from function symbols appearing in C. C is
atomically complete if, for every ground atom r(t1, ..., tn), either C ` r(t1, ..., tn)
or C ` ¬r(t1, ..., tn). C has isoinitial model M iff for every ground literal l, M |=
l iff C ` l. Therefore, the meaning of a relation r in C is the set of all ground literals
l defined on r such that C ` l.

Some authors have studied the problem of the existence of isoinitial models for
theories in general [BMM83] and some effective criteria have been proposed to con-
struct consistent theories. Following [LaO94], a context C admits an isoinitial model
if and only if it is atomically complete. By hypothesis, we assume that our contexts
are consistent in this way.

APPIA-GULP-PRODE 2001

�����������

�����������

����������	

����������

za�
��� ,∀

SL�
������ � ,��∀

1

2 1 1

�
�������

⇔

���
���������

),,(zLan o c c

���
���������

),,(zSan o c c

Figure 1: Parse(∀Nata, z∀Seq(Nat)L, S(nocc(a, L, z)⇔ nocc(a, S, z))).

Definition 2.5 (Folding Rule) A folding rule is a transformation rule intended
for replacing a subformula by an atom. Let S be a formula and r(xj) ⇔ Rj(yj)
be an axiom for r in C. We say that Sj is obtained from S folding with respect
to r(xj) ⇔ Rj(yj) iff Sj = S |Rr(xj)θj

where (a) There exist subformula R in S

and substitution θ such that R = Rj(yj)θj and (b) S |Rr(xj)θj
represents the textual

replacement of R by r(xj)θj in S.

For example, the formula S ≡ (nocc(b, V, k)⇔ nocc(b,W, k))∧ v = b∧w = b can
be folded with respect to Dperm. Applying the substitution θ1 = {(L, V), (S,W),-
(z, k),(a, b)} to the right-hand side of the axiom in Dperm we obtain the subformula
R≡ nocc(b, V, k)⇔ nocc(b,W, k). Finally, applying textual replacement, we obtain
perm(V,W) ∧ v = b ∧ w = b.

3 Similarity

This section describes an automatic method to introduce recursion by a folding step.
It is based on the notion of similarity. Basically, similarity represents a decidable
relation between two parsed formulas.

Definition 3.1 (Parsing Tree) Let S be a formula in prenex normal form. We
say that Parse(S) (graphical example in figure 1) is the parsing tree for S iff it is a
tree representation of S where (a) each leaf node in Parse(S) represents a literal in
S. (b) each non-leaf node in Parse(S) represents either a quantified set of variables
Qτx, ..., z or a logical connective (∧, ∨, ⇒, ⇔) in S and (c) each node in Parse(S)
has unique identification by means of a number with format lx · · · xp. The digit l

represents the level where a node is located in Parse(S). The digit p decides if the
node is located either at the left-hand side (p = 1) or at the right-hand side (p = 2)
of its parent (if it exists). By default, nodes without brother nodes have p = 1. The
digits x · · · x represent the identification of the parent node. The root node is an
exception, it has not any parent therefore we consider a fixed identification for it
equal to 1. In this way, a node identification determines univocally the position of a
node in a parsing tree. We say that a preterminal node in Parse(S) is any non-leaf
node in Parse(S) with at least one leaf node as child.

Folding by Similarity

Two formulas can be compared by the structure of their quantifiers and logical
connectives. These measures are called similarity with respect to quantification
and similarity with respect to logical connectives respectively. In the following
definitions, we consider that S1 and S2 are two formulas in prenex normal form.

Definition 3.2 (Similarity Function) We say that f is a similarity function from
the node identification domain of Parse(S1) to the node identification domain of
Parse(S2) iff each non-leaf n1 ∈ Parse(S1) is mapped to a non-leaf node n2 =
f(n1) ∈ Parse(S2) where quantifier/connective in n1 coincides with quantifier/con-
nective in n2 and the level of n2 is greater than or equal to the level of n1.

Definition 3.3 (Similarity w.r.t. Quantification) We say that S2 is similar to
S1 w.r.t. quantification iff for each non-leaf node n1 ∈ Parse(S1) containing the
quantified set of variables Qτx1, ..., xn there exists a non-leaf node n2 = f(n1) ∈
Parse(S2) containing the quantified set of variables Qτy1, ..., ym such that (a) m ≥
n and (b) there exist two sequences of nodes, M1 from Parse(S1) and M2 from
Parse(S2), with M1 = M−1

2 where M1 contains n1 and its predecessors (from bottom
to up) and M2 contains n2 and its predecessors (from bottom to up). (M−1

2 is
obtained by applying f−1, when defined, to elements in M2). If S2 is similar to
S1 w.r.t. quantification then f induces a set of possible renaming substitutions for
variables in S1 (from variables in S2) which agrees w.r.t. quantification. If QτX

is the set of quantified variables in n1 and QτY is the set of quantified variables
in n2 = f(n1) then f induces substitutions of the form {(xj, yk)} with xj ∈ X and
yk ∈ Y .

In figure 5, S2 is similar to S1 w.r.t. quantification:

Q = ∀Nat X = {a, z} Y = {b, k, v, w}
Q = ∀Seq(Nat) X = {L, S} Y = {V,W}

and some examples of substitutions induced by f are:

{(a, b), (z, k), (L, V), (S,W)} {(a, k), (z, v), (L,W), (S, V)} ...

Definition 3.4 (Similarity w.r.t. Logical Connectives) We say that S2 is in-
depth similar to S1 iff for each non-leaf node n1 ∈ Parse(S1) containing a logical
connective there exists a non-leaf node n2 = f(n1) ∈ Parse(S2) and there exist two
sequences of nodes, M1 from Parse(S1) and M2 from Parse(S2), with M1 = M−1

2

where M1 contains n1 and its predecessors (from bottom to up) and M2 contains n2

and its predecessors (from bottom to up). We say that S2 is in-breadth similar to S1

iff for each level l > 1 of Parse(S1) with N1,l = {lx1p1, ..., lxkpk} as the set of all
nodes in l containing logical connectives, there exists a set of nodes in Parse(S2),
possibly from several levels, say l1, ..., lj, of the form N2,{l1,...,lj} = {π1f(x1)p1ς1,...,-
πkf(xk)pkςk} where πi and ςi (i = 1..k) are (sub)sequences of numbers. If the node
with identification 1 (level l = 1) of Parse(S1) contains a logical connective then
there exists a node identification in Parse(S2) of the form πf(1)ς in Parse(S2)
where π and ς are (sub)sequences of numbers. We say that S2 is similar to S1 w.r.t.
logical connectives iff S2 is in-depth similar and in-breadth similar to S1.

APPIA-GULP-PRODE 2001

 1

 ⇔

 1

 ⇔

 2 1 1

 ∧

 2 1 2

 ∨

 2 1 1

 ∨

 2 1 2

 ∨

 3 2 1 1 1

 ∧

 3 2 1 1 2

 ∧

L e v e l 1

L e v e l 2

L e v e l 3

Figure 2: S2 is similar to S1 with respect to logical connectives.

For example, in figure 2 we show an example of similarity with respect to logical
connectives between the formulas S1 and S2 (for legibility reasons, each ri represents
a ground literal):

S1 : (r1 ∧ r2)⇔ (r3 ∨ r4)
S2 : ((r5 ∧ r6) ∨ (r7 ∧ r8))⇔ (r9 ∨ r10))

In-depth similarity:

f(1) = 1 M1 = {1} M2 = {1} M−1

2 = {1}
f(211) = 32111 M1 = {211,1} M2 = {32111, 211, 1} M−1

2 = {211,1}
f(212) = 212 M1 = {212,1} M2 = {212, 1} M−1

2 = {212,1}

In general, if f exists then it may not be unique. For example, the node n211 ∈
Parse(S1) can also be mapped to the node n32112 ∈ Parse(S2) obtaining in this way
another f .

In-breadth similarity (in relation to the definition 3.4, bold numbers have been
used for xjpj in N1,l and for f(xj)pj in N2,{l1,...,lj}):

l = 2 (level 2), x1 = 1, p1 = 1, x2 = 1, p2 = 2, N1,2 = {211, 212}
f(1) = 1, π1 = 32, ς1 = 1, π2 = 2, ς2 = ∅, N2,{2,3} = {32111, 212}

In figure 3 we show an example of non-similarity (non in-depth similarity) with
respect to logical connectives between the formulas S3 and S4.

S3 : (r1 ∧ r2)⇔ (r3 ∨ r4)
S4 : ((r5 ∧ r6) ∨ (r7 ∧ r8))⇔ r9

Non in-depth similarity:

f(1) = 1 M1 = {1} M2 = {1} M−1

2 = {1}
f(212) = 211 M1 = {212,1} M2 = {211, 1} M−1

2 = {212,1}
f(211) = 32111 M1 = {211,1} M2 = {32111, 211, 1} M−1

2 = {211,212,1}
f(211) = 32112 M1 = {211,1} M2 = {32112, 211, 1} M−1

2 = {211,212,1}

Folding by Similarity

 1

 ⇔

 1

 ⇔

 2 1 1

 ∧

 2 1 2

 ∨

 2 1 1

 ∨

 3 2 1 1 1

 ∧

 3 2 1 1 2

 ∧

L e v e l 1

L e v e l 2

L e v e l 3

Figure 3: S4 is not similar to S3 with respect to logical connectives.

There is not any f such that M1 = M−1
2 for the node n211 ∈ Parse(S3).

In figure 4 we show another example of non-similarity (non in-breadth similarity)
with respect to logical connectives between the formulas S5 and S6:

S5 : (r1 ∧ r2)⇔ (r3 ∨ r4)
S6 : (r5 ∧ r6) ∨ (r7 ⇔ ((r8 ∨ r9) ∧ (r10 ∧ r11)))

In-depth similarity:

f(1) = 211, M1 = {1} M2 = {211}, M−1

2 = {1}
f(211) = 4321222,M1 = {211,1}M2 = {4321222, 32122, 212, 1},M−1

2 = {211,1}
f(212) = 4321221,M1 = {212,1}M2 = {4321221, 32122, 212, 1},M−1

2 = {212,1}

Non in-breadth similarity:

l = 2 (level 2), x1 = 1, p1 = 1, x2 = 1, p2 = 2, N1,2 = {211, 212}
f(1) = 212, π1 = 43, ς1 = 1, π2 = 43, ς2 = 2, N2,{4} = {4321221, 4321222}

Definition 3.5 (Similarity) Let S2 be similar to S1 w.r.t. quantification and log-
ical connectives by a function f . Let L be the set of all literals in S1. Let NLeaf1

be the set of all preterminal nodes in Parse(S1). Let NLeaf2 be the set of nodes
n2 ∈ Parse(S2) with n2 = f(n1) and n1 ∈ NLeaf1. Let Leaf2 be the set of leaf
nodes in subtrees of Parse(S2) with root node n2 ∈ NLeaf2. We say that S2 is
similar to S1 iff there exist a SLeaf2 ⊆ Leaf2, with K as the set of literals in nodes
of SLeaf2, and a substitution σ induced by f such that Lσ = K.

For example, in figure 5, we show the similarity between S1 ≡ nocc(a, L, z) ⇔
nocc(a, S, z) and S2 ≡ (v = b ∧ nocc(b, V, k))⇔ (w = b ∧ nocc(b,W, k)).

Similarity w.r.t to quantification:

f(1) = 1 f(211) = 211

Similarity w.r.t. logical connectives (In-depth similarity):

APPIA-GULP-PRODE 2001

 1

 ⇔

 1

 ∨

 2 1 1

 ∧

 2 1 2

 ∨

 2 1 1

 ∧

 2 1 2

 ⇔

4 3 2 1 2 2 1

 ∨

 4 3 2 1 2 2 2

 ∧

L e v e l 1

L e v e l 2

L e v e l 3

 3 2 1 2 2

 ∧

L e v e l 4

Figure 4: S6 is not similar to S5 with respect to logical connectives.

1

za����� ,∀

2 11
SL������	��
 ,�
∀

3 2 111
⇔

4 3 2 1111 4 3 2 1112
),,(zLan o c c),,(zSan o c c

1

wvkb���	� ,,,∀

2 11
WV������	��
 ,�
∀

3 2 111
⇔

4 3 2 1111 4 3 2 1112
∧ ∧

5 4 3 2 11111
�� =

5 4 3 2 11112
),,(kVbn o c c

5 4 3 2 1112 1
�� =

5 4 3 2 1112 2
),,(kWbn o c c

�����������

�����������

�����������

�����������

�����������

Figure 5: An example of similarity.

Folding by Similarity

f(32111) = 32111 M1 =M−1

2 = {32111,211,1}

Similarity w.r.t. logical connectives (In-breadth similarity):

l = 3 f(211) = 211 N1,3 = {32111} N2,{3} = {32111}

NLeaf1 = {32111} NLeaf2 = {32111}

Leaf2 = {543211111, 543211112, 543211121, 543211122}
SLeaf2 = {543211112, 543211122}

Substitution σ induced by f :

σ = {(a, b), (z, k), (L, V), (S,W)}
L = {nocc(a, L, z), nocc(a, S, z)}, K = {nocc(b, V, k), nocc(b,W, k)}, Lσ = K

3.1 Algorithmic Justification for Similarity

The constructive nature of definitions 3.3, 3.4 and 3.5 can be justified in an algo-
rithmic way. Different searching algorithms can be proposed for the construction of
the similarity function f . We propose a construction following an incremental style.
First, f is constructed in order to decide only about similarity w.r.t. quantifiers.
Then, we search for a substitution induced by (this incomplete) f . Finally, we search
for a remaining part of f which decides about similarity w.r.t. logical connectives.
Our searching algorithm follows a generate-and-test strategy. It is possible to ex-
plore the complete search space due to the finite number of quantifiers and logical
connectives in a formula.

Initially, a sequence of non-leaf node identifications is constructed by traversing
Parse(S1) in a breadth-first way. For example, for Parse(S1) in figure 5 we obtain
SeqS1 :

SeqS1 = {1, 211, 32111}

From this sequence, the subset of nodes containing quantified set of variables is
selected. Then, a generate and test strategy is suffice to construct (an incomplete due
to the incremental construction) f which decides about similarity w.r.t. quantifiers.
The generate-part generates a tentative f for each node in this subset. Hence,
each node containing a quantified set of variables of the form QτX in Parse(S1) is
bounded to a node containing a quantified set of variables of the form QτY . The
test part decides about conditions (a) and (b) in definition 3.3. If it is not possible to
construct an f in these terms then we conclude that there is not any similarity w.r.t.
quantification and then there is not any similarity f . For example, for Parse(S1)
in figure 5, the subset of nodes containing quantified set of variables is equal to
{1, 211}.

f(1) = 1 Qτ = ∀Nat X = {a, z} Y = {b, k, v, w}
f(211) = 211 Qτ = ∀Seq(Nat) X = {L, S} Y = {V,W}

APPIA-GULP-PRODE 2001

The set of all tentative substitutions σp induced by (our incomplete) f is computed
in the following manner. For each pair of quantified set of variables QτX and QτY by
f , the set of all possible substitutions is calculated by means of a cartesian product.
Then, the set of all tentative substitutions σp induced by f is calculated by the
cartesian product of these substitutions. The calculation of σp is a terminating
problem due to the finite number of variables in a formula. For example, in our
example (fig. 5):

For the pair ∀Nata, z and ∀Natb, k, v, w:

σ∀Nat
= {{(a, b), (z, k)} {(a, b), (z, v)} {(a, b), (z, w)}

{(a, k), (z, b)} {(a, k), (z, v)} {(a, k), (z, w)}
{(a, v), (z, b)} {(a, v), (z, k)} {(a, v), (z, w)}
{(a, w), (z, b)} {(a, w), (z, k)} {(a, w), (z, v)}}

For the pair ∀Seq(Nat)L, S and ∀Seq(Nat)L,W :

σ∀Seq(Nat)
= {{(L, V), (S,W)}

{{(L,W), (S, L)}}

σp = σ∀Nat
× σ∀Seq(Nat)

:

σp = {{(a, b), (z, k), (L, V), (S,W)} {(a, b), (z, k), (L,W), (S, L)} ...

Then, we select the sets of literals L from Parse(S1) and K from Parse(S2).
Then σ is any substitution in σp such that Lσ = K. A generate and test strategy is
suffice to explore the σp search space. Only if K does not exist or there is not any σ

such that Lσ = K then we conclude that there is not similarity w.r.t. quantification
and then there is not any similarity f .

In a similar way, we construct the remaining part of f which is intended to decide
about similarity w.r.t. logical connectives. A generate and test strategy is suffice to
explore the search space. The generate-part generates a tentative (remaining part
of) f . A breadth-first search is suffice to construct tentative f ’s. The test-part
decides about in-depth and in-breadth similarities induced by each tentative f . The
search space for the remaining part of f is finite due to the finite number of logical
connectives in a formula. In our example, the remaining part of f is only determined
by the selection f(32111) = 32111. Finally, for our example (fig. 5):

f = {f(1) = 1
f(211) = 211
f(32111) = 32111}

Only if the remaining part of f can not be constructed then we conclude that
there is not similarity w.r.t. logical connectives and then there is not any similarity
f .

4 Similarity-based Folding Rule

In this section, a similarity-based folding rule is defined. Basically, it is a constructive
definition of the folding rule in definition 2.5.

Folding by Similarity

Definition 4.1 (Evaluation Rule) Let S(l1, l2, ..., lp, lp+1, ..., ln) be a formula in
the language of the context C constructed from literals l1, l2, ..., lp, lp+1, ..., ln.

We say that Seval({l1, l2, ..., lp}) is obtained from S evaluating the set of literals
{l1, l2, ..., lp} if and only if Seval({l1, l2, ..., lp}) is of the following form:

Seval({l1, l2, ..., lp}) ≡
(S(true, true, ..., true, lp+1, ..., ln) ∧ l1 ∧ l2 ∧ ... ∧ lp) ∨
(S(false, true, ..., true, lp+1, ..., ln) ∧ ¬l1 ∧ l2 ∧ ... ∧ lp) ∨
(S(true, false, ..., true, lp+1, ..., ln) ∧ l1 ∧ ¬l2 ∧ ... ∧ lp) ∨
... ∨
(S(false, false..., false, lp+1, ..., ln) ∧ ¬l1 ∧ ¬l2 ∧ ... ∧ ¬lp)

For example, let S ≡ (v = b ∧ nocc(b, V, k)) ⇔ (w = b ∧ nocc(b,W, k)) be a
formula in the language of S. Let l1 ≡ v = b and l3 ≡ w = b be two literals in S.

Then

Seval({l1, l3}) ≡
(true ∧ nocc(b, V, k)⇔ true ∧ nocc(b,W, k)) ∧ v = b ∧ w = b ∨
(false ∧ nocc(b, V, k)⇔ true ∧ nocc(b,W, k)) ∧ ¬v = b ∧ w = b ∨
(true ∧ nocc(b, V, k)⇔ false ∧ nocc(b,W, k)) ∧ v = b ∧ ¬w = b ∨
(false ∧ nocc(b, V, k)⇔ false ∧ nocc(b,W, k)) ∧ ¬v = b ∧ ¬w = b

is obtained from S evaluating l1 and l3.

Theorem 4.1 (Correctness of the Evaluation Rule) Let S(l1, ..., lp, ..., ln) be -
a formula in the language of C constructed from literals l1, ..., lp, ..., ln.

Let Seval({l1, ..., lp}) be the formula obtained from S evaluating the set of literals
{l1, ..., lp}. Let M be an isoinitial model for C. Then M |= S ⇔ Seval({l1, ..., lp})

Proof 4.1 Proof of M |= S ⇒ Seval({l1, ..., lp}). The evaluation rule (definition
4.1) constructs Seval({l1, ..., lp}) by means of 2p mutually exclusive disjunctions re-
presenting all possible evaluation cases for l1, ..., lp literals in S. Suppose (by ab-
surdum) that M is model for a ground instance of S and it is not model for the
respective ground instance of Seval({l1, ..., lp}). By hypothesis, C is atomically com-
plete (definition 2.4) and then there exists a proof in C for the ground instance of S
but there is not a proof in C for the ground instance of Seval({l1, ..., lp}). Hence, we
conclude that Seval({l1, ..., lp}) does not consider all possible evaluations for l1, ..., lp
literals in S.

Proof of M |= Seval({l1, ..., lp}) ⇒ S. If M is model of a ground instance of
Seval({l1, ..., lp}) then M is model of only one instance of their disjunctions and
then, by construction, it is a model of the respective ground instance of S.

Definition 4.2 (Rewrite Rules) In order to simplify specifications, we consider a
set of rewrite rules of the form {l→ r} in presence of negations and false and true

propositions. A formula S(true, false, lp+1, ..., ln) constructed from literals lp+1, ..., ln

APPIA-GULP-PRODE 2001

and propositions true, false is transformed into the formula Srew by application of
rewrite rules repeatedly.

(1) ¬true→ false, (2) ¬false→ true, (3) true ∨ F → true

(4) false ∨ F → F, (5) true ∧ F → F, (6) false ∧ F → false

(7) false⇒ F → true, (8) true⇒ F → F, (9) false⇔ F → ¬F
(10) F ⇒ true→ true, (11) F ⇒ false→ ¬F, (12) true⇔ F → F

(13) ¬¬F → F, (14) ¬(F ⇒ G)→ F ∧ ¬G, (15) ¬(F ∧G)→ ¬F ∨ ¬G
(16) ¬(F ∨G)→ ¬F ∧ ¬G, (17) ¬(F ⇔ G)→ ¬(F ⇒ G) ∨ ¬(G⇒ F)

A formula S(true, false, lp+1, ..., ln) constructed from literals lp+1, ..., ln and propo-
sitions true, false is transformed into the formula Srew by application of rewrite
rules repeatedly.

For example, let S = ((false ∧ nocc(b, V, k)) ⇔ (true ∧ nocc(b,W, k))) be a
formula. Srew = ¬nocc(b,W, k) represents the simplified form of S obtained after
the application of (6), (5) and (9) rewrite rules.

Definition 4.3 (Similarity-based Folding Rule) Let S be a formula in the lan-
guage of C. Let r be a relation in C. Let r(xj)⇔ Rj(yj) be an axiom in Dr.

We say that Sj is obtained from S folding by similarity with respect to r(xj) ⇔

Rj(yj) iff Sj ≡ (Seval(K −Kj))rew |
Rj(yj)θj

r(xj)θj
where

1. The variables appearing only in Rj(yj) but not in r(xj) do not appear in S.

2. K is the set of all literals in S.

3. S is similar to Rj(yj), where Lj is the set of all literals in Rj(yj) and Kj is a
(sub)set of literals of S and θj is the substitution such that Ljθj = Kj.

4. (Seval(K − Kj))rew is obtained from S evaluating (definition 4.1) literals not
in Kj and then applying rewrite rules (definition 4.2) repeatedly.

For example, let S ≡ (v = b ∧ nocc(b, V, k)) ⇔ (w = b ∧ nocc(b,W, k)) be a
formula in the language of S. Let perm(L, S) ⇔ (nocc(a, L, z) ⇔ nocc(a, S, z)) be
the axiom in Dperm. K = {v = b, nocc(b, V, k), w = b, nocc(b,W, k)} is the set of
all literals in S. S is similar to nocc(a, L, z) ⇔ nocc(a, S, z) (definition 3.5). Let
L1 = {nocc(a, L, z), nocc(a, S, z)} be the set of literals in the right-hand side of the
axiom in Dperm and let K1 = {nocc(b, V, k), nocc(b,W, k)} be the set of literals in S

such that L1θ1 = K1 with θ1 = {(L, V), (S,W), (z, k), (a, b)}. Then, let

Seval(K −K1) ≡
(true ∧ nocc(b, V, k)⇔ true ∧ nocc(b,W, k)) ∧ v = b ∧ w = b ∨
(false ∧ nocc(b, V, k)⇔ true ∧ nocc(b,W, k)) ∧ ¬v = b ∧ w = b ∨
(true ∧ nocc(b, V, k)⇔ false ∧ nocc(b,W, k)) ∧ v = b ∧ ¬w = b ∨
(false ∧ nocc(b, V, k)⇔ false ∧ nocc(b,W, k))) ∧ ¬v = b ∧ ¬w = b

be the formula obtained from S evaluating literals not in K1 (i.e. v = b and
w = b). Applying (repeatedly) rewrite rules:

Folding by Similarity

Seval(K −K1))rew ≡ (nocc(b, V, k)⇔ nocc(b,W, k)) ∧ v = b ∧ w = b ∨
¬nocc(b,W, k) ∧ ¬v = b ∧ w = b ∨
¬nocc(b, V, k) ∧ v = b ∧ ¬w = b ∨

¬v = b ∧ ¬w = b

Considering (nocc(a, L, z) ⇔ nocc(a, S, z))θ1 ≡ nocc(b, V, k) ⇔ nocc(b,W, k) and
perm(L, S)θ1 ≡ perm(V,W) then

(Seval(K −K1))rew |
nocc(b,V,k)⇔nocc(b,W,k)
perm(V,W) ≡

perm(V,W) ∧ v = b ∧ w = b∨
¬nocc(b,W, k) ∧ ¬v = b ∧ w = b∨
¬nocc(b, V, k) ∧ v = b ∧ ¬w = b∨

¬v = b ∧ ¬w = b

is obtained from S folding by similarity with respect to Dperm,1.
Finally and reconsidering specification D2 in section 1 (introduction) we obtain:

D2 : perm(conc(v, V), conc(w,W))⇔ (perm(V,W) ∧ v = b ∧ w = b∨
¬nocc(b,W, k) ∧ ¬v = b ∧ w = b∨
¬nocc(b, V, k) ∧ v = b ∧ ¬w = b∨
¬v = b ∧ ¬w = b)

Theorem 4.2 (Correctness of the Similarity-based Folding Rule) Let S be
a formula in the language of C. Let r be the relation in C. Let r(xj) ⇔ R(yj) be
an axiom in Dr. Let Sj be the formula obtained from S folding by similarity with
respect to r(xj)⇔ R(yj) (definition 4.3). Then

M |= S ⇔ Sj where Sj ≡ (Seval(K −Kj))rew |
Rj(yj)θj

r(xj)θj

Proof 4.2 The similarity between S and Rj(yj) implies the existence of a substitu-
tion θj such that Ljθj = Kj where Lj represents the set of all literals in Rj(yj) and
Kj (say Kj = {lp+1, ..., ln}) represents a (sub)set of literals in S (definition 4.3).
The formula Seval(K−Kj) represents the evaluation of S with respect to literals not
in Kj and by theorem 4.1, this formula is equivalent to S. This formula is composed
by Fi disjunctions (i = 1..2p). Applying rewrite rules on each disjunction, we obtain
a formula of the form:

(Seval(K −Kj))rew ≡ (F1(lp+1, ..., ln) ∧ l1 ∧ l2 ∧ ... ∧ lp) ∨
(F2(lp+1, ..., ln) ∧ ¬l1 ∧ l2 ∧ ... ∧ lp) ∨
(F3(lp+1, ..., ln) ∧ l1 ∧ ¬l2 ∧ ... ∧ lp) ∨
...

(F2p(lp+1, ..., ln) ∧ ¬l1 ∧ ... ∧ ¬lp)

As rewrite rules preserve semantics, then M |= S ⇔ (Seval(K − Kj))rew. Con-
sidering the existence of k ∈ {1..2p} with Fk(lp+1, ..., ln) = Rj(yj)θj then

M |= r(xj)⇔ R(yj)
M |= r(xj)θj ⇔ R(yj)θj

M |= S ⇔ (Seval(K −Kj))rew |
Rj(yj)θj

r(xj)θj

APPIA-GULP-PRODE 2001

5 Conclusions

The objective of applying transformations is to filter out a new version of the
specification where recursion may be introduced by a folding step. Several (non-
constructive) versions of the folding rule have been proposed mainly in the context
of clausal (and restricted) specifications (e.g. logic programs [TaS84] and [GaS91]).
We do not restrict the form of the specifications. Hence, it is possible to apply
folding rule on general specifications in a flexible manner. On the other hand, con-
structive versions for this rule are needed if we are interested in the construction of
automatic synthesizers. In this way, we propose a new folding rule which decides
how to introduce recursive predicates in a specifications automatically which con-
trast with prior approaches. Our method is based on finding similarities between
formulas represented as parsing trees and it constitutes an automatic assistance to
the complex task of deriving recursive specifications from non recursive ones. At
this point, an important problem remains to be solved. The ”eureka” about when
to apply folding rule is difficult to establish in an automatic way [Fle95]. The use of
our proposal is intended to be integrated in a more general method which decides
when apply such transformation (e.g. [GaC01]). We think that our work is a little
contribution towards the construction of automatic synthesizers.

References

[ArD95] Aravindan, C. and Dung, P. M. On the Correctness of Unfold/Fold Trans-
formations of Normal and Extended Logic Programs. The Journal of Logic
Programming, 1995.

[AFM99] A. Avellone, M. Ferrari and P. Miglioli. Synthesis of Programs in Abstract
Data Types. 8th Int. Workshop on Logic Program Synthesis and Transfor-
mation. LNCS 1559, Springer, 1999, pp. 81-100.

[BMM83] Bertoni, A., Mauri, G. and Miglioli, P. On the Power of Model Theory
in Specifying Abstract Data Types and in capturing their Recursiveness.
Fundamenta Informaticae VI(2), pp. 127-170, 1983.

[BSW90] Bundy, A., Smaill, A. and Wiggins, G.: The Synthesis of Logic Programs
from Inductive Proofs. In J. W. Lloyd (ed.) Proceedings of Esprit Sympo-
sium on Computational Logic, pp. 135-149. Springer-Verlag, 1990.

[BD77] R. M. Burstall y J. Darlington. A Transformational System for Developing
Recursive Programs. Journal of the ACM 24(1):44-67, 1977.

[DeK94] Deville, Y. and Lau K-K : Logic Program Synthesis. J. Logic Programming,
19,20, pp. 321-350, 1994.

[Dro88] R. G. Dromey. Systematic Program Development. IEEE Transaction of
Software Engineering. 14(1) 12-29, 1988.

Folding by Similarity

[Fle95] Flener, P. Logic Program Synthesis from Incomplete Information. Kluwer
Academic Publishers, 1995.

[GaS91] Gardner, P. A. and Shepherdson, J. C. Unfold/Fold Transformations of
Logic Programs. In computational Logic: Essays in Honor of Alan Robin-
son MIT Press, 1991, pp. 565-583.

[GaC01] Galán, F.J. and Cañete, J. M. Synthesis of Constructive Specifications. To
appear in Proceeding of the I Workshop on Programming and Languages.
Almagro, Spain, 2001.

[LaO94] Lau, K-K. and Ornaghi, M. On Specification Frameworks and Deductive
Synthesis of Logic Programs. Proceedings of LOPSTR’94 and META’94.
Springer-Verlag, 1994.

[Men87] Mendelson, E. Introduction to Mathematical Logic. Ed. Wadsworth &
Brooks/Cole Advanced books & Software, Third edition, 1987.

[Par90] H. A. Partsch. Specification and Transformation of Programs: A Formal
Approach to Software Development. Springer-Verlag 1990.

[PeP94] Pettorossi, A., Proietti, M. Transformation of Logic Programs: Founda-
tions and Techniques. J. Logic Programming 1994:19, 20: 261-320.

[PrP93] Proietti, M., Pettorossi, A. An Abstract Strategy for Transforming Logic
Programs. Fundamenta Informaticae 18 (1993) 267-286

[Smi90] Smith, D. R.: KIDS: A Semiautomatic program development system. IEEE
Transaction of Software Engineering 16, pp. 1024-1043, 1990.

[StA99] D. Stuart Robertson, J. Agust. Pragmatics in the Synthesis of Logic Pro-
grams. 8th Int. Workshop on Logic Program Synthesis and Transformation.
LNCS 1559, Springer, 1999, pp.41-60.

[TaS84] Tamaki, H. and Sato, T. Unfold/Fold Transformation of Logic Programs.
Proceedings of the Second International Conference on Logic Programming,
Uppsala, Sweden, 1984, pp. 127-138.

