Representing Music for Analysis and Composition

Geraint Wiggins, Mitch Harris, Alan Smaill

August 1989

Abstract

Many systems have been proposed to encode music so as to allow manipulation in a
computer. We suggest that this multiplicity of representations can usefully be elim-
inated, and propose an abstract representation, which can be thought of as impli-
cit in aspects of many previous approaches. In terms of this basic representation,
we can then build up higher-level hierarchical representations, available for the pur-
poses of analysis or compositional manipulation. We illustrate this approach by de-
scribing an algorithm for rhythmic analysis devloped by Steedman, and an analytic
procedure developed by Ruwet, both formulated within our representation.

1 Introduction

The computer opens up a vast range of possibilities for both the composer and the ana-
lyst of music. But before the potential to manipulate musical material rapidly and in-
telligently can be taken up, a way must be found to allow the user to structure the raw
musical material with which s/he works, which both makes musical sense to the user,
and also allows computer implementation in appropriate data structures.

We believe the best approach to this general representational problem is given through
the logical specification of an abstract representation. The representation should be ab-
stractin that it should not commit the user to any particular representation of, say, pitch
in terms of a frequency in Hertz or some particular note name. On the other hand, the
representation of pitch should allow the determination of intervals from pitches, and, in
general, should permit the user to determine and manipulate all the musically meaning-
ful aspects of pitch.

It has become usual in Computer Science to make use of an abstract representation so
that problems can be tackled at the right level of generality. This will make clear the
common structure of problems which have often been tackled in a variety of computer
languages and distinct representations, and allow partial solutions to be combined. The
use of logic to specify such representations is also widely accepted.

Within Artificial Intelligence, too, research in Knowledge Representation attempts to
use abstract structures to represent knowledge about objects and their relationships in
the world. Logic has become the lingua franca of many researchers in this field. Work
in this tradition on temporal logic, for example in [Allen 84], is clearly relevant to the
problem of representing music.

Representing Music 2

These factors, combined with increased use of computers for analysis, composition and
archiving, suggest that the time is ripe for greater exploitation of the power and express-
iveness of logic. One way to contribute towards this might be the increased use of trans-
parent logical structures in music software. This is an issue of representation: how to
create a language in which it is easy to make computational objects correspond to mu-
sical objects. This issue precedes questions of implementation, for using logic as a tool
it should be possible to specify an abstract representation for music which has a status
independent of any particular software, computer language, or alphanumeric codes.

One advantage of such an abstract representation is that it would contribute towards the
standardization, and hence compatability and clarity of music software. Music stand-
ards for communicating relatively low-level information already exist — MIDI, DARMS etc
communications protocols. However these do not provide tools for representing higher
level or novel forms of musical structure. There are so many possibilities for using com-
puters for search, analysis of patterns or synthesis of new structures, that a unified rep-
resentation which would allow different encodings to be interrelated seems called for.

In this paper, we propose the construction of such an abstract representation for music.
We describe this representation, which is adequate for any note-based musical struc-
tures. Different users will wish to analyse and organise pieces of music in different ways;
therefore, we describe the basis for a general framework that exploits our representation
to build appropriate higher-level descriptions.

To illustrate the system at work, we have implemented analytic procedures developed
by Ruwet [Ruwet 72], as used by Nattiez in various analyses of Debussy’s “Syrinx”
[Nattiez 75, pp 330-54]. As a second illustration we describe a cognitive model for the
perception of rhythm developed by Steedman [Steedman 77]. We compare our system
with other recent proposals for musical representation.

2 The Basic Representation

— Il importe de choisir un certain nombre de notions primitives en relation directe avec
le phénomeéne sonore — et avec lui seul —, d’énoncer, ensuite, des postulats “qui doivent
apparaitre comme de simples relations logiques entre ces notions ...” [Boulez 63, p 29]

As a first approach, let us describe a representation of the pitch and time dimensions
of musical structures that we suppose given in terms of discrete notes, each of constant
pitch. These notes correspond to eventsin our representation; they are the fundamental
objects in the representation. The restriction to notes of constant pitch is in practice not
severe; it always holds for piano music for example. While we will not discuss the de-
tails of how to represent intensity or instrumentation information here, they are treated
similarly.

2.1 Representing time

The representations for time and pitch are every similar, so we simply describe the time
representation here. The objects of interest are points in time, and durations (or time

Representing Music 3

intervals). The intuition behind the following definitions is that we expect to be able to
describe a duration as the time interval between two points in time (hence we require
a function dur); we expect to compare the durations of notes (hence we need an order
<), and indeed to be able to add two durations together to get a third (hence an addi-
tion operation). So we give ourselves the mathematical machinery to do this, and some
conditions so that these operations will have reasonable properties.

One concrete example would measure time in terms of number of units of some under-
lying pulse, say quavers, and durations in numbers of quavers. So for example the dur-
ation from beat ¢1 to beat 2 is dur(t1,12) = t2 —t1, a duration d1 is less than duration
dl 4+ 1, and a duration d1 immediately followed by duration d2 form together a dura-
tion d14 d2. Many such concrete descriptions are possible; our object is to give a single
abstract description.

More formally, this consists of a set of times time and a set of durations duration, to-
gether with a mapping dur that measures the duration dur(a,b) between two times a
and b. To compare the durations of notes we need an order <, and to be able to add
two durations together to get a third an addition operation written + (not necessarily
the usual addition). We take the convention that if time b precedes time a then the dur-
ation dur(a,b) is negative.

Specifically, there is a function dur : time X time — duration and there is a distin-
guished duration denoted by 0, a relation < on the set duration, and an operation writ-
ten + on the duration set (with an associated inverse —) such that these make duration
a linearly ordered commutative group. !

We also suppose that dur is compatible with the duration structure, in that dur(z,y) =
0 < z =y, that dur(z,y)+ dur(y, z) = dur(z, z), and that dur(z,y) = —dur(y,z). The
algebraic conditions ensure that these operations have reasonable properties. We might
have been expected to provide similar operations on the set t¢me, but in fact we can
define the ordering on time (call it C) in terms of that on duration by defining

tl E tQ — 0 S dur(tl,tQ).

We can also define in terms of what we have so far, for each time ¢, a function a fter;
that gives a bijection between time points and durations by z — dur(¢, z); this allows
us to find a time a given duration after a given time. There is a similar be fore; bijection.

We summarise the operations in the time representation in table 1.

2.2 Pitch, Events and Scores

The pitch representation follows the lines of that for time, so we simply mention
the corresponding functions and relations. The objects of interest are pitches and
(pitch) intervals, so we need sets pitch and interval; the intervals are ordered by
a relation < and there is an addition operation. There is a measuring function
int : pitch x pitch — interval, and all these are related just as in the time case.

Our basic representation of some musical structure, then, simply consists of a set of
tuples, each of which we call an event that corresponds to a note of the music. The tuple

!For algebraic details, see [Mac Lane & Birkhoff 67]

Representing Music 4

sets time.duration

functions dur : time X time — duration
(after, : time = duration)
(before, : time = duration)
+ : duration X duration — duration

relations (C (on time))
< (on duration)

Entries in brackets are derived notions.
The symbol = indicates a two-way function.

Table 1: The Time Representation

has five elements, a unique identifier, a pitch element (corresponding to the pitch of
the note), a time element corresponding to the time of the start of the note, a duration
element corresponding to the length of the note, and a t¢mbre element that will describe
timbre and intensity information. Such a description of musical notes is very natural;
we emphasise again that the pitch , time and duration elements are taken from the ap-
propriate abstract data types.

So the general form of event statement will have the form

event(Identifier , Pitch , Time , Duration , Timbre).

Now, for a given musical structure, by describing the structure as a set of events over
which our functions and relations may be applied we obtain a uniform way of mak-
ing available most of the information needed to analyse, manipulate and create musical
structures. To profit from this, we need some higher-level descriptions; this is the role
of constituents, which we discuss in the next section.

Our approach allows both pitch and time structures to be continuous or discrete, and
admits microtonal pitch structures without problem. Programs such as the Ruwet ana-
lysis method below can therefore apply without adaptation to non-classical musical sys-
tems, for example.

We have implemented various versions of these abstract data types in the logic pro-
gramming language Prolog and in the functional programming language ML, where the
module system is naturally appropriate to the task. Any implementation should con-
tain constructor and destructor functions defining the datatypes, and functions to com-
pute each of the operations defined over the datatypes.

Note that we choose to represent in the first instance (idealised) musical performances,
rather than, say, musical scores — our interest is to represent music as it is experienced,
rather than indirectly through some other intermediate notation. We can regard a score
in this framework as a specification of a musical structure. In general, even for conven-
tional scores, the score does not completely determine the structure, some elements be-
ing left to the interpreter; in this case we regard the score as specifying a class of struc-
tures, each of which realises the score. This seems to be the right way to treat scores
that more radically underdetermine their interpretation, such as aleatoric scores which

Representing Music 5

may specify, for example, the notes to be played without specifying the order in which
they are to be played.

3 A hierarchy of constituents

As a piece of music unfolds, its rhythmic structure is perceived not as a series of dis-
crete independent units strung together in a mechanical, additive way like beads, but as
an organic process in which smaller rhythmic motives ... function as integral parts of a
larger rhythmic organisation

[Cooper & Meyer 60, p 2]

It is widely accepted that music is best described at higher levels in terms of some sort of
hierarchical structure [Balaban 88, Buxton & et al 78]. These structures may play sev-
eral roles, as the analyst and the composer may want to treat some given combination
of note-events in quite different ways. The same chord can have quite different mean-
ings in different styles. Our aim here is therefore to provide the framework in which
such hierarchical structures can be specified, without committing the user to any par-
ticular hierarchy.

We call constituents the higher-level groupings of which a hierarchy may be composed.
For example, we might wish to represent rhythmic groupings, or a cadence, or both at the
same time, or larger groups such as a recapitulation. These are all potential constituents.

There will thus be a hierarchy where an event may appear inside a constituent, which
may appear inside another constituent, and so on. We will call the events and/or con-
stituents from which a given constituent is directly formed the particles of that constitu-
ent. A constituent is described by its set of particles, together with a label of its type
(in the above, this could be rhythmic_unit or cadence), and a unique identifier. It may
be possible and useful to assign time information to a constituent directly, rather than
have this information retrieved from the particles, and we allow this possibility. This
allows the efficient computation of certain temporal information, as in the TTrees ap-
proach [Diener 88].

We now illustrate how the combination of the abstract musical event structure with a
hierarchy of constituents built on top can be used in practice. It will be noted that the
examples make extensive use of a particular class of constituents, where the particles
of the constituent naturally form a continuous melody-like succession. Other sorts of
constituents are of course possible, such as those with a natural vertical structure. In
a later paper we will develop the notion of constituent more fully, and explore the role
that these natural subclasses play. Constituents may additionally be labelled if they fall
into one of these subclasses, to indicate they are, say, melody-like. We say this inform-
ation indicates the structural type of the constituent.

Representing Music 6

Allegretto

14l

el
[
[
I
I
QL

=
Figure 1: Mozart, Variations on “Unser dummer Pdbel meint” (bars 1-2)

4 Rhythm analysis

We show as an example how a particular applications program, for rhythmic analysis,
can operate over events and constituents, creating (or suggesting) new constituents as
its output. The example also illustrates the flexibility of having abstract data types:
the same analysis program works irrespective of how the durations of notes in the score
are transcribed. In order for these points to be made clearly, it will be helpful to ex-
plain briefly what the analysis program does.

This rhythm analysis algorithm is due to [Steedman 77], who designed it to illustrate a
cognitive model of rhythm understanding. In the original program, the input would be
(essentially) a list of durations? and the output would be a proposed time signature and
phase. The program worked well over the subjects of the 48 Bach fugues, chunking the
durations into bars or half-bars despite the problems presented by ties and anacrusis.
This is achieved by parsing the sequence of durations according to a set of rules which
pick out rhythmic primitives (eg dactyl, ie long, short, short) and accents.

We have reconstructed this program in Prolog, using our notation to output more detail
than Steedman’s. The program reads music presented in our basic representation and
synthesises constituents representing the rhythmic components which are perceived ac-
cording to Steedman’s model. This process is illustrated below with the first two bars of
Mozart’s Variations on “Unser dummer Pdbel meint”, representing durations with in-
tegers (see also Figure 1).

% event(id, pitch, start, duration, timbre).
% pitch = [note,accidental,octave], start = # quavers from start
% duration = length in quavers, timbre as yet undefined

event(ev00, [gnatural,4],0, 2, []). event(ev0l, [g.natural,3],0, 2, []).
event(ev02, [gnatural,2],0, 2, []). event(ev03, [g.natural,4],2, 2, []).
event(ev04, [gnatural, 3] 2,2, []). event(ev05, [g,natural,2],2, 2, []).
event(ev06, [fsharp,4], 4, 2, []). event(ev07, [f,sharp,3], 4, 2, []).
event(ev26, [d,natural,2], 12, 4, [1).

First, the melody line is extracted automatically, in this case naively taking the highest
note of each “chord”. This generates the “melody” constituent below. Secondly, the
rhythmic analysis is performed, generating constituents st00 to st13 and st50 to st54.

?Represented by integers and entered ‘as heard’, omitting initial rests and summing tied notes.

Representing Music 7

Three of these are dactyls and the remainder contain a single note or rest. The dactyls
effectively determine the largest perceived metric unit so far, and subsequent constitu-
ents reflect this chunking. The final constituent orders the four chunks, which repres-
ent the first four half-bars of the piece.

This hierarchy of constituents is adequate for this simple example, but would not be
so if events were crossing the metric boundaries identified by the program (tied notes).
A more sophisticated version of the program deals with this by having an extra layer
of slice constituents called “pulses”. The metric_chunk constituents then point to the
pulses which, in turn, point to the underlying events. Finally, note that although the
output is shown in terms of constituent predicates for the purpose in hand, in actual
usage these would normally be further processed to produce some more readable tex-
tual output or a graphic display.

% constituent(id, musical_type, set_of_particles)
% time-labelling of stream (stream(t,d)) omitted for readability
constituent(st15, melody, [ev00,ev03,ev06,ev09.ev12,ev15.ev18.ev2] ev24]).

% rhythmic units
constituent(st00, dactyl, [ev06,ev09,ev12]).

constituent(st01, dactyl, [ev15,ev18,ev21]).
constituent(st02, dactyl, [ev39,ev43,ev46]).
constituent(st03, single, [ev00]). constituent(st04, single, [ev03])
constituent(st05, single, [ev24]). constituent(st06, single, [ev27])
constituent(st07, single, [ev30]). constituent(st08, single, [ev33]).
constituent(st09, single, [ev36]). constituent(st10, single, [ev37])
constituent(st11, single, [ev38]). constituent(st12, single, [ev47])
[ev51])

constituent(st13, single,

% metric chunks

constituent(st50, metric_chunk, [st03,st04]).
constituent(st51, metric_chunk, [st00]).

constituent(st52, metric_chunk, [st01]).

constituent(st53, metric_chunk, [st05]).

constituent(st54, metric_order, [st50,st51,st52,5t53]).

The same program will also work if the durations of the events are represented differ-
ently — by name, for example. The same section of music as above is shown below with
durations represented by names and incidence times by Bar_number+Beat_number.

event(ev01, [g,natural 3], 040, crotchet, []).
event(ev03, [g,natural.4], 042, crotchet, []).

event(ev26, [d,natural,2], 144, minim, []).

event(ev00, [g,natural,4], 040, crotchet, []

).
event(ev02, [g,natural,2], 040, crotchet, []).

5 Similarity Analysis

As a further example, we present an implementation of general analysis procedures given
in [Ruwet 72], to which the reader is referred for details of the procedure. The cent-
ral idea is that various analyses of a monophonic line may be achieved by simple syn-
tactic matching of “similar” phrases — similarity being defined in various ways. These

Representing Music 8

figure omitted: see the cited reference.

Figure 2: Analysis of “Syrinx” (Debussy) by Nattiez using Ruwet’s Algorithm
[Nattiez 75, p 332]

analyses correspond closely with the more conventional analyses performed on a higher,
more “musical” level.

The first part of Nattiez’s analysis, using Ruwet’s algorithm, of Debussy’s “Syrinx” for
solo flute is shown in Figure 2 (see [Nattiez 75, pp 330-54]). We have transcribed the
score into our representation, and are able to arrive at the same analytical conclusions
as Nattiez, with respect to a subset of his similarity definition. We currently allow four
kinds of similarity: Identity, Octave_Down, Near_Identity, and Loose_Octave_Down.

The first of these similarities is self-explanatory: the two associated phrases are identical.
Octave_Down also requires identity, except that the pitch is transposed an octave lower
in the second of the compared phrases. Near_Identity is as identity, except that the first
note may be tied to a preceding note (that is to say, in our representation, the durations
of the first notes of the two phrases need not be the same). Finally, Loose_Octave_Down
requires that the pitches of the respective notes in the two phrases are the same, but
places no conditions on the durations.

Examples of the different kinds of similarity, respectively, are A and A, A and A, A
and Az, and A and Ay, in the score above, taken from [Nattiez 75].

The output from our implementation of Ruwet’s algorithm is of the following form. This
is the statment of identity between the two phrases marked A above.

constituent(st000, unit, [¢000,e001,e002,e003,e004,¢005,6006,6007,6008,009]).
constituent(st001, similar(identity, st000),
[€014,e015,6016,e017,6018,6019,e020,e021,6022,6023]).

Representing Music 9

6 Related Work and Conclusions

A variety of formal models of musical structures have been proposed. Qur time repres-
entation allows time to be given in topological terms, so setting it apart from [Diener 88]
and [Chemillier & Timis 88], who have a more restricted notion. On the other hand,
our pitch representation is more flexible than the Ttrees approach, giving us a uniform
approach to pitch and time.

Often these formal models describe musical structures in grammatical terms. Our work
is not inconsistent with this approach — a grammar could be specified in terms of the
constituent structure, and a piece of music parsed by determining automatically whether
such a constituent structure could be imposed upon the underlying events. Our interest
in describing the internal structure, in pitch and time etc, of the musical events, sets
our work apart from most grammatical approaches where the notion of event is taken
as a primitive with no internal structure.

Our intention is to provide the representational tools in terms of which musical ana-
lysts and composers of all sorts can perform whatever operations they want on musical
structures. It is worth re-emphasising that this paper is not about a particular piece of
software, a particular programming language or a particular type of musical analysis.
What we have done is to formalise a method of representing music that makes it partic-
ularly straightforward to write programs that manipulate musical structures. We have
suggested a set of abstract data structures which can be flexibly combined depending
on the user’s needs. We have illustrated how some simple analytical procedures can be
implemented with the aid of our formalism.

A great advantage of having properly formalised abstract data structure is that much of
the distracting detail (and arbitrary encoding decisions) of conventional methods could
avoided. For example, it is relatively simple to map one alphanumeric encoding conven-
tion on to another providing both the source and the target have the same structural
features. The potential exists, therefore, for true sharing of musical databases and ana-
lytical software, providing that all adhere to a uniform data structure such as the one
we have suggested.

References

[Allen 84] J. Allen. A general theory of action and time. Artificial In-
telligence, 21:121-54, 1984.

[Balaban 88| M. Balaban. A music-workstation based on multiple hier-
archical views of music. In C. Lischka and J. Fritsch, ed-
itors, 14th International Computer Music Conference, pages
56-65. Computer Music Association, 1988.

[Boulez 63] P. Boulez. Penser la musique aujourd’hui. Gonthier, May-

ence, 1963.

Representing Music

[Buxton & et al 78]

[Chemillier & Timis 88]

[Cooper & Meyer 60]

[Diener 88|

[Mac Lane & Birkhoff 67]

[Nattiez 75]

[Ruwet 72]

[Steedman 77|

10

W. Buxton et al. The use of hierarchy and instance in a
data structure for computer music. Computer Music Journal,
2:10-20, 1978.

M. Chemillier and D. Timis. Towards a theory of formal mu-
sical languages. In C. Lischka and J. Fritsch, editors, Pro-
ceedings of the 14th International Computer Music Confer-
ence, pages 17583, 1988.

G. Cooper and L.B. Meyer. The Rhythmic Structure of Mu-
sic. University of Chicago Press, Chicago, 1960.

G. Diener. Ttrees: an active data structure for computer mu-
sic. In C. Lischka and J. Fritsch, editors, Proceedings of the
14th International Computer Music Conference, pages 184—
88. Computer Music Association, 1988.

5. Mac Lane and G. Birkhoff. Algebra. Macmillan, New
York. 1967.

J.-J. Nattiez. Fondements d’une sémiologie de la musique.
Union Générale d’Editions, Paris, 1975.

N. Ruwet. Langage, musique, poésie. Editions du Seuil,
Paris, 1972.

M.J. Steedman. The perception of musical rhythm and
metre. Perception, 6:555—69, 1977.

