
 Teleo-Reactive Abductive Logic Programs

Robert Kowalski and Fariba Sadri

Imperial College London, {rak, fs}@doc.ic.ac.uk

Abstract. Teleo-reactive (TR) programs are a variety of production systems with a

destructively updated database that represents the current state of the environment. They

combine proactive behaviour, which is goal-oriented, with reactive behaviour, which is

sensitive to the changing environment. They can take advantage of situations in which the

environment opportunistically solves the system’s goals, recover gracefully when the

environment destroys solutions of its goals, and abort durative actions when higher priority

goals need more urgent attention.

In this paper, we present an abductive logic programming (ALP) representation of TR

programs, following the example of our ALP representation of the logic-based production

system language LPS. The operational semantics of the representation employs a destructively

updated database, which represents the current state of the environment, and avoids the frame

problem of explicitly reasoning about the persistence of facts that are not affected by the

updates. The model-theoretic semantics of the representation is defined by associating a logic

program with the TR program, the sequence of observations and actions, and the succession of

database states. In the semantics, the task is to generate actions so that all of the program’s

goals are true in a minimal model of this associated logic program.

Keywords: teleo-reactive programs, abductive logic programming, production systems,

 LPS.

1 Introduction

Tele-reactive (TR) programs were introduced by Nils Nilsson in a technical report in

1992 [14] and an article [15] published in 1994. In [16], a TR program is

characterized as “an agent control program that robustly directs the agent towards a

goal in a manner that continuously takes into account the agent’s changing

perceptions of the environment.”

These characteristics have contributed to a growing interest in TR programs in

recent years. For example: Coffey and Clark [3] propose a BDI-style agent

architecture that uses teleo-reactive plans in its plan library. Marinovic et al [13] use

TR programs to represent workflows and policies in pervasive healthcare. Gordon and

Logan [4] use TR programs to program game agents. Gubisch et al [5] use an

architecture based on TR programs for mobile robot control and apply it to soccer

robots. Broda and Hogger [23] present a systematic procedure for constructing TR

programs.

TR programs are written and executed like ordered production rules:

2

K1  a1

……

Ki  ai

….

Km  am

The list is checked from the top, and the first rule whose conditions Ki are satisfied

fires, and its action ai is executed. In effect, the conditions Ki of the i-th rule implicitly

include the negations of all of the conditions of the previous i-1 rules.

Actions ai are atomic formulae, representing a primitive action, an invocation of

another TR program, or a recursive invocation of the same program with different

parameters. As we argue elsewhere [7, 24], rules in production systems have the

syntax of logical formulae, but do not have a logical semantics. One of the main goals

of this paper is to show how to translate TR programs into logical form, in such a way

that the operational semantics of TR programs is sound with respect to a model-

theoretic semantics.

One of the biggest challenges of the translation is to do justice to the fact that

actions can be durative, in the sense that they are executed continuously, as long as

their corresponding condition remains the highest true condition in the list. When the

highest true condition changes the action also changes accordingly.

In a hierarchy of TR programs, in which one program calls another, the conditions

of all the programs in the hierarchy are checked continuously. The action that is

executed is the one associated with the highest true condition in the “highest program

in the stack of called programs”.

In many cases, the program is associated with an explicit goal, which is the first

condition K1 in the list, and the associated action a1 is nil. A program has the

regression property if whenever the action ai of a rule Ki  ai is executed then an

earlier condition Kj (j<i) will eventually be satisfied (if the environment does not

intervene).
Thus TR programs can combine proactive and reactive behavior. They share with

purely reactive agents the ability to react to the changes in the environment, but they

can do so within the context of an explicit goal.

Depending on how well the conditions K1-Km cover the possible situations that can

arise, TR programs are robust, in the sense that even if the executions of some actions

fail or if the environment undoes some of their desired effects, the program can

continue to work towards its goal. TR programs are also opportunistic, in the sense

that they can take advantage of situations in which the environment solves their goals

without their participation.

Nilsson [16] proposes the use of TR programs as an intermediate layer, between

lower-level programs “that use a short and fast path from sensory signals to effectors”

and higher-level “systems that can generate plans consisting of a sequence of

intermediate-level programs”.

In this paper, we show how TR programs can be given a model-theoretic

semantics, by embedding them in the higher-level framework of abductive logic

programming agents (ALPA) [8]. For this we take inspiration from the logic-based

production system and agent language LPS [9, 10], which is also embedded in ALPA,

and which combines a declarative semantics with a destructively updated database.

3

Thus our approach provides both a practical operational semantics for TR programs in

the ALPA framework and the means to reason formally about TR programs, in the

manner of Hayes [6].

Whereas Hayes’ semantics is based on duration and interval logics, our semantics

for TR programs uses a representation of durative actions in terms of time points, and

is defined in terms of the perfect model of a locally stratified program [17, 18].

As in the case of LPS, the model-theoretic semantics is compatible with an

operational semantics that employs a destructively updated database, which represents

the current state of the environment. As we argue elsewhere [10], the use of a

destructively updated database is necessary to overcome the computational aspects of

the frame problem.

This paper assumes familiarity with the basic concepts of logic programming.

However, because it is written mostly in an informal style, the reader not familiar

with logic programming should be able to understand the main ideas of the paper

simply by focusing on the examples. A simple introduction to logic programming and

the minimal model semantics of Horn clauses is included in the appendix.

2 Abductive Logic Programming (ALP), Abductive Logic

Programming Agents (ALPA) and the Logic-based Production

System and Agent Language (LPS)

In this Section we provide an overview of ALP, ALPA and LPS. ALP extends logic
programming by allowing some predicates, Ab, the abducibles or open predicates, to
be undefined, in the sense that they can occur in the conditions of clauses, but not in
their conclusions. Instead, ground atoms in the abducible predicates can be assumed,
but are constrained by a set IC of integrity constraints. Viewed in database terms, the
open predicates are potential updates that can be added to the database, and the
integrity constraints are used to monitor and constrain these updates.
 Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of
abducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions
of clauses in L are disjoint from the predicates in Ab.
 Several alternative semantics and proof procedures have been defined for ALP.
The semantics of ALP that we use in this paper is based on the model-theoretic
semantics of [7]. The key feature of the semantics is that the integrity constraints IC
and any initial goal G are required to be true in a unique minimal model determined
by the logic program L extended by assumptions in the predicates Ab. For this
purpose, it suffices to assume that L is a locally stratified program, which determines
a unique perfect model [18], in which case IC and G can be any sentences of first-
order logic (FOL). Arguments for the minimal model semantics are presented in [7].

Definition. Given an ALP framework <L, Ab, IC> and goal G (which can be empty,
equivalent to true), a solution of the goal is a set of atomic sentences  in the
predicates Ab, such that G  IC is true in the perfect model of L  .

In classical abduction, the goal G is a set of observations Obs, and a solution  is a
set of assumptions that explain the observations. In ALP and ALPA, the goal G is

4

more commonly a future state of the environment, and a solution  is a set of
partially ordered actions that achieve the desired state, provided the environment
does not interfere. Therefore, in the general case, the set  can include both
assumptions that explain observations and actions that achieve future states.
However, for simplicity, in many applications of ALP and ALPA, including the
application to TR programs, the observations are taken as “facts” that are
dynamically added to L and that do not require any explanation.
 Although in theory IC and G can be any sentences of FOL, it suffices, when ALP
and ALPA are used for the semantics of LPS and TR programs, to restrict the syntax
of integrity constraints in IC to conditionals of the form:

 conditions  conclusion

where conditions is a conjunction of literals and conclusion is a conjunction of
literals. All variables in such conditionals are universally quantified with scope the
conditional, except for variables in the conclusion that are not in the conditions,
which are existentially quantified with scope the conclusion. In the operational
semantics, such conditionals are made true, by reasoning forwards to make the
conclusion true whenever the conditions become true. Thus integrity constraints in
the form of conditionals behave like production rules.

To embed LPS and TR programs in ALP, it suffices to restrict the syntax of goals
G to goal clauses, as in logic programming. These goals have the same form as the
existentially quantified conclusions of integrity constraints derived by forwards
reasoning. In the operational semantics, such goals are made true by reasoning
backwards, using logic programs to reduce goals to subgoals. A subgoal that is an
atomic action can be made true by adding it to .
 ALP is used in ALPA for the thinking component of a BDI-like agent [19]. In
ALPA, the logic program L represents the agent’s beliefs, and G  IC represents the
agent’s desires (or goals).
 The thinking component of an ALP agent is a proof procedure, using forward and
backward reasoning, embedded in an agent observe-think-decide-act cycle. The logic
program L includes a deductive database that represents the agent’s view of its
environment.
 In ALPA, the database is updated, as the result of observations and actions, by
means of an action or event theory, such as the situation or event calculus [20, 11].
The updates are non-destructive, and via the event theory they imply the initiation of
new facts and the termination of old facts. Moreover, they involve the
computationally explosive use of frame or persistence axioms to reason that a fact
persists if it is not directly affected by an update.
 In contrast, production systems and most practical agent systems, employ a
destructively updated database that represents only the current state of the world.
They avoid the computational overheads of the frame problem by changing only
those facts that are directly affected by an action or event. Facts that are not affected
simply persist, without the need to reason that they persist.

 LPS is based on the model-theoretic semantics and proof procedures of ALPA, but

benefits from the computational advantages of employing a destructively updated

database that represents only the current state of the world. The operational semantics

represents facts in the database without an explicit time or state parameter, but the

model-theoretic semantics is defined with respect to the entire sequence of database

5

states in which facts are time-stamped with explicit time parameters. This sequence is

like a Kripke possible world structure in which the possible worlds (and the

accessibility relation) are all combined into one model-theoretic structure.

In LPS, the model is the perfect model of the logic program:

P  I  Obs    DB, where

P is a locally stratified logic program, with explicit time parameters, which

defines macro-actions in terms of sequences of atomic actions, other macro-

actions, and queries to the database.

I is a locally stratified logic program, with explicit time parameters, which

defines the intensional and state-independent predicates of the deductive

database.

Obs = Obs0  …  Obsi …, where Obsi is the set of time-stamped

observations at time i.

 = {a0, …, ai,…} where ai is the time-stamped action executed at time i.

DB = DB0  …  DBi … , where DBi is the set of time-stamped facts in

the extensional part of the deductive database at time i.

The situation calculus successor state and frame axioms are emergent properties that

are true in the perfect model, but are not needed in the operational semantics.

 The LPS operational semantics is an observe-think-decide-act cycle in which:

Any observed events and actions executed successfully in the last cycle are

added temporarily to the database, and an event theory Ev specifies how

events and actions update the extensional predicates of the database. Ev is

equivalent, in effect, to the event calculus without frame axioms.

For every instance of an integrity constraint whose conditions are true in the

current state of the database, the (existentially quantified) conclusion of the

constraint is added as a new goal to be made true.

 Goals are reduced to subgoals for some maximum number of steps.

If there is an atomic action subgoal that can be executed in this cycle, then

one such atomic action is chosen. If it is executed successfully, then it is

recognised in the next cycle.

This operational semantics is sound with respect to the perfect model semantics
sketched above. It is incomplete in the general case because it can make integrity
constraints of the form conditions  conclusion true only by making the conclusion
true when the conditions are true. It does not make them true by making the

6

conclusion true when the conditions are false, and it does not make them true by
making their conditions false.
 In LPS, observations are restricted to events that are added temporarily to the
database, to aid in determining whether the conditions of an integrity constraint are
true. We have excluded the use of abduction to explain observations in LPS, because
it is much more complex than simply observing external events, and because
abduction is not a feature of practical production systems and BDI agents.

3 An ALPA Representation of TR Programs

The translation of TR programs into ALPA is similar to our translation of LPS into

ALPA [10]. We call this logic-based representation of TR programs LTR.

3.1 TR and LTR programs without an internal database.

In the simplest case, a TR program need not contain any representation of its
environment. In such cases, as Rodney Brooks [2] advocates, the program uses “the
world as its own model”. Arguably, such TR programs without an internal database
implement the “short and fast path from sensory signals to effectors” that Nilsson
associates with lower-level programs.
 The following example, from [6], illustrates such a TR program. It also illustrates
the ability of a TR program to terminate a durative action when a higher-level
condition holds and takes precedence. Here is the TR version using the Prolog
convention that variables are written as a string of characters starting with an
uppercase letter.

mine-pump {critical  Methane  alarm
 true  operate}

operate {high < Water  (low < Water  pump-active)  pump
 true  nil}

Here mine-pump and operate name sub-programs, the first of which calls the second.

The values of Methane and Water and the truth value of pump-active are

observations. alarm and pump are primitive, durative actions. Note that the program is

not regressive.

 Contrary to Brooks [2], who argues against symbolic representations, our

semantics for such low-level TR programs is given by an LTR program, which

consists of an integrity constraint and a locally stratified logic program. The integrity

constraint is:

 observed(T)  mine-pump(T).

The logic program is:

mine-pump(T)  methane-level(M, T)  critical  M  alarm(T)

7

mine-pump(T)  methane-level(M, T)  critical > M  operate(T)

operate(T)  water-level(W, T)  high < W  pump(T)
operate(T) water-level(W, T)  low < W  pump-active(T) pump(T)
operate(T) water-level(W, T)  high  W low  Water(T)
operate(T)  water-level(W, T)  high  W ¬ pump-active(T)

Notice that the condition high  W of the third rule for operate(T) is redundant and
can be deleted. Moreover, the defined durative action operate(T) can be compiled
away, replacing it by its definition, giving the program:

mine-pump(T)  methane-level(M, T)  critical  M  alarm(T)
mine-pump(T)  methane-level (M, T)  critical > M 
 water-level (W, T)  high < W  pump(T)
mine-pump(T)  methane-level (M, T)  critical > M 
 water-level (W, T)  low < W  pump-active T  pump(T)
mine-pump(T)  methane-level (M, T)  critical > M 
 water-level (W, T)  high  W low  Water
mine-pump(T)  methane-level (M, T)  critical > M 
 water-level (W, T)  high  W ¬ pump-active(T)

Notice that in the translation of a rule Ki+1  ai+1, the corresponding condition of the

LTR clause contains the explicit negations of all the conditions of the higher-level

rules K1  a1 … Ki  ai. This syntactic redundancy can be avoided in the LTR

syntax by employing a similar convention to that employed in the TR syntax or by

using a special operator like the “cut” in Prolog. The inefficiency of re-evaluating

these conditions in the operational semantics can be avoided, as it is in the TR

operational semantics, in the Prolog implementation of cut, or by means of tabling

[21].

 The operational semantics of LTR is based on the operational semantics of ALPA,

similarly to the way in which the operational semantics of LPS is based on that of

ALPA. It also mimics the operational semantics of TR programs. It is illustrated by

the following example, in which critical, high and low are 100, 20 and 10,

respectively.

 methane-level water-level pump-active alarm pump
time1 66 18 no no no
time2 77 20 no no no
time3 88 20.0001 no no yes
time4 99 20.00001 yes no yes
time5 99 15 yes no yes
time6 100 12 yes yes no
time7 110 18 no yes no
time8 104 19 no yes no
time9 98 19 no no no
time10 98 15 no no no

8

Here the primitive actions alarm and pump are durative actions, which are turned on
automatically when their conditions hold, and turned off when their conditions do not
hold. For example, at time6, the conditions for pump fail to hold, and the pump is
turned off, when the conditions of the higher priority rule for sounding the alarm hold.

The declarative semantics of such a LTR program, consisting of an integrity

constraint and a locally stratified program P can be understood naturally in ALPA [8]

terms:

The task is to generate a set  of ground actions such that the integrity constraint,

in this case observed(T)  mine-pump(T), is true in the perfect model of

P  Obs  , where Obs is the set of all ground facts representing the input

observations, including ground facts of the form observed(t) for every time t that

an observation is made.

Notice that this semantics does not depend upon the nature or even the sequencing of

time points. In theory, the set of time points could be uncountably large, represented

for example by the set of positive real numbers. Such a semantics would be

appropriate for hardware implementations using analogue electronic circuits, as

suggested by Nilsson [15].

Notice also that primitive actions are assumed to take place at the same time T as

the conditions that trigger the actions. This is an idealization, which simplifies the

theory, like the assumption of friction-less motion in the laws of physics.

3.2 TR and LTR programs with an internal database.

The simple semantics above is inadequate for TR-programs that employ a

destructively updated database as a representation of the current state of the

environment. For such programs it is necessary to define the semantics relative to a

sequence of discrete database states. Consider, for example, Nilsson’s tower-building

example with towers represented as lists S, using LISP notation, where car(S) is the

top block on the sub-tower cdr(S) [16]:

make-tower(S); S is a list of blocks,

{tower(S) → nil

ordered(S) → unpile(car(S))

null(cdr(S)) → move-to-table(car(S))

tower(cdr(S))→move(car(S), cadr(S))

true → make-tower(cdr(S)) }

 move-to-table(X); X is a block,

{on(X,table) → nil

holding(Y) → putdown(Y, table))

clear(X) → pickup(X)

true → unpile(X) }

move(X, Y); X and Y are blocks,

{on(X,Y) → nil

holding(X)clear(Y) → putdown(X,Y)

holding(X) → putdown(Z, table))

clear(X)  clear(Y) → pickup(X)

clear(Y) → unpile(X)

true → unpile(Y) }

unpile(X); X is a block,

{clear(X) → nil

 on(Y,X) → move-to-table(Y) }

9

The TR-program in this example manages a small deductive database, which records

the current location of blocks and whether the robot is holding a block. When a

primitive action, such as putdown is executed, its effects are sensed and the facts

affected by the action are updated in the database. Facts that are not affected are not

updated, so frame axioms are unnecessary. Nilsson allows for the possibility that

primitive actions might affect the database directly, but he does not explain how the

effects of such internal actions are specified. In LPS we use an explicit event theory

Ev without frame axioms for this purpose. We also use an event theory in LTR.

Like the event theory in LPS, the event theory Ev in LTR specifies how externally

observed events and internally generated actions update the extensional predicates of

the database. Ev also specifies how the database is updated when facts involving the

extensional predicates are observed.

In addition to extensional predicates, defined by ground atomic facts, the deductive

database can contain intensional predicates, defined by “perceptual rules”, which

“create increasingly abstract predicates from simpler ones”. In Nilsson’s tower-

building example, these rules have logic programming form. Here is the translation of

these rules into a locally stratified logic program, with an explicit time parameter,

using the Prolog convention that [H|S] represents a list with first element H, followed

by list S:

 tower([Block|S], T)  ordered([Block|S], T)    X on(X, Block, T)

 ordered([Block1, Block2|S], T)  ordered([Block2|S],T) 

 on(Block1, Block2, T)

 ordered([Block], T)  on(Block, table, T)

 clear(Block, T)    X on(X, Block, T)   holding(Block, T)

Nilsson describes a computational architecture in which such rules are executed

forwards, to add new facts to the database, using a truth maintenance system to delete

derived facts when the extensional facts that support them are deleted. Our declarative

and operational semantics are neutral with respect to whether the definitions of the

intensional predicates are executed forwards or backward. If they are executed

backwards, Prolog-style, then truth maintenance is unnecessary.

Here is the translation of make-tower1. The translation of the other programs is

similar:

make-tower(S, T)  tower(S, T)

make-tower([Block|S], T)   tower([Block|S], T)  ordered([Block|S], T) 

 unpile(Block, T)

make-tower([Block], T)   tower([Block], T)   ordered([Block], T) 

 move-to-table(Block, T)

make-tower([Block1, Block2|S], T)   tower([Block1, Block2|S], T) 

  ordered([Block1, Block2|S], T)  tower([Block2|S], T)

  move(Block1, Block2, T)

1 The conditions null(S) and ¬null([Block2|S]), respectively, in the 3rd and 4th clauses are

unnecessary because they are implied by the list data structure.

10

make-tower([Block|S], T)   tower([Block|S]), T)  ordered([Block|S], T) 

  null(S, T)   tower(S, T)  make-tower(S, T)

Arguably, the semantics of the top-level goal of the TR program is ambiguous. Given

the problem of building a specific tower, say [a, b, c], is the goal a (one-off)

achievement goal, to make the tower and then terminate? Or is it a (perpetual)

maintenance goal, to make the tower and rebuild it if and when the environment

interferes with it? In LTR, the different kinds of goals can be accommodated by

means of a single integrity constraint:

 required-tower(Tower, T)  make-tower(Tower, T)

where required-tower is an extensional predicate, instances of which are updated by

using an event theory Ev, which contains such clauses as:

initiates(request-tower(Tower, T), required-tower(Tower))

 terminates(cancel-tower(Tower, T), required-tower(Tower))

Using the event theory, an observation of an external event request-tower(tower, t)

adds the fact required-tower(tower) to the database, and an observation of an external

event cancel-tower(tower, t) deletes the fact required-tower(tower) from the database.

 In general, the declarative semantics of TR programs with a destructively updated

database is an extension of the semantics of TR programs without a database.

Informally speaking, given an initial database and sequence of sensed observations,

the task is to generate a set of ground actions such that all the integrity constraints are

true in the perfect model determined by the program, observations, actions and

associated sequence of database states. More precisely and more formally:

Given the representation of a TR program as a locally stratified logic program P

and a set IC of one or more integrity constraints with explicit time, a time-stamped

representation DB0 of the initial state of the database, a set I of definitions of

intensional predicates with explicit representation of time, a sequence Obs0, …,

Obsi, … of sets of time-stamped input observations, and an event theory Ev,

the task is to generate a sequence of time-stamped ground actions a0, …, ai,…

with an associated sequence DB1, … , DBi, … of time-stamped extensional

databases, such that all the integrity constraints IC are true in the perfect model of

P  I  Obs  {a0, …, ai,…}  DB, where

Obs = Obs0  …  Obsi … and

DB = DB0  …  DBi … .

It is possible to show that a TR style of operational semantics, using destructive

database updates, is sound with respect to this semantics, using an argument similar to

that for showing the soundness of the operational semantics of LPS [10].

11

4 Alternative ALP Representations of TR programs

We argued above that the semantics of the top-level goal of a TR program is
ambiguous. Here we will see that if the top-level goal is intended as a maintenance
goal, then it is often natural to represent the program in ALP form as a set of
conditional integrity constraints. For example, the compiled version of the mine-
pump example can be represented simply by three integrity constraints:

 methane-level(M, T)  critical  M  alarm(T)
 methane-level (M, T)  critical > M  water-level (W, T)  high < W  pump(T)

 methane-level (M, T)  critical > M  water-level (W, T)  low < W 
 pump-active T  pump(T)

In this case the logic program P defines only the auxiliary inequality predicate The
semantics of subsection 3.1 for TR programs with an internal database still applies,
but without the need for additional observations of the form observed(t):

The task is to generate a set  of ground actions such that the integrity constraints

IC are all true in the perfect model of P  Obs  , where Obs is the set of all

ground facts representing the input observations.

In some versions of ALP [8] conditionals can occur in the conditions of logic

programs. Thus we can write, for example:

mine-pump(T)[methane-level(M, T)  critical  M  alarm(T)] 

 [methane-level (M, T)  critical > M  operate(T)]

 operate(T)  [water-level (W, T)  high < W  pump(T)] 

 [water-level (W, T)  low < W  pump-active (T) pump(T)]

This (conditional) version is equivalent to the first version in subsection 3.1, in which

mine-pump and operate are defined by normal logic programs. More generally:

Theorem: (A  B)  (C  D) 
 (A  B)  (C  D)  (¬A  ¬C)
given that C  ¬A (equivalently A  ¬C).

Note that the assumption C  ¬A holds for all LTR programs.

Proof: We use the fact that (P  Q)  (¬P  Q)  (¬P  (P  Q)).

(A  B)  (C  D) 
(¬A  (A  B))  (¬C  (C  D)) 
(¬A  ¬C)  (¬A  C  D)  (A  B  ¬C)  (A  B  C  D)

Note that (¬A  C  D) ↔ (C  D) because C  ¬A.
We need to show (A  B  ¬C)  (A  B  C  D)  A  B.

12

But (A  B  ¬C)  A  B because A  ¬C, and
 (A  B  C  D)  false because C  ¬A.

Both ways of representing TR programs as logic programs can also be written as

equivalences. For example:

mine-pump(T)  [methane-level(M, T)  critical  M  alarm(T)] 

 [methane-level (M, T)  critical > M  operate(T)]

 operate(T)  [water-level (W, T)  high < W  pump(T)] 

 [water-level (W, T)  low < W  pump-active T  pump(T)]

This is because perfect models2 of logic programs are minimal models, and because

the if-and-only-if form of a definition is true in a minimal model if and only if the if-

half of the definition is true in the model.
 The equivalence of different representations makes it easier to reason about TR
programs in ALP form.

5 Reasoning about LTR Programs

The following example is based on the example in [6].

Theorem: Let max-in and min-out be the maximum rate that water enters the mine,

and the minimum rate that the pump removes water from the mine, respectively. Let

water-in(In, T) and water-out(Out, T) express that the water enters the mine at rate In

at time T and leaves the mine at rate Out at time T, respectively. Assume that:

1) In, T [water-in(In, T)  In ≤ max-in and

 max-in ≤ min-out]

Assume also that the primitive action pump satisfies the property:

2) M, T, W, Out [methane-level(M, T)  critical > M  water-level (W, T) 
 low < W  water-out(Out, T)  pump(T)  min-out ≤ Out]

Then the defined action mine-pump satisfies the property:

M, W, In, Out, T [methane-level(M, T)  critical > M  water-level (W, T) 
high < W  water-in(In, T)  water-out(Out, T)  mine-pump(T) 
In ≤ Out]

2 Note that the perfect model semantics for programs of the form G  (A  B)
can be defined in terms of normal programs of the form G  ¬A
G  A  B.

13

Proof: Assume that at some given time t,

3) methane-level(m, t)  critical > m  water-level (w, t)  high < w 
 water-in(in, t)  water-out(out, t)  mine-pump(t).

It is necessary to show that in ≤ out.
 But assumptions (1) and (3) imply in ≤ max-in ≤ min-out. Therefore it suffices to
show min-out ≤ out. This follows from assumptions (2) and (3) provided we can
show pump(t) and low < w.

 pump(t) follows from assumption (1), the second condition
 methane-level (M, T)  critical > M  operate(T)
 of mine-pump T, and the definition of operate(T).
 low < w follows from low < high and high < w.

The proof can be pictured as a tree, with the conclusion at the top and assumptions at
the bottom:

6 Knowledge Representation with LTR Programs

We have shown above that LTR gives a model-theoretic semantics to TR programs,

which facilitates proving TR program properties. In this section, we show that TR

programs suggest a non-recursive programming style, which can also be used in LTR

and ALPA more generally. We illustrate this with a path-finding example. However,

the example also shows that TR programs are restricted to deterministic programs,

whereas the corresponding path-finding program written in ALPA is naturally non-

14

deterministic.

 Consider the following recursive logic program for path-finding with time

represented explicitly:

 go-to(X, T, T)  at(X, T)

 go-to(X, T1, T2)  ¬at(X, T1)  at(Y, T1)  towards(Y, Z, X) 

 move(Y, Z, T1, T)  go-to(X, T, T2)

Here go-to(X, T1, T2) represents the “macro-action” of going to X from time T1 to time

T2. The predicate towards(Y, Z, X) non-deterministically identifies a place Z that is

next to Y and in the direction from Y towards X. There could be several alternative

such places Z. So an agent would need to choose between them, perhaps by planning

ahead to find a path that ends in X, and then moving along that path to get to X.

 TR programs suggest a non-recursive way of writing a similar logic program:

 go-to(X, T)  at(X, T)

 go-to(X, T)  ¬ at(X, T)  at(Y, T)  towards(Y, Z, X)  move(Y, Z, T)

 or in the conditional representation

 go-to(X, T)  [¬ at(X, T)  at(Y, T)  towards(Y, Z, X)  move(Y, Z, T)]

The variable Z, which does not occur in the conclusion go-to(X, T) of the clause, is

existentially quantified in the conditions of the clause.

 Both of these non-recursive formalisations need to be augmented with an integrity

constraint such as required-destination(Place, T)  go-to(Place, T), where required-

destination is an extensional predicated updated by observations of events, say,

request-destination and cancel-destination. This is similar to the predicate required-

tower and the events request-tower and cancel-tower, in the case of the tower

building example, earlier.

 It is not possible to represent the non-recursive logic program directly as a TR

program. Suppose we try to represent it as:

 go-to(X) {at(X) nil,

 at(Y)  towards(Y, Z, X)  move(Y, Z)}

Then what is the implicit quantification of the variable Z? Is it that the agent should

move to every place Z that is towards X from Y? Or does it mean that the agent should

non-deterministically find one such place Z and move towards it? The alternative

representation:

 go-to(X) {at(X) nil,

 at(Y)  towards(Y, Z, X)  move(Y, Z)}

is not allowed in the syntax of TR programs, and is not catered for in the operational

semantics of TR programs.

15

Notice that the non-recursive style can also be used for the tower-building

program. Here is the top-level of a non-recursive LTR program:

make-tower(S, T)  tower(S, T)

make-tower([Block|S], T)   tower([Block|S], T)  ordered([Block|S], T) 

 unpile(Block, T)

make-tower([Block], T)   tower([Block], T)   ordered([Block], T) 

 move-to-table(Block, T)

 make-tower(S, T)   tower(S, T)   ordered(S, T) 

 append(S1, [B1, B2|S2], S)  ordered([B2|S2], T) 

  on(B1, B2, T)  move(B1, B2, T)

 make-tower(S, T)   tower(S, T)   ordered(S, T) 

 append(S1, [B], S)  ¬ ordered([B], T) 

 move-to-table(B, T)

The condition append(S1, [B1, B2|S2], S) splits S into a tower [B2|S2] that has

already been built and the part that remains to be built.

 In the next section we describe LPS, with a view towards embedding both LTR

and LPS in a more expressive and more powerful ALPA framework with a

destructively updated database.

7 The Logic-Based Production System and Agent Language LPS

LPS [9, 10] combines logic programs and production systems in a logical framework

based on ALP. The relationship between LPS and ALP is analogous to the

relationship between LTR and ALP.

Both TR programs and LPS employ a destructively updated database and a syntax

without time, but can be given a model-theoretic semantics by translating them into

ALPA with an explicit representation of time. In both cases, the semantics is defined

relative to the time-stamped sequence of observations, actions and database states.

TR programs and LPS differ in their ontologies for actions. In TR programs,

actions are executed duratively, for as long as their associated conditions continue to

hold. The effects of actions, like the level of water in a mine or a robot’s location, are

sensed as observations, rather than derived by means of an event theory. These effects

can vary continuously as a function of the durations of actions, as in the case of

pumping, which affects the level of water, and moving forwards, which affects the

robot’s location.

In LPS, actions are discrete events, which transform one state of the world (or the

database) into another. The effects of actions and other events are defined, as in the

situation calculus [20] and event calculus [11], by an event theory, which specifies the

extensional predicates that are initiated or terminated by events, and the preconditions

16

that must hold for actions to be possible. LPS uses the event theory (but without

frame axioms) to update the database.

Perhaps the biggest difference between TR programs and LPS is that LPS allows

definitions of sequences of database state transitions. For example, the recursive

definition of the macro-action go-to in the previous section could be written in LPS in

the form:

 go-to(X)  at(X)

 go-to(X)  ¬ at(X) : at(Y) : towards(Y, Z, X) : move(Y, Z) : go-to(X)

 The meaning of the sequential connective : is given by the translation into ALP,

which we have already seen in the last section:

 go-to(X, T, T)  at(X, T)

 go-to(X, T1, T2) ¬at(X, T1)  at(Y, T1)  towards(Y, Z, X) 

 move(Y, Z, T1, T)  go-to(X, T, T2).

The action move(Y, Z, T1, T) transforms the database state at time T1 to the next state

at time T. The event theory updates the database by deleting the old location at(Y)

and adding the new location at(Z).

Database transitions in LPS are similar to transactions in Transaction Logic [1]. In

both cases, transactions are alternating sequences of queries and actions. An action

can be an atomic action, which directly updates the external environment and/or the

internal database, or a macro-action, which is the name of a transaction. In this

respect, LPS is also similar to Golog [20]. However, like Golog and unlike

Transaction Logic, transactions in LPS are not atomic and cannot be rolled back,

although this is a feature that could be added to LPS.

The top-level of an LPS program consists of reactive rules, which are like

condition-action rules in production systems and like event-condition-action rules in

active database systems. However in LPS, reactive rules have the semantics of

integrity constraints in ALP, and their conclusions can be transactions (or

equivalently, macro-actions). The structure of an LPS program can be pictured

roughly like this:

17

Given their compatible syntax and operational and declarative semantics, LTR and

LPS can be combined in a unified language inheriting the benefits of the separate

languages. One way of combining them is to embed LTR programs in LPS programs.

For example, here is the definition, translated into ALP, of a macro-action that calls

the teleo-reactive program make-tower to construct a tower and terminate when the

tower is completed:

 achieve-tower (S, T, T)  tower(S, T)
 achieve-tower (S, T1, T2)  ¬ tower(S, T1)  make-tower(S, T1) 
 achieve-tower(S, T1+1, T2)

Similarly the teleo-reactive LTR program go-to of the last section can be embedded
in an LPS macro-action definition:

 get-to(X, T, T)  at(X, T)
 get-to(X, T1, T2) ¬at(X, T1)  go-to(X, T1)  get-to(X, T1+1, T2)

to move towards a place, and terminate when reaching it. In both the case of achieve-
tower and the case of get-to, the goal is achieved “teleo-reactively”, taking advantage
of any favourable changes in the environment and recovering gracefully from any
unfavourable changes.

18

8 Conclusions: ALPA as a Unifying Framework

The translations of LPS and TR programs into ALPA illustrate the broader potential

of ALPA to unify different knowledge representation formalisms. The contribution of

LPS is that it shows how to give a model-theoretic semantics to programs that

maintain a destructively updated database. But this contribution can be generalised to

any representation in ALPA that similarly maintains such a database.

Complex event recognition and processing (CEP) [12] is another programming

paradigm that could benefit from such a treatment. In the same way that macro-

actions can be defined in terms of queries and actions, complex events can be defined

in terms of conditions and simpler events. Conditions can be evaluated either by

querying sensory inputs or by querying the database. Atomic events can be recognised

by input observations. Here are two examples from [22], written in ALP form:

shoplift (Item, T1, T2)  shelf-reading(Item, T1)  exit-reading(Item, T2) 

¬ (check-out-reading(Item, T)  T1 T  T  T2)  T2 – T1 < 12 hours

overdose(Person, antibiotics, T1, T2)  ingest(Person, Medicine1, Dosage1, T1) 

ingest(Person, Medicine2, Dosage2, T2)  antibiotics(Medicine1) 

antibiotics(Medicine2)  Dosage1+Dosage2 >1000  T2 – T1 < 4 hours

The first identifies the occurrence of a complex event of shoplifting when an item that

was on shelf is removed from the store without being checked out. The second

identifies a complex event of overdosing when a person has taken more than 1000

units of antibiotics in less than 4 hours in two doses.

 Notice that, to specify such complex events, we need to be able to represent

temporal constraints on the times that conditions hold and events are observed.

However, with the ability to represent such constraints, it is easy to specify a partial

ordering among the conditions and events that make up a complex event.

 Notice also that the ALPA framework allows not only defining (and thus

identifying) complex events, but also reacting to them (via ALPA integrity

constraints) with transactions.

 Investigating complex event processing further is part of our future work. Other

topics we plan to consider in the future include formalisation and proof of other

properties of LTR programs, such as “progress” towards achieving goals, and formal

characterisations of how an LTR agent “recovers” and “re-plans” after environmental

interference, without the need for explicit inclusion of such features in the

representation.

 We have a prototype implementation of LPS, which is sufficiently general that it

can run programs written in LTR. Exploring the scalability of the implementation for

more substantial examples is also part of future work.

19

Afterword. It is a pleasure to dedicate this paper to Marek, whose friendship and

intellectual inspiration have been a great support over many years.

Acknowledgments. Many thanks to Keith Clark for awakening our interest in TR

programs, and to Clive Spencer and Alan Westwood from Logic Programming

Associates for many useful discussions and for their work on the prototype

implementation of LPS and its application to LTR. Thanks also to the anonymous

referees.

References

1. Bonner and M. Kifer.: Transaction logic programming. In Warren D. S., (ed.), Logic

Programming: Proc. of the 10th International Conf., 257-279 (1993)

2. Brooks, R.A., Intelligence Without Representation, Artificial Intelligence 47, 139-159

(1991)

3. Coffey, S., and Clark, K. L., A Hybrid, Teleo-Reactive Architecture for Robot Control, In

Proceedings of the Second International Workshop on Multi-Agent Robotic Systems

(MARS-06) (2006)

4. Gordon, E. and Logan, B., Game Over: You have been beaten by a GRUE, In Challenges

in Game Artificial Intelligence: AAAI Workshop (2004)

5. Gerhard Gubisch, Gerald Steinbauer, Martin Weiglhofer and Franz Wotawa A., Teleo-

Reactive Architecture for Fast, Reactive and Robust Control of Mobile Robots, In

IEA/AIE 2008 Wroclaw, Poland, Lecture Notes in Computer Science, Volume 5027, 541-

550 (2008)

6. Hayes, I.J., Towards Reasoning About Teleo-reactive Programs for Robust Real-time

Systems, In Proceedings of the 2008 RISE/EFTS Joint International Workshop on

Software Engineering for Resilient Systems (SERENE), 87-94 (2008)

7. Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially

Intelligent, Cambridge University Press (2011)

8. Kowalski, R. and Sadri, F.: From Logic Programming Towards Multi-agent Systems,

 Annals of Mathematics and Artificial Intelligence, Volume 25, 391-419 (1999)

9. Kowalski, R. and Sadri, F.: An Agent Language with Destructive Assignment and Model-

Theoretic Semantics, In Dix J., Leite J., Governatori G., Jamroga W. (eds.), Proc. of the

11th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA),

200-218 (2010)

10. Kowalski, R. and Sadri, F.: Abductive Logic Programming Agents with Destructive

Databases, Annals of Mathematics and Artificial Intelligence, Volume 62, Issue 1, 129-

158 (2011)

11. Kowalski, R. and Sergot, M.: A Logic-based Calculus of Events. In New Generation

Computing, Vol. 4, No.1, 67-95 (1986). Also in The Language of Time: A Reader (eds.

Inderjeet Mani, J. Pustejovsky, and R. Gaizauskas) Oxford University Press (2005)

12. Luckham, D.: The Power of Events - An Introduction to Complex Event Processing in

Distributed Enterprise Systems, Addison-Wesley (2002)

13. Marinovic, S., Twidle, K., Dulay, N., Teleo-reactive Workflows for Pervasive Healthcare,

First IEEE PerCom Workshop on Pervasive Healthcare (2010)

14. Nilsson, N., Toward Agent Programs with Circuit Semantics, Technical Report STAN-

CS-92-1412, Stanford University Computer Science Department (1992)

http://sites.google.com/site/elizabethgdn/Home/challenges.pdf?attredirects=0
http://www.springerlink.com/content/?Author=Gerhard+Gubisch
http://www.springerlink.com/content/?Author=Gerald+Steinbauer
http://www.springerlink.com/content/?Author=Martin+Weiglhofer
http://www.springerlink.com/content/?Author=Franz+Wotawa
http://www.springerlink.com/content/0302-9743/

20

15. Nilsson, N.J., Teleo-reactive Programs for Agent Control, Journal of Artificial Intelligence

 Research cs.AI/9401, 139-158, January (1994)

16. Nilsson, N.J., Teleo-reactive Programs and the Triple-tower Architecture, Electronic

Transactions on Artificial Intelligence, Vol. 5, Section B, 99-110 (2001)

17. Przynusinski, T., On the Declarative and Procedural Semantics, Journal of Automated

Reasoning 5: 167-295 (1989)

18. Przymusinski, T.: On the Declarative and Procedural Semantics of Stratified Deductive

Databases. In J. Minker, editor, Foundations of Deductive Databases and Logic

Programming, Morgan-Kaufman, Los Altos, CA, 193–216 (1988)

19. Rao, A. S., Georgeff, M. P.: BDI Agents: From Theory to Practice, International

Conference on Multiagent Systems - ICMAS , 312-319 (1995)

20. Reiter, R.: Knowledge in Action. MIT Press (2001)

21. Sagonas, K. F., Swift,T., Warren, D. S.: XSB as an Efficient Deductive Database Engine,

Sigmod Record , vol. 23, no. 2, 442-453 (1994)

22. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing Over Streams,

SIGMOD, Chicago, Illinois, USA, 407-418 (2006)

23. Broda, K., Hogger, C.J.: Designing and Simulating Individual Teleo-Reactive Agents,

Poster Proceedings, 27th German Conference on Artificial Intelligence (2004)

24. Kowalski, R., and Sadri, F.: Integrating Logic Programming and Production Systems in

Abductive Logic Programming Agents, In Web Reasoning and Rule Systems (eds. A.

Polleres and T. Swift) Springer, LNCS 5837 (2009)

25. van Emden, M. and Kowalski, R.: The Semantics of Predicate Logic as a Programming

Language, in JACM, Vol. 23, No. 4, 733-742 (1976)

Appendix

Brief Introduction to Logic Programming

Logic programs are collections of sentences in the logical form of conditionals:

if conditions then conclusion, also written

conclusion  conditions.

Such conditionals (also called clauses) combine a conclusion, which is an atomic

formula, with conditions, which are a conjunction of atomic formulas or negations of

atomic formulas. A clause without negative conditions is called a definite clause.

The number of conditions in a clause can be zero, in which case the clause is

written without the implication sign , simply as conclusion. If the number of

conditions is not zero, then the clause is also sometimes called a rule.

All variables in a clause are implicitly universally quantified with scope the clause.

Clauses with no variables are called ground clauses. Ground clauses with zero

conditions are also called facts.

http://www.doc.ic.ac.uk/~rak/papers/Rules.pdf
http://www.doc.ic.ac.uk/~rak/papers/Rules.pdf

21

Logic programs can be viewed as definitions of the predicates occurring in the

conclusions of clauses. These definitions are used to solve goal clauses, which are

existentially quantified conjunctions of atomic formulas or negations of atomic

formulas. A definite goal clause is a goal clause without negative conditions. Both

definite clauses and definite goal clauses are also called Horn clauses.

The use of logic programs to solve goals can be viewed in both programming and

database terms. Viewed in programming terms, logic programs compute values of the

existentially quantified variables in goal clauses. Viewed in database terms, they

derive answers to goal clauses, viewed as database queries.

Given a logic program L, to solve a goal clause G, it is necessary to find a variable-

free (i.e. ground) instance G‘ of G such that G‘ holds with respect to L. In the case of

a definite clause program L, there are two equivalent semantic notions of what it

means for a sentence S to hold with respect to L:

 L logically entails S, i.e. S is true in all models of L.

S is true in the unique minimal model of L.

The minimal model semantics has a number of advantages, which are detailed for

example in [7].

The minimal model [25] of a definite clause program L is equivalent to the set of

all facts that can be derived from L by repeatedly applying the two inference rules of

instantiation and modus ponens, until no new facts can be derived. Instantiation

replaces all occurrences of a variable in a clause by a ground term constructed from

the constants and function symbols of the language. Modus ponens derives the

conclusion of a clause conclusion  conditions from the conditions given as facts.

In the case of non-Horn clauses that are locally stratified [18], the minimal model

semantics has a natural generalisation to perfect models. For simplicity, consider the

case of a ground clause program L with two strata, determined by partitioning the set

of all ground atoms A of the language into two disjoint sets (or strata) A0 and A1. L is

locally stratified if L is the union L0  L1 of two disjoint sets of clauses:

L0 consists of clauses whose conclusion and positive conditions belong to A0, and

that have no negative conditions.

L1 is the set of all the clauses in L whose conclusion belongs to A1, whose positive

conditions belong to A0  A1, and whose negative conditions have atoms in A0.

Thus no clause in L contains a negative condition in A1.

The perfect model of L is the union M0  M1 of two minimal models:

M0 is the minimal model of the definite clause program L0.

M1 is the minimal model of the definite clause program L1’ obtained from L1 by

evaluating in M0 both the positive and negative conditions of clauses in L1 whose

atoms are in A0. i.e. L1’ contains a clause of the form conclusion  conditions1 iff

L1 contains a clause of the form conclusion  conditions1 and conditions2, where

the atoms in conditions1 are all in A1, the atoms in conditions2 are all in A2, and the

conditions2 are all true in M0.

22

This definition can be generalised in three ways: 1) from ground logic programs to

programs containing variables, by adding universal instantiation; 2) to an unbounded

number of strata: 0, 1, …. and 3) from conditions that are negative atoms at lower

strata to conditions that are arbitrary formulas in the vocabulary of lower strata.

