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Abstract. Teleo-reactive (TR) programs are a variety of production systems with a 

destructively updated database that represents the current state of the environment. They 

combine proactive behaviour, which is goal-oriented, with reactive behaviour, which is 

sensitive to the changing environment. They can take advantage of situations in which the 

environment opportunistically solves the system’s goals, recover gracefully when the 

environment destroys solutions of its goals, and abort durative actions when higher priority 

goals need more urgent attention. 

In this paper, we present an abductive logic programming (ALP) representation of TR 

programs, following the example of our ALP representation of the logic-based production 

system language LPS. The operational semantics of the representation employs a destructively 

updated database, which represents the current state of the environment, and avoids the frame 

problem of explicitly reasoning about the persistence of facts that are not affected by the 

updates. The model-theoretic semantics of the representation is defined by associating a logic 

program with the TR program, the sequence of observations and actions, and the succession of 

database states. In the semantics, the task is to generate actions so that all of the program’s 

goals are true in a minimal model of this associated logic program. 

Keywords: teleo-reactive programs, abductive logic programming, production systems, 

 LPS. 

1   Introduction 

 

Tele-reactive (TR) programs were introduced by Nils Nilsson in a technical report in 

1992 [14] and an article [15] published in 1994. In [16], a TR program is 

characterized as “an agent control program that robustly directs the agent towards a 

goal in a manner that continuously takes into account the agent’s changing 

perceptions of the environment.”  

These characteristics have contributed to a growing interest in TR programs in 

recent years. For example: Coffey and Clark [3] propose a BDI-style agent 

architecture that uses teleo-reactive plans in its plan library.  Marinovic et al [13] use 

TR programs to represent workflows and policies in pervasive healthcare. Gordon and 

Logan [4] use TR programs to program game agents. Gubisch et al [5] use an 

architecture based on TR programs for mobile robot control and apply it to soccer 

robots. Broda and Hogger [23] present a systematic procedure for constructing TR 

programs.  

TR programs are written and executed like ordered production rules:  

 



2 

 

K1  a1 

…… 

Ki  ai 

…. 

Km  am 

 

The list is checked from the top, and the first rule whose conditions Ki are satisfied 

fires, and its action ai is executed. In effect, the conditions Ki of the i-th rule implicitly 

include the negations of all of the conditions of the previous i-1 rules.  

Actions ai are atomic formulae, representing a primitive action, an invocation of 

another TR program, or a recursive invocation of the same program with different 

parameters. As we argue elsewhere [7, 24], rules in production systems have the 

syntax of logical formulae, but do not have a logical semantics. One of the main goals 

of this paper is to show how to translate TR programs into logical form, in such a way 

that the operational semantics of TR programs is sound with respect to a model-

theoretic semantics.  

One of the biggest challenges of the translation is to do justice to the fact that 

actions can be durative, in the sense that they are executed continuously, as long as 

their corresponding condition remains the highest true condition in the list. When the 

highest true condition changes the action also changes accordingly. 

In a hierarchy of TR programs, in which one program calls another, the conditions 

of all the programs in the hierarchy are checked continuously. The action that is 

executed is the one associated with the highest true condition in the “highest program 

in the stack of called programs”.  

In many cases, the program is associated with an explicit goal, which is the first 

condition K1 in the list, and the associated action a1 is nil. A program has the 

regression property if whenever the action ai of a rule Ki  ai is executed then an 

earlier condition Kj (j<i) will eventually be satisfied (if the environment does not 

intervene).  
Thus TR programs can combine proactive and reactive behavior. They share with 

purely reactive agents the ability to react to the changes in the environment, but they 

can do so within the context of an explicit goal. 

Depending on how well the conditions K1-Km cover the possible situations that can 

arise, TR programs are robust, in the sense that even if the executions of some actions 

fail or if the environment undoes some of their desired effects, the program can 

continue to work towards its goal. TR programs are also opportunistic, in the sense 

that they can take advantage of situations in which the environment solves their goals 

without their participation. 

Nilsson [16] proposes the use of TR programs as an intermediate layer, between 

lower-level programs “that use a short and fast path from sensory signals to effectors” 

and higher-level “systems that can generate plans consisting of a sequence of 

intermediate-level programs”.  

In this paper, we show how TR programs can be given a model-theoretic 

semantics, by embedding them in the higher-level framework of abductive logic 

programming agents (ALPA) [8]. For this we take inspiration from the logic-based 

production system and agent language LPS [9, 10], which is also embedded in ALPA, 

and which combines a declarative semantics with a destructively updated database. 
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Thus our approach provides both a practical operational semantics for TR programs in 

the ALPA framework and the means to reason formally about TR programs, in the 

manner of Hayes [6].  

Whereas Hayes’ semantics is based on duration and interval logics, our semantics 

for TR programs uses a representation of durative actions in terms of time points, and 

is defined in terms of the perfect model of a locally stratified program [17, 18].  

As in the case of LPS, the model-theoretic semantics is compatible with an 

operational semantics that employs a destructively updated database, which represents 

the current state of the environment. As we argue elsewhere [10], the use of a 

destructively updated database is necessary to overcome the computational aspects of 

the frame problem.   

This paper assumes familiarity with the basic concepts of logic programming. 

However, because it is written mostly in an informal style, the reader not familiar 

with logic programming should be able to understand the main ideas of the paper 

simply by focusing on the examples. A simple introduction to logic programming and 

the minimal model semantics of Horn clauses is included in the appendix. 

2 Abductive Logic Programming (ALP), Abductive Logic 

Programming Agents (ALPA) and the Logic-based Production 

System and Agent Language (LPS) 

In this Section we provide an overview of ALP, ALPA and LPS.  ALP extends logic 
programming by allowing some predicates, Ab, the abducibles or open predicates, to 
be undefined, in the sense that they can occur in the conditions of clauses, but not in 
their conclusions. Instead, ground atoms in the abducible predicates can be assumed, 
but are constrained by a set IC of integrity constraints. Viewed in database terms, the 
open predicates are potential updates that can be added to the database, and the 
integrity constraints are used to monitor and constrain these updates.    
 Thus an ALP framework <L, Ab, IC> consists of a logic program L, a set of 
abducibles Ab, and a set of integrity constraints IC. The predicates in the conclusions  
of clauses in L are disjoint from the predicates in Ab.  
 Several alternative semantics and proof procedures have been defined for ALP. 
The semantics of ALP that we use in this paper is based on the model-theoretic 
semantics of [7]. The key feature of the semantics is that the integrity constraints IC 
and any initial goal G are required to be true in a unique minimal model determined 
by the logic program L extended by assumptions in the predicates Ab. For this 
purpose, it suffices to assume that L is a locally stratified program, which determines 
a unique perfect model [18], in which case IC and G can be any sentences of first-
order logic (FOL). Arguments for the minimal model semantics are presented in [7].  
 
Definition. Given an ALP framework <L, Ab, IC> and goal G (which can be empty, 
equivalent to true), a solution of the goal is a set of atomic sentences  in the 
predicates Ab, such that G  IC is true in the perfect model of L  . 
 
In classical abduction, the goal G is a set of observations Obs, and a solution  is a 
set of assumptions that explain the observations. In ALP and ALPA, the goal G is 
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more commonly a future state of the environment, and a solution  is a set of 
partially ordered actions that achieve the desired state, provided the environment 
does not interfere. Therefore, in the general case, the set  can include both 
assumptions that explain observations and actions that achieve future states. 
However, for simplicity, in many applications of ALP and ALPA, including the 
application to TR programs, the observations are taken as “facts” that are 
dynamically added to L and that do not require any explanation. 
 Although in theory IC and G can be any sentences of FOL, it suffices, when ALP 
and ALPA are used for the semantics of LPS and TR programs, to restrict the syntax 
of integrity constraints in IC to conditionals of the form: 
 
  conditions  conclusion 
 
where conditions is a conjunction of literals and conclusion is a conjunction of 
literals. All variables in such conditionals are universally quantified with scope the 
conditional, except for variables in the conclusion that are not in the conditions, 
which are existentially quantified with scope the conclusion. In the operational 
semantics, such conditionals are made true, by reasoning forwards to make the 
conclusion true whenever the conditions become true. Thus integrity constraints in 
the form of conditionals behave like production rules. 

To embed LPS and TR programs in ALP, it suffices to restrict the syntax of goals 
G to goal clauses, as in logic programming. These goals have the same form as the 
existentially quantified conclusions of integrity constraints derived by forwards 
reasoning. In the operational semantics, such goals are made true by reasoning 
backwards, using logic programs to reduce goals to subgoals. A subgoal that is an 
atomic action can be made true by adding it to .  
 ALP is used in ALPA for the thinking component of a BDI-like agent [19]. In 
ALPA, the logic program L represents the agent’s beliefs, and G  IC represents the 
agent’s desires (or goals). 
 The thinking component of an ALP agent is a proof procedure, using forward and 
backward reasoning, embedded in an agent observe-think-decide-act cycle. The logic 
program L includes a deductive database that represents the agent’s view of its 
environment. 
 In ALPA, the database is updated, as the result of observations and actions, by 
means of an action or event theory, such as the situation or event calculus [20, 11]. 
The updates are non-destructive, and via the event theory they imply the initiation of 
new facts and the termination of old facts. Moreover, they involve the 
computationally explosive use of frame or persistence axioms to reason that a fact 
persists if it is not directly affected by an update. 
 In contrast, production systems and most practical agent systems, employ a 
destructively updated database that represents only the current state of the world. 
They avoid the computational overheads of the frame problem by changing only 
those facts that are directly affected by an action or event. Facts that are not affected 
simply persist, without the need to reason that they persist.  

 LPS is based on the model-theoretic semantics and proof procedures of ALPA, but 

benefits from the computational advantages of employing a destructively updated 

database that represents only the current state of the world. The operational semantics 

represents facts in the database without an explicit time or state parameter, but the 

model-theoretic semantics is defined with respect to the entire sequence of database 
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states in which facts are time-stamped with explicit time parameters. This sequence is 

like a Kripke possible world structure in which the possible worlds (and the 

accessibility relation) are all combined into one model-theoretic structure.  

In LPS, the model is the perfect model of the logic program: 

 

P  I  Obs    DB, where   

 

P is a locally stratified logic program, with explicit time parameters, which 

defines macro-actions in terms of sequences of atomic actions, other macro-

actions, and queries to the database. 

 

I is a locally stratified logic program, with explicit time parameters, which 

defines the intensional and state-independent predicates of the deductive 

database. 

 

Obs  = Obs0  …  Obsi …, where Obsi is the set of time-stamped 

observations at time i. 

 

 = {a0, …, ai,…} where ai is the time-stamped action executed at time i. 

 

DB = DB0  …  DBi …  , where DBi is the set of time-stamped facts in 

the extensional part of the deductive database at time i. 

 

The situation calculus successor state and frame axioms are emergent properties that 

are true in the perfect model, but are not needed in the operational semantics.  

 The LPS operational semantics is an observe-think-decide-act cycle in which: 

 

Any observed events and actions executed successfully in the last cycle are 

added temporarily to the database, and an event theory Ev specifies how 

events and actions update the extensional predicates of the database. Ev is 

equivalent, in effect, to the event calculus without frame axioms. 

 

For every instance of an integrity constraint whose conditions are true in the 

current state of the database, the (existentially quantified) conclusion of the 

constraint is added as a new goal to be made true. 

 

  Goals are reduced to subgoals for some maximum number of steps. 

 

If there is an atomic action subgoal that can be executed in this cycle, then 

one such atomic action is chosen. If it is executed successfully, then it is 

recognised in the next cycle.  
 
This operational semantics is sound with respect to the perfect model semantics 
sketched above. It is incomplete in the general case because it can make integrity 
constraints of the form conditions  conclusion true only by making the conclusion 
true when the conditions are true. It does not make them true by making the 
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conclusion true when the conditions are false, and it does not make them true by 
making their conditions false.   
 In LPS, observations are restricted to events that are added temporarily to the 
database, to aid in determining whether the conditions of an integrity constraint are 
true. We have excluded the use of abduction to explain observations in LPS, because 
it is much more complex than simply observing external events, and because 
abduction is not a feature of practical production systems and BDI agents.  

3 An ALPA Representation of TR Programs 

The translation of TR programs into ALPA is similar to our translation of LPS into 

ALPA [10]. We call this logic-based representation of TR programs LTR.  

3.1 TR and LTR programs without an internal database.  

In the simplest case, a TR program need not contain any representation of its 
environment. In such cases, as Rodney Brooks [2] advocates, the program uses “the 
world as its own model”. Arguably, such TR programs without an internal database 
implement the “short and fast path from sensory signals to effectors” that Nilsson 
associates with lower-level programs. 
 The following example, from [6], illustrates such a TR program. It also illustrates 
the ability of a TR program to terminate a durative action when a higher-level 
condition holds and takes precedence. Here is the TR version using the Prolog 
convention that variables are written as a string of characters starting with an 
uppercase letter. 
  

mine-pump     {critical   Methane   alarm 
    true   operate} 
 
operate {high < Water    (low < Water   pump-active )  pump 
    true   nil} 
 

Here mine-pump and operate name sub-programs, the first of which calls the second. 

The values of Methane and Water and the truth value of pump-active are 

observations. alarm and pump are primitive, durative actions. Note that the program is 

not regressive. 

 Contrary to Brooks [2], who argues against symbolic representations, our 

semantics for such low-level TR programs is given by an LTR program, which 

consists of an integrity constraint and a locally stratified logic program. The integrity 

constraint is:  

 

 observed(T)  mine-pump(T). 

 

The logic program is:   

 
mine-pump(T)  methane-level(M, T)  critical   M   alarm(T) 
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mine-pump(T)  methane-level(M, T)  critical  > M  operate(T) 
 
operate(T)   water-level(W, T)  high < W  pump(T) 
operate(T ) water-level(W, T)  low < W  pump-active(T ) pump(T) 
operate(T )  water-level(W, T)  high  W low  Water(T) 
operate(T)   water-level(W, T)  high  W ¬ pump-active(T) 

 
 

Notice that the condition high  W of the third rule for operate(T) is redundant and 
can be deleted. Moreover, the defined durative action operate(T) can be compiled 
away, replacing it by its definition, giving the program: 
 

mine-pump(T)  methane-level(M, T)  critical   M   alarm(T) 
mine-pump(T)  methane-level (M, T)  critical  > M   
       water-level (W, T)  high < W  pump(T) 
mine-pump(T)  methane-level (M, T)  critical  > M   
       water-level (W, T)  low < W  pump-active T  pump(T) 
mine-pump(T)  methane-level (M, T)  critical  > M   
       water-level (W, T)  high  W low  Water 
mine-pump(T)  methane-level (M, T)  critical  > M   
       water-level (W, T)  high  W ¬  pump-active(T)  

   

Notice that in the translation of a rule Ki+1  ai+1, the corresponding condition of the 

LTR clause contains the explicit negations of all the conditions of the higher-level 

rules K1  a1 …  Ki  ai. This syntactic redundancy can be avoided in the LTR 

syntax by employing a similar convention to that employed in the TR syntax or by 

using a special operator like the “cut” in Prolog. The inefficiency of re-evaluating 

these conditions in the operational semantics can be avoided, as it is in the TR 

operational semantics, in the Prolog implementation of cut, or by means of tabling 

[21].  

 The operational semantics of LTR is based on the operational semantics of ALPA, 

similarly to the way in which the operational semantics of LPS is based on that of 

ALPA. It also mimics the operational semantics of TR programs. It is illustrated by 

the following example, in which critical, high and low are 100, 20 and 10, 

respectively.  
 
    methane-level water-level   pump-active alarm pump 
time1   66  18  no  no no 
time2   77  20  no  no no 
time3   88  20.0001  no  no yes 
time4   99  20.00001 yes  no yes 
time5   99  15  yes  no yes 
time6   100  12  yes  yes no 
time7   110  18  no  yes no 
time8   104  19  no  yes no 
time9   98  19  no  no no 
time10  98  15  no  no no 
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Here the primitive actions alarm and pump are durative actions, which are turned on 
automatically when their conditions hold, and turned off when their conditions do not 
hold. For example, at time6, the conditions for pump fail to hold, and the pump is 
turned off, when the conditions of the higher priority rule for sounding the alarm hold.  

The declarative semantics of such a LTR program, consisting of an integrity 

constraint and a locally stratified program P can be understood naturally in ALPA [8] 

terms: 

 

The task is to generate a set  of ground actions such that the integrity constraint, 

in this case observed(T)  mine-pump(T), is true in the perfect model of  

P  Obs  , where Obs is the set of all ground facts representing the input 

observations, including ground facts of the form observed(t) for every time t that 

an observation is made. 

 

Notice that this semantics does not depend upon the nature or even the sequencing of 

time points. In theory, the set of time points could be uncountably large, represented 

for example by the set of positive real numbers. Such a semantics would be 

appropriate for hardware implementations using analogue electronic circuits, as 

suggested by Nilsson [15]. 

Notice also that primitive actions are assumed to take place at the same time T as 

the conditions that trigger the actions. This is an idealization, which simplifies the 

theory, like the assumption of friction-less motion in the laws of physics.  

3.2 TR and LTR programs with an internal database.  

The simple semantics above is inadequate for TR-programs that employ a 

destructively updated database as a representation of the current state of the 

environment. For such programs it is necessary to define the semantics relative to a 

sequence of discrete database states. Consider, for example, Nilsson’s tower-building 

example with towers represented as lists S, using LISP notation, where car(S) is the 

top block on the sub-tower cdr(S) [16]:  

 

make-tower(S); S is a list of blocks, 

{tower(S) → nil  

ordered(S) →  unpile(car(S))  

null(cdr(S)) →  move-to-table(car(S))  

tower(cdr(S))→move(car(S), cadr(S))  

true   → make-tower(cdr(S)) } 

  

 move-to-table(X); X is a block,  

{on(X,table) →  nil  

holding(Y) →  putdown(Y, table))  

clear(X) → pickup(X)  

true  → unpile(X) } 

move(X, Y); X and Y are blocks, 

{on(X,Y) → nil  

holding(X)clear(Y) → putdown(X,Y) 

holding(X) → putdown(Z, table))  

clear(X)  clear(Y) → pickup(X)  

clear(Y) → unpile(X)  

true  → unpile(Y) } 

  

unpile(X);  X is a block,  

{clear(X) →  nil  

 on(Y,X) →  move-to-table(Y) } 
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The TR-program in this example manages a small deductive database, which records 

the current location of blocks and whether the robot is holding a block. When a 

primitive action, such as putdown is executed, its effects are sensed and the facts 

affected by the action are updated in the database. Facts that are not affected are not 

updated, so frame axioms are unnecessary. Nilsson allows for the possibility that 

primitive actions might affect the database directly, but he does not explain how the 

effects of such internal actions are specified. In LPS we use an explicit event theory 

Ev without frame axioms for this purpose. We also use an event theory in LTR. 

Like the event theory in LPS, the event theory Ev in LTR specifies how externally 

observed events and internally generated actions update the extensional predicates of 

the database. Ev also specifies how the database is updated when facts involving the 

extensional predicates are observed. 

In addition to extensional predicates, defined by ground atomic facts, the deductive 

database can contain intensional predicates, defined by “perceptual rules”, which 

“create increasingly abstract predicates from simpler ones”. In Nilsson’s tower-

building example, these rules have logic programming form. Here is the translation of 

these rules into a locally stratified logic program, with an explicit time parameter, 

using the Prolog convention that [H|S] represents a list with first element H, followed 

by list S:  

 

 tower([Block|S], T)  ordered([Block|S], T)     X on(X, Block, T)  

 ordered([Block1, Block2|S], T)  ordered([Block2|S],T)   

     on(Block1, Block2, T) 

 ordered([Block], T)  on(Block, table, T) 

 clear(Block, T)    X on(X, Block, T)    holding(Block, T) 

 

Nilsson describes a computational architecture in which such rules are executed 

forwards, to add new facts to the database, using a truth maintenance system to delete 

derived facts when the extensional facts that support them are deleted. Our declarative 

and operational semantics are neutral with respect to whether the definitions of the 

intensional predicates are executed forwards or backward. If they are executed 

backwards, Prolog-style, then truth maintenance is unnecessary. 

Here is the translation of make-tower1. The translation of the other programs is 

similar: 

 

make-tower(S, T)   tower(S, T) 

make-tower([Block|S], T)     tower([Block|S], T)   ordered([Block|S], T)  

   unpile(Block, T)   

make-tower([Block], T)    tower([Block], T)    ordered([Block], T)    

   move-to-table(Block, T)   

make-tower([Block1, Block2|S], T)     tower([Block1, Block2|S], T)    

    ordered([Block1, Block2|S], T)    tower([Block2|S], T)   

     move(Block1, Block2, T) 

                                                           
1 The conditions null(S)  and ¬null([Block2|S]), respectively, in the 3rd and 4th clauses are 

unnecessary because they are implied by the list data structure. 
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make-tower([Block|S], T)     tower([Block|S]), T)   ordered([Block|S], T)    

    null(S, T)    tower(S, T)    make-tower(S, T) 

 

 

Arguably, the semantics of the top-level goal of the TR program is ambiguous. Given 

the problem of building a specific tower, say [a, b, c], is the goal a (one-off) 

achievement goal, to make the tower and then terminate? Or is it a (perpetual) 

maintenance goal, to make the tower and rebuild it if and when the environment 

interferes with it? In LTR, the different kinds of goals can be accommodated by 

means of a single integrity constraint: 

 

 required-tower(Tower, T)   make-tower(Tower, T) 

 

where required-tower is an extensional predicate, instances of which are updated by 

using an event theory Ev, which contains such clauses as: 

 

initiates(request-tower(Tower, T), required-tower(Tower)) 

 terminates(cancel-tower(Tower, T), required-tower(Tower)) 

 

Using the event theory, an observation of an external event request-tower(tower, t) 

adds the fact required-tower(tower) to the database, and an observation of an external 

event cancel-tower(tower, t) deletes the fact required-tower(tower) from the database.

  

 In general, the declarative semantics of TR programs with a destructively updated 

database is an extension of the semantics of TR programs without a database. 

Informally speaking, given an initial database and sequence of sensed observations, 

the task is to generate a set of ground actions such that all the integrity constraints are 

true in the perfect model determined by the program, observations, actions and 

associated sequence of database states. More precisely and more formally: 

 

Given the representation of a TR program as a locally stratified logic program P 

and a set IC of one or more integrity constraints with explicit time, a time-stamped 

representation DB0 of the initial state of the database, a set I of definitions of 

intensional predicates with explicit representation of time, a sequence Obs0, …, 

Obsi, … of sets of time-stamped input observations, and an event theory Ev, 

 

the task is to generate a sequence of time-stamped ground actions a0, …, ai,…   

with an associated sequence DB1, … , DBi, … of time-stamped extensional 

databases, such that all the integrity constraints IC are true in the perfect model of  

P  I  Obs  {a0, …, ai,…}  DB, where 

Obs  = Obs0  …  Obsi … and 

DB = DB0  …  DBi … .  

 

It is possible to show that a TR style of operational semantics, using destructive 

database updates, is sound with respect to this semantics, using an argument similar to 

that for showing the soundness of the operational semantics of LPS [10]. 



11 

 

4 Alternative ALP Representations of TR programs 

We argued above that the semantics of the top-level goal of a TR program is 
ambiguous. Here we will see that if the top-level goal is intended as a maintenance 
goal, then it is often natural to represent the program in ALP form as a set of 
conditional integrity constraints. For example, the compiled version of the mine-
pump example can be represented simply by three integrity constraints:  
 

 methane-level(M, T)  critical   M  alarm(T) 
 methane-level (M, T)  critical  > M   water-level (W, T)  high < W  pump(T) 

 methane-level (M, T)  critical  > M   water-level (W, T)  low < W  
 pump-active T  pump(T) 
 

In this case the logic program P defines only the auxiliary inequality predicate The 
semantics of subsection 3.1 for TR programs with an internal database still applies, 
but without the need for additional observations of the form observed(t): 
 

The task is to generate a set    of ground actions such that the integrity constraints 

IC are all true in the perfect model of P  Obs  , where Obs is the set of all 

ground facts representing the input observations. 

 

In some versions of ALP [8] conditionals can occur in the conditions of logic 

programs. Thus we can write, for example:  

 
mine-pump(T)[methane-level(M, T)  critical   M  alarm(T)]  

      [methane-level (M, T)  critical  > M  operate(T)] 
 
 
 operate(T)    [water-level (W, T)  high < W  pump(T)]  

    [water-level (W, T)  low < W  pump-active (T) pump(T)] 
 

This (conditional) version is equivalent to the first version in subsection 3.1, in which 

mine-pump and operate are defined by normal logic programs. More generally:  
 
Theorem: (A  B)  (C  D)   
    (A  B)  (C  D)  (¬A  ¬C)  
given that  C  ¬A     (equivalently A  ¬C).  
 
Note that the assumption C  ¬A  holds for all LTR programs. 
 
Proof: We use the fact that (P  Q)  (¬P   Q)  (¬P  (P  Q)). 
 

(A  B)  (C  D)   
(¬A  (A  B))  (¬C  (C  D))  
(¬A  ¬C)  (¬A  C  D)  (A  B  ¬C)  (A  B  C  D)
  

Note that  (¬A  C  D)  ↔ (C  D)    because  C  ¬A.      
We need to show (A  B  ¬C)  (A  B  C  D)   A  B. 
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But   (A  B  ¬C)  A  B  because A  ¬C, and  
    (A  B  C  D)  false because C  ¬A.  
 

Both ways of representing TR programs as logic programs can also be written as 

equivalences. For example:  

 
mine-pump(T)  [methane-level(M, T)  critical   M  alarm(T)]  

       [methane-level (M, T)  critical  > M  operate(T)]   
 
 operate(T)      [water-level (W, T)  high < W  pump(T)]  

     [water-level (W, T)  low < W  pump-active T  pump(T)] 
 
This is because perfect models2 of logic programs are minimal models, and because 

the if-and-only-if form of a definition is true in a minimal model if and only if the if-

half of the definition is true in the model.  
 The equivalence of different representations makes it easier to reason about TR 
programs in ALP form. 

5 Reasoning about LTR Programs 

The following example is based on the example in [6].  
 

Theorem: Let max-in and min-out be the maximum rate that water enters the mine, 

and the minimum rate that the pump removes water from the mine, respectively. Let 

water-in(In, T) and water-out(Out, T) express that the water enters the mine at rate In 

at time T and leaves the mine at rate Out at time T, respectively. Assume that:  

 

1) In, T  [water-in(In, T)   In ≤  max-in and 

 max-in ≤  min-out] 

 

Assume also that the primitive action pump satisfies the property: 
 
2)  M, T, W, Out  [methane-level(M, T)  critical  > M  water-level (W, T)    
 low < W   water-out(Out, T)    pump(T)   min-out  ≤ Out] 
 
Then the defined action mine-pump satisfies the property: 

 
M, W, In, Out, T [methane-level(M, T)  critical  > M    water-level (W, T)   
high < W   water-in(In, T)    water-out(Out, T)  mine-pump(T)    
In  ≤  Out] 

 

                                                           
2 Note that the perfect model semantics for programs of the form G  (A  B) 
can be defined in terms of normal programs of the form G  ¬A 
G  A  B. 
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Proof:  Assume that at some given time t, 

 
3)   methane-level(m, t)  critical  > m    water-level (w, t)  high < w    
    water-in(in, t)    water-out(out, t)  mine-pump(t). 
 
It is necessary to show that in  ≤  out. 
 But assumptions (1) and (3) imply in ≤  max-in ≤  min-out. Therefore it suffices to 
show min-out ≤  out. This follows from assumptions (2) and (3) provided we can 
show pump(t) and low < w. 
 
 pump(t) follows from assumption (1), the second condition  
 methane-level (M, T)  critical  > M  operate(T)  
 of mine-pump T, and the definition of operate(T). 
 low < w follows from low < high and high < w.  
 
The proof can be pictured as a tree, with the conclusion at the top and assumptions at 
the bottom:  
 

 

6 Knowledge Representation with LTR Programs 

 

We have shown above that LTR gives a model-theoretic semantics to TR programs, 

which facilitates proving TR program properties. In this section, we show that TR 

programs suggest a non-recursive programming style, which can also be used in LTR 

and ALPA more generally. We illustrate this with a path-finding example. However, 

the example also shows that TR programs are restricted to deterministic programs, 

whereas the corresponding path-finding program written in ALPA is naturally non-
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deterministic. 

 Consider the following recursive logic program for path-finding with time 

represented explicitly: 

  

 go-to(X, T, T)        at(X, T)        

 go-to(X, T1, T2)    ¬at(X, T1)  at(Y, T1)  towards(Y, Z, X)  

         move(Y, Z, T1, T)  go-to(X, T, T2) 

 

Here go-to(X, T1, T2) represents the “macro-action” of going to X from time T1 to time 

T2. The predicate towards(Y, Z, X) non-deterministically identifies a place Z that is 

next to Y and in the direction from Y towards X. There could be several alternative 

such places Z. So an agent would need to choose between them, perhaps by planning 

ahead to find a path that ends in X, and then moving along that path to get to X. 

 TR programs suggest a non-recursive way of writing a similar logic program: 

 

 go-to(X, T)  at(X, T)  

 go-to(X, T)  ¬ at(X, T)  at(Y, T)  towards(Y, Z, X)  move(Y, Z, T) 

 

 or in the conditional representation 

 

 go-to(X, T)  [¬ at(X, T)  at(Y, T)  towards(Y, Z, X)   move(Y, Z, T)] 

  

The variable Z, which does not occur in the conclusion go-to(X, T) of the clause, is 

existentially quantified in the conditions of the clause.   

 Both of these non-recursive formalisations need to be augmented with an integrity 

constraint such as  required-destination(Place, T)  go-to(Place, T), where required-

destination is an extensional predicated updated by observations of events, say, 

request-destination and cancel-destination. This is similar to the predicate required-

tower and the events request-tower and cancel-tower, in the case of the tower 

building example, earlier.  

 It is not possible to represent the non-recursive logic program directly as a TR 

program. Suppose we try to represent it as: 

 

 go-to(X)  {at(X) nil,  

        at(Y)  towards(Y, Z, X)  move(Y, Z)} 

 

Then what is the implicit quantification of the variable Z? Is it that the agent should 

move to every place Z that is towards X from Y? Or does it mean that the agent should 

non-deterministically find one such place Z and move towards it? The alternative 

representation: 

  

 go-to(X)  {at(X) nil,  

        at(Y)  towards(Y, Z, X)  move(Y, Z)} 

 

is not allowed in the syntax of TR programs, and is not catered for in the operational 

semantics of TR programs.  
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Notice that the non-recursive style can also be used for the tower-building 

program. Here is the top-level of a non-recursive LTR program: 

 

make-tower(S, T)   tower(S, T) 

 

make-tower([Block|S], T)     tower([Block|S], T)   ordered([Block|S], T)  

    unpile(Block, T)   

 

make-tower([Block], T)    tower([Block], T)    ordered([Block], T)    

    move-to-table(Block, T)  

 

 make-tower(S, T)     tower(S, T)    ordered(S, T)   

    append(S1, [B1, B2|S2], S)  ordered([B2|S2], T)   

     on(B1, B2, T)  move(B1, B2, T) 

 

  make-tower(S, T)     tower(S, T)    ordered(S, T)   

    append(S1, [B], S)  ¬ ordered([B], T)   

    move-to-table(B, T) 

 

The condition append(S1, [B1, B2|S2], S) splits S into a tower [B2|S2] that has 

already been built and the part that remains to be built.  

 In the next section we describe LPS, with a view towards embedding both LTR 

and LPS in a more expressive and more powerful ALPA framework with a 

destructively updated database.   

 

 

7  The Logic-Based Production System and Agent Language LPS  
 

LPS [9, 10] combines logic programs and production systems in a logical framework 

based on ALP. The relationship between LPS and ALP is analogous to the 

relationship between LTR and ALP. 

Both TR programs and LPS employ a destructively updated database and a syntax 

without time, but can be given a model-theoretic semantics by translating them into 

ALPA with an explicit representation of time. In both cases, the semantics is defined 

relative to the time-stamped sequence of observations, actions and database states. 

TR programs and LPS differ in their ontologies for actions. In TR programs, 

actions are executed duratively, for as long as their associated conditions continue to 

hold. The effects of actions, like the level of water in a mine or a robot’s location, are 

sensed as observations, rather than derived by means of an event theory. These effects 

can vary continuously as a function of the durations of actions, as in the case of 

pumping, which affects the level of water, and moving forwards, which affects the 

robot’s location. 

In LPS, actions are discrete events, which transform one state of the world (or the 

database) into another. The effects of actions and other events are defined, as in the 

situation calculus [20] and event calculus [11], by an event theory, which specifies the 

extensional predicates that are initiated or terminated by events, and the preconditions 
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that must hold for actions to be possible. LPS uses the event theory (but without 

frame axioms) to update the database. 

Perhaps the biggest difference between TR programs and LPS is that LPS allows 

definitions of sequences of database state transitions. For example, the recursive 

definition of the macro-action go-to in the previous section could be written in LPS in 

the form: 

 

 go-to(X)    at(X)  

 go-to(X)  ¬ at(X) : at(Y) : towards(Y, Z, X) : move(Y, Z) : go-to(X) 

 

 The meaning of the sequential connective : is given by the translation into ALP, 

which we have already seen in the last section:  

 

 go-to(X, T, T)    at(X, T)        

 go-to(X, T1, T2) ¬at(X, T1)  at(Y, T1)  towards(Y, Z, X)  

      move(Y, Z, T1, T)  go-to(X, T, T2). 

 

The action move(Y, Z, T1, T)  transforms the database state at time T1 to the next state 

at time T. The event theory updates the database by deleting the old location at(Y)  

and adding the new location at(Z).  

Database transitions in LPS are similar to transactions in Transaction Logic [1]. In 

both cases, transactions are alternating sequences of queries and actions. An action 

can be an atomic action, which directly updates the external environment and/or the 

internal database, or a macro-action, which is the name of a transaction. In this 

respect, LPS is also similar to Golog [20]. However, like Golog and unlike 

Transaction Logic, transactions in LPS are not atomic and cannot be rolled back, 

although this is a feature that could be added to LPS. 

The top-level of an LPS program consists of reactive rules, which are like 

condition-action rules in production systems and like event-condition-action rules in 

active database systems. However in LPS, reactive rules have the semantics of 

integrity constraints in ALP, and their conclusions can be transactions (or 

equivalently, macro-actions). The structure of an LPS program can be pictured 

roughly like this: 
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Given their compatible syntax and operational and declarative semantics, LTR and 

LPS can be combined in a unified language inheriting the benefits of the separate 

languages. One way of combining them is to embed LTR programs in LPS programs. 

For example, here is the definition, translated into ALP, of a macro-action that calls 

the teleo-reactive program make-tower to construct a tower and terminate when the 

tower is completed:  

 
  achieve-tower (S, T, T)  tower(S, T)  
  achieve-tower (S, T1, T2)  ¬ tower(S, T1)  make-tower(S, T1)   
      achieve-tower(S, T1+1, T2) 
 
Similarly the teleo-reactive LTR program go-to of the last section can be embedded 
in an LPS macro-action definition: 
 
 get-to(X, T, T)    at(X, T)        
 get-to(X, T1, T2) ¬at(X, T1)   go-to(X, T1)  get-to(X, T1+1, T2) 
 
to move towards a place, and terminate when reaching it. In both the case of achieve-
tower and the case of get-to, the goal is achieved “teleo-reactively”, taking advantage 
of any favourable changes in the environment and recovering gracefully from any 
unfavourable changes. 
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8  Conclusions: ALPA  as a Unifying Framework    

The translations of LPS and TR programs into ALPA illustrate the broader potential 

of ALPA to unify different knowledge representation formalisms. The contribution of 

LPS is that it shows how to give a model-theoretic semantics to programs that 

maintain a destructively updated database. But this contribution can be generalised to 

any representation in ALPA that similarly maintains such a database.  

Complex event recognition and processing (CEP) [12] is another programming 

paradigm that could benefit from such a treatment. In the same way that macro-

actions can be defined in terms of queries and actions, complex events can be defined 

in terms of conditions and simpler events. Conditions can be evaluated either by 

querying sensory inputs or by querying the database. Atomic events can be recognised 

by input observations. Here are two examples from [22], written in ALP form: 

 
 

shoplift (Item, T1, T2)  shelf-reading(Item, T1)  exit-reading(Item, T2)   

¬ (check-out-reading(Item, T)  T1  T  T   T2  )   T2 – T1 < 12 hours 

 

overdose(Person, antibiotics, T1, T2)  ingest(Person, Medicine1, Dosage1, T1)  

ingest(Person, Medicine2, Dosage2, T2)  antibiotics(Medicine1)  

antibiotics(Medicine2)   Dosage1+Dosage2 >1000   T2 – T1 < 4 hours 

 

The first identifies the occurrence of a complex event of shoplifting when an item that 

was on shelf is removed from the store without being checked out. The second 

identifies a complex event of overdosing when a person has taken more than 1000 

units of antibiotics in less than 4 hours in two doses. 

 Notice that, to specify such complex events, we need to be able to represent 

temporal constraints on the times that conditions hold and events are observed. 

However, with the ability to represent such constraints, it is easy to specify a partial 

ordering among the conditions and events that make up a complex event. 

 Notice also that the ALPA framework allows not only defining (and thus 

identifying) complex events, but also reacting to them (via ALPA integrity 

constraints) with transactions.  

 Investigating complex event processing further is part of our future work. Other 

topics we plan to consider in the future include formalisation and proof of other 

properties of LTR programs, such as “progress” towards achieving goals, and formal 

characterisations of how an LTR agent “recovers” and “re-plans” after environmental 

interference, without the need for explicit inclusion of such features in the 

representation. 

 We have a prototype implementation of LPS, which is sufficiently general that it 

can run programs written in LTR. Exploring the scalability of the implementation for 

more substantial examples is also part of future work. 
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Appendix   

Brief Introduction to Logic Programming  
 

Logic programs are collections of sentences in the logical form of conditionals: 

 

if conditions then conclusion, also written 

conclusion   conditions. 

 

Such conditionals (also called clauses) combine a conclusion, which is an atomic 

formula, with conditions, which are a conjunction of atomic formulas or negations of 

atomic formulas. A clause without negative conditions is called a definite clause. 

The number of conditions in a clause can be zero, in which case the clause is 

written without the implication sign , simply as conclusion. If the number of 

conditions is not zero, then the clause is also sometimes called a rule.  

All variables in a clause are implicitly universally quantified with scope the clause. 

Clauses with no variables are called ground clauses. Ground clauses with zero 

conditions are also called facts. 

http://www.doc.ic.ac.uk/~rak/papers/Rules.pdf
http://www.doc.ic.ac.uk/~rak/papers/Rules.pdf
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Logic programs can be viewed as definitions of the predicates occurring in the 

conclusions of clauses. These definitions are used to solve goal clauses, which are 

existentially quantified conjunctions of atomic formulas or negations of atomic 

formulas. A definite goal clause is a goal clause without negative conditions. Both 

definite clauses and definite goal clauses are also called Horn clauses.  

The use of logic programs to solve goals can be viewed in both programming and 

database terms. Viewed in programming terms, logic programs compute values of the 

existentially quantified variables in goal clauses. Viewed in database terms, they 

derive answers to goal clauses, viewed as database queries.  

Given a logic program L, to solve a goal clause G, it is necessary to find a variable-

free (i.e. ground) instance G‘ of G such that G‘ holds with respect to L. In the case of 

a definite clause program L, there are two equivalent semantic notions of what it 

means for a sentence S to hold with respect to L:  

 

  L logically entails S, i.e. S is true in all models of L.  

S is true in the unique minimal model of L. 

 

The minimal model semantics has a number of advantages, which are detailed for 

example in [7].  

The minimal model [25] of a definite clause program L is equivalent to the set of 

all facts that can be derived from L by repeatedly applying the two inference rules of 

instantiation and modus ponens, until no new facts can be derived. Instantiation 

replaces all occurrences of a variable in a clause by a ground term constructed from 

the constants and function symbols of the language. Modus ponens derives the 

conclusion of a clause conclusion   conditions from the conditions given as facts. 

In the case of non-Horn clauses that are locally stratified [18], the minimal model 

semantics has a natural generalisation to perfect models. For simplicity, consider the 

case of a ground clause program L with two strata, determined by partitioning the set 

of all ground atoms A of the language into two disjoint sets (or strata) A0 and A1. L is 

locally stratified if L is the union L0  L1 of two disjoint sets of clauses: 

 

L0 consists of clauses whose conclusion and positive conditions belong to A0, and 

that have no negative conditions. 

 

L1 is the set of all the clauses in L whose conclusion belongs to A1, whose positive 

conditions belong to A0  A1, and whose negative conditions have atoms in A0. 

Thus no clause in L contains a negative condition in A1. 

 

The perfect model of L is the union M0  M1 of two minimal models: 

 

M0 is the minimal model of the definite clause program L0. 

M1 is the minimal model of the definite clause program L1’ obtained from L1 by 

evaluating in M0 both the positive and negative conditions of clauses in L1 whose 

atoms are in A0. i.e. L1’ contains a clause of the form conclusion   conditions1 iff 

L1 contains a clause of the form conclusion   conditions1 and conditions2, where 

the atoms in conditions1 are all in A1, the atoms in conditions2 are all in A2, and the 

conditions2 are all true in M0. 
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This definition can be generalised in three ways: 1) from ground logic programs to 

programs containing variables, by adding universal instantiation; 2) to an unbounded 

number of strata: 0, 1, …. and 3) from conditions that are negative atoms at lower 

strata to conditions that are arbitrary formulas in the vocabulary of lower strata.  
 

 


