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Abstract

This paper is a survey and critical overview of recent work on the extension
of Logic Programming to perform Abductive Reasoning (Abductive Logic
Programming). We outline the general framework of Abduction and its
applications to Knowledge Assimilation and Default Reasoning; and we in-
troduce an argumentation-theoretic approach to the use of abduction as an
interpretation for Negation as Failure. We also analyse the links between
Abduction and the extension of Logic Programming obtained by adding a
form of explicit negation. Finally we discuss the relation between Abduction
and Truth Maintenance.

1 Introduction

This paper is a survey and analysis of work on the extension of logic pro-
gramming to perform abductive reasoning. The purpose of the paper is to
provide a critical overview of some of the main research results, in order
to develop a common framework for evaluating these results, to identify
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the main unresolved problems, and to indicate directions for future work.
The emphasis is not on technical details but on relationships and common
features of different approaches. Some of the main issues we will consider
are the contributions that abduction can make to the problems of reasoning
with negative or incomplete information, the evolution of knowledge, and
the semantics of logic programming and its extensions. We also introduce a
novel argumentation-theoretic interpretation of abduction applied to nega-
tion as failure.

The philosopher Pierce first introduced the notion of abduction. In [95] he
identified three distinguished forms of reasoning.

Deduction, an analytic process based on the application of general rules
to particular cases, with the inference of a result.

Induction, synthetic reasoning which infers the rule from the case and the
result.

Abduction, another form of synthetic inference, but of the case from a
rule and a result.

Peirce further characterised abduction as the “probational adoption of a
hypothesis” as explanation for observed facts (results), according to known
laws. “It is however a weak kind of inference, because we cannot say that
we believe in the truth of the explanation, but only that it may be true”[95].

Abduction is widely used in common-sense reasoning, for instance in diag-
nosis, to reason from effect to cause [9, 101]. We consider here an example
drawn from [94].

Example 1.1
Consider the following theory T

grass-is-wet «— rained-last-night
grass-is-wet «— sprinkler-was-on

shoes-are-wet «— grass-is-wet.

If we observe that our shoes are wet, and we want to know why this is so,
rained-last-night is a possible explanation, i.e. a set of hypotheses that
together with the explicit knowledge in T" implies the given observation.
Sprinkler-was-on is another alternative explanation.



Abduction consists of computing such explanations for observations. It is
a form of non-monotonic reasoning, because explanations which are con-
sistent with one state of a knowledge base may become inconsistent with
new information. In the example above the explanation rained-last-night
may turn out to be false, and the alternative explanation sprinkler-was-on
may be the true cause for the given observation. The existence of multiple
explanations is a general characteristic of abductive reasoning, and the
selection of “preferred” explanations is an important problem.

1.1 Abduction in logic

Given a set of sentences 1" (a theory presentation), and a sentence G (obser-
vation), to a first approximation, the abductive task can be characterised as
the problem of finding a set of sentences A (abductive explanation for G)
such that:

(1) TUA E G,
(2) T UA is consistent.

This characterisation of abduction is independent of the language in which
T, G and A are formulated. The logical implication sign |= in (1) can
alternatively be replaced by a deduction operator F. The consistency re-
quirement in (2) is not explicit in Peirce’s more informal characterisation of
abduction, but it is a natural further requirement.

In fact, these two conditions (1) and (2) alone are too weak to capture
Peirce’s notion. In particular, additional restrictions on A are needed to dis-
tinguish abductive explanations from inductive generalisations [14]. More-
over, we also need to restrict A so that it conveys some reason why the
observations hold, e.g. we do not want to explain one effect in terms of
another effect, but only in terms of some cause. For both of these rea-
sons, explanations are often restricted to belong to a special pre-specified,
domain-specific class of sentences called abducible. In this paper we will
assume that the class of abducibles is always given.

Additional criteria have also been proposed to restrict the number of candi-
date explanations:

e Once we restrict the hypotheses to belong to a specified set of sen-
tences, we can further restrict, without loss of generality, the hypothe-



ses to atoms (that “name” these sentences) which are predicates ex-
plicitly indicated as abducible, as shown by Poole [104].

o In section 1.2 we will discuss the use of integrity constraints to reduce
the number of possible explanations.

e Additional information can help to discriminate between different ex-
planations, by rendering some of them more appropriate or plausible
than others. For example Sattar and Goebel [123] use “crucial liter-
als” to discriminate between two mutually incompatible explanations.
When the crucial literals are tested, one of the explanations is rejected.
More generally Evans and Kakas [35] use the notion of corroboration
to select explanations. An explanation fails to be corroborated if some
of its logical consequences are not observed. A related technique is
presented by Sergot in [124], where information is obtained from the
user during the process of query evaluation.

e Moreover various (domain specific) criteria of preference can be spec-
ified. They impose a (partial) order on the sets of hypotheses which
leads to the discrimination of explanations [5, 9, 39, 52, 102, 106, 128|.

Cox and Pietrzykowski [15] identify other desirable properties of abductive
explanations. For instance, an explanation should be basic, i.e. should not
be explainable in terms of other explanations. For example, in example 1.1
the explanation

grass-is-wet

for the observation
shoes-are-wet

is not basic, whereas the alternative explanations

rained-last-night

sprinkler-was-on
are.

An explanation should also be minimal, i.e. not subsumed by another one.
For example, in the propositional theory

q

P —
p = qr



{q, r} is a non-minimal explanation for p while {¢} is minimal.

So far we have presented a semantic characterisation of abduction and dis-
cussed some heuristics to deal with the multiple explanation problem, but
we have not described any proof procedures for computing abduction. Vari-
ous authors have suggested the use of top-down, goal-oriented computation,
based on the use of deduction to drive the generation of abductive hypothe-
ses. Cox and Pietrzykowski [15] construct hypotheses from the “dead ends”
of linear resolution proofs. Finger and Genesereth [36] generate “deductive
solutions to design problems” using the “residue” left behind in resolution
proofs. Poole, Goebel and Aleliunas [107] also use linear resolution to gen-
erate hypotheses.

In contrast, the ATMS [71] computes abductive explanations bottom-up.
The ATMS can be regarded as a form of hyper-resolution, augmented with
subsumption, for propositional logic programs [118]. Lamma and Mello [81]
have developed an extension of the ATMS for the non-propositional case.
Resolution-based techniques for computing abduction have also been devel-
oped by Demolombe and Farinas del Cerro [17] and Gaifman and Shapiro
[41].

Abduction can also be applied to logic programming. A general logic
program is a set of Horn clauses extended by negation as failure [11], i.e.

clauses of the form:
A — Ll, PR Ln

where each L; is either an atom A; or its negation ~ A; ?, A is an atom
and each variable occurring in the clause is implicitly universally quantified.
Abduction can be computed in logic programming by extending SLD and
SLDNF [10, 32, 33, 64, 67]. Instead of failing in a proof when a selected
subgoal fails to unify with the head of any rule, the subgoal can be viewed
as a hypothesis. This is similar to viewing abducibles as “askable” condi-
tions which are treated as qualifications to answers to queries [124]. In the
same way that it is useful to distinguish a subset of all predicates as “ask-
able” it is useful to distinguish certain predicates as abducible. In fact, it is
generally convenient to choose, as abducible predicates, ones which are not
conclusions of any clause. As we shall remark at the beginning of section 5,
this restriction can be imposed without loss of generality, and has the added

In the sequel we will represent negation as failure as ~.



advantage of ensuring that all explanations will be basic.

There are other formalisations of abduction. We mention them for complete-
ness, but in the sequel we will concentrate on the logic-based view previously

described.

o Allemand et al. [2] and Reggia [111] present a mathematical char-
acterisation, where abduction is defined over sets of observations and
hypotheses, in terms of coverings and parsimony.

o Levesque [83] gives an account of abduction at the “knowledge level”.
He characterises abduction in terms of a (modal) logic of beliefs, and
shows how the logic-based approach to abduction can be understood
in terms of a particular kind of belief.

In the previous discussion we have briefly described both semantics and
proof procedures for abduction. The relationship between semantics and
proof procedures can be understood as a special case of the relationship be-
tween program specifications and programs. A program specification char-
acterises what is the intended result expected from the execution of the
program. In the same way semantics can be viewed as an abstract, possibly
non-constructive definition of what is to be computed by the proof proce-
dure. From this point of view, semantics is not so much concerned with
explicating meaning in terms of truth and falsity, as it is with providing
an abstract specification which “declaratively” expresses what we want to
compute. This specification view of semantics is effectively the one adopted
in most recent work on the semantics of logic programming, which restricts
interpretations to Herbrand interpretations. This restriction to Herbrand in-
terpretations means that interpretations are purely syntactic objects, which
have no bearing on the correspondence between language and “reality”.

One important alternative way to specify the semantics of a language, which
will be used in the sequel, is through the translation of sentences expressed
in one language into sentences of another language, whose semantics is al-
ready well understood. For example if we have a sentence in a typed logic
language of the form “there exists an object of type t such that the property
p holds” we can translate this into a sentence of the form 3z (p(z) A i(z)),
where ¢ is a new predicate to represent the type ¢, whose semantics is then
given by the familiar semantics of first-order logic. Similarly the typed logic



sentence “for all objects of type ¢ the property p holds” becomes the sentence
Va(p(z) < t(z)). Hence instead of developing a new semantics for the typed
logic language, we apply the translation and use the existing semantics of
first-order logic.

1.2 Integrity Constraints

Abduction as presented so far can be restricted by the use of integrity con-
straints. Integrity constraints are useful to avoid unintended updates to a
database or knowledge base. They can also be used to represent desired
properties of a program [82].

The concept of integrity constraints first arose in the field of databases and
to a lesser extent in the field of AT knowledge representation. The basic idea
is that only certain knowledge base states are considered acceptable, and an
integrity constraint is meant to enforce these legal states. When abduction
is used to perform updates (see section 2), we can use integrity constraints
to reject abductive explanations.

Given a set of integrity constraints, I, of first-order closed formulae, the
second condition (2) of the semantic definition of abduction (see section 1.1)
can be replaced by:

(2") T U A satisfies 1.

As previously mentioned, we also restrict A to consist of atoms drawn from
predicates explicitly indicated as abducible. Until the discussion in section 7,
we further restrict A to consist of variable-free atomic sentences.

In the sequel an abductive framework will be given as a triple (7', A, I),
where A is the set of abducible predicates, i.e. A C A4 3.

There are several ways to define what it means for a knowledge base K B
(T'U A in our case) to satisfy an integrity constraint ¢ (in our framework
¢ € I). The consistency view requires that:

K B satisfies ¢ iff KB U ¢ is consistent.
Alternatively the theoremhood view requires that:

K B satisfies ¢ iff KB |= ¢.

®Here and in the rest of this paper we will use the same symbol A to indicate both the
set of abducible predicates and the set of all their variable-free instances.



These definitions have been proposed in the case where the theory is a logic
program P by Kowalski and Sadri [76] and Lloyd and Topor [84] respec-
tively, where K B is the Clark completion [11] of P.

Another view of integrity constraints [60, 63, 74, 116, 117] regards these as
epistemic or metalevel statements about the content of the database. In
this case the integrity constraints are understood as statements at a different
level from those in the knowledge base. They specify what is true about the
knowledge base rather than what is true about the world modelled by the
knowledge base. When later we consider abduction in logic programming
(see sections 4,5), integrity satisfaction will be understood in a sense which
is stronger than consistency, weaker than theoremhood, and arguable simi-
lar to the epistemic or metalevel view.

For each such semantics, we have a specification of the integrity checking
problem. Although the different views of integrity satisfaction are concep-
tually very different, the integrity checking procedures based upon these
views are not very different in practice (e.g. [16, 76, 84]). They are mainly
concerned with avoiding the inefficiency which arises if all the integrity con-
straints are retested after each update. A common idea of all these proce-
dures is to render integrity checking more efficient by exploiting the assump-
tion that the database before the update satisfies the integrity constraints,
and therefore if integrity constraints are violated after the update, this vio-
lation should depend upon the update itself. In [76] this assumption is ex-
ploited by reasoning forward from the updates. This idea is exploited for the
purpose of checking the satisfaction of abductive hypotheses in [33, 66, 67].
Although this procedure was originally formulated for the consistency view
of constraint satisfaction, it has proved equally appropriate for the semantics
of integrity constraints in abductive logic programming.

1.3 Applications

In this section we briefly describe some of the applications of abduction in

Al

Abduction can be used to generate causal explanations for fault diagnosis
(see for example [12, 108]). In medical diagnosis, for example, the candi-
date hypotheses are the possible causes (diseases), and the observations are
the symptoms to be explained [105, 111]. Abduction can also be used for



model-based diagnosis [31, 115]. In this case the theory describes the “nor-
mal” behaviour of the system, and the task is to find a set of hypotheses
of the form “some component A is not normal” that explains why the be-
haviour of the system is not normal.

Abduction can be used to perform high level vision [15]. The hypotheses
are the objects to be recognised, and the observations are partial descrip-
tions of objects.

Abduction can be used in natural language understanding to interpret
ambiguous sentences [9, 40, 53, 127]. The abductive explanations correspond
to the various possible interpretations of such sentences.

In planning problems, plans can be viewed as explanations of the given
goal state to be reached [30, 125].

These applications of abduction can all be understood as generating hy-
potheses which are causes for observations which are effects. An application
that does not necessarily have a direct causal interpretation is knowledge
assimilation [67, 72, 80, 89]. The assimilation of a new datum can be per-
formed by adding to the theory new hypotheses that are explanations for
the datum. Database view updates [6, 64] are an important special case
of knowledge assimilation. Update requests are interpreted as observations
to be explained. The explanations of the observations are transactions that
satisfy the update request. We will discuss knowledge assimilation in greater
detail in section 2.

Another important application which can be understood in terms of a “non-
causal” use of abduction is default reasoning. Default reasoning concerns
the use of general rules to derive information in the absence of contradic-
tions. In the application of abduction to default reasoning, conclusions are
viewed as observations to be explained by means of assumptions which hold
by default unless a contradiction can be shown [32, 104]. As Poole [104]
argues, the use of abduction avoids the need to develop a non-classical, non-
monotonic logic for default reasoning. In section 3 we will further discuss the
use of abduction for default reasoning in greater detail. Because negation as
failure in logic programming is a form of default reasoning, its interpretation
by means of abduction will be discussed in section 4.



2 Knowledge Assimilation

Abduction takes place in the context of assimilating new knowledge (infor-
mation, belief or data) into a theory (or knowledge base). There are four
possible deductive relationships between the current knowledge base (KB),
the knowledge, and the new KB which arises as a result [72].

1. The new information is already deducible from the current KB. The
new KB, as a result, is identical with the current one.

2. The current KB = KB; U KB; can be decomposed into two parts.
One part KBy together with the new information can be used to de-
duce the other part KB;. The new KB is KB; together with the new
information.

3. The new information violates the integrity of the current KB. Integrity
can be restored by modifying or rejecting one or more of the assump-
tions which lead to the contradiction.

4. The new information is independent from the current KB. The new
KB is obtained by adding the new information to the current KB.

In case (4) the KB can, alternatively, be augmented by an explanation for
the new datum [67, 72, 80]. In [80] the authors have developed a system
for knowledge assimilation (KA) based on this use of abduction. They have
identified the basic issues associated with such a system and proposed solu-
tions for some of these.

Various motivations can be given for the addition of an abductive explana-
tion instead of the new datum in case (4) of the process of KA. For example,
in natural language understanding or in diagnosis, the assimilation of infor-
mation naturally demands an explanation. In other cases the addition of an
explanation as a way of assimilating new data is forced by the particular way
in which the knowledge is represented in the theory. Consider for example a
problem of temporal reasoning formulated in the Event Calculus [79]. This
contains an axiom that expresses the persistence of a property P from the
time that it is initiated by an event F to a later time T

holds-at(P, Ty) +« happens(E,Ty),
T, < Ty,
initiates(E, P),
persists(1y, P, 13).

10



New information about the predicate holds-at can be assimilated by adding
an explanation in terms of some event that generates this property together
with an appropriate assumption that the property persists [30, 62, 125].
This has the additional effect that the new KB will imply that the property
holds until it is terminated in the future [125]. This way of assimilating new
information can also be used to resolve conflicts between the current KB and
the new information [62, 125]. Suppose for example that the current KB
contains the fact (expressed informally) “Mary has bookl at time #;” and
that the persistence axiom predicts that “Mary has bookl at time ¢;” where
to < t1. The new information “John has bookl at time #;” contradicts the
prediction, and cannot be added explicitly to the KB. It is however possible
to remove the contradiction by adding the explanation that an event has
happened where “Mary gives John bookl between ¢y and ;”.

Once a hypothesis has been generated as an explanation for an external
datum, it itself needs to be assimilated into the KB. In the simplest situ-
ation, the explanation is just added to the KB, i.e. only case (4) applies
without further abduction. Case (1) doesn’t apply, if abductive explana-
tions are required to be basic. However case (2) may apply, and can be
particularly useful for discriminating between alternative explanations for
the new information. For instance we may prefer a set of hypotheses which
entails information already in the KB, i.e. hypotheses that render the KB
as “compact” as possible.

Example 2.1
Suppose the current KB contains

p —4q
p

T —q
T — 5

and r is the new datum to be assimilated. The explanation ¢ is preferable
to the explanation s, because ¢ implies both r and p, but s only implies r.

Notice however that the use of case (2) to remove redundant information can
cause problems later. If we need to retract previously inserted information,
entailed information which is no longer explicitly in the KB might be lost.

11



It is interesting to note that case (3) can be used to check the integrity of
any abductive hypotheses generated in case (4).

Any violation of integrity detected in case (3) can be remedied in several
ways [72]. The new input can be retracted as in conventional databases.
Alternatively the new input can be upheld and some other assumptions can
be withdrawn. This is the case with view updates. The task of translating
the update request on the view predicates to an equivalent update on the
extensional part (as in case (4) of KA) is achieved by finding an abductive
explanation for the update in terms of variable-free instances of extensional
predicates [64]. Any violation of integrity is dealt with by changing the ex-
tensional part of the database.

Example 2.2
Suppose the current KB consists of the clauses

sibling(z,y) — parent(z,z), parent(z,y)
parent(z,y) «— father(z,y)
parent(z,y) < mother(z,y)
father(John, Mary)
mother(Jane, Mary)
together with the integrity constraints
x =y« father(z,z), father(y, z)

& = y < mother(z, z), mother(y, z)

where sibling and parent are view predicates, father and mother are ex-
tensional, and = is a “built-in” predicate such that

r = z and

s # t for all distinct variable-free terms s and .
Suppose the view update
insert sibling(Mary, Bob)
is given. This can be translated into either of the two minimal updates

insert father(.John, Bob)

insert mother(Jane, Bob)

12



on the extensional part of the KB. Both of these updates satisfy the integrity
constraints. However, only the first update satisfies the integrity constraints
if we are given the further update

insert mother(.Joan, Bob).

The general problem of belief revision has been studied formally in [42, 91,
92, 21]. Gérdenfors proposes a set of axioms for rational belief revision con-
taining such constraints on the new theory as “no change should occur to
the theory when trying to delete a fact that is not already present” and “the
result of revision should not depend on the syntactic form of the new data”.
These axioms ensure that there is always a unique way of performing belief
revision. However Doyle argues that, for applications in A, this uniqueness
property is too strong. He proposes instead the notion of “economic ratio-
nality”, in which the revised sets of beliefs are optimal, but not necessarily
unique, with respect to a set of preference criteria on the possible beliefs
states. This notion has been used to study the evolution of databases by
means of updates [61]. It should also be noted that the use of abduction to
perform belief revision in the view update case also allows results which are
not unique, as illustrated in example 2.2.

KA and belief revision are also related to truth maintenance systems. We
will discuss truth maintenance and its relationship with abduction in sec-
tion 6.

3 Default Reasoning viewed as Abduction

Default reasoning concerns the application of general rules to draw conclu-
sions provided the application of the rules does not result in contradictions.
Given, for example, the general rules “birds fly” and “penguins are birds
that do not fly” and the only fact about Tweety that Tweety is a bird, we
can derive the default conclusion that Tweety flies. However, if we are now
given the extra information that Tweety is a penguin, we can also conclude
that Tweety does not fly. In ordinary, common sense reasoning, the rule
that penguins do not fly has priority over the rule that birds fly, and con-
sequently this new conclusion that Tweety does not fly causes the original
conclusion to be withdrawn.

13



One of the most important formalisations of default reasoning is the Default
Logic of Reiter [114]. Reiter separates beliefs into two kinds, ordinary sen-
tences used to express “facts” and default rules of inference used to express
general rules. A default rule is an inference rule of the form

a(z) : Mpi(z),...,0u(z)
7(x)

which expresses, for all variable-free instances ¢ of z *, that y(¢) can be de-
rived if a(?) holds and each of 3;(t) is consistent, where a(z), 8;(z), 7(z) are

first-order formulae. Default rules provide a way of extending an underlying
incomplete theory. Different applications of the defaults can yield different
extensions.

As already mentioned in section 1, Poole et al. [107] and Poole [104] proposes
an alternative formalisation of default reasoning in terms of abduction. Like
Reiter, Poole also distinguishes two kinds of beliefs:

¢ beliefs that belong to a consistent set of first order sentences F repre-
senting “facts”, and

o beliefs that belong to a set of first order formulae D representing de-
faults.

Perhaps the most important difference between Poole’s and Reiter’s formal-
isations is that Poole uses sentences (and formulae) of classical first order
logic to express defaults, while Reiter uses rules of inference. Given a The-
orist framework (F, D), default reasoning can be thought of as theory for-
mation. A new theory is formed by extending the existing theory F with a
set A of sentences which are variable-free instances of formulae in D. The
new theory F U A should be consistent. This process of theory formation is
a form of abduction, where variable-free instances of defaults in D are the
candidate abducibles. Poole (theorem 5.1 in [104]) shows that the seman-
tics of the theory formation framework (F, D) is equivalent to that of an
abductive framework (F', A, ) (see section 1.2) where the default formulae
are all atomic. The set of abducibles A consists of a new predicate

pw(x)

for each default formula
w(z)

*We use the notation z to indicate a tuple of variables z1,..., Z,.

14



in D with free variables . The new predicate is said to “name” the default.
The set F' is the set F augmented with a sentence

Va[pu(z) — w(z)]
for each default in D.

The theory formation framework and its correspondence with the abductive
framework can be illustrated by the flying-birds example.

Example 3.1
In this case, the framework (F, D) is °
F ={ penguin(z) — bird(z),
penguin(z) — = fly(z),
penguin(Tweely),
bird(John)}
D ={ bird(z) — fly(z)}. (1)
The priority of the rule that penguins do not fly over the rule that birds
fly is obtained by regarding the first rule as a fact and the second rule as a
default. The atom fly(John) is a default conclusion which holds in F U A
with
A = {bird(John) — fly(John)}.
We obtain the same conclusion by naming the default (1) by means of a
predicate birds- fly(z), adding to F the new “fact”

birds-fly(z) — [bird(z) — fly(z)] (2)
and extending the resulting augmented set of facts F’ with the set of hy-
potheses A’ = {birds-fly(John)}. On the other hand, the conclusion

fly(Tweety) cannot be derived, because the extension
A = {bird(Tweety) — fly(Tweety) }
is inconsistent with F, and similarly the extension
A" = { birds-fly(Tweety) }

is inconsistent with F'.

®Here, we use the conventional notation of first-order logic, rather than logic program-
ming form. However, as in logic programming notation, variables occurring in formulae
of F are assumed to be universally quantified. Formulae of D, on the other hand, should
be understood as schemata standing for the set of all their variable-free instances.

15



Poole shows that normal defaults without prerequisites in Reiter’s default
logic
 MB(2)
3(z)
can be simulated by Theorist (abduction) simply by making the predicates
B(x) abducible. He shows that the default logic extensions in this case are
equivalent to maximal sets of variable-free instances of the default formulae

B(x) that can consistently be added to the set of facts.

Maximality of abductive hypotheses is a natural requirement for default
reasoning, because we want to apply defaults whenever possible. However,
maximality is not appropriate for other uses of abductive reasoning. In par-
ticular, in diagnosis we are generally interested in explanations which are
minimal.

In the attempt to use abduction to simulate more general default rules,
however, Poole needs to use integrity constraints. The new theory F U A
should be consistent with these constraints. Default rules of the form:

a(z) : MB(x)
7(2)
are translated into “facts”, which are implications
a(z) A Mg(z) — 7(z)

where Mg is a new predicate, and Mg(z) is a default formula (abducible).
An integrity constraint

~B(x) — —~ Mp()
is needed to link the new predicate appropriately with the predicate . A
second integrity constraint

~(2) — ~ Mp(z)
is needed to prevent the application of the contrapositive
(@) A Mp(z) — —a(z)

of the implication, in the attempt to make the implication behave like an
inference rule. This use of integrity constraints is different from their in-
tended use in abductive frameworks as presented in section 1.2.

16



Poole’s attempted simulation of Reiter’s general default rules is not exact.
He presents a number of examples where the two formulations differ and
argues that Reiter’s default logic gives counterintuitive results. In fact,
many of these example can be dealt with correctly in certain extensions
of default logic, such as Cumulative Default Logic [85], and it is possible
to dispute some of the other examples. But, more importantly, there are
still other examples where the Theorist approach arguably gives the wrong
result. The most important of these is the now notorious Yale shooting
problem of [49, 50]. This can be reduced to the propositional logic program

alive-a fter-load-wait-shoot «— alive-a fter-load-wart,
~ abnormal-alive-shoot

loaded-a fter-load-wart — loaded-a fter-load,

~ abnormal-loaded-wait
abnormal-alive-shoot «— loaded-a fter-load-watt
alive-a fter-load-wait

loaded-a fter-load,

As argued in [90], these clauses can be simplified further: First, the facts
alive-a fler-load-wait and loaded-a fler-load can be eliminated by resolving
them against the corresponding conditions of the first two clauses, giving

alive-a fter-load-wait-shoot — ~ abnormal-alive-shoot
loaded-a fter-load-wait — ~ abnormal-loaded-wait
abnormal-alive-shoot — loaded-a fter-load-watt

Then the atom loaded-a fter-load-wait can be resolved away from the second
and third clauses leaving the two clauses

alive-a fter-load-wait-shoot «— ~ abnormal-alive-shoot
abnormal-alive-shoot — ~ abnormal-loaded-watil

The resulting clauses have the form

pP—~4q
q —n~ T
Hanks and McDermott showed, in effect, that the default theory, whose facts

consist of the two propositional sentences above and whose defaults are the

two normal defaults
M~q¢ M~7r

Nq ~ T
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has two extensions: omne in which ~ 7, and therefore ¢ holds; and one
in which ~ ¢, and therefore p holds. The second extension is intuitively
incorrect under the intended interpretation. Hanks and Mc Dermott showed
that many other approaches to default reasoning give similarly incorrect
results. However, Morris [90] showed that the default theory which has no
facts but contains the two non-normal defaults

M~q¢ M~7r
p q

yields only one extension, containing ¢, which is the correct result. In con-
trast, all natural representations of the problem in Theorist give incorrect
results.

As Eshghi and Kowalski [32], Evans [34] and Apt and Bezem [3] observe,
the Yale shooting problem has the form of a logic program, and interpret-
ing negation in the problem as negation as failure yields only the correct
result. This is the case for both the semantics and the proof theory of logic
programming. Moreover, [32] and [62] show how to retain the correct result
when negation as failure is interpreted as a form of abduction.

On the other hand, the Theorist framework does overcome the problem that
some default theories do not have extensions and hence cannot be given any
meaning within Reiter’s default logic. In the next section we will see that
this problem also occurs in logic programming, but that it can also be over-
come by an abductive treatment of negation as failure. We will also see
that the resulting abductive interpretation of negation as failure allows us
to regard logic programming as a hybrid which treats defaults as abducibles
in Theorist but treats clauses as inference rules in default logic.

The inference rule interpretation of logic programs, makes logic program-
ming extended with abduction especially suitable for default reasoning. In-
tegrity constraints can be used, not for preventing application of contrapos-
itives, but for representing negative information and exceptions to defaults.

Example 3.2
The default (1) in the flying-birds example 3.1 can be represented by the
logic program

fly(z) — bird(z), birds-fly(z),
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with the abducible predicate birds- fly(z). Note that this clause is equivalent
to the “fact” (2) obtained by renaming the default (1) in Theorist. The
exception can be represented by an integrity constraint:

- fly(z) «— penguin(z).

The resulting logic program, extended by means of abduction and integrity
constraints, gives similar results to the Theorist formulation of example 3.1.

In sections 4 and 5 we will see other ways of performing default reasoning
in logic programming. In section 4 we will introduce negation as failure as a
form of default reasoning, and we will study its relationship with abduction.
In section 5 we will consider an extended logic programming framework that
contains clauses with negative conclusions and avoids the use of explicit
integrity constraints, in some cases.

4 Negation as Failure as Abduction

We noted in the previous section that default reasoning can be performed
by means of abduction in logic programming by explicitly introducing ab-
ducibles into rules. Default reasoning can also be performed with the use of
negation as failure (NAF) [11] in general logic programs. NAF provides a
natural and powerful mechanism for performing non-monotonic and default
reasoning. As we have already mentioned, it provides a simple solution to
the Yale shooting problem. The abductive interpretation of NAF that we
will present below provides further evidence for the suitability of abduction
for default reasoning.

To see how NAF can be used for default reasoning, we return to the flying-
birds example.

Example 4.1
The NAF formulation differs from the logic program with abduction pre-
sented in the last section (example 3.2) by employing a negative condition

~ abnormal-bird(x)
instead of a positive abducible condition

birds-fly(z)
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and by employing a positive conclusion
abnormal-bird(z)
in an ordinary program clause, instead of a negative conclusion

- fly(z)

in an integrity constraint. The two predicates abnormal-bird and birds- fly
are opposite to one another. Thus in the NAF formulation the default is
expressed by the clause

fly(z) < bird(z), ~ abnormal-bird(z)
and the exception by the clause
abnormal-bird(z) — penguin(z).
In this example, both the abductive formulation with an integrity constraint
and the NAF formulation give the same result.

4.1 Logic programs as abductive frameworks

The similarity between abduction and NAF can be used to give an abductive
interpretation of NAF. This interpretation was presented in [32] and [33],
where negative literals are interpreted as abductive hypotheses that can be
assumed to hold provided that, together with the program, they satisfy a
canonical set of integrity constraints. A general logic program P is thereby
transformed into an abductive framework (P*, A*, I*) (see section 1) in the
following way.

¢ A new predicate symbol p* (the opposite of p) is introduced for each
pin P, and A* is the set of all these predicates.

e P*is P where each negative literal ~ p(¢) has been substituted for by
().
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o [*is a set of all integrity constraints of the form ©:

Va-[p(z) A p*(z)] and
Va[p(z) v p*(2)].

The semantics of the abductive framework (P*, A*, I*), in terms of ex-
tensions P*U A of P*, where A C A*, gives a semantics for the original
program P. A conclusion ¢ holds with respect to P if and only if @* has an
abductive explanation in the framework (P*, A*, I*). This transformation
of P into (P*, A*, I*) is an example of the method, described at the end of
section 1.1, of giving a semantics to a language by translating it into another
language whose semantics is already known.

The integrity constraints in I* play a crucial role in capturing the meaning
of NAF. The denials express that the newly introduced symbols p* are the
negations of the corresponding p. They prevent an assumption p*(¢) if p(¢)
holds. On the other hand the disjunctive integrity constraints force a hy-
pothesis p*(¢) whenever p(¢) does not hold.

Hence we define the meaning of the integrity constraints I* as follows: An
extension P*U A (which is a Horn theory) of P* satisfies I* if and only if
for every variable-free atom £,

P*UA E t At and
P*UA E t or PPUA E t*.

Eshghi and Kowalski [33] show that there is a one to one correspondence
between stable models [45] of P and abductive extensions of P*. We recall
the definition of stable model:

SIn the original paper the disjunctive integrity constraints were written in the form
Demo(P*U A, p(t)) V Demo(P*U A, p*(t)),

where t is any variable-free term. This formulation makes explicit a particular (meta-level)
interpretation of the disjunctive integrity constraint. The simpler form

Valp(z) v p(z)]

is neutral with respect to the interpretation of integrity constraints.
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Let P be a general logic program, and assume that all the clauses in P are
variable-free 7. For any set M of variable-free atoms, let Py; be the Horn
program obtained by deleting from P:

i) each rule that contains a negative literal ~ A, with A € M,
ii) all negative literals in the remaining rules.

If the minimal (Herbrand) model of Py coincides with M, then M is a sta-
ble model for P.

The correspondence between the stable model semantics of a program P
and abductive extensions of P* is given by:

o For any stable model M of P, the extension P*U A satisfies I*, where
A = {d*|dis a variable-free atom,d ¢ M}.

o For any A such that P*U A satisfies I*, there is a stable model M of
P, where M = {d|dis a variable-free atom,d* ¢ A}.

Notice that the disjunctive integrity constraints in the abductive framework
correspond to a totality requirement that every atom must be either true
or false in the stable model semantics. Several authors have argued that
this totality requirement is too strong, because it prevents us from giving a
semantics to some programs, for example p «— ~ p. We would like to be able
to assign a semantics to every program in order to have modularity, as oth-
erwise one part of the program can affect the meaning of another unrelated
part. We will see below that the disjunctive integrity constraint also causes
problems for the implementation of the abductive framework for NAF'.

Notice that the semantics of NAF in terms of abductive extensions is more
syntactic than model-theoretic. It is a semantics in the sense that it is a
non-constructive specification. Similarly, the stable model semantics, as is
clear from its correspondence with abductive extensions, is not so much a
semantics as a non-constructive specification of what should be computed.
The computation itself is performed by means of a proof procedure.

"If P is not variable-free, then it is replaced by the set of all its variable-free instances.
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4.2 An abductive proof procedure for logic programming

In addition to having a clear and simple semantics for abduction, it is also
important to have an effective method for computing abductive explana-
tions. Any such method will be very useful in practice in view of the many
diverse applications of abductive reasoning, including default reasoning. The
Theorist framework of [104, 107] provides such an implementation of abduc-
tion by means of a resolution based proof procedure.

In their study of NAF through abduction Eshghi and Kowalski [33] have
defined an abductive proof procedure for NAF in logic programming. We
will describe this procedure in some detail as it also serves as the basis for
computing abductive explanations more generally within logic programming
with other abducibles and integrity constraints (see section 5).

The abductive proof procedure interleaves two types of computation. The
first type, referred to as the abductive phase, is standard SLD- resolution,
that generates (negative) hypotheses and adds them to the set of abducibles
being generated, while the second type, referred to as the consistency
phase &, incrementally checks that the hypotheses satisfy the integrity con-
straints for NAF, I*. Integrity checking of a hypothesis p*(¢) reasons forward
one step using a denial integrity constraint to derive the new denial — p(?),
which is then interpreted as the goal < p(t). Thereafter it reasons back-
ward in SLD-fashion in all possible ways. Integrity checking succeeds if all
the branches of the resulting search space fail finitely, in other words, if the
contrary of p*(¢), namely p(?), finitely fails to hold. Whenever the potential
failure of a branch of the consistency phase search space is due to the failure
of a selected abducible, say ¢*(s), a new abductive phase of SLD-resolution
is triggered for the goal «— ¢(s), to ensure that the disjunctive integrity
constraint ¢*(s) V ¢(s) is not violated by the failure of both ¢*(s) and ¢(s).
This attempt to show ¢(s) can require in turn the addition of further ab-
ductive assumptions to the set of hypotheses which is being generated.

To illustrate the procedure consider the following logic program, which is a
minor elaboration of the propositional form of the Yale shooting problem
discussed in section 3.

8We use the term “consistency phase” for historical reasons. However, in view of
the precise definition of integrity constraint satisfaction, some other term might be more
appropriate.
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A ={p7}
-
— p* P
— q* — 9
O
A = {p*,r*}
P,
— 7r* —
- |
= | ]

Figure 1: computation for example 4.2

Example 4.2

§ — ~ P

p — ~4q

g — ~r
The query < s succeeds with answer A = {p*, r*}. The computation
is shown in figure 1. Parts of the search space enclosed by a double box
show the incremental integrity checking of the latest abducible added to the
explanation A. For example, the outer double box shows the integrity check
for the abducible p*. For this we start from < p = —p (resulting from the
resolution of p* with the integrity constraint = (p A p*) = = p V = p*) and
resolve backwards in SLD-fashion to show that all branches end in failure,
depicted here by a black box. During this consistency phase for p* a new
abductive phase (shown in the single box) is generated when ¢* is selected
since the disjunctive integrity constraint ¢* V ¢ implies that failure of ¢* is
only allowed provided that ¢ is provable. The SLD proof of q requires the
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addition of r* to A, which in turn generates a new consistency phase for r*
shown in the inner double box. The goal < r fails trivially because there are
no rules for r and so 7* and the enlarged explanation A = {p*, r*} satisfy
the integrity constraints. Tracing the computation backwards, we see that
¢ holds, therefore ¢* fails and, therefore p* satisfies the integrity constraints
and the original query < s succeeds.

In general, an abductive phase succeeds if and only if one of its branches
ends in a white box (indicating that no subgoals remain to be solved). It
fails finitely if and only if all branches end in a black box (indicating that
some subgoal cannot be solved). A consistency phase fails if and only if
one of its branches ends in a white box (indicating that integrity has been
violated). It succeeds finitely if and only if all branches end in a black box
(indicating that integrity has not been violated).

It is instructive to compare the computation space of the abductive proof
procedure with that of SLDNF. It is easy to see that these are closely re-
lated. In particular, in both cases negative atoms need to be variable-free
before they are selected. On the other hand, the two proof procedures
have some important differences. A successful derivation of the abductive
proof procedure will produce, together with the usual answer obtained from
SLDNF, additional information, namely the abductive explanation A. This
additional information can be useful in different ways, in particular to avoid
recomputation of negative subgoals. More importantly, as the next example
will show, this information will allow the procedure to handle non-stratified
programs and queries for which SLDNF is incomplete. In this way the ab-
ductive proof procedure generalises SLDNF significantly. Furthermore, the
abductive explanation A produced by the procedure can be recorded and
used in any subsequent revision of the beliefs held by the program, in a
similar fashion to truth maintenance systems [67]. In fact, this abductive
treatment of NAF allows us to identify a close connection between logic
programming and truth maintenance systems in general (see section 6).
Another important difference is the distinction that the abductive proof
procedure for NAF makes between the abductive and consistency phases.
This allows a natural extension of the procedure to a more general frame-
work where we have other hypotheses and integrity constraints in addition
to those for NAF [64, 65, 66] (see section 5.2).

To see how the abductive proof procedure extends SLDNF, consider the
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Figure 2: computation for example 4.3

following program.

Example 4.3

q
p
~q
~p

o

Qs »n ®

The query «— s has no SLDNF refutation. Moreover, the SLDNF proof
procedure, executing the query, goes into an infinite loop. However, in the
corresponding abductive framework the query has two answers, A = {p*}
and A = {¢*}, corresponding to the two stable models of the program. The
computation for the first answer is shown in figure 2. The outer abductive
phase generates the hypothesis p* and triggers the consistency phase for
p* shown in the double box. In general, whenever a hypothesis is tested
for integrity, we can add the hypothesis to A either at the beginning or
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at the end of the consistency phase. When this addition is done at the
beginning (as originally defined in [33]) this extra information can be used
in any subordinate abductive phase. In this example, the hypothesis p* is
used in the subordinate abductive proof of ¢ to justify the failure of ¢* and
consequently to render p* acceptable. In other words, the acceptability of p*
as a hypothesis is proved under the assumption of p*. The same abductive
proof procedure, but where each new hypothesis is added to A only at
the successful completion of its consistency phase, provides a sound proof
procedure for the well-founded semantics [129].

Example 4.4
Consider the query <« p with respect to the abductive framework corre-
sponding to the following program

~ T
q

~ q
Np_

o

QR 33

The abductive proof procedure succeeds with the explanation {¢*}, but the
only set of hypotheses which satisfies the integrity constraints is {p*}.

So, as Eshghi and Kowalski [33] show by means of this example, the abduc-
tive proof procedure is not always sound with respect to the above abductive
semantics of NAF. It is possible, however, to argue that it is the semantics
and not the proof procedure that is at fault. Indeed, Sacca and Zaniolo [120],
Przymusinski [110] and others have argued that the totality requirement of
stable models is too strong. They relax this requirement and consider par-
tial or three-valued stable models instead. In the context of the abductive
semantics of NAF this is an argument against the disjunctive integrity con-
straints.

An abductive semantics of NAF without disjunctive integrity constraints
has been proposed by Dung [22]. The abductive proof procedure is sound
with respect to this improved semantics. Satoh and Iwayama [122], on the
other hand, show how to extend the abductive proof procedure of [33] to
deal correctly with the stable model semantics. Their extension modifies
the integrity checking method of [76] and deals with arbitrary integrity con-
straints expressed in the form of denials.
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Casamayor and Decker [7] also develop an abductive proof procedure for
NAF. Their proposal combines features of the Eshghi-Kowalski procedure
with ancestor resolution.

Dung [25] shows that in certain cases disjunctions such as

pPVyq

can be represented by clauses of the form
p—~4q

q —~7p
and for these cases the Eshghi-Kowalski procedure is adequate. For the more
general case in which this representation is not adequate and disjunction
needs to be represented explicitly, Dung [26] extends the Eshghi-Kowalski
procedure by using resolution-based techniques similar to those employed in

[36].

Finally, we note that, in order to capture the semantics more closely for
programs such as p «— p where ~ p holds, we can define a non-effective ex-
tension of the proof procedure, that allows infinite failure in the consistency
phases.

4.3 An argumentation-theoretic interpretation

Dung [22] replaces the disjunctive integrity constraints by a weaker require-
ment that the set of negative hypotheses A be maximal. Unfortunately,
simply replacing the disjunctive integrity constraints by maximality does
not work, as shown in the following example.

Example 4.5
With this change the program

pP—=~4q

has two maximally consistent extensions Ay = {p*} and Ay, = {¢*}.
However, only the second extension is computed both by SLDNF and by
the abductive proof procedure. Moreover, for the same reason as in the case
of the propositional Yale shooting problem discussed above, only the second
extension is intuitively correct.
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To avoid such problems Dung defines a more subtle notion of maximality. He
associates with every logic program P an abductive framework (P*, A*, I*)
where I* contains only denials

Va - [p(z) A p(2)]

as integrity constraints. Then, given sets A, F of (negative) hypotheses, i.e.
A C A* and E C A*, F can be said to attack A (relative to P*) if P*
U E F pforsome p* € A. Dung calls an extension P*UA of P* preferred
if

e P* U A is consistent with I* and

e A is maximal with respect to the property that for every attack F
against A, A attacks F.

Thus a preferred extension can be thought of as a maximal consistent set of
hypotheses that contains its own defence against all attacks. In [22] a consis-
tent set of hypotheses A (not necessarily maximal) satisfying the property
of containing its own defence against all attacks is said to be acceptable
(to P*). In fact, Dung’s definition is not formulated explicitly in terms of
the notions of attack and defence, but is equivalent to the one just presented.

Preferred extensions solve the problem with disjunctive integrity constraints
in example 4.4 and with maximal consistency semantics in example 4.5. In
example 4.4 the preferred extension semantics sanctions the derivation of p
by means of an abductive derivation with generated hypotheses {¢*}. In
fact, Dung proves that the abductive proof procedure is sound with respect
to the preferred extension semantics. In example 4.5 the definition of pre-
ferred extension excludes the maximally consistent extension { p* }, because
there is no defence against the attack ¢*.

The preferred extension semantics provides a unifying framework for vari-
ous approaches to the semantics of negation in logic programming. Kakas
and Mancarella [68] show that it is equivalent to Sacca and Zaniolo’s partial
stable model semantics [120]. Like the partial stable model semantics, it
includes the stable model semantics as a special case. Dung also shows that
the well-founded model [129] is the least complete extension that can be con-
structed bottom-up from the empty set of negative hypotheses, by adding
incrementally all acceptable hypotheses. Thus the well-founded semantics is
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minimalist and sceptical, whereas the preferred extension semantics is max-
imalist and credulous. A fixpoint construction of the preferred extension
semantics is given in [28].

Kakas and Mancarella [69, 70] propose a modification of the preferred exten-
sion semantics. Their proposal can be illustrated by the following example.

Example 4.6
In the abductive framework corresponding to the program

p = ~4q
qg — ~4q

consider the set of hypotheses A = {p*}. The only attack against A is
E = {q¢*}, and the only attack against F is F itself. Thus A is not an
acceptable extension of the program according to the preferred extension
semantics, because A cannot defend itself against F. The empty set is
the only preferred extension. However, intuitively A should be acceptable
because the only attack F against A attacks itself, and therefore should not
be regarded as an acceptable attack against A.

To deal with this kind of example, Kakas and Mancarella modify Dung’s
semantics, increasing the number of ways in which an attack £ can be
defeated. Whereas Dung only allows A to defeat an attack F, they also
allow E to defeat itself. They call a set of hypotheses A stable if

e A is maximal with respect to the property that for every attack F
against A, F U A attacks £/ — A.

Note that here the condition “P* U A is consistent with I*” is subsumed
by the new maximality condition. Like the original definition of preferred
extension, the definition of stable set of hypotheses was not originally for-
mulated in terms of attack, but is equivalent to the one presented above.

Kakas and Mancarella [70] argue that the notion of defeating an attack needs

to be liberalised further. They illustrate their argument with the following
example.
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Example 4.7
Consider the program P

~

S RS

~

S Qe ®»

o

~

=

Here the only attack against the hypothesis s* is £ = {p*}. But although
P* U{s*} U FE does not attack £, F is not a valid attack because it is not
stable (or acceptable) according to the definition above.

To generalise the reasoning in example 4.7, we need to liberalise further
the conditions for defeating F. Kakas and Mancarella suggest a recursive
definition in which a set of hypotheses is deemed acceptable if no attack
against any hypothesis in the set is acceptable. More precisely, given an
initial set of hypotheses Ay, a set of hypotheses A is acceptable to Ag iff

for every attack F against A — Ag, F is not acceptable to A U Ag.

The semantics of a program P can be identified with any A which is maxi-
mally acceptable to the empty set of hypotheses (.
Notice that, as a special case, we obtain a basis for the definition:

A is acceptable to Ag if A C Ag.

Therefore, if A is acceptable to ) then A is consistent.
Notice, too, that applying the recursive definition twice, and starting with
the base case, we obtain an approximation to the recursive definition

A is acceptable to Ag if for every attack F against A — Ay,
FE U A U Ag attacks £ — A.

Thus, the stable theories are those which are maximally acceptable to 0,
where acceptability is defined by this approximation to the recursive defini-
tion.

An “argumentation-theoretic” interpretation for the semantics of NAF in
logic programming has also been developed by Geffner [44]. However, his
interpretation is only an approximation to the definition of acceptability
given above and is equivalent to the well-founded semantics [27]. A similar
approximation to the notion of acceptability has also been proposed by
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Simari and Loui [126], who define an argumentation-theoretic framework for
default reasoning in general. They combine a notion of acceptability with
Poole’s notion of “most specific” explanation [102], to deal with hierarchies
of defaults.

4.4 The abductive proof procedure revisited

As mentioned above, the incorrectness (with respect to the stable model
semantics) of the abductive proof procedure can be remedied by adopting
the preferred extension, stable theory or acceptability semantics. This is
because the different phases of the proof procedure can be interpreted in
terms of the notions of attack and defence. To illustrate this interpreta-
tion, consider again figure 1 of example 4.2. The consistency phase for p*,
shown in the outer double box, can be understood as searching for any at-
tack against p*. The only attack, namely ¢*, is counterattacked (thereby
defending p*) by assuming the additional hypothesis 7*, as this implies g.
Hence the set A = {p*, r*} is acceptable, i.e. it can defend itself against
any attack, since all attacks against p* are counterattacked by r* and there
are no attacks against r*. Similarly, figure 2 of example 4.3 shows how the
attack ¢* against p* is counterattacked by p* itself.

In general, the proof procedure constructs an acceptable set of negative
hypotheses, a subset of which is sufficient to solve the original goal. The
remaining hypotheses are necessary to defend this sufficient subset against
any attack. With the help of this new interpretation it is possible to ex-
tend the proof procedure to capture more fully the stable theory semantics
and more generally the semantics given by the recursive definition for ac-
ceptability at the end of section 4.3. The extension of the proof procedure
involves temporarily remembering a (selected) attack £ and using F itself
together with the subset of A generated so far, to counterattack £, in the
subordinate abductive phase.

For example 4.6 of section 4.3, as shown in figure 3, to defend against the
attack ¢* on p*, we need to temporarily remember ¢* and use it in the sub-
ordinate abductive phase to prove ¢ and therefore to attack ¢* itself.

This reinterpretation of the original abductive proof procedure in terms of

an improved semantics, and the extension of the proof procedure to capture
further improvements in the semantics, is an interesting example of the
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Figure 3: computation for example 4.6 with respect to the revisited proof
procedure

interaction that can arise between a program (proof procedure in this case)
and its specification (semantics).

5 Abductive Logic Programming

Abductive Logic Programming (ALP), as understood in the remainder of
this paper, is the extension of logic programming to support abduction in
general, and not only the use of abduction for NAF. This extension was in-
troduced already in section 1, as the special case of an abductive framework
(T, A, I), where T is a logic program. In this paper we will assume, without
lost of generality, that abducible predicates do not have definitions in 7', i.e.
do not appear in the heads of clauses in the program 7T °. This assumption

°In the case in which abducibile predicates have definitions in T, auxiliary predicates
can be introduced in such a way that the resulting program has no definitions for the
abducible predicates, This can be done by means of a transformation similar to the one
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has the important advantage that all explanations are thereby guaranteed
to be basic.

Semantics and proof procedures for ALP have been proposed by Eshghi and
Kowalski [32], Kakas and Mancarella [63] and Chen and Warren [10]. Chen
and Warren extend the perfect model semantics of Przymusinski [109] to
include abducibles and integrity constraints over abducibles. Here we shall
concentrate on the proposal of Kakas and Mancarella, which extends the
stable model semantics.

5.1 Generalised stable model semantics

Kakas and Mancarella [63] develop a semantics for ALP by generalising the
stable model semantics for logic programming. Let (P, A, I) be an abductive

framework, where P is a general logic program, and let A be a subset of A.
M(A) is a generalised stable model of (P, A, I) iff

e M(A)is a stable model of P U A, and
o M(A) E I

Here the semantics of the integrity constraints I is defined by the second
condition in the definition above. Consequently, an abductive extension
P U A of the program P satisfies [ if and only if there exists a stable
model M(A) of P U A such that [ is true in M(A).

The generalised stable models are defined independently from any query.

However, given a query (), we can define an abductive explanation for ¢} in
(P, A, I) to be any subset A of A such that

o M(A)is a generalised stable model of (P, A, I'), and
o M(A) E Q.

Example 5.1
Consider the program P
p—a

used to separate extensional and intensional predicates in deductive databases [88]. For
example for each abducible predicate a(z) in T' we can introduce a new predicate §4(z)
and add the clause

a(z) — ba(z).

The predicate a(z) is not abducible anymore, while 64(z) becomes abducible.
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q «— b

with A = {a, b} and integrity constraint I
pP—4q.

The interpretations M(A;) = {a, p} and M(A3) = {a,b,p,q} are gen-
eralised stable models of (P, A, I). Consequently, both Ay = {a} and
Ay = {a, b} are abductive explanations of p. On the other hand, the
interpretation {b, ¢}, corresponding to the set of abducibles {b}, is not a
generalised stable model of (P, A, I), because it is not a model of I as it
does not contain p. Moreover, the interpretation {b, ¢, p}, although it is a
model of P U I and therefore satisfies I according to the consistency view
of constraint satisfaction, is not a generalised stable model of (P, A, I), be-
cause it is not a stable model of P. This shows that the notion of integrity
satisfaction for ALP is stronger than the consistency view. It is also possible
to show that it is weaker than the theoremhood view and to argue that it
is similar to the metalevel or epistemic view.

An alternative, and perhaps more fundamental way of understanding the
generalised stable model semantics is by using abduction both for hypothet-
ical reasoning and for NAF. The negative literals in (P, A, I) can be viewed
as further abducibles according to the transformation described in section 4.
The set of abducible predicates then becomes A U A*, where A* is the set
of negative abducibles introduced by the transformation. This results in a
new abductive framework (P*, A U A*, I U I*), where I* is the set of spe-
cial integrity constraints introduced by the transformation of section 4 19.
The semantics of the abductive framework (P*, A U A*, I U I*) can then
be given by the sets A* of hypotheses drawn from A UA* which satisfy the
integrity constraints I U I*.

Example 5.2

Consider P
P — ™~ q
q —

a
b

1%Note that the transformation described in section 4 also needs to be applied to the
set I of integrity constraints. For notational convenience, however, we continue to use
the symbol I to represent the result of applying the transformation to I (otherwise we
would need to use the symbol I*, conflicting with the use of the symbol I* for the special
integrity constraints introduced in section 4).
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with A = {a, b} and I = 0. If Q is — p then A* = {a, ¢*, b*} is an
explanation for Q* = @ in (P*, A U A*, I*). Note that b* is in A* because
I* contains the disjunctive integrity constraint b vV b*.

Kakas and Mancarella show a one to one correspondence between the gener-
alised stable models of (P, A, I) and the sets of hypotheses A* that satisfy
the transformed framework (P*, A U A*, I U I*). Moreover they show that
for any abductive explanation A* for a query @ in (P*, A U A*, I U I*),
A = A*N A is an abductive explanation for @ in (P, A, I).

Example 5.3

Consider the framework (P, A, I) and the query @ of example 5.2. We have
already seen that A* = {a, ¢*, b*} is an explanation for * in (P*, A U
A*, I*). Accordingly the subset A = {a} is an explanation for () in (P, A, I).

Note that the generalised stable model semantics as defined above requires
that for each abducible a, either @ or @¢* holds. This can be relaxed by
dropping the disjunctive integrity constraints ¢ V a* and defining the set of
abducible hypotheses A to include both a and a*.

Generalised stable models combine the use of abduction for default rea-
soning (in the form of NAF) with the use of abduction for other forms of
hypothetical reasoning. The first kind of abduction requires hypotheses to
be maximised, while the second kind usually requires them to be minimised.
The definition of generalised stable models appropriately maximises NAF
hypotheses, but neither maximises nor minimises other hypotheses. In prac-
tice, however, the abductive proof procedure generates only hypotheses that
are relevant for a proof. Because of this, it tends to minimise the generation
of both kinds of hypotheses. On the other hand, the proof procedure also
generates as many hypotheses as it needs for a proof. In this sense, it tends
to maximise the generation of hypotheses. This property of the proof proce-
dure and its relationship with the semantics needs to be investigated further.

5.2 Abductive proof procedure for ALP

In [64, 65, 66], proof procedures are given to compute abductive explana-
tions in ALP. These extend the abductive proof procedure for NAF [33]
described in section 4.2, retaining the basic structure which interleaves an
abductive phase that generates and collects abductive hypotheses with a
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Figure 4: extended proof procedure for example 4.2

consistency phase that incrementally checks these hypotheses for integrity.
We will illustrate these extended proof procedures by means of examples.

Example 5.4

Consider again example 4.2. The abductive proof procedure for NAF fails
on the query <« p. Ignoring, for the moment, the construction of the set A,
the computation is that shown inside the outer double box of figure 1 with
the abductive and consistency phases interchanged, i.e. the type of each
box changed from a double box to a single box and vice-versa. Suppose now
that we have the same program and query but in an ALP setting where the
predicate r is abducible. The query will then succeed with the explanation
A = {q¢*, r} as shown in figure 4. As before the computation arrives at a
point where r needs to be proved. Whereas this failed before, this succeeds
now by abducing r. Hence by adding the hypothesis r to the explanation
we can ensure that ¢* is acceptable.
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An important feature of the abductive proof procedures is that they avoid
performing a full general-purpose integrity check (such as the forward rea-
soning procedure of [77]). In the case of a negative hypothesis, ¢* for exam-
ple, a general-purpose forward reasoning integrity check would have to use
rules in the program such as p < ¢* to derive p. The optimised integrity
check in the abductive proof procedures, however, avoids this inference and
only reasons forward one step with the integrity constraint = (¢ A ¢*), de-
riving the resolvent < ¢, and then reasoning backward from the resolvent.

Similarly, the integrity check for a positive hypothesis, r for example, avoids
reasoning forward with any rules which might have r in the body. Indeed,
in a case, such as the example 5.4 above, where there are no domain specific
integrity constraints, the integrity check for a positive abducible, such as r,
simply consists in checking that its complement, in our example r*, does not

belong to A.

To ensure that this optimised form of integrity check is correct, the proof
procedure is extended to record those positive abducibles it needs to assume
absent to show the integrity of other abducibles in A. So whenever a positive
abducible, which is not in A, is selected in a branch of a consistency phase
the procedure fails on that branch and at the same time records that this
abducible needs to be absent. This extension is illustrated by the following
example.

Example 5.5

Consider the program
p = ~qr
g — T

where r is abducible and the query is < p (see figure 5). The acceptability
of ¢* requires the absence of the abducible r. The simplest way to ensure
this is by adding r* to A. This, then, prevents the abduction of r and the
computation fails. Notice that the proof procedure does not reason forward
from r to test its integrity. This test has been performed backwards in the
earlier consistency phase for ¢*, and the addition of r* to A ensures that it
is not necessary to repeat it.

The way in which the absence of abducibles is recorded depends on how
the negation of abducibles is interpreted. Under the stable and generalised
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Figure 5: extended proof procedure for example 5.5

stable model semantics, as we have assumed in example 5.5 above, the re-
quired failure of a positive abducible is recorded by adding its complement
to A. However, in general it is not always appropriate to assume that the
absence of an abducible implies its negation. On the contrary, it may be
appropriate to treat abducibles as open rather than closed (see section 5.3),
and correspondingly to treat the negation of abducible predicates as open.
As we shall argue later, this might be done by treating such a negation as
a form of explicit negation, which is also abducible. In this case recording
the absence of a positive abducible by adding its complement to A is too
strong, and we will use a separate (purely computational) data structure to
hold this information.
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Integrity checking can also be optimised when there are domain specific in-
tegrity constraints, provided the constraints can be formulated as denials
containing at least one literal whose predicate is abducible. In this case the
abductive proof procedure needs only a minor extension [65, 66]: when a
new hypothesis is added to A, the proof procedure resolves the hypothesis
against any integrity constraint containing that hypothesis, and then rea-
sons backward from the resolvent. To illustrate this extension consider the
following example.

Example 5.6
Let the abductive framework be:

P: s—ua I: —laA p
p =~y —la A q]
qg<—b

where a, b are abducible and the query is — s (see figure 6).

Assume that the integrity check for a is performed Prolog-style, by resolving
first with the first integrity constraint and then with the second. The first
integrity constraint requires the additional hypothesis b as shown in the
inner single box. The integrity check for b is trivial, as b does not appear in
any integrity constraint. But A = {a, b} violates the integrity constraints,
as can be seen by reasoning forward from b to ¢ and then resolving with
the second integrity constraint - [a A ¢]. However, the proof procedure does
not perform this forward reasoning and does not detect this violation of
integrity at this stage. Nevertheless the proof procedure is sound because
the violation is found later by backward reasoning when « is resolved with
the second integrity constraint. This shows that A = {a} is unacceptable
because it is incompatible with b which is needed to defend A against the
attack ¢*.

In summary, the overall effect of additional integrity constraints is to in-
crease the size of the search space during the consistency phase, with no

! Notice that any integrity constraint can be transformed into a denial (possibly with
the introduction of new auxiliary predicates). For example:

p—q=—[qgA—p]

pVg=-["pA gl
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Figure 6: extended computation for example 5.6

significant change to the basic structure of the backward reasoning proce-
dure.

The abductive proof procedures described above suffer from the same sound-
ness problem shown in section 4 for the abductive proof procedure for NAF'.
This problem can be solved similarly, by replacing stable models with any
of the non-total semantics for NAF mentioned in section 4 (partial stable
models, preferred extensions, stable theories or acceptability semantics).

Finally, we note that the abductive proof procedures described here perform
many of the functions of a truth maintenance system. The relationships
between ALP and truth maintenance will be discussed in section 6.



5.3 Stable model semantics extended with explicit negation

In general logic programs, negative information is inferred by means of NAF.
This is appropriate when the closed world assumption [113], that the pro-
gram gives a complete definition of the positive instances of a predicate, can
safely be applied. It is not appropriate when the definition of a predicate is
incomplete and therefore “open”, as in the case of abducible predicates.

For open predicates it is possible to extend logic programs to allow explicit
negation in the conclusions of clauses. (As we shall see later, in sections 5.7
and 5.8, this is related to the use of integrity constraints expressed in the
form of denials.) In this section we will discuss the extension proposed by
Gelfond and Lifschitz [46]. This extension is based on the stable model
semantics, and can be understood, therefore, in terms of abduction, as we
have already seen.

Gelfond and Lifschitz define the notion of extended logic programs, con-
sisting of clauses of the form:

LO — Ll,...,Lm, ~ Lm_|_1,...,N Ln,

wheren > m > 0and each L; is either an atom (A) or the explicit negation
of an atom (- A). This negation denoted by “—” is called “classical nega-
tion” in [46]. However, as we will see below, because the contrapositives of
extended clauses do not hold, the term “classical negation” is inappropriate.
For this reason we use the term “explicit negation” instead.

A similar notion has been investigated by Pearce and Wagner [93], who de-
velop an extension of Horn programs by means of Nelson’s strong negation.
They also suggest the possibility of combining strong negation with NAF.
Akama [1] argues that the semantics of this combination of strong negation
with NAF is equivalent to the answer set semantics for extended logic pro-
grams developed by Gelfond and Lifschitz.

The semantics of an extended program is given by its answer sets, which are
like stable models but consist of both positive and (explicit) negative liter-
als. Perhaps the easiest way to understand the semantics is to transform
the extended program P into a general logic program P’ without explicit
negation, and to apply the stable model semantics to the resulting general
logic program. The transformation consists in replacing every occurrence of
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explicit negation = p(t) by a new (positive) atom p'(¢). The stable models of
P’ which do not contain an implicit contradiction of the form p(t) and p'(?)
correspond to the consistent answer sets of P. The corresponding answer
sets of P contain explicit negative literals = p(t) wherever the stable models
contain p'(¢). In [46] the answer sets are defined directly on the extended
program by modifying the definition of the stable model semantics. The
consistent answer sets of P also correspond to the generalised stable models
(see section 5.1) of P’ with a set of integrity constraints ¥z - [p(z) A p'(2)],
for every predicate p.

In the general case a stable model of P’ might contain an implicit contradic-
tion of the form p(¢) and p'(¢). In this case the corresponding inconsistent
answer set is defined to be the set of all the variable-free (positive and ex-
plicit negative) literals. It is in this sense that explicit negation can be said
to be “classical”. The same effect can be obtained by explicitly augmenting
P’ by the clauses

q(z) — p(z), p'(z)
for all predicate symbols ¢ and p in P’. Then the answer sets of P simply
correspond to the stable models of the augmented set of clauses. If these
clauses are not added, then the resulting treatment of explicit negation gives
rise to a paraconsistent logic, i.e. one in which contradictions are tolerated.

Notice that, although Gelfond and Lifschitz define the answer set semantics
directly without transforming the program and then applying the stable
model semantics, the transformation can also be used with any other se-
mantics for the resulting transformed program. Thus Przymusinski [110]
for example applies the well-founded semantics to extended logic programs.
Similarly any other semantics can also be applied. This is one of the main
advantages of transformational semantics in general.

An important problem for the practical use of extended programs is how
to distinguish whether a negative condition is to be interpreted as explicit
negation or as NAF. We will discuss this problem in section 7.

5.4 Simulation of abduction through NAF

Satoh and Iwayama [121] show that an abductive logic program can be
transformed into a logic program without abducibles but where the integrity
constraints remain. Although they do not employ explicit negation, the
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transformation implicitly simulates explicit negation by the introduction of
new predicates. For each abducible predicate p in A, a new predicate p’ is
introduced representing the complement of p and a new pair of clauses '2:

p(z) —~p'(z)

p(x) =~ p(z)

is added to the program. In effect abductive assumptions of the form p(t) are
thereby transformed into NAF assumptions of the form ~ p/(¢). Satoh and
Iwayama apply the generalised stable model semantics to the transformed
program. However, as we have already remarked in the case of the seman-
tics of explicit negation, the transformational semantics, which is effectively
employed by Satoh and Iwayama, has the advantage that any semantics can
be used for the resulting transformed program (e.g. as in [96], see below).

Example 5.7
Consider the abductive framework (P, A, I) of example 5.1. The transfor-
mation generates a new theory P’ with the additional clauses

a —n~a

a —~a

b —~ b

b —~b.
P’ has two generalised stable models that satisfy the integrity constraints,
namely M’y = M(Ay) U {b'} = {a, p, b'}, and M’y = M(A3) = {a, b, p, ¢}

where M(A;) and M(A;) are the generalised stable models seen in exam-
ple 5.1.

Similar methods for transforming abductive assumptions into NAF assump-
tions are employed by Inoue [56] and Pereira, Aparicio and Alferes [96].
They transform extended logic programs augmented with abduction into
extended logic programs without abduction by adding to the program a
new pair of clauses

p(z) —~ = p(z)
p(z) =~ p(z)

'2Satoh and Iwayama use the notation p*(z) instead of p’(z) and consider only propo-
sitional programs.
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for each abducible predicate p. Notice that the transformation is identical
to that of Satoh and Iwayama, except for the use of explicit negation instead
of new predicates. Inoue and Pereira, Aparicio and Alferes assign different
semantics to the resulting program. Whereas Inoue applies the answer set
semantics, Pereira, Aparicio and Alferes apply the well-founded semantics
and the extended stable model semantics of [110]. The well-founded seman-
tics can be thought of as representing a minimal incomplete view of the world
and the extended stable model semantics as representing different ways of
extending this view by abducing negative hypotheses. Pereira, Aparicio and
Alferes [98] have also developed proof procedures for this semantics. These
procedures can be used as abductive proof procedures for ALP.

As mentioned above, Pereira, Aparicio and Alferes [96] understand the trans-
formed programs in terms of (three-valued) extended stable models. The ex-
tended stable model semantics has the advantage that it gives a semantics
to every logic program and it does not force abducibles to be either believed
or disbelieved. But the advantage of the transformational approach, as we
have already remarked, is that the semantics of the transformed program
is independent of the transformation. Any semantics can be used for the
transformed program (including even a transformational one, e.g. replacing
explicitly negated atoms — p(¢) by a new atom p'(t)).

5.5 Computation of abduction through TMS

Satoh and Iwayama [121] present a method for computing generalised stable
models for logic programs with integrity constraints represented as denials.
The method is a bottom-up computation based upon the TMS procedure of
[20]. Although the computation is not goal-directed, goals (or queries) can
be represented as denials and be treated as integrity constraints.

Compared with other bottom-up procedures for computing generalised sta-
ble model semantics, which first generate stable models and then test the
integrity constraints, the method of Satoh and Iwayama dynamically uses
the integrity constraints during the process of generating the stable models,
in order to prune the search space more efficiently.
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Example 5.8
Consider the program P
p = q
r o— ~g

q — ~r

and the set of integrity constraints I = {-p}. P has two stable models
My = {p, q} and My = {r}, but only M, satisfies I. The proof procedure of
[121] deterministically computes only the intended model M, without also
computing and rejecting M;.

5.6 Restoring consistency of answer sets

The answer sets of an extended program are not always consistent.

Example 5.9
The extended logic program:

= fly(x) —~ bird(z)

fly(z) < bat(z)
bat(Tom)

has no consistent answer set.

As mentioned in section 5.3, this problem can be dealt with by employing
a paraconsistent semantics. Alternatively, in some cases it is possible to re-
store consistency by removing some of the NAF assumptions implicit in the
answer set. In the example above we can restore consistency by rejecting the
NAF assumption ~ bird(Tom) even though bird(Tom) does not hold. We
then get the consistent set {bat(T'om), fly(Tom)}. This problem has been
studied in [23] and [97]. Both of these studies are primarily concerned with
the related problem of inconsistency of the well-founded semantics when ap-
plied to extended logic programs [110].

To deal with the problem of inconsistency in extended logic programs, Dung
[23] applies the preferred extension semantics to a new abductive framework
derived from an extended logic program. An extended logic program P is
first transformed into an ordinary general logic program P’ by renaming
explicitly negated literals = p(t) by positive literals p/(t). The resulting pro-
gram is then further transformed into an abductive framework by renaming

46



NAF literals ~ ¢(t) by positive literals ¢*(¢) and adding the integrity con-
straints

Valg(e) A g (2)]
as described in section 4.3. Thus if p’ expresses the explicit negation of p the

set A* will contain p’™* as well as p*. Moreover Dung includes in I* additional
integrity constraints of the form

V- [p(z) A p'(a)]

to prevent contradictions.

Extended preferred extensions are then defined in the same way as preferred
extensions in section 4 but with this new set I of integrity constraints. The
new integrity constraints in I* have the effect of removing a NAF hypothesis
when it leads to a contradiction.

Pereira, Aparicio and Alferes [97] employ a similar approach in the context
of Przymuszynski’s extended stable models [110]. It consists in identifying
explicitly all the possible sets of NAF hypotheses which lead to an incon-
sistency and then restoring consistency by removing at least one hypothesis
from each such set. This method can be viewed as an application of belief
revision, where if inconsistency can be attributed to an abducible hypoth-
esis or a retractable atom (see below section 5.7), then we can reject the
hypothesis to restore consistency. In fact Pereira, Aparicio and Alferes have
also used this method to study counterfactual reasoning [99].

Both methods, [23] and [97], can deal only with inconsistencies that can be
attributed to NAF hypotheses, as shown by the following example.

Example 5.10
It is not possible to restore consistency by removing NAF hypotheses given
the program:

p

However, Inoue [55, 56] suggests a general method for restoring consistency,
which is applicable to this case. This method (see also section 5.8) is based
on [43] and [104] and consists in isolating inconsistencies by finding max-
imally consistent subprograms. In this approach a knowledge system is
represented by a pair (P, H), where:
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1. P and H are both extended logic programs,
2. P represents a set of facts,
3. H represents a set of assumptions.

The semantics is given using abduction as in [104] (see section 3) in terms
of theory extensions P U A of P, with A C H maximal with respect to set
inclusion, such that P U A has a consistent answer set.

In this approach, whenever the answer set of an extended logic program P
is inconsistent, it is possible to reason with it by regarding it as a knowledge
system of the form

(0, P).

For example 5.10 this will give two alternative semantics, {p} or {—=p}.

5.7 Abduction as retractability

An alternative way of viewing abduction, which emphasises the defeasibility
of abducibles, is retractability [47]. Instead of regarding abducibles as
atoms to be consistently added to a theory, they can be considered as as-
sertions in the theory to be retracted in the presence of contradictions until
consistency (or integrity) is restored (c.f. section 5.6).

One approach to this understanding of abduction is presented in [77]. Here,
Kowalski and Sadri present a transformation from a general logic program
P with integrity constraints I, together with some indication of how to re-
store consistency, to a new general logic program P’ without integrity con-
straints. Restoration of consistency is indicated by nominating one atom as
retractable in each integrity constraint 2. Integrity constraints are repre-
sented as denials, and the atom to be retracted must occur positively in the
integrity constraint. The (informally specified) semantics is that whenever
an integrity constraint of the form

—[p A q]

*Many different atoms can be retractable in the same integrity constraint. Alterna-
tive ways of nominating retractable atoms correspond to alternative ways of restoring
consistency in P.
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has been violated, where the atom p has been nominated as retractable,
then consistency should be restored by retracting the instance of the clause
of the form

pe

which has been used to derive the inconsistency. Notice that retracting
abducible hypotheses is a special case where the abducibility of a predicate
a is represented by an assertion

a(z).

To avoid inconsistency, the program P with integrity constraints I can be
transformed to a program P’ without integrity constraints which is always
consistent with I; and if P is inconsistent with I, then P’ represents one
possible way to restore consistency (relative to the choice of the retractable
atom).

Given an integrity constraint of the form
=[p A dq]

where p is retractable, the transformation replaces every clause of the form
p T

by the clause
p—=r~q

where the condition ~ ¢ needs to be further transformed, if necessary, into
general logic program form, and where the transformation needs to be re-
peated for every integrity constraint. Kowalski and Sadri show that if P is
a stratified program with appropriately stratified integrity constraints I, so
that the transformed program P’ is stratified, then P’ computes the same
consistent answers as P with I.

The Kowalski-Sadri transformation is (almost) the inverse of the Eshghi-
Kowalski transformation, which interprets NAF as abduction. To see this,
consider again the propositional form of the Yale shooting problem.

Example 5.11
Given the program

p—=~4q
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q—r~r
applying the Eshghi-Kowalski transformation gives

*

P q
q <77
= [p A Pl
—lg A q7]
= [r AT

together with the disjunctive integrity constraints. To apply the Kowalski-
Sadri transformation these disjunctive integrity constraints are replaced by
the stronger (but retactable) assertions

Applying the Kowalski-Sadri transformation now yields

p < q
g < 71
pt o= ~p
¢ =~
TF — ~T.

If we are only interested in the clauses defining the predicates, p, ¢ and r,
in the original program, this can be simplified to

pP—=~4q

g —r~r
which is the original program.

It is interesting to note that the (informal) retraction semantics of the in-
termediate program with integrity constraints and retractable assumptions
yields the single (correct) semantics for this example, namely the one in
which the assumption ¢* is retracted. It would be useful to study the re-
traction semantics in more general and more formal terms and to compare
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it with the preferred extension, stable theory and acceptability semantics.

The retraction semantics and the associated transformation can be applied
more generally to cases of default reasoning where the retractable atoms do
not correspond to abducible predicates.

Example 5.12
Consider the program

fly(z) < bird(z)
walk(z) «— ostrich(z)
bird(z) — ostrich(x)
ostrich(John)

and the integrity constraint
= [fly(z) A ostrich(z)],

with fly(z) retractable. The integrity constraint is violated, because both
ostrich(John) and fly(John) hold. Integrity can be restored by retracting
the instance

fly(John) — bird(John)

of the first clause in the program.

Similarly the transformed program avoids inconsistency in general by re-
placing the first clause and the integrity constraint by the more restrictive
clause

fly(z) — bird(z), ~ ostrich(z).

5.8 Rules and exceptions in logic programming

One problem with the retraction semantics is that the equivalence of the
original program with the transformed program was proved only in the case
where the transformed program is locally stratified. Moreover the proof
of equivalence is based on a tedious comparison of search spaces for the
two programs. This problem was solved in a subsequent paper [78] by re-
expressing integrity constraints as extended clauses where the retractable
atoms are expressed as explicitly negated conclusions. By appropriately

51



modifying the answer set semantics to retract clauses whose positive con-
clusions contradict clauses with negative conclusions, the equivalence of the
original program and the transformed program can be proved more simply
and without any restrictions. Moreover, the new formulation with explicitly
negated conclusions is more informative than the earlier formulation with
integrity constraints, which only constrained positive information and did
not add negative information explicitly.

In the new formulation it is natural to interpret clauses with negative con-
clusions as exceptions, and clauses with positive conclusions as default rules.
In the flying-bird example of the previous section, in particular, the integrity
constraint

= [fly(z) A ostrich(z)]
with fly(z) retractable would now be formulated as an exception

= fly(z) « ostrich(z)
to the “general” rule

Sly(z) — bird(z).

To capture the intention that exceptions should override general rules, the
answer set semantics is modified, so that instances of clauses with positive

conclusions are retracted if they are contradicted by explicit negative infor-
mation.

Kowalski and Sadri [78] also present a new transformation, which preserves
the new semantics, and is a more elegant form of the original transformation.
In the case of the flying-birds example the new transformation gives the
clause

fly(z) < bird(z), ~ = fly(z).
This can be further transformed by “macroprocessing” the call to = fly(z),
giving the result of the original transformation

fly(z) — bird(z), ~ ostrich(z).
In general, the new transformation introduces a new condition

into every clause with a positive conclusion p(¢). The condition is vacuous if
there are no exceptions with = p in the conclusion. The answer set semantics
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of the new program is equivalent to the modified answer set semantics of
the original program, and both are consistent. Moreover, the transformed
program can be further transformed into a general logic program by renam-
ing explicit negations — p by new positive predicates p’. Because of this
renaming, positive and negative predicates can be handled symmetrically,
and therefore in effect clauses with positive conclusions can represent ex-
ceptions to rules with (renamed) negative conclusions. Thus, for example,
a negative rule such as

= fly(z) — ostrich(z)
with a positive exception
fly(z) — super-ostrich(x)
can be transformed into a clause

= fly(z) — ostrich(z), ~ fly(z)

and all occurrences of the negative literal — fly(z) can be renamed by a new
positive literal fly'(x).

A more direct approach to the problem of treating positive and negative
predicates symmetrically in default reasoning is presented by Inoue [55, 56]
following the methods of [43] and [104] (see section 5.6 for a discussion).
This work is another interesting application of the notion of maximal con-
sistency to extend logic programming for default reasoning.

As a possible direction for future work, it would be desiderable to recon-
cile the different approaches of Inoue and of Kowalski and Sadri. Such a
reconciliation might attempt to treat NAF hypotheses and other kinds of
defaults uniformly as cases of abductive reasoning, generalising appropri-
ately the preferred extension, stable theory and acceptability semantics of

NAF.

5.9 A methodology for default reasoning with explicit nega-
tion

Compared with other authors, who primarily focus on extending or mod-
ifying the semantics of logic programming to deal with default reasoning,
Pereira, Aparicio and Alferes [96] develop a methodology for performing
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default reasoning with extended logic programs. Defaults of the form “nor-
mally if ¢ then p” are represented by an extended clause

P — ¢, ~ "nameqp, ~ T p (3)

where the condition namegp is a name given to the default. The condition ~
— p deals with exceptions to the conclusion of the rule, whilst the condition
~ —nameqp deals with exceptions to the rule itself. An exception to the
rule would be represented by an extended clause of the form

“nameqp «— T

where the condition r represents the conditions under which the exception
holds. In the flying-birds example, the second clause of

fly(z) < bird(z), ~ —birds-fly, ~ = fly(z) (4)
= birds-fly(z) — penguin(z) (5)
expresses that the default named birds- fly does not apply for penguins.

The possibility of expressing both exceptions to rules as well as exceptions
to predicates is useful for representing hierarchies of exceptions. Suppose
we want to change (5) to the default rule “penguins usually don’t fly”. This
can be done by replacing (5) by

- fly(z) « penguin(z), ~ = penguins-don't- fly(z), ~ fly(z) (6)
where penguins-don't- fly is the name assigned to the new rule. To give

preference to the more specific default represented by (6) over the more
general default (4), we add the additional clause

= birds-fly(z) «— penguin(z), ~ = penguins-don't- fly(z).
Then to express that superpenguins fly, we can add the rule:
—penguins-don't- fly(z) — superpenguin(z).

Pereira, Aparicio and Alferes [96] use the well-founded semantics extended
with explicit negation to give a semantics for this methodology for default
reasoning. However it is worth noting that any other semantics of extended
logic programs could also be used. For example Inoue [55, 56] uses an exten-
sion of the answer set semantics (see section 5.6), but for a slightly different
transformation.

Note that these methodologies can be seen as a refinement of the direct use
of the transformation presented in section 5.7.

54



5.10 Abduction through deduction from the completion

In the proposals presented so far, hypotheses are generated by backward
reasoning with the clauses of logic programs used as inference rules. An
alternative approach is presented by Console, Dupre and Torasso [13]. Here
clauses of programs are interpreted as if-halves of if-and-only-if definitions
that are obtained from the completion of the program [11] restricted to non-
abducible predicates. Forward reasoning with the only-if-halves of these
definitions, starting from the observation to be explained, generates abduc-
tive hypotheses deductively.

Given a propositional logic program P with abducible predicates A without
definitions in P, let Pz denote the completion of the non-abducible pred-
icates in P. An explanation formula for an observation O is the most
specific formula F such that

Po U {0} E F,

where F’ is formulated in terms of abducible predicates only, and F' is more
specific than F' iff = F — F'and £ F' — F.

The authors also define a proof procedure that generates explanation for-
mulas for observations. This proof procedure reasons forward from a given
observation O by means of the only-if-halves of the completion Pg. Ter-
mination and soundness of the proof procedure are ensured for a restricted
class of programs (i.e. hierarchical). The explanation formula resulting from
the computation characterises all the different abductive explanations for O,
as exemplified in the following example.

Example 5.13
Consider the following program P

wobbly-wheel <« broken-spokes
wobbly-wheel «—  flat-tyre
Sflat-tyre — punctured-tube
Sflat-tyre — leaky-valve,

where the predicates without definitions are considered to be abducible. The
completion Pg is:

wobbly-wheel — broken-spokes V flat-tyre
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Sflat-tyre — punclured-tube V leaky-valve.
If O is wobbly-wheel then the most specific explanation F' is

broken-spokes V punctured-tube V leaky-valve,

corresponding to the abductive explanations Ay = {broken-spokes}, Ay =
{punctured-tube} and Az = {leaky-valve}.

Console, Dupre and Torasso extend this approach to deal with non-propositional
abductive logic programs. In this more general case an equality theory,
identical to the one presented in [11], is needed; and in the definition of
explanation formula, the notion of F being more specific than F’ requires
that ¥ — F’ be a logical consequence of such an equality theory and that

F' — F not be a consequence of the equality theory. As a consequence,
the explanation formula is unique up to equivalence in the equality theory,
and the proof procedure is more complex than for the propositional case,
because it needs to generate consequences of the equality theory.

Denecker and De Schreye [19] compare the search spaces for reasoning back-
ward using the if-halves of definitions with those for reasoning forward using
the only-if-halves for logic programs without NAF. They show a structural
equivalence between the search spaces for SLD-resolution extended with ab-
duction and the search spaces for model generation with SATCHMO [86]
augmented with term rewriting to simulate unification.

A discussion of the general phenomenon that reasoning with the if-halves
of definitions can often simulate reasoning with the only-if-halves, and vice
versa can be found in [75].

A different deductive framework for abduction is presented in [58] 4. This
method is related to a similar method for NAF presented in [57]. Inoue et
al. translate each abductive logic program rule of the form

pP—gqa
where a is abducible, into a rule of a disjunctive logic program

(pAa)Vid —q

1A description of this work can also be found in [51].
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where @’ is a new atom that stands for the complement of @, as expressed
by the integrity constraint

—(a A d). (7)

A model generator (like SATCHMO or MGTP [37]) can then be applied to

compute all the minimal models that satisfy the integrity constraints (7).

6 Abduction and Truth Maintenance

In this section we will consider the relationship between truth maintenance
(TM) and abduction. TM systems have historically been presented from a
procedural point of view. However, we will be concerned primarily with the
semantics of TM systems and the relationship to the semantics of abductive
logic programming.

A TM system is part of an overall reasoning system which consists of two
components: a domain dependent problem solver which performs inferences
and a domain independent TM system which records these inferences. In-
ferences are communicated to the TM system by means of justifications,
which in the simplest case can be written in the form

P — Pis---3Pn

expressing that the proposition p can be derived from the propositions
P1,. .-, Pn. Justifications include premises, in the case n = 0, representing
propositions which hold in all contexts. Propositions can depend upon as-
sumptions which vary from context to context.

TM systems can also record nogoods, which can be written in the form

_'(ph' . '7pn)7

meaning that the propositions pq, ..., p, are incompatible and therefore can-
not hold together.

Given a set of justifications and nogoods, the task of a TM system is to de-

termine which propositions can be derived on the basis of the justifications,
without violating the nogoods.
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For any such TM system there is a straight-forward correspondence with
abductive logic programs:

e justifications correspond to propositional Horn clause programs,
e nogoods correspond to propositional integrity constraints,

e assumptions correspond to abducible hypotheses, and

e contexts correspond to acceptable sets of hypotheses.

The semantics of a TM system can accordingly be understood in terms of the
semantics of the corresponding propositional logic program with abducibles
and integrity constraints.

The two most popular systems are the justification-based TM system (JTMS)
of Doyle [20] and the assumption-based TM system (ATMS) of deKleer [71].

6.1 Justification-based truth maintenance

A justification in a JTMS can be written in the form

P — DPiy---5Pns ™ Pntls---5 ™ Pm,

expressing that p can be derived (i.e. is IN in the current set of beliefs) if
P1,-...,Pn can be derived (are IN) and py41,...,Ppm cannot be derived (are
ouT).

For each proposition occurring in a set of justifications, the JTMS deter-
mines an IN or OUT label, taking care to avoid circular arguments and thus
ensuring that each proposition which is labelled IN has well-founded sup-
port. The JTMS incrementally revises beliefs when a justification is added
or deleted.

The JTMS uses nogoods to record contradictions discovered by the prob-
lem solver and to perform dependency-directed backtracking to change
assumptions in order to restore consistency. In the JTMS changing an as-
sumption is done by changing an OUT label to IN.

Suppose, for example, that we are given the justifications

p—=~4q
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q =~

corresponding to the propositional form of the Yale shooting problem. As
Morris [90] observes, these correctly determine that ¢ is labelled IN and that
r and p are labelled OUT. If the JTMS is subsequently informed that p is
true, then dependency-directed backtracking will install a justification for
r, changing its label from OUT to IN. Notice that this is similar to the be-
haviour of the extended abductive proof procedure described in example 5.4,
section 5.2.

Several authors have observed that the JTMS can be given a semantics cor-
responding to the semantics of logic programs, by interpreting justifications
as propositional logic program clauses, and interpreting ~ p; as NAF of
pi. The papers [29, 48, 65, 100], in particular, show that a well-founded la-
belling for a JTMS corresponds to a stable model of the corresponding logic
program. Several authors [29, 38, 65, 112], exploiting the interpretation of
stable models as autoepistemic expansions [45], have shown a correspon-
dence between well-founded labellings and stable expansions of the set of
justifications viewed as autoepistemic theories.

The JTMS can also be understood in terms of abduction using the abduc-
tive approach to the semantics of NAF, as shown in [24, 48, 65]. This has
the advantage that the nogoods of the JTMS can be interpreted as integrity
constraints of the abductive framework. The correspondence between ab-
duction and the JTMS is reinforced by [121], who give a proof procedure to
compute generalised stable models using the JTMS (see section 5.5).

6.2 Assumption-based truth maintenance
Justifications in ATMS have the more restricted Horn clause form

P <~ P1y---yPn-

However, whereas the JTMS maintains only one implicit context of assump-
tions at a time, the ATMS explicitly records with every proposition the
different sets of assumptions which provide the foundations for its belief. In
ATMS assumptions are propositions that have been pre-specified as assum-
able. Each record of assumptions that supports a proposition p can also be
expressed in Horn clause form

P — G,...,0n
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and can be computed from the justifications, as we illustrate in the following
example.

Example 6.1
Suppose that the ATMS contains justifications

p — aq
p o= boed
qg «— a,c
q¢ < d,
and the single nogood
- (a, b, e)

where a, b, ¢, d, e are assumptions. Given the new justification
r—=>04q
the ATMS computes explicit records of r’s dependence on the assumptions:

— a,b,c

r «— b,c, d,e.

The dependence
r «— a,b,d,e.

is not recorded because its assumptions violate the nogood. The dependence
r«—ab,c,d

is not recorded because it is subsumed by the dependence

r «— a,b,c.

Reiter and deKleer [118] show that, given a set of justifications, nogoods, and
candidate assumptions, the ATMS can be understood as computing mini-
mal and consistent abductive explanations in the propositional case (where
assumptions are interpreted as abductive hypotheses). This abductive in-
terpretation of ATMS has been developed further by Inoue [54], who gives
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an abductive proof procedure for the ATMS.

Given an abductive logic program P and goal (¢, the explicit construction in
ALP of a set of hypotheses A, which together with P implies G and together
with P satisfies any integrity constraints I, is similar to the record

G — A

computed by the ATMS. There are, however, some obvious differences.
Whereas ATMS deals only with propositional justifications, relying on a
separate problem solver to instantiate variables, ALP deals with general
clauses, combining the functionalities of both a problem solver and a TM
system.

The extension of the ATMS to the non-propositional case requires a new no-
tion of minimality of sets of assumptions. Minimality as subset inclusion is
not sufficient, but needs to be replaced by a notion of minimal consequence
from sets of not necessarily variable-free assumptions [81].

Ignoring the propositional nature of a TM system, ALP can be regarded
as a hybrid of JTMS and ATMS, combining the non-monotonic negative
assumptions of JTMS and the positive assumptions of ATMS, and allowing
both positive and negative conditions in both justifications and nogoods [65].
Other non-monotonic extensions of ATMS have been developed in [59, 119].

It should be noted that one difference between ATMS and ALP is the re-
quirement in ATMS that only minimal sets of assumptions be recorded.
This minimality of assumptions is essential for the computational efficiency
of the ATMS. However, it is not essential for ALP, but can be imposed as
an additional requirement when it is needed.

7 Conclusions and Future Work

In this paper we have surveyed a number of proposals for extending logic
programming to perform abductive reasoning. We have seen that such ex-
tensions are closely linked with other extensions including NAF, integrity
constraints, explicit negation, default reasoning, and beliefl revision.
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Perhaps the most important link, from the perspective of logic program-
ming, is that between abduction and NAF. On the one hand, we have seen
that abduction generalises NAF, to include not only negative but also pos-
itive hypotheses, and to include general integrity constraints. On the other
hand, we have seen that logic programs with abduction can be transformed
into logic programs with NAF together with integrity constraints or explicit
negation. The link between abduction and NAF includes both their seman-
tics and their implementations.

We have argued that semantics can best be understood as providing a spec-
ification for an implementation. From this point of view, a semantics is a
“declarative” specification, which might be non-constructive, but need not
be concerned with meaning-theoretic notions such as “truth” and “falsity”.
Thus an overtly syntactic, but non-constructive, specification given in terms
of maximally consistent extensions is just as much a “semantics” as one in-
volving (covertly syntactic) stable models.

We have seen the importance of clarifying the semantics of abduction and
of defining a semantics that helps to unify abduction, NAF, and default rea-
soning within a common framework. We have seen, in particular, that an
implementation which is incorrect under one semantics (e.g. [33]) can be cor-
rect under another (e.g. [22]). We have also introduced an argumentation-
theoretic interpretation for the semantics of abduction applied to NAF, and
we have seen that this intepretation can help to understand the relationships
between different semantics.

Despite the recent advances in the semantics of NAF there is still room for
improvement. One possibility is to explore further the direction set in [28]
and [70] which characterises the acceptability of a set of hypotheses A re-
cursively in terms of the non-acceptability of all attacks against A. Another
is to identify an appropriate concept of maximal consistency, perhaps along
the lines of the retractability semantics suggested in [77]. The two possi-
bilities need not be mutually exclusive. The former, recursive specification
would be closer to an implementation than the latter. But the two specifi-
cations might otherwise be equivalent.

The use of abduction for NAF is a special case. It is necessary therefore to

define a semantics that deals appropriately both with this case and with the
other cases. In particular, we need to deal both with abductive hypotheses
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which need to be maximised for default reasoning and with other abductive
hypotheses which need to be minimised. It is interesting that the abductive
proof procedure can be regarded as both maximising and minimising the two
kinds of abducibles. It maximises them in the sense that it (locally) makes
as many abductive assumptions as are necessary to construct a proof. It
minimises them in the sense that it makes no more assumptions than nec-
essary. Perhaps this is another case where the implementation of abduction
is more correct than the (semantic) specification.

It is an important feature of the abductive interpretation of NAF that it
possesses an elegant and powerful proof procedure, which significantly ex-
tends SLDNF and which can be extended in turn to accommodate other
abducibles and other integrity constraints. Future work on the semantics of
ALP needs to preserve and develop further this existing close relationship
between semantics and proof procedure.

The abductive proof procedure needs to be extended and improved in vari-
ous ways. One such extension is the generation of non-variable-free hypothe-
ses, containing variables. This problem, which has been studied in part in
[10], [30] and [103], and also by [18] with respect to the completion seman-
tics, involves the treatment of the equality predicate as a further abducible.
Because NAF is a special case of abduction, the problem of constructive
negation in logic programming [4, 8, 130] is a special case of abduction with
non-variable-free hypotheses.

We have argued that the implementation of abduction needs to be consid-
ered within a broader framework of implementing knowledge assimilation
(KA). We have seen that abduction can be used to assist the process of KA
and that abductive hypotheses themselves need to be assimilated. More-
over, the general process of checking for integrity in KA might be used to
check the acceptability of abductive hypotheses.

It seems that an efficient implementation of KA can be based upon com-
bining two processes: backward reasoning both to generate abductive hy-
potheses and to test whether the input is redundant and forward reasoning
both to test input for consistency and to test whether existing information
is redundant. Notice that the abductive proof procedure for ALP already
has this feature of interleaving backward and forward reasoning. Such imple-
mentations of KA need to be integrated with improvements of the abductive
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proof procedure considered in isolation.

We have seen that the process of belief revision also needs to be considered
within a KA context. In particular, it could be useful to investigate relation-
ships between the belief revision frameworks of [21, 42, 91, 92] and various
integrity constraint checking and restoration procedures.

The extension of logic programming to include integrity constraints is useful
both for abductive logic programming and for deductive databases applica-
tions. We have seen, however, that for many applications the use of integrity
constraints can be replaced by clauses with explicitly negated conclusions.
Moreover, the use of explicit negation seems to have several advantages, in-
cluding the ability to represent and derive negative information.

The relationship between integrity constraints and explicit negation needs
to be investigated further: To what extent does this relationship, which
holds for abduction and default reasoning, hold for other uses of integrity
constraints, such as those concerning deductive databases; and what are the
implications of this relationship on the semantics and implementation of in-
tegrity constraints?

Whatever the answers to these questions, it is clear that the combination of
explicit negation and implicit NAF is very useful for knowledge representa-
tion in general. It is important, however, to obtain a deeper understanding
of the relationships between these two forms of negation. It is clear, for
example, that if ~ p holds then — p must be consistent. However, it is not
the case that if = p is consistent, then ~ p holds, as in the following example

p—~ D

- p.
Thus, there is no simple relationship whereby one form of negation clearly
subsumes the other.

Another problem, which we have already mentioned, is how to decide whether
a negative condition should be understood as explicit negation or as NAF.
One possibility might be simply to interpret the negation as NAF if the
closed world assumption applies, and as explicit negation if the open world
assumption applies. Moreover the presence of any rules in which the predi-
cate of the condition occurs explicitly negated in a conclusion would suggest
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that the open world assumption applies and the negated condition therefore
is explicit. Another, complementary possibility is to recognise that the open
world assumption must apply to any predicate explicitly declared as ab-
ducible. Consequently, any negated condition whose predicate is abducible
must be interpreted as explicit negation.

We have seen that explicit negation does not obey the laws of contraposi-
tion. This is further strong evidence that the semantics of clauses should
be interpreted in terms of inference rules and not in terms of implications.
Because of the similarity between default rules in Default Logic and clauses
interpreted as inference rules in logic programming, this provides further ev-
idence also for the possibility of developing a uniform semantics and imple-
mentation in which NAF, abduction, and default reasoning can be combined.

We have remarked upon the close links between the semantics of logic pro-
gramming with abduction and the semantics of truth maintenance systems.
The practical consequences of these links, both for building applications and
for efficient implementations, need further investigation. What is the signif-
icance, for example, of the fact that TMSs and ATMSs correspond only to
the propositional case of logic programs?

We have observed a duality between forward reasoning with only-if-halves of
definitions and logic programming-style backward reasoning with if-halves.
Could this duality apply also to a possible correspondence between incon-
sistency in truth maintenance systems and failures in logic programming?

We believe that our survey supports the belief that abduction is an impor-
tant and powerful extension of logic programming. It also points forward
to the possibility that at some time in the future further extensions of logic
programming might be fully adequate and appropriate for many, if not all,
knowledge representation and reasoning tasks in Al.
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