]

NORTH-HOLLAND TECHNICAL NOTE

THE IFF PROOF PROCEDURE FOR ABDUCTIVE
LOGIC PROGRAMMING

TZE HO FUNG AND ROBERT KOWALSKI

> In this paper, we outline a proof procedure which combines reasoning with
defined predicates together with reasoning with undefined, abducible,
predicates. Defined predicates are defined in if-and-only-if form. Ab-
ducible predicates are constrained by means of integrity constraints. Given
an initial query, the task of the proof procedure is to construct a definition
of the abducible predicates and a substitution for the variables in the
query, such that both the resulting instance of the query and the integrity
constraints are implied by the extended set of definitions.

The iff proof procedure can be regarded as a hybrid of the proof
procedure of Console et al. and the SLDNFA procedure of Denecker and
De Schreye. It consists of a number of inference rules which, starting from
the initial query, rewrite a formula into an equivalent formula. These rules
are: 1) unfolding, which replaces an atom by its definition; 2) propagation,
which resolves an atom with an implication; 3) splitting, which uses
distributivity to represent a goal as a disjunction of conjunctions; 4) case
analysis for an equality X =¢ in the conditions of an implication, which
considers the two cases X =t and X #¢; 5) factoring of two abducible
atoms, which considers the two cases, where the atoms are identical and
where they are different, 6) rewrite rules for equality, which simulate the
unification algorithm; and 7) logical simplifications, such as A A false < false.

The proof procedure is both sound and complete relative to the three-
valued completion semantics. These soundness and completeness results
improve previous results obtained for other proof procedures. © Elsevier
Science Inc., 1997 <

Address correspondence to Robert Kowalski, Department of Computing, Imperial College, London
SW7 2B2, England.
Received July 1996; accepted December 1996.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1997 0743-1066 /97 /$17.00
655 Avenue of the Americas, New York, NY 10010 PII S0743-1066(97)00026-5

152 T. H. FUNG AND R. - KOWALSKI

1. INTRODUCTION

The iff proof procedure can be regarded as a hybrid of the proof procedure of
Console et al. [1] and the SLDNFA procedure of Denecker and De Schreye [2]. All
three proof procedure use the if-and-only-if form of a logic program to specify its
semantics.

Like the Console et al. proof procedure, but unlike SLDNFA, the iff proof
procedure uses unfolding with if-and-only-if definitions to replace a formula by an
equivalent formula, starting with an initial query. However, the iff proof procedure
augments the unfolding rule with other inference rules, resembling those employed
by SLDNFA, to obtain stronger completeness results than those obtained with the
other proof procedures. The iff proof procedure is simpler than SLDNFA, largely
because of its use of iff definitions, its use of explicit rewrite rules for equality, and
its use of existential quantifiers and free variables to avoid skolemization.

We have investigated a number of applications of the proof procedure and some
of its variants. These applications include constraint logic programming [10, 11, 14],
planning [6], semantic query optimization [11], and deductive database view up-
dates [4-6]). For this last application, we have developed a modified form of the iff
proof procedure, which minimizes changes to an existing database of abducibles.

We have also used the proof procedure to implement the reasoning component
of an agent that combines deliberative, goal-oriented reasoning with reactive,
condition—action rule behavior [15, 16]. Goal-oriented reasoning is obtained by
using unfolding to reduce atomic goals to alternative conjunctions of subgoals.
Condition—action rule behavior is obtained by using propagation to trigger in-
tegrity constraints by means of updates.

In the remainder of this paper, we define our syntax and semantics for abductive
logic programs (Section 2), define the proof procedure (Section 3), explain how
answers are extracted from derivations (Section 4), state soundness and complete-
ness results (Section 5), and conclude (Section 6).

Detailed proofs of the results in Section 5 can be found in [6].

2. ABDUCTIVE LOGIC PROGRAMS AND THEIR SEMANTICS
We define an abductive logic program to be a tuple (T, IC, Ab) where

1. T is a set of definitions in iff form:

P(X,,...., X)eD v..VvD, k,n>0
where P is a defined predicate symbol different from =, true, false, and any
predicate symbol in Ab, the variables X,,..., X, are all distinct, and each D,

is a conjunction of literals. A literal is an atom or the negation of an atom.
Negative literals — 4 are rewritten as implications in the form false « A.
Every defined predicate has only one definition. For every variable X; and
disjunct D;, the disjunct contains exactly one literal of the form X;=¢, for
some term t.'

"This last condition formalizes the requirement that definitions in iff form arc the completions of
logic programs in if form.

IFF PROOF PROCEDURE 153

The variables X,,..., X, are implicitly universally quantified, with the
scope being the entire definition. Any variable in a disjunct D, of a definition
which is not one of X,,..., X, is implicitly existentially quantified, with the

scope being the disjunct. The atom P(X|,..., X,), defined in a definition in
T, is said to be the head of the definition. The disjunction D, v ... v D, is its
body. When n = 0, the disjunction is equivalent to false.

2. IC (the set of integrity constraints) is a consistent finite set (or, equivalently, a
conjunction) of implications:

A V...VA,<B AN... B, m,n>0

where each A4; and B; is an atom.

All variables in an integrity constraint are implicitly universally quantified,
with the scope being the entire implication. The disjunction 4, V... VA in
the implication is the conclusion of the implication, and the conjunction
B, A ... AB, is its condition. When m = 0, the disjunction is equivalent to
false. When n = 0, the conjunction is equivalent to true.

3. Ab is the set of all predicate symbols, called abducible, different from =,
true, false, and from any predicate symbol defined in 7.
A query is a formula of the form

B/A...AB, nxl1

where each B, is a literal. All variables in a query are free.

To simplify the treatment of quantifiers, so that they can be implicit rather than
explicit, we require that definitions, integrity constraints, and queries all be
allowed. A definition P(X,,..., X)) D, V...V D, is allowed if (and only if)
every variable other than X,,..., X, occurring in any D, occurs in a positive
nonequality atom in D,. Similarly, a query is allowed if (and only if) any variable
occurring in the query occurs in a positive atom in the query. An integrity
constraint is allowed if (and only if) every variable in the conclusion occurs in the
condition.

As in SLDNF, the allowedness restrictions ensure that queries never flounder.
In practice, much weaker conditions are adequate. In particular, as in SLDNF and
in SLDNFA, an appropriate safety condition can be employed instead.

The semantics of abductive logic programs is given by specifying what consti-
tutes an answer to a query. Intuitively, an answer is a set of definitions for the
abducible predicates which, together with the initially given set of definitions 7',
implies an instance of the query and satisfies the integrity constraints. For simplic-
ity, we restrict definitions of abducibles to completions of ground (i.e., variable-free)
atoms.

More precisely, given an abductive logic program {7, IC, Ab), an answer to a
query Q is a pair (D, o) where D is a finite set of ground abducible atoms, and o
is a substitution of ground terms for the variables in @, such that

1. TUComp(D)UCET = Qo and
2. TUComp(D)UCET = IC.

Here, Comp(D) is the completion of D, consisting of iff definitions of the predicate
symbols occurring in D. Abducible predicates which do not occur in D are defined
as false in Comp(D). CET is the Clark equality theory. &= is the logical conse-

154

T. H. FUNG AND R. KOWALSKI

quence relation for three-valued logic, as defined in [12]. The ground terms in the
substitution ¢ come from some language which includes, but need not be identical
to, the vocabulary of TUQU IC.

Note that condition 2) states the theoremhood view of integrity constraint
satisfaction. In contrast, the consistency view requires that T U Comp(D)
UCET UIC be consistent. Because theoremhood is semi-decidable and consis-
tency is not, it is possible to develop a complete proof procedure for the theorem-
hood view, but not for the consistency view. However, any answer according to the
theoremhood view is also an answer according to the consistency view because
T UComp(D)UCET is always consistent in three-valued logic.

It is often desirable to give preference to minimal answers (D, o) where there is
no answer (D', o), where D' is strictly contained in D.

Example 2.1.

T: grass-is-wet < rain-last-night Vv sprinker-was-on
IC: cloudy-last-night <« rain-last-night

false < cloudy-last-night
Ab: rain-last-night, sprinker-was-on, cloudy-last-night
Q: grass-is-wet

The query has only one answer, which is also minimal, ({sprinkler-was-on}, &),
where J is the empty substitution.

Example 2.2 (Based on [3]).
T: lamp(X) & X=a
battery(X,Y) & X=b A Y=c
faulty-lamp < [lamp(X) A broken(X)] v
[power-failure(X) A —backup(X)]
backup(X) < battery(X,Y) A —empty(Y)
IC: J (i.e., the empty set)
Ab: broken, power-failure, empty
Q: faulty-lamp

The query has minimal answers:

({broken(a)}, &)
({power-failure(b), empty(c)}, &)
({power-failure(t)}, &), where ¢ is any ground term of the language and ¢ # b.

It also has many more nonminimal answers.

3. THE IFF PROOF PROCEDURE

The iff proof procedure is a rewriting procedure, consisting of a number of
inference rules, each of which replaces a formula by one which replaces a formula
by one which is equivalent to it in the theory T UCET. A derivation of a formula
F,, starting from a formula F,, is a sequence of formulas F,,..., F, such that each
F,,, in the sequence is obtained from the previous formula F; by application of

IFF PROOF PROCEDURE 155

one of the inference rules. Therefore, any such derivation has the property that
TUCET|=F,<F,.

Every formula F, in a derivation is a disjunction:
D,v...vD, nz=0.

If n =0, the disjunction is equivalent to false. Each disjunct D; is a conjunction
Cin...nC, m=0.

If m = 0, the conjunction is equivalent to frue. Each conjunct C; is either
an atom,
a disjunction of conjunctions of literals, or
an implication (as defined earlier).

Given an initial query @, the proof procedure constructs an initial formula F,
which is Q conjoined with the set of integrity constraints. F,, therefore, is a
degenerate disjunction, with a single disjunct, which is a conjunction whose
conjuncts are

the positive atoms in Q,
the negative literals — A4 in @, written as implications false < A, and
the implications in IC.

Any variables in IC are renamed so that they are distinct from the variables in Q.

As a result of the allowedness restrictions, the inference rules preserve the
unambiguous reading of the implicit quantification of variables in the formulas F;
of a derivation. Every free variable of the initial query occurs free in each disjunct
of F,. Any other variable in an atom occurring directly as a conjunct is implicitly
existentially quantified, with the scope being the disjunct in which the atom occurs.
All remaining variables occur in implications and are implicitly universally quanti-
fied, with the scope being the implication itself. Note that, except for the integrity
constraints, implications in a derivation may contain free or existentially quantified
variables.

The construction of a derivation has a “procedural” interpretation in terms of
generating an or-tree in search of answers to the initial query. Formulas in the
derivation correspond to successive frontiers of the search tree. The disjuncts D, in
a frontier correspond to nodes of the search tree. Conjuncts in a node are goals to
be satisfied.

Each step in a derivation is the application of an inference rule which replaces a
nonleaf node in a frontier by one or two successor nodes. Different nodes and
different goals within a node may be selected for the application of an inference
rule. For example, systematically selecting the leftmost node D, in a frontier gives
rise to depth-first search. Other strategies for selecting nodes give rise to other
search strategies. The strategy for selecting a goal within a node is analogous to the
selection rule of SLDNF. As in SLDNF, any goal may be selected, provided the
selection strategy is “fair.”

A leaf node is a node which has no successor nodes in the sense that no new
inference can be applied to the node. A node containing a conjunct false is also a

156

leaf n

T. H. FUNG AND R. KOWALSKI

ode, called a failure node. A failure node is itself equivalent to false, and no

inference rules can be applied to it.
Answers (D, o) to a query Q are extracted from nonfailure leaf nodes D,. First,
a ground substitution ¢’ is constructed which satisfies the equalities and disequali-

ties?
unive

in D; and arbitrarily instantiates any remaining variables in D, which are not
rsally quantified. D is obtained by applying ¢’ to the abducible atoms which

are conjuncts of D,. ¢ is the restriction of o' to the variables occurring in Q.
Answer extraction is explained in greater detail in Section 4, and is illustrated in
Examples 3.1 and 3.2 below.

The inference rules of the iff proof procedure consist of:

1.

W

=)

For s

unfolding, which creates a single successor node by replacing an atom (which
occurs directly as a conjunct in a node or in the condition of an implication)
by the body of its definition in 7,

. propagation, which creates a single successor node by resolving an atom in a

node with an implication in the same node,

. splitting, which creates two successor nodes, using the law of distributivity.
. case analysis for an equality X =1 in the condition of an implication, which

creates two successor nodes, one for the case X =t, and one for the case
X#t.

. factoring of two abducible atoms, which creates two successor nodes, one for

the case where the two atoms are identical, and one for the case where they
are different,

. rewrite rules for equality, which simulate the unification algorithm,
. logical simplifications, which replace the left-hand side of a logical equiva-

lence by the right-hand side, such as
A A false < false
AV false < A
A Atrue < A
AV true < true
[A<—true] A
[A < false] < true
— A o[false — A]

[B«CA-A]eo[AVB<«<C].

implicity of exposition, we regard the rewrite rules for equality and logical

simplifications as simplifying the form of a node, rather than as creating a new

node.
Be

fore defining the proof procedure formally, we iilustrate it by means of the

two examples introduced in the previous section.

*The disequality s # t is used as an abreviation for false <5 =1.

IFF PROOF PROCEDURE 157

Example 3.1.

T: grass-is-wet < rain-last-night Vv sprinkler-was-on
IC: cloudy-last-night <« rain-last-night
false < cloudy-last-night
Ab: rain-last-night, sprinkler-was-on, cloudy-last-night
Q: grass-is-wet
F, grass-is-wet A [cloudy-last-night « rain-last-night]
A [false < cloudy-last-night]
F, [rain-last-night Vv sprinkler-was-on] A [cloudy-last-night <« rain-last-night]
A lfalse < cloudy-last-night]
F; [rain-last-night A [cloudy-last-night < rain-last-night]
A lfalse < cloudy-last-night]] v
[sprinker-was-on A [cloudy-last-night <« rain-last-night]
A [false < cloudy-last-night]]
F, [rain-last-night A cloudy-last-night A [cloudy-last-night « rain-last-night]
A [false < cloudy-last-night]] v
[sprinkler-was-on A [cloudy-last-night <« rain-last-night]
A [false < cloudy-last night]]
F, [rain-last-night A cloudy-last-night A false A
[cloudy-last-night « rain-last-night] A [false < cloudy-last-night]] v
[sprinkler-was-on A [cloudy-last-night <« rain-last-night]
A [false < cloudy-last-night]]

F, is obtained by unfolding, F; by splitting, and both F, and F; by propagation.
All nodes in F; are leaf nodes. An answer can be extracted from the only
nonfailure leaf node of F;. That answer coincides with the unique answer
({sprinkler-was-on}, &) given by the semantics.

Example 3.2.

T: lamp(X) & X=a
battery(X,Y) & X=b A Y=
faulty-lamp < [lamp(X) A broken(X)] v
[power-failure(X') A —backup(X)]
backup(X) < battery(X,Y) A —empty(Y)
IC: &
Ab: broken, power-failure, empty
Q: faulty-lamp
F, faulty-lamp
F, [lamp(X) A broken(X)] Vv [power-failure(X) A —backup(X)]
< [lamp(X) A broken(X)] Vv [power-failure(X) A [false < backup(X)I]]
Fy, [X=a A broken(X)] v [power-failure(X) A [false < backup(X)]]
< [X=a A broken(a)] v [power-failure(X) A [false < backup(X)]]
F, [X=a A broken(a)] v
[power-failure(X) A [false « [battery(X,Y) A —empty(Y)]]]
< [X =a A broken(a)] Vv
[power-failure(X) A [empty(Y) « battery(X, Y)]]
F; [X =a A broken(a)] Vv
[power-failure(X) A [empty(Y) « X =b A Y =c]]

158

T. H. FUNG AND R. KOWALSKI

o [X =a A broken(a)] v
[power-failure(X') A [empty(c) « X = b]]
F, [X =a A broken(a)] Vv
[power-failure(X) A[X # b V [X = b A empty(c)]]]
F; [X =a A broken(a)] v
[power-failure{ X) A X # b] V [power-failure(X) A X = b A empty(c)]
o [X =a A broken(a)] Vv
[power-failure(X) A X # bl Vv [power-failure(b) A X = b A empty(c)]

Here, F,, F;, F,, and F are all obtained by unfolding. F, is obtained by case
analysis, and F; is obtained by splitting. The equivalences in F, and F, rewrite
negative literals as atoms in implications. The equivalences in F,, F, and F, apply
rewrite rules for equality. In F, the rewrite rule applies the substitution X /a only
to the disjunct containing X =a. This respects the fact that X is existentially
quantified. No new application of the inference rules can be performed on F,.
Answers can be extracted from each disjunct of F,. These answers coincide with
the minimal answers specified by the semantics.
We now define the inference rules more formally.

3.1. Unfolding

Given an atom P(¢,...,t,) (occurring either directly as a conjunct in a node or in
the condition of an implication and a definition

P(X,,..,.X,)eD Vv..VvD,
unfolding replaces the atom by
D,0v ...vD,0 where 0={X,/t,,.... X, /t,}

leaving the rest of the node unchanged.

Variables introduced into a node by unfolding are “standardized apart,” so they
do not accidentally become identical to other variables in the node.

When unfolding is applied to an atom P(¢,...,t,) in the condition of an
implication

A« P(t,....,t,)\B
the resulting implication is rewritten, equivalently, as a conjunction of implications:
[A<D,6AB]A...A[A<D,6 AB].

For simplicity, we have written the atom P(t,,...,t,) as the first atom in the
condition of the implication. Any other atom in the condition can be selected for
unfolding. Any negative literals in D;6 are rewritten as positive atoms in the
conclusion of the implication.

Unfolding is not applied to atoms in conclusions of implications. Such unfolding,
in effect, is deferred until the condition of the implication has been eliminated, and
therefore until any universally quantified variables in the atom have been elimi-
nated (which is always possible because of the allowedness restriction).

IFF PROOF PROCEDURE 159

The following example shows that unfolding respects the three-valued, rather
than the two-valued semantics.

T pe—p
Q:p
Fop
F, false < p
Fyp

The proof procedure loops without termination, reflecting the fact that 7 has a
three-valued model in which p is undefined.

In the two-valued semantics, T is inconsistent, and therefore implies both p and
— p. Therefore, the proof procedure is incomplete for the two-valued semantics,
which is consistent with Theorems 2 and 3 in Section 5.

3.2. Propagation

Given two conjuncts in the same node, one of which is an atom P(s,,...,s,), and
the other of which is an implication A4 < P(¢,,...,t,) A B, propagation generates a
single successor node by adding the implication

A—ti=s;A ... N =5, AB

to the node. The equalities are handled by the rewrite rules and by case analysis.

The predicate symbol P, used for propagation, can be any predicate symbol,
except equality. It is possible to restrict P to be abducible, without loss of
completeness. However, the case where propagation is used with a defined predi-
cate can improve efficiency, as the following example shows:

T: pop
IC: false < p
Q:p
With propagation, the proof procedure terminates by generating false. Without
propagation, the proof procedure goes into an infinite loop.

3.3. Splitting
Given a node of the form
[cvD]AC

(where C and C' are conjunctions and D is a disjunction), splitting generates two
successor nodes :

[caC'lv[DAC].

Without splitting, the search tree corresponding to a formula in a derivation would
be an arbitrary and-or tree (ignoring variables). Systematic use of splitting, with
higher priority than the other inference rules, flattens the and-or tree so that it is
an or-tree, each of whose nodes is a conjunction of atoms and implications.

160

T. H. FUNG AND R. KOWALSKI

Splitting also can be applied to the conclusion of an implication in the node:
[[4vD]<B]AC

when one of the disjuncts A is an atom which contains no universally quantified
variables (but possibly contains free or existentially quantified variables). Splitting
rewrites the node as two nodes

[AAC]VI[[D<B]AC].

Splitting also applies when the conclusion is a single atom A, in which case D is
trivially equivalent to false.

Splitting conclusions of implications is necessary for completeness, as the
following example shows:

T: pop

repA —gq
Ab: g
Q: -r
F, false < r unfold r:
F, g<p split g:
F, q V| false < p]

Although the proof procedure loops forever, repeatedly unfolding the atom p in
the second node of F;, an answer ({g}, &) can be extracted from the first node
of F;.

The completeness theorem 2 of Section 5 improves previous completeness
theorems obtained for related proof procedures [1, 2] because it applies in such
cases. Previous completeness theorems hold only for the case where the proof
procedure terminates, as in the case of our completeness theorem 3 in Section 5
below.

3.4. Case Analysis (for an Equality)
Given a node of the form

[A<X=tABIAC

where X is free or existentially quantified, ¢ does not contain X, and ¢ is not a
universally quantified variable,® case analysis gives rise to two successor nodes:

[X=tA[A<B]JAC]V[X*#tAC].

The first disjunct corresponds to the case X =t. Any variables in ¢ which are
universally quantified in the implication correctly become existentially quantified in
the first disjunct. The second disjunct corresponds to the case X #t. Any variables
in ¢ which are universally quantified in the implication correctly remain universally
quantified in the second disjunct.

In theory, case analysis also could be applied to abducible atoms. However, this
would give rise to nonminimal answers. By not applying case analysis to abducible
atoms, the proof procedure and the answer extraction process effectively assume

*The equality rewrite rules deal with all other cases.

IFF PROOF PROCEDURE 161

such atoms are false by default, unless they occur directly as conjuncts in the same
node for some other reason. Case analysis is not applied to defined predicates
because the truth value of such predicates may be undefined in the three-valued
semantics.

3.5. Factoring

Given a node of the form
P(ty,...;t,) AP(sy,...,5) NC
where P is abducible, factoring gives rise to two new nodes:

[P(t1,.. s) AP(5y,ess0) Al false —t, =5, A ... Aty =5,] AC]
V[Pt gy Nty =s, A oAt =5, AC].

Factoring is related to answer extraction. It separates answers in which abducible
atoms are merged from answers in which they are distinct.

3.6. Rewrite Rules for Equality

These rules are adapted from Martelli and Montanari [13], and are applied both to
an equality which occurs directly as a conjunct in a node and to an equality which
occurs in the condition of an implication. They are not applied to an equality in the
conclusion of an implication because (as with unfolding) such rewrites can be
deferred until the condition of the implication has been eliminated.

1. Replace f(¢y,...,t,)=fCs|,...,5) by t; =85, A ... AL, =s,.
2. Replace f(t,,...,1,) =g(s,,...,s,) by false whenever f and g are distinct,
k,l > 0.
. Replace t =t by true for any term ¢.
. Replace X =t by false whenever ¢ is a term containing X.
5a. Replace t =X by X =t whenever X is a variable and ¢ is not.
b. Replace Y=X by X =Y whenever X is a universally quantified variable
and Y is not.
6a. If X =t occurs as a conjunct in a node and X does not occur in ¢, then
apply the substitution X /¢ to the entire node, retaining the conjunct X =¢
intact.
6b. If X =t occurs in the condition of an implication, X does not occur in ¢,
and X is universally quantified, then apply the substitution X/t to the
implication, deleting the equality.

£ W

Note that case analysis deals with the case where X =¢ occurs in the condition
of an implication, and neither X nor ¢ are universally quantified variables.

3.7. Logical Equivalences

These equivalences, given earlier in this section, simplify formulas and put them in
a form which facilitates application of the other inference rules.

162 T. H. FUNG AND R. KOWALSKI

4. ANSWER EXTRACTION

Answers (D, o) can be extracted from a nonfailure leaf node N by first construct-
ing a substitution o’ such that:

o' replaces all variables in N which are not universally quantified by ground
terms, and

o' satisfies the equalities and disequalities in N,

The fact that the rewrite rules for equality have been exhaustively applied to the
node ensures that one or more such substitutions o' exist. (In the general case, it
is necessary to assume that the language contains an infinite number of function
symbols.) The substitution o is the restriction of o' to the variables occurring in
Q. The set D is the set of all abducible atoms that are conjuncts in No .

Notice that, by construction, Qo' = Qo and ICo’' = IC. Moreover, CET im-
plies all equalities and disqualities in No’, and D implies all abducible atoms that
are conjuncts in No'.

Because N is a leaf node, propagation has been exhaustively applied with the
atoms used to construct D. As a result, it is possible to show that Comp(D) implies
all implications in No’ which are not disequalities. Therefore,

1. Comp(D)UCET|=No '

It is easy to see that TUCET|=F, < F, for any formula F, in a derivation.
Therefore,

2. TUCET|=[Q AIC]« N and
3. TUCET|=[Q AIC]o' « No'
which shows that (D, o) is an answer to the query Q because, by 1) and 3),
T UComp(D)UCET|= Qo and
T UComp(D)UCET|=IC.
Moreover, by construction, D is the smallest set of abducible ground atoms such

that Comp(D)UCET|= No' where o' is the auxiliary substitution used to con-
struct . Thus, the answer (D, o) is minimal in this sense.

5. SOUNDNESS AND COMPLETENESS

More formally, we can prove the following soundness and completeness theorems:

Theorem 1 (Soundness). Let Q be a query to an abductive logic program (T, IC,
Ab).

1. Let (D, o) be extracted from a nonfailure leaf node N in a derivation from
Q A IC. Then (D, o) is an answer to the query Q.
Moreover, if (D', o) is any answer such that Comp(D)| = No* where o ' is
the auxiliary substitution used to construct o, then D is a subset of D',
2. If there exists a derivation from Q A IC of a formula

D v..vD,
where each disjunct D, is a failure node, then
TUCETUIC|= Q.

IFF PROOF PROCEDURE 163

Theorem 2 (Completeness). Let Q be a query to an abductive logic program (T, IC,
Aby. If (D',) is an answer to Q, then there exists a derivation starting from
Q AIC of a formula containing a nonfailure leaf node from which an answer
(D, o) to Q can be extracted such that D is a subset of D'.

Theorems 1 and 2 hold when |= is logical consequence in three-valued logic
[12]. Theorem 1 continues to hold when | = is logical consequence in two-valued
logic, but Theorem 2 needs to be weakened, in which case a form of refutation
completeness can also be shown:

Theorem 3 (Completeness for two-valued logic). Let Q be a query to an abductive
logic program (T, IC, Ab), where T is call-consistent (see [12]). Suppose there is a
derivation starting from Q A IC of a formula F,, all of whose nodes are leaf nodes.

1. If (D', o) is an answer to Q (in two-valued logic), then there exists a node in F,
from which an answer (D, o) to Q can be extracted such that D is a subset of
D'

2. If TUCET UIC |= = Q (in two-valued logic), then all nodes in F are failure
nodes.

The proof of Theorem 2 in [6] is based upon a theorem of Kunen [12] which
shows that, for every three-valued logical consequence C of a logic program 7T in
iff form, there exists a bottom-up derivation of C by means of the three-valued
immediate consequence operator associated with 7. Our proof constructs a top-
down derivation by means of the iff proof procedure, using the bottom-up deriva-
tion of Kunen’s theorem as a guide.

The top-down derivation is constructed in two phases. In the first phase, defined
atoms occurring directly as conjuncts or occurring in the conditions of implications
in a node are reduced to abducible atoms, using unfolding and splitting. Equalities
are simplified by using rewrite rules and case analysis wherever possible.

In the second phase, propagation and factoring are applied, again using equality
rewrite rules and case analysis wherever possible. The two phases are repeated
until no further inference rules are applicable.

The proof of Theorem 2 shows only that there exists a derivation constructed by
means of the two-phase process described above. It does not show that there exists
a derivation for any inference rule application strategy. However, based upon our
experience with applying the proof procedure and based upon the analogy with
SLDNF, we believe that the proof procedure is complete for any “well-behaved”
(e.g., fair) strategy. Moreover, it seems likely that the existing completeness proof
can be strengthened for this purpose.

6. CONCLUSIONS

6.1. Related Work

Except for [1), all other proof procedures for abductive logic programming (e.g.,
[17, 2,3,7,8) use the if form for definitions and skolemization instead of implicit or
explicit existential quantification. The proof procedure in [1], however, is not fully
defined for nonpropositional programs. Thus, the iff proof procedure can be
regarded as an extension of the proof procedure of [1] to the nonpropositional
case.

164 T. H. FUNG AND R. KOWALSKI

In many respects, the iff proof procedure is closest to SLDNFA [2,3]. Recent
versions of SLDNFA, moreover, also use variables instead of skolemization.
However, SLDNFA uses the if form for definitions where we use the iff form.
Other differences are that: 1) SLDNFA uses a weak safety rule where we use
admissibility, 2) SLDNFA uses a special form of “negative resolution” where we
use propagation, 3) SLDNFA does not have an explicit case analysis rule, but
obtains similar results by having several ways in which answers can be extracted
from derivations, and 4) SLDNFA modifies the unification algorithm where we
employ rewrite rules for equality. We believe that the choices we have made result
in a simpler proof procedure. Moreover, we can prove a stronger completeness
result (Theorem 2). On the other hand, SLDNFA constructs more general answers
containing variables.

6.2. Future Work

As indicated in the discussion of the proof of Theorem 2 at the end of Section 5,
the theorem needs to be strengthened to show that any appropriately “well-
behaved” strategy for applying the inference rules will generate all minimal
answers to a query. It is also important to investigate which strategies are more
efficient than others. For example, it seems that in most cases, propagation should
be applied with higher priority than unfolding, and that splitting should be delayed
as long as possible.

The proof procedure, with little alteration, can be applied to more general forms
of definitions and integrity constraints. In particular, definitions

P(X,,....,X,)e D, v..VvD,

can be allowed to contain implications as conjuncts of the disjuncts D,. Integrity
constraints can be allowed to contain existentially quantified variables in the
conclusion. Moreover, it also seems possible to remove or greatly relax the
allowedness restriction.

It may be that the proof procedure can be further simplified and more informa-
tive answers can be obtained by changing the semantics. This possibility is investi-
gated in [10, 11, 14], where the abducible predicates in a nonfailure leaf node are
not completed, and the integrity constraints are required to be consistent with the
answer rather than to be theorems of the completed definitions. Like SLDNFA,
the proof procedure of [10, 11, 14] constructs more general answers than the iff
proof procedure.

We are grateful to Phan Minh Dung, Fariba Sadri, Francesca Toni, and Gerhard Wetzel for comments
on earlier drafts of this paper.

REFERENCES
1. Console, L., Theseider Dupre, D., and Torasso, P., On the relationship between
abduction and deduction, J. Logic and Computation 2(5):661-690 (1991).

2. Denecker, M. and De Schreye, D., SLDNFA: An abductive procedure for normal
abductive programs, in: Proc. ICSLP, MIT Press, 1992, pp. 868—700.

IFF PROOF PROCEDURE 165

11.

12.
13.

14.

15.

16.

17.

18.

. Denecker, M., Knowledge representation and reasoning in incomplete logic program-

ming, Ph.D. thesis, Department of Computer Science, K.U. Leuven, Belgium, 1993.

. Fung, T. H., A modified abductive framework, in: Proc. Logic Programming Workshop,

WLP’94, N. Fuchs and G. Gottlob (eds.), 1994.

. Fung, T. H., Abduction with Clark completion, in: Proc. ICLP, MIT Press, 1995.
. Fung, T. H., Abduction by deduction, Ph.D. thesis, Imperial College, University of

London, England, 1996.

. Kakas, A. C. and Mancarella, P., Abductive Logic Programming, 1990.
. Kakas, A. C. and Mancarella, P., Database updates through abduction, in: Proc. 16th

VLDB, Morgan Kaufmann, Los Altos, CA, 1990, pp. 650-661.

. Kowalski, R. A., Logic programming in artificial intelligence, in: Proc. IJCAI, 1991.
10.

Kowalski, R. A., Toni, F., and Wetzel, G., Towards a declarative and efficient glass-box
CLP language, in: Proc. Logic Programming Workshop, WLP’94, N. Fuchs and G.
Gottlob (eds.), 1994.

Kowalski, R. A., Wetzel, G., and Toni, F., A unifying framework for ALP, CLP and
SQO, Department of Computing, Imperial College, London, England, Apr. 1996.
Kunen, K., Negation in logic programming, J. Logic Programming 4:231-245 (1987).
Martelli, A. and Montanari, U., An efficient unification algorithm, Trans. Programming
Languages and Syst. 4(2):258-282 (1982).

Wetzel, G., Kowalski, R. A., and Toni, F., A theorem-proving approach to CLP, in:
Workshop Logische Programmierung, A. Krall and U. Geske (eds.), GMD-Studien Nr.
270, Sept. 1995, pp. 63-72.

Kowalski, R., Using meta-logic to reconcile reactive with rational agents, in: Meta-Logics
and Logic Programming, K. Apt and F. Turini (eds.), MIT Press, 1995.

Kowalski, R. and Sadri, F., Towards a unified agent architecture that combines rational-
ity with reactivity, in: Proc. Workshop on Logic in Databases (LIDS’96), San Miniato,
Italy, Springer-Verlag, 1996.

Eshghi, K. and Kowalski, R., Abduction through deduction, Department of Computing,
Imperial College, London, England, 1988.

Kakas A., Kowalski, R., and Toni, F., Abductive logic programming, J. Logic and
Computation 2(6):719-770 (1993).

