
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221496069

Synthesis of Proof Procedures for Default Reasoning.

Conference Paper in Lecture Notes in Computer Science · January 1996

Source: DBLP

CITATIONS

8
READS

33

3 authors:

Some of the authors of this publication are also working on these related projects:

Logical Contracts View project

SOCS - Societies of Computees View project

Phan Minh Dung

Asian Institute of Technology

47 PUBLICATIONS 5,377 CITATIONS

SEE PROFILE

Robert Kowalski

Imperial College London

154 PUBLICATIONS 12,446 CITATIONS

SEE PROFILE

Francesca Toni

Imperial College London

262 PUBLICATIONS 5,806 CITATIONS

SEE PROFILE

All content following this page was uploaded by Robert Kowalski on 14 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221496069_Synthesis_of_Proof_Procedures_for_Default_Reasoning?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221496069_Synthesis_of_Proof_Procedures_for_Default_Reasoning?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Logical-Contracts?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SOCS-Societies-of-Computees?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Phan_Dung7?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Phan_Dung7?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Asian_Institute_of_Technology?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Phan_Dung7?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francesca_Toni?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francesca_Toni?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francesca_Toni?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Kowalski5?enrichId=rgreq-9e507012c948d5ee5228999987a8b6b5-XXX&enrichSource=Y292ZXJQYWdlOzIyMTQ5NjA2OTtBUzoyNjIzMjg2MjA5NDEzMTJAMTQzOTU1NTQyNTQ4Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Synthesis of proof procedures

for default reasoning

Phan Minh Dung

1

, Robert A. Kowalski

2

and Francesca Toni

3

1

Asian Institute of Technology, Division of Computer Science

PO Box 2754, Bangkok 10501, Thailand

dung@cs.ait.ac.th

2

Imperial College, Department of Computing

180 Queen's Gate, London SW7 2BZ, UK

rak@doc.ic.ac.uk

3

National Technical University of Athens

Department of Electrical and Computing Engineering, Division of Computer Science

15773 Zographou, Athens, Greece

ftoni@softlab.ece.ntua.gr

Abstract. We apply logic program development technology to de�ne

abstract proof procedures, in the form of logic programs, for computing

the admissibility semantics for default reasoning proposed in [2].

The proof procedures are derived from a formal speci�cation. The deriva-

tion guarantees the soundness of the proof procedures. The completeness

of the proof procedures is shown by employing a technique of symbolic

execution of logic programs to compute (an instance of) a relation im-

plied by the speci�cation.

1 Introduction

In [2], we have shown that many default logics [13, 19, 14, 15] can be under-

stood as special cases of a single abstract framework, based upon an abductive

interpretation of the semantics of logic programming [7, 8] and its abstractions

[4, 5, 1, 11], and extending Theorist [18]. Moreover, we have proposed a new

semantics for default logics, more liberal than their standard semantics and gen-

eralising the admissibility semantics for logic programming [4], equivalent to the

partial stable model semantics [20] (see [10]).

In this paper, we de�ne two proof procedures for computing the abstract

admissibility semantics. The second proof procedure is a computationally more

e�cient re�nement of the �rst. Both procedures generalise and abstract a proof

procedure [8] for logic programming, but are formulated as logic programs. The

relationships of the proof procedures with other existing proof procedures for

default reasoning and the relevance of the proof procedures in the �eld of de-

fault reasoning are discussed in an extended version of this paper [6]. In the

present paper, we describe the technology used to de�ne the abstract proof pro-

cedures. Both are derived from a formal speci�cation by conventional techniques

of deductive synthesis of logic programs (e.g. those described already in [12],

Chapter 10, and, more recently, in [3]). The derivation guarantees the soundness

of the proof procedures. The completeness of the proof procedures is shown via

symbolic execution of the logic programs to compute (an instance of) a relation

implied by the speci�cation.

The logic programs are derived top-down in two stages: the top-most level is

derived �rst, relative to lower-level predicates that can then be \developed". The

top-level program is proved correct and complete, parametrically with respect

to the lower-level predicates. (Generalised) logic programs computing the lower-

level predicates are given in [6].

The rest of the paper has the following structure: Section 2 revises the main

features of the abstract framework and the admissibility semantics; Section 3

introduces the top-level of the �rst abstract proof procedure to compute the

admissibility semantics; Section 4 introduces the top-level of the more e�cient

proof procedure; Section 5 gives conclusions.

2 Argumentation-theoretic framework and admissibility

semantics

An argumentation-theoretic framework consists of a set of sentences T , the theory,

viewed as a given set of beliefs, a (non-empty) set of sentences Ab, viewed as

assumptions that can be used to extend T , and a notion of attack, namely a

(binary) relation between sets of assumptions.

Both theory and assumptions are formulated in some underlying language

provided with a notion of derivability Th which is monotonic, in the sense that

T � T

0

implies Th(T) � Th(T

0

), and compact, in the sense that � 2 Th(T)

implies � 2 Th(T

0

) for some �nite subset T

0

of T .

The notion of attack is monotonic, in the sense that, for any sets of assump-

tions A;A

0

;�;�

0

� Ab, if A attacks � then:

{ A

0

attacks � for any A

0

� A;

{ A attacks �

0

for any �

0

� �.

Moreover, the notion of attack satis�es the property that no set of assumptions

attacks the empty set of assumptions.

Theorist [18], circumscription [13], logic programming, default logic [19], au-

toepistemic logic [15] and non-monotonic modal logic [14] are all instances of the

abstract argumentation-theoretic framework (see [2]).

A set of assumptions � � Ab is closed i� � = Ab \ Th(T [�).

An argumentation-theoretic framework is
at i� every set of assumptions is

closed. The frameworks for logic programming and default logic are
at.

A set of assumptions � is

{ admissible i� � is closed, � does not attack itself and

for each closed A � Ab, if A attacks � then � attacks A.

Admissible sets of assumptions correspond to admissible scenaria for logic pro-

gramming [4]. The standard semantics of scenaria in Theorist [18], extensions

in default logic [19], stable expansions in autoepistemic logic [15], �xed points

in non-monotonic modal logic [14] and stable models in logic programming [9]

correspond to the less liberal notion of stable sets of assumptions, i.e. sets of

assumptions which are admissible and attack every assumption they do not con-

tain.

4

The semantics of admissible and stable sets of assumptions are credulous, in

the sense that a sentence � is a non-monotonic consequence of a theory T i� �

belongs to some extension sanctioned by the semantics. Corresponding to every

credulous semantics there is a sceptical semantics in which � is a non-monotonic

consequence of T i� � belongs to all extensions sanctioned by the semantics.

Many cases of circumscription [13] can be understood as the sceptical semantics

corresponding to stable sets of assumptions.

In this paper we focus upon the computation of non-monotonic consequences

using the (credulous) admissibility semantics. We de�ne proof procedures for

computing the admissibility semantics for any abstract argumentation-theoretic

framework.

3 Proof procedure for admissibility

The procedure is de�ned in the form of a metalevel logic program, the top-level

clauses of which de�ne the predicate adm, whose speci�cation is given as follows:

De�nition1. Let hT; Ab, attacksi be an argumentation-theoretic framework.

For any sets of assumptions �

0

;� � Ab

adm(�

0

;�)$ [�

0

� � ^ � is admissible].

Typically, the set �

0

will be given, such that T [�

0

` � for some formula � 2 L,

and the problem will be to generate �, such that adm(�

0

;�). Consequently,

T [� ` � as well, and the set � provides an admissible \explanation" for the

query �.

This characterisation of the predicate adm provides a speci�cation for the

proof procedure. In the remainder of this section, this speci�cation together

with the de�nition of admissibility given earlier will be referred to as Spec

adm

.

The logic program providing the proof procedure will consist of top-level clauses

de�ning adm and lower-level clauses, de�ning the predicate defends given later

in the section, in de�nition 3. The predicate adm takes names of sets of sentences

as arguments, and is therefore a metapredicate.

5

We focus on the top-level of the program. This part of the program will be

derived from Spec

adm

and from the speci�cation (given later, in de�nition 3) of

the lower-level predicate defends.

4

Trivially, a set of assumptions A � Ab attacks an assumption � 2 Ab i� A attacks

f�g.

5

Moreover, there is an additional, implicit argument T in adm and all predicates

considered in these paper.

The following simple, but important, theorem provides an alternative char-

acterisation of admissibility. By virtue of this theorem, the condition that an ad-

missible set of assumptions � does not attack itself does not need to be checked

explicitly. It can be shown to hold implicitly if, for all closed attacks A against

�, we restrict attention to counter attacks against assumptions in A��. This

restriction has the additional computational advantage of reducing the number

of candidate counter attacks that need to be considered.

Theorem2. A set of assumptions � � Ab is admissible i�

� is closed, and

for each closed A � Ab, if A attacks � then � attacks A��.

The proof of this theorem can be found in the appendix.

De�nition3. Let hT; Ab, attacksi be an argumentation-theoretic framework.

For any sets of assumptions D;� � Ab,

defends(D;�) $ 8A � Ab [[A attacks � ^ closed(A)] ! D attacks A��]

where closed(A) means \A is closed". We also say that D defends �.

This de�nition provides a speci�cation for the predicate defends. This spec-

i�cation together with the auxiliary de�nitions of attackand closed and with

de�nitions of set-theoretic operations and relationships will be referred to as

Spec

defends

.

The following corollary, which follows directly from theorem 2, characterises

admissibility and Spec

adm

in terms of defends, and will be used to prove theo-

rems 5 and 14 below.

Corollary 4.

1. � � Ab is admissible i� � is closed and � defends �.

2. The speci�cation Spec

adm

can be expressed equivalently as

adm(�

0

;�)$ �

0

� �^ defends(�;�) ^ closed(�):

The proof procedure is given by the logic program

Prog

adm

:

adm(�;�) defends(�;�); closed(�)

adm(�;�

0

) defends(D;�); closed(� [D); adm(� [D;�

0

)

Note that, in the case of
at argumentation-theoretic frameworks, every set

of assumptions is closed. Therefore, in this case, the conditions closed(�) and

closed(� [D) in Prog

adm

can be omitted.

The soundness of Prog

adm

is expressed by corollary 6 below, which is a direct

consequence of the following theorem:

Theorem5. Spec

adm

^ Spec

defends

j= Prog

adm

.

Proof : We prove the theorem by deriving the program Prog

adm

from the spec-

i�cation. By letting �

0

= � in Spec

adm

, as formulated in corollary 4.2

adm(�

0

;�)$ �

0

� �^ defends(�;�) ^ closed(�)

we immediately obtain the �rst clause of the program.

To obtain the second clause, we let�

0

= �

0

0

[D in the only-if half of Spec

adm

,

as formulated in corollary 4.2, and observe that �

0

0

[D � � implies �

0

0

� �,

obtaining

adm(�

0

0

[D;�)! [�

0

0

� � ^ defends(�;�) ^ closed(�)].

Then, by applying the if half of Spec

adm

, by transitivity of !, we obtain

adm(�

0

0

[D;�)! adm(�

0

0

;�)

which implies

adm(�

0

0

[D;�) ^ closed(�

0

0

[D) ^ defends(D;�

0

0

)! adm(�

0

0

;�):

By renaming�

0

0

to� and� to�

0

, we obtain the second clause of the program.2

Note that the derivation of the programProg

adm

from the speci�cations Spec

adm

and Spec

defends

is achieved by simple deductive steps (e.g. transitivity of! and

or introduction) possibly exploiting properties of the relations involved (e.g., of

�).

Corollary6. For all �

0

;� � Ab,

if Prog

adm

^ Spec

defends

j= adm(�

0

;�),

then Spec

adm

^ Spec

defends

j= adm(�

0

;�).

Namely, if, for some given�

0

� Ab, the goal adm(�

0

; X) succeeds forX = �,

with respect to Prog

adm

and assuming Spec

defends

, then � is an admissible su-

perset of �

0

. As a consequence, the procedure Prog

adm

is sound. The procedure

Prog

adm

is also complete in the following sense:

Theorem7. For all �

0

;� � Ab,

if Spec

adm

^ Spec

defends

j= adm(�

0

;�)

then Prog

adm

^ Spec

defends

j= adm(�

0

;�).

Proof : Assume Spec

adm

^ Spec

defends

j= adm(�

0

;�). Then,

Spec

defends

j= �

0

� � ^ defends(�;�) ^ closed(�).

Then, by the �rst clause of Prog

adm

Prog

adm

^ Spec

defends

j= adm(�;�).

There are two cases: (1) �

0

= � and (2) �

0

� �.

In the �rst case, Prog

adm

^ Spec

defends

j= adm(�

0

;�) immediately.

In the second case, since, trivially, any defence of a set � also defends any subset

of �, i.e. for any sets of assumptions D;�;�

0

� Ab

Spec

defends

j= defends(D;�) ^�

0

� �! defends(D;�

0

)

then

Spec

defends

j= defends(�;�

0

) ^ closed(�).

Then, Prog

adm

^ Spec

defends

j= adm(�;�)^ defends(�;�

0

) ^ closed(�).

But � = � [�

0

. Therefore,

Prog

adm

^ Spec

defends

j= adm(�[�

0

;�)^defends(�;�

0

)^closed(�[�

0

).

But then, by the second clause of Prog

adm

,

Prog

adm

^ Spec

defends

j= adm(�

0

;�). 2

Namely, if � is an admissible superset of a given set of assumptions �

0

, then

the program Prog

adm

, assuming Spec

defends

, successfully computes X = �,

given the goal adm(�

0

; X). Note that the proof of completeness is achieved

by symbolic execution of the program Prog

adm

, and by appropriately choosing

defences satisfying Spec

defends

.

The full proof procedure is obtained by adding to Prog

adm

a program

Prog

defends

for computing defends, for checking closed and for computing the

set-theoretic constructs, [;�, etc. This program may or may not be in the form

of a logic program. If such a program is sound with respect to the speci�cation

Spec

defends

, then Prog

adm

^ Prog

defends

is also sound, with respect to Spec

adm

and Spec

defends

:

Theorem8. Given Prog

defends

such that, for all �;D � Ab,

if Prog

defends

j= defends(D;�) then Spec

defends

j= defends(D;�), and

if Prog

defends

j= closed(�) then Spec

defends

j= closed(�),

then, for all �

0

;� � Ab,

if Prog

adm

^ Prog

defends

j= adm(�

0

;�)

then Spec

adm

^ Spec

defends

j= adm(�

0

;�).

The proof of this and the following theorem can be found in the appendix.

Moreover, if a given program Prog

defends

is complete with respect to the

speci�cation Spec

defends

, then Prog

adm

^ Prog

defends

is also complete, with

respect to Spec

adm

and Spec

defends

. More precisely:

Theorem9. Given Prog

defends

such that, for all �;D � Ab,

if Spec

defends

j= defends(D;�) then Prog

defends

j= defends(D;�), and

if Spec

defends

j= closed(�) then Prog

defends

j= closed(�)

then, for all �

0

;� � Ab,

if Spec

adm

^ Spec

defends

j= adm(�

0

;�)

then Prog

adm

^ Prog

defends

j= adm(�

0

;�).

4 More e�cient proof procedure

The proof procedure given by the program Prog

adm

performs a great deal of

redundant computation. When a defence for the currently accumulated set of

assumptions is generated, it is added to the accumulated set, without distin-

guishing between old assumptions that have already been defended and new

assumptions that still have to be defended. As a consequence, defences for the

old assumptions are recomputed redundantly when generating a defence for the

new set. Moreover, when re-defending assumptions, new defences for such as-

sumptions might be selected, di�erent from the ones generated before, and these

may need to be defended in turn. To avoid these redundancies, it su�ces to dis-

tinguish in the currently accumulated set of assumptions, �[D, between those

assumptions � that are already \defended" by � [D itself and those assump-

tions D that have just been added to �[D and require further defence. For this

purpose, we employ a variant adm

e

(�

0

;D;�) of the predicate adm(�

0

;�).

De�nition10. Let hT; Ab, attacksi be an argumentation-theoretic framework.

For any sets of assumptions �

0

;D;� � Ab,

adm

e

(�

0

;D;�)$ �

0

[D � � ^

[[defends(�

0

[D;�

0

) ^ closed(�

0

[D)]! � is admissible].

We refer to this de�nition, together with that of admissibility, as Spec

adm

e

.

The relationship between adm and adm

e

is given by the following lemma,

whose proof can be found in the appendix.

Lemma11. For all sets of assumptions �

0

and �,

1. if Spec

adm

e

^ Spec

defends

j= adm

e

(;;�

0

;�) ^ closed(�

0

)

then Spec

adm

^ Spec

defends

j= adm(�

0

;�);

2. if Spec

adm

^ Spec

defends

j= adm(�

0

;�)

then Spec

adm

e

^ Spec

defends

j= adm

e

(;;�

0

;�)

The top-most level of a procedure which computes the predicate adm

e

is given

by the logic program

Prog

adm

e

:

adm

e

(�; ;;�)

adm

e

(�;D;�

0

) defends

e

(D

0

;�;D);

closed(� [D [D

0

);

adm

e

(� [D;D

0

� (� [D);�

0

)

where defends

e

is the variant of the predicate defends speci�ed as follows:

De�nition12. Let hT; Ab, attacksi be an argumentation-theoretic framework.

For any sets of assumptions �;D;�

0

� Ab,

defends

e

(D

0

;�;D)$

8A � Ab [[AattacksD ^ closed(A)] !D

0

[�[D attacksA � (� [D)].

We will refer to this speci�cation together with the de�nitions of attack, closed

and the set-theoretic constructs as Spec

defends

e

.

The following corollary, which follows directly from theorem 2, characterises

admissibility and Spec

adm

in terms of defends

e

, and will be used to prove the-

orem 14.

Corollary13.

1. � is admissible i� defends

e

(�; ;;�) and closed(�).

2. Spec

adm

e

is equivalent to

adm

e

(�

0

;D;�)$ �

0

[D � � ^

[[defends

e

(D;�

0

;�

0

) ^ closed(�

0

[D)]! � is admissible].

The soundness of Prog

adm

e

is given by corollary 16 below, which follows directly

from lemma 11 and from the following theorem:

Theorem14. Spec

adm

e

^ Spec

defends

e

j= Prog

adm

e

.

Proof : We prove the theorem by deriving the program Prog

adm

e

from the

speci�cation. By letting D = ; and � = �

0

in Spec

adm

e

adm

e

(�

0

;D;�)$ �

0

[D � � ^

[defends(�

0

[D;�

0

)^closed(�

0

[D)! � is admissible]

we obtain

adm

e

(�; ;;�)$ � � � ^ [defends(�;�) ^ closed(�) ! � is admissible]

equivalent to the �rst clause of Prog

adm

e

because of corollary 4.1.

To obtain the second clause, �rst replace the predicate adm

e

in the second

clause of the program by the equivalent speci�cation in terms of defends

e

given

by corollary 13.2, obtaining

[�[D � �

0

^ [[defends

e

(D;�;�)^ closed(� [D)]! �

0

is admissible]]

[defends

e

(D

0

;�;D)^ closed(� [D [D

0

) ^�[D [D

0

� �

0

^

[[defends

e

(D

0

� (� [D);�[D;� [D) ^ closed(� [D [D

0

)]!

�

0

is admissible]].

This can be rewritten in the logically equivalent form

[�[D � �

0

^�

0

is admissible]

[defends

e

(D;�;�)^ closed(� [D)^

defends

e

(D

0

;�;D)^ closed(� [D [D

0

) ^� [D [D

0

� �

0

^

[[defends

e

(D

0

� (� [D);�[D;� [D) ^ closed(� [D [D

0

)!

�

0

is admissible]].

which follows immediately from the fact that

�[D � �

0

 � [D [D

0

� �

0

and from the following lemma, whose proof can be found in the appendix. 2

Lemma15.

defends

e

(D;�;�)^defends

e

(D

0

;�;D)! defends

e

(D

0

�(�[D);�[D;�[D).

As for Prog

adm

given in section 3, the derivation of Prog

adm

e

from the spec-

i�cations Spec

adm

e

and Spec

defends

e

consists of simple deductive steps (here

presented in a backward fashion), possibly exploiting properties of the relations

involved (e.g. � and defends, as expressed by lemma 15).

Corollary 16. For all �

0

;� � Ab,

if Prog

adm

e

^ Spec

defends

e

j= adm

e

(;;�

0

;�)^ closed(�

0

),

then Spec

adm

^ Spec

defends

j= adm(�

0

;�).

Namely, if, for some given set of assumptions �

0

, the goal adm

e

(;;�

0

; X) suc-

ceeds for X = �, with respect to Prog

adm

e

and assuming Spec

defends

e

, then �

is an admissible superset of�

0

. As a consequence, the proof procedure Prog

adm

e

is sound. Prog

adm

e

is also complete in the following sense:

Theorem17. For all �

0

;� � Ab,

if Spec

adm

^ Spec

defends

j= adm(�

0

;�),

then Prog

adm

e

^ Spec

defends

e

j= adm

e

(;;�

0

;�).

Proof : Assume Spec

adm

^ Spec

defends

j= adm(�

0

;�). Then

Spec

defends

j= �

0

� � ^ defends(�;�) ^ closed(�), and

Spec

defends

e

j= �

0

� � ^ defends

e

(�; ;;�)^ closed(�).

Moreover, it is easy to see that

Spec

defends

e

j= [[�

0

� � ^ defends

e

(�; ;;�)]! defends

e

(�; ;;�

0

)].

Therefore, (i) Spec

defends

e

j= defends

e

(�; ;;�

0

).

Similarly,

Spec

defends

e

j= [�

0

� � ^ defends

e

(�; ;;�)! defends

e

(�;�

0

;���

0

)].

Therefore, (ii) Spec

defends

e

j= defends

e

(�;�

0

;���

0

).

To show Prog

adm

e

^ Spec

defends

e

j= adm

e

(;;�

0

;�), use the following instance

of the second clause of the program:

adm

e

(;;�

0

;�) defends

e

(D

0

; ;;�

0

);

closed(�

0

[D

0

);

adm

e

(�

0

;D

0

��

0

;�)

Let D

0

= �. Then, the �rst condition is provable from Spec

defends

e

by (i), and

the second condition is provable from Spec

defends

e

since �

0

� � and� is closed.

To prove the third condition, use the following instance of the second clause of

the program:

adm

e

(�

0

;���

0

;�) defends

e

(D

0

;�

0

;���

0

);

closed(� [D

0

);

adm

e

(�;D

0

��;�)

Let D

0

= �. Then, the �rst condition is provable from Spec

defends

e

by (ii), and

the second condition is provable from Spec

defends

e

since � is closed. Moreover,

the third condition is provable by the �rst clause of Prog

adm

e

. Therefore,

Prog

adm

e

^ Spec

defends

e

j= adm

e

(;;�

0

;�). 2

As in section 3, the proof of completeness is achieved by symbolic execution

of the procedure Prog

adm

e

, with two calls to the speci�cation Spec

defends

e

.

The full proof procedure is obtained by adding to Prog

adm

e

a program

Prog

defends

e

for computing defends

e

, for checking closed and for computing

the set-theoretic constructs, [;�, etc. In [6] we give the top-most level of a

(generalised) logic program for computing defends

e

, which provides a sound

but incomplete proof procedure.

5 Conclusion

We have used logic program development technology to de�ne two proof proce-

dures for the admissibility semantics for the abstract, argumentation-theoretic

framework presented in [2].

Rather than develop new methods, we have employed existing techniques of

deductive synthesis [3] to derive two small but non-trivial programs and to prove

them sound, and techniques of symbolic execution to prove them complete.

The second program is an improvement of the �rst, obtained by adding an

argument, D, to the predicate adm, thus obtaining a predicate adm

e

. The new

argument plays the role of an accumulator, and gives rise to a more e�cient

proof procedure Prog

adm

e

. This is re-synthesised from scratch from a new speci-

�cation for adm

e

. As a subject for future work, it would be interesting to explore

the possibility of deriving Prog

adm

e

from the initial, ine�cient proof procedure,

Prog

adm

, using standard techniques of logic program transformation (fold, un-

fold and so on, see [17]) and/or techniques borrowed from functional program-

ming (e.g., see [16]).

Acknowledgements

This research was supported by the EEC activity KIT011-LPKRR. The third

author was partially supported by EEC HCM Project no CHRX-CT93-00414,

\Logic Program Synthesis and Transformation". The authors are grateful to the

LOPSTR'96 participants for helpful comments and suggestions.

References

1. A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework for

non-monotonic reasoning. Proceedings of the 2nd International Workshop on Logic

Programming and Non-monotonic Reasoning, Lisbon, Portugal (1993), MIT Press

(L. M. Pereira and A. Nerode, eds) 171{189

2. A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-

theoretic framework for default reasoning. To appear in Arti�cial Intelligence, El-

sevier.

3. Y. Deville, K.-K. Lau, Logic program synthesis. Journal of Logic Programming

19/20 (1994), Elsevier, 321{350

4. P. M. Dung, Negation as hypothesis: an abductive foundation for logic pro-

gramming. Proceedings of the 8th International Conference on Logic Programming,

Paris, France (1991), MIT Press (K. Furukawa, ed.) 3{17

5. P. M. Dung, On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning and logic programming. Proceedings of the 13th Interna-

tional Joint Conference on Arti�cial Intelligence, Chambery, France (1993), Mor-

gan Kaufmann (R. Bajcsy, ed.) 852{857

6. P. M. Dung, R. A. Kowalski, F. Toni, Argumentation-theoretic proof procedures

for non-monotonic reasoning. Logic Programming Section Technical Report, De-

partment of Computing, Imperial College, London (1996)

7. K. Eshghi, R.A. Kowalski, Abduction through deduction. Logic Programming

Section Technical Report, Department of Computing, Imperial College, London

(1988)

8. K. Eshghi, R. A. Kowalski, Abduction compared with negation as failure. Proceed-

ings of the 6th International Conference on Logic Programming, Lisbon, Portugal

(1989), MIT Press (G. Levi and M. Martelli, eds) 234{254

9. M. Gelfond, V. Lifschitz, The stable model semantics for logic programming. Pro-

ceedings of the 5th International Conference on Logic Programming, Washington,

Seattle (1988), MIT Press (K. Bowen and R. A. Kowalski, eds) 1070{1080

10. A. C. Kakas, P. Mancarella. Preferred extensions are partial stable models. Journal

of Logic Programming 14(3,4) (1993), Elsevier, 341{348

11. A. C. Kakas, P. Mancarella, P.M. Dung, The Acceptability Semantics for Logic

Programs. Proceedings of the 11th International Conference on Logic Programming,

Santa Margherita Ligure, Italy (1994), MIT Press (P. van Hentenryck, ed.) 504{519

12. R.A. Kowalski. Logic for problem solving. Elsevier, New York (1979)

13. J. McCarthy, Circumscription { a form of non-monotonic reasoning. Arti�cial

Intelligence 13 (1980), Elsevier, 27{39

14. D. McDermott, Nonmonotonic logic II: non-monotonic modal theories. Journal of

ACM 29(1) (1982) 33{57

15. R. Moore, Semantical considerations on non-monotonic logic. Arti�cial Intelli-

gence 25 (1985), Elsevier, 75{94

16. R. Paige, S. Koenig, Finite di�erencing of computable expressions. ACM Trans-

actions on Programming Languages Systems 4(3) (1982), ACM Press, 402{454

17. A. Pettorossi, M. Proietti, Transformation of logic programs. Journal of Logic

Programming 19/20 (1994), Elsevier, 261{320

18. D. Poole, A logical framework for default reasoning. Arti�cial Intelligence 36

(1988), Elsevier, 27{47

19. R. Reiter, A logic for default reasoning. Arti�cial Intelligence 13 (1980), Elsevier,

81{132

20. D. Sacc�a, C. Zaniolo, Stable model semantics and non-determinism for logic pro-

grams with negation. Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, Nashville, Tennessee (1990) ACM

Press, 205{217

Appendix

Proof of theorem 2

) Given a closed attack A against �, we need to prove only that � attacks

A � �. Since � is admissible, � attacks A. But, if � attacks A \ �, then �

attacks itself, contradicting the hypothesis that � is admissible.

(We need to prove only that � does not attack itself. Suppose that �

attacks itself. Then, � attacks � �� = ;. But, by de�nition of attack, no set

can attack ;.

Proof of theorem 8

Assume Prog

adm

^ Prog

defends

j= adm(�

0

;�). Then, since Prog

defends

is sound

with respect to Spec

defends

,

Prog

adm

^ Spec

defends

j= adm(�

0

;�).

Then, directly from corollary 6,

Spec

adm

^ Spec

defends

j= adm(�

0

;�).

Proof of theorem 9

Assume Spec

adm

^ Spec

defends

j= adm(�

0

;�). Then, directly from theorem 7,

Prog

adm

^ Spec

defends

j= adm(�

0

;�). By completeness of Prog

defends

,

Prog

adm

^ Prog

defends

j= adm(�

0

;�).

Proof of lemma 11

1. First, note that, adm

e

(;;�

0

;�) ^ closed(�

0

) implies

�

0

� � ^ [[defends(�

0

; ;) ^ closed(�

0

)]! � is admissible] ^ closed(�

0

):

But Spec

defends

trivially implies defends(�

0

; ;). Therefore

�

0

� � ^ [closed(�

0

)! � is admissible] ^ closed(�

0

)

which, in Spec

adm

, implies adm(�

0

;�):

2. adm(�

0

;�) implies �

0

� � ^� is admissible:

This trivially implies

�

0

� � ^ [[closed(�

0

) ^ defends(�; ;)]! � is admissible]

which, in Spec

adm

e

implies adm

e

(;;�

0

;�).

Proof of lemma 15 : Assume

(i) defends

e

(D;�;�), and

(ii) defends

e

(D

0

;�;D).

Assume A � Ab attacks � [D. We need to show that D

0

[� [D attacks

A � (� [D).

{ If A attacks D then, by (ii), D

0

[� attacks A� (�[D), and thus D

0

[�[D

attacks A � (� [D).

{ If A attacks � then, by (i), D [� attacks A ��. It su�ces to show that

D [� does not attack D. Suppose, on the contrary, that D [� attacks D.

Then, by (ii), D

0

[� attacks (D[�)� (D[�) = ;. But this is not possible,

because, by de�nition of attack, there are no attacks against ;.

This article was processed using the L

a

T

E

X macro package with LLNCS style

View publication statsView publication stats

https://www.researchgate.net/publication/221496069

