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Abstract—Synchronization primitives are a long-standing issue
in parallel programming. Barrier in particular are ubiquitous as
common paradigm such as OpenMP makes extensive use of them
by ending all parallel sections on a barrier by default. The rising
number of simultaneous threads in commodity hardware only
exacerbate the problem as for a given amount of computation
each thread will take less time to finish before having to wait
a longer time for threads to synchronize. This paper focuses
on the current Intel R©Xeon PhiTMwhich can distribute work to
up to 244 threads on 61 cores, and the new challenges created
by its specificities and in particular the ring bus connecting
the cores. We will show that inter-core communication speed
is highly dependent on the physical address of the variable being
communicated, and that this fact has implications when building
an efficient barrier. Carefully selecting the physical locations of
variables involved in inter-thread communications lead to a 15%
improvement in latency for the best barrier on the Xeon PhiTM.
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I. INTRODUCTION

Shared-memory parallelism has become an ubiquitous prob-
lem in contemporary computer science. Nearly all commodity
hardware is now built using this paradigm, from cell phones to
desktop computers to HPC nodes in the largest-scale machines.
The ability to efficiently exploit such systems relies on the
availability of fast synchronization primitives, among which
mutual exclusion and synchronization barriers are keys. The case
for fast barriers has been made extensively in the literature, such
as by Sampson et al. [1] or Sartori et al. [2].

Many implementations have been proposed over the years,
such as by Brooks [3], by Yew et al. [4] and so on. A landmark
study of both mutual exclusion locks and barriers including a new
algorithm for each aspect was done by Mellor-Crummey & Scott
in 1991 [5]. But shared-memory parallel systems have greatly
evolved since that publication. Two machines were described;
the BBN Butterfly was based on the Motorola R©68000 and did
not have any cache, whereas the Sequent Symmetry based on
the Intel R©80386 only had a single-level 64 KiB data cache per
CPU. Modern multi-sockets systems commonly have 3 levels of
cache, of which only the third level is shared between cores - and
only inside each socket. The memory wall by Wulf et al. [6] has
been reached since this landmark study, and memory access cost
is now more important than ever. It is conceivable that trade-
offs and algorithms that were optimal in the era of custom-built
parallel machine should be re-evalued in the era of off-the-shelf
multi-core systems.

The Intel R©MIC architecture [7] is an excellent case study for
this. The current implementation in the Xeon PhiTM(code-name
Knights Corner) has up to 61 cores enabled, each capable of
running 4 threads simultaneously. It also boasts a 64-bytes wide
SIMD unit for vector-like capabilities (it includes both scatter
and gather instructions). Working with 244 threads is a difficult
proposition, and for the first time synchronization to such as scale
is available to almost any researcher. The announced convergence
in SIMD instruction set between the conventional Intel R©CPU
and the Xeon PhiTMfamily with AVX-512 [8] makes it likely
that such large-scale parallelism will eventually reach the mass
market.

The large-scale parallelism combined with the requirements of
a comparatively inexpensive chip (compared to the custom-built
machines of past decades) creates some acute limitations. Gone
are the sophisticated but expensive interconnection networks
taught in the parallel architecture book by Culler at al [9].
The Xeon PhiTM(like its more core-constrained cousins code-
named Sandy Bridge, Ivy Bridge or Haswell) has to do with
a much simpler ring or ring-like topology. As explained in the
aforementioned book by Culler et al., N cores on a bi-directional
ring means a network diameter of N/2, an average distance of
N/3 and a bisection of only two links. This is far from the
sophisticated Butterfly that gave its name to the BBN machine.

This paper is build in two parts. In the first, we will examine
the consequences of the ring bus inside the Xeon PhiTM. It is the
mean by which core communicates their cache lines, and it must
be taken into account to achieve good performance. In the second
part, we will evaluate a few classic algorithms for barriers on
the Xeon PhiTM, and how the topology affect them. We will also
demonstrate that not only the algorithm and its implementation
are important, but that the placement of the data is as well on
the Xeon PhiTM.

II. PHITMRING BUS AND CORE-TO-CORE SPEED

Intel R©documentation for the Xeon PhiTM [10] section 2.1.3
explains some details of the cache hierarchy. One noticeable
feature is the distributed tag directories (DTD) for the 2nd level
cache. Each of the 64 DTDs hold the coherence data for 1/64th
of the memory space via a hashing function. Whenever a core
requires a line that is not immediately available (i.e. there is no
valid usable copy in either its L1 or its L2 cache), a round-trip to
the DTD responsible for the cache line is necessary before the line
can be retrieved. As there is only 62 architectured cores (with
only up to 61 active on most commercially available devices),
DTDs are not exclusively collocated with cores. Not all cache
line are equal for core-to-core communication, with cache line
whose DTD is closer to a core having a lower latency for that
core.

For a pair of cores communicating via a cache line, there are
two possibilities:



1) The DTD responsible for the cache line is collocated with
one of the core. In this case, the collocated core will
have fast access, and the other core will require a round-
trip. If the two cores are “close” on the ring bus, then
communication will be fast.

2) The DTD responsible for the cache line is not collocated
with either core. Both cores will require round-trip when
requesting the cache line from the other. Depending on
the relative position on the ring bus of the three elements,
speed will vary.

To measure the core-to-core latency, we used a ping-pong
code whose idea came from Volkov [11]. Two threads share a
single variable. The first thread increments the variable, then
wait for the other threads to increment it to the next value.
During the wait, the cache line is prefetched in the exclusive
state so that the next iteration will avoid an additional shared
to exclusive transition. The second thread behave symmetrically,
prefetching exclusively until it sees the first thread’s increment,
then increment the variable itself. Both threads loop until a fixed
number of increments has been reached. The result is a ping-pong
effect of the shared cache line between the two cores.

As the DTD is selected by hashing the physical address of the
cache line using an undocumented hash function, experiments are
hard to reproduce. Multiple run of the same code are unlikely
to yield the same physical address for the shared variable in
each run. Because of this, we had to implement a specific user-
land mechanism of trial-and-error to make the physical address
reproducible. A physical address assumed to be available on the
system is selected. A single huge page is allocated to a fixed
virtual address. The page address is translated to the physical
address. If the physical address matches our selected address, it is
then re-mapped to a reproducible virtual address. If not, another
page is allocated and translated, until the chosen physical page
is obtained. Note that in some cases the page is never obtained
because it is in use elsewhere in the system, requiring a restart of
the Xeon PhiTM. The only criteria to select the physical address
is that it is easily obtained after a restart, as we only need to fix
the address to ensure reproducibility. It is certainly possible to
implement a better mechanism in kernel-mode, but that is out
of the scope of this paper.

Figure 1 plots the observed minimum ping-pong time between
each pair of cores (core numbers are on the X and Y coordinate,
time in on the Z coordinate). The various colors represent
different ranges of time. It is clearly visible that the data stored
in the cache line at this particular physical address (the first
of the page we had chosen) moves around much faster when
used by cores close to core 23. Figure 2 represents the same
measurement, but done using a cache line situated 192 bytes (3
cache lines) further into the allocated page. The graph is similar
to the previous one, but with the minimum located in a different
place of the 2D coordinates; this times cores 2 and 3 are the
most efficient at communicating with this cache line. All tests
were run on a state-of-the-art Xeon PhiTM7120P, with 61 cores
at 1.238 GHz and the latest software stack from Intel.

Fixing the address and trying all pairs is one way to measure
the effect; the other is to fix the pair of cores and try many
possible cache line to observer the variation. We did this for the
combination of core 23 and each of the other cores in figure 3.
The curves are what is expected: the average is extremely stable
(with an oddity for core 37 that might be a measurement error),
and fairly symmetrical minimum and maximum. That is to be
expected: if two cores are physically close on the ring, then a
cache line with a DTD close to either one will be extremely
fast. But a cache line with a DTD very far away will cause an
expensive round-trip for both cores as well. On the other hand, if
two cores are very far away on the ring (for core 23, that would
be core 55), no cache line can provide excellent performance as

the DTD cannot be close to both core, but no cache line will
perform very poorly, as the DTD cannot be far from both core
either.

Figure 4 is the plotting of all minimums between all pair of
cores. This is the minimum ping-pong time achievable between
any two cores when selecting the best possible cache line. The 2D
mapping at the bottom shows clearly that the network topology
is not quite a perfect ring. There is clearly a pattern of four by
four “squares”, with a clear transition between them. The well-
defined transition between “squares” indicates an irregularity in
the topology, or a feature other than a core (such as the memory
controllers or the disabled cores) taking up space on the network.

III. BARRIERS AND COMMUNICATIONS OF SHARED
VARIABLES

Barriers are a very important consideration for parallel
program. An excellent justification and study of related work
concerning barriers on the Xeon PhiTMcan be found in the work
of Caballero et al. [12]. They compare the implementation of an
OpenMP barrier using the PhiTMSIMD instructions versus the
implementation supplied by Intel in their tools. For our work we
are interested in a wider range of algorithms, and the influence
of data placement on them.

All synchronization primitives including barriers require some
sort of shared data between threads to do their work. The amount
of data required, the degree of sharing and the set of threads
sharing each atom of data is highly dependent on the specific
algorithm and possibly its implementation.

A. Centralized barrier

For instance, the simplest of all barrier in the centralized
barrier: a single shared counter is used to assert the number of
threads that have reached the barrier. In our implementation, we
use a separate sense-reversal flag to free all the threads once the
last one reach the barrier. Most of the cost of the barrier is in
the need for all threads to update the counter, that is, to acquire
the cache line in the ’Modified (M)’ state. This causes a very
large amount of cache coherency traffic. The second cost is the
release phase. When the last thread updates the flag, every other
copy is invalidated, and then every cores must reload the cache
line in the ’Shared (S)’ state (the flag is read-only for them).

Figure 5 plots the minimum time required to complete a
barrier. 32 different runs were done, each using a different
starting point when allocating the shared variable. Run 0 was
done with no offset relative to the large page (the same physical
large page selected in section II), i.e. using the first cache line
in the page. Run 1 was done starting with the second cache line
in the page, or an offset of 1. Run 2 was done with an offset of
2, and so on. The plot include the minimum and the maximum
values across those 32 runs, plus the relative difference between
the minimum and the maximum. All runs were done with four
threads per core, using the compact affinity.

The relative cost tells the story very clearly: when a small
number of cores is in use, the difference between the best-case
scenario and the worst-case scenario can be a factor of more than
two, despite the fact than 32 different cache lines do not cover
all the possible DTDs. There possibly could be cache lines that
are faster, or slower, for the various configurations of threads.
Another observation is the near-linear decrease in relative cost
with the number of threads. This is expected as well: for a small
number of cores, near to each other on the ring, some cache line’s
DTD will be very close to the cores, where others will be very far.
When most or all cores are involved, the distance is averaged,
and the difference is only about 20% - still a significant value.
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Fig. 1. Minimum ping-pong time for all pair of cores on a Xeon PhiTM7120P, offset 0x0000
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Fig. 2. Minimum ping-pong time for all pair of cores on a Xeon PhiTM7120P, offset 0x00c0
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Fig. 3. Ping-pong time (minimum, average and maximum across 16384 lines) for core 23 to all other cores.

 0
 10

 20
 30

 40
 50

 60

 0

 10

 20

 30

 40

 50

 60

 100

 120

 140

 160

 180

 200

 220

 240

c
y
c
le

s

core #

core #

c
y
c
le

s

 100

 120

 140

 160

 180

 200

 220

 240

Fig. 4. Minimum ping-pong time for all pair of cores on a Xeon PhiTM7120P across all offsets
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Fig. 5. Time for a centralized barriers vs. number of threads.

B. Dissemination barrier
The dissemination barrier originally by Hensgen et al. [13] is

a classic algorithm for barrier, similar to the Butterfly algorithm
by Brooks [3]. The principle is to have each thread synchronizes
with a single partner thread in an “instance”, and repeats until
completion. Therefore log2(number of threads) “instances” are
required to complete the full barrier.

Our implementation puts each element of the “Answers” array
of the original paper into its own cache line, minimizing conflict
at the expense of memory consumption. Each shared cache line
is therefore used only once for each instance of the barrier:
at every “instance”, one thread in a partnership write the value,
while the other thread in the partnership reads it. Because of the
way the partnership are established in the dissemination barrier
in each “instance”, threads are not paired by proximity - the first
“instance” will involve neighbor threads, but the last will offset
them by half the total number of threads.

Unlike the centralized barrier, the dissemination barrier has
many shared data. Our implementation does not allocate them
independently; they are allocated in consecutive cache lines in our
large page. We therefore do not expect a very large discrepancy
in performance between the best and worse case scenario for two
reasons:

1) The placement in memory of the shared data will influence
some of the first “instances” (where the distance between
threads is low, with the exception of “instance” 0 and 1
where the threads share a core), but it will have less and less
influence on later “instances” when the distance between
partners is higher.

2) The large number of shared cache line should average
performance, as “instances” are synchronous - if only one

partnership is slow, the entire “instance” is slowed down.
Indeed, figure 6 show that except for small number of cores

(where both reasons are invalid), the relative difference between
the minimum and maximum over our 32 offsets is quite low,
below 6% from 60 threads to 244 threads, below 5% from 104
threads and below 4% from 192 threads. The plot also show
the characteristic behavior from the dissemination barrier, with
a new, higher plateau every time the base-2 logarithm of the
number of threads is raised by one (i.e., the number of thread
crosses a power-of-2 threshold).

C. Software Combining Tree barrier

The software combining tree barrier from Yew et al. [4] is
another classic implementation for barriers. This time, groups of
threads are synchronized by a group-local counter (similar to the
centralized barrier). A master thread in each group subsequently
synchronizes, by the same mechanism, with its peer. The process
can be repeated an arbitrary number of time in a tree structure.

Our implementation is based upon the optimized version
presented by Mellor-Crummey et al. [5]. The tree can be built
from nodes of arbitrary fan-in values. After exploring many
combinations, we retained a configuration with 4 threads per leaf
group (i.e. an single core worth of threads), and 8 groups per
groups above that - so at most three levels for 33 to 244 threads.
This require less memory than the dissemination barrier. All leaf
group will spin on a local variable (as it is not shared with any
other core, the cache line will not leave the L1 cache). The up
to 8 intermediate groups will share a single variable with only
neighboring cores. Finally, the root level group will be accessed
by sparsely distributed cores across the ring.
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Fig. 6. Time for a dissemination barriers vs. number of threads.

Figure 7 show the results for this type of barrier, again
displaying minimum and maximum observed valued across 32
starting points for allocation in a pre-set physical page. With
fewer variables than the dissemination barrier, it is more sensitive
to placement, but less so than the single-variable centralized
barrier. Only the intermediate nodes in the tree should be
sensitive: the leaf node do not share, while the root node is
accessed from all area of the ring.

D. Mellor-Crummey & Scott barrier
This is the barrier proposed by Mellor-Crummey & Scott

in [5]. It is also based on a tree structure. The original justification
for this new barrier was that the software combining tree requires
threads to spin on non-statically localized, shared variable. That
is, each thread must spins on a variable whose address cannot be
forced to be local to the thread. However, they recognize that it is
not a problem for “broadcast-based cache-coherent machines”.
It is indeed not an issue for any cache-coherent machine such as
the Xeon PhiTM, as the threads will spin read-only on local copies
of the variable, with only the release update causing coherency
traffic. Another justification for the new barrier is that it does not
use atomic operation, relying exclusively on load and store. But
on the Xeon PhiTM, like all x86-based machine, atomic operation
on a variable in the ’Exclusive (E)’ or ’Modified (M)’ state in
the local L1 cache is very efficient.

We first did a by-the-book implementation of this barrier, but
did not obtain good performance - for large number of threads,
it was more than twice as slow as the dissemination barrier.
We then replaced the hard-coded fan-in of 4 and fan-out of
2 by configurable values. One implementation could use values
up to 8 (by using an 8-bytes long long variable instead of

a 4-bytes int for the whole array), while a second could use
values up to 64 (by using the Xeon PhiTMSIMD instructions,
in an approach similar to that of Caballero et al. [12]). While
larger values helped with performance, it still could not match
either our dissemination barrier or our configurable tree barrier.
Removing the pre-computed pointers to the parent and child
(and computing targets on the fly) also helped, but the resulting
barrier was still slower than an optimized tree barrier.

IV. IMPROVING THE TREE BARRIER WITH ADDRESS
SELECTION

We choose to try and improve the performance of the tree
barrier for two reasons. One, it was already the fastest barrier
we had for large number of threads on the Xeon PhiTM. Two,
our implementation already allocate each node independently,
making fixed-address nodes easier.

We choose to only fix the address in the second, intermediate
level of the tree. The root node is going to be accessed by cores
scattered all over the ring, so there is little room for improvement.
The leaf nodes are only ever accessed by a single core in the (8,4,4)
configuration, so the position of the DTD is mostly irrelevant as
long as the cache lines are kept in the local L1 or L2 cache.
Note that we did not alter the structure of the tree or the
mapping of threads to the tree to take into account the topological
irregularities previously shown in figure 4.

Two different variables are shared in our implementation: the
atomically updated “count” variable, and the spinning variable
“local sense”. However, our implementation places them in
consecutive cache lines, as they are part of the same structure but
with explicit alignment requirement. So without modifying the
implementation, we could only select a “good” address for one
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Fig. 7. Time for three-level (8,8,4) barriers vs. number of threads.
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Fig. 8. Effect of hard-coding addresses of shared variables for a tree barrier
on 244 threads

of the two. We choose to pin the address of the “count” variable,
the most obvious candidate as it has read-write contention.

To select the specific addresses, we first did an exhaustive study
of our selected large page. For each cache line, we measured the
ping-pong latency (using the technique explained in section II)
between every pair of cores. We then extracted the subset of cores
that had low-latency access to all other in the subset. We also
extracted which core or cores had low-latency access to several
neighbors. From this information, and from the known topology
of the tree (8,8,4), we could select cache lines that were efficient
for communicating inside each group of 8 cores, and that did
not conflict with each other.

The results for 244 threads is shown in figure 8. The minimum
and maximum values are again across 32 different base addresses
for the allocation of other shared data. Fixing the addresses from
the intermediate layer in the tree offers a gain of between 15%
and 20% for this type of barrier. We also show in figure 9 the
results from the “barrier” benchmark in the EPCC OpenMP
Microbenchmarks V3 [14]1. In those results the first labelled
“OpenMP” refers to the Intel-supplied OpenMP barrier. The
other two replaces the barrier directive by a call to our barrier.
The first labelled “Tree” refers to our tree barrier implementation
using the default addresses, and the second labelled “Tree w/
addr. select.” refers to our tree barrier implementation using the
address selection process. The first four columns are rounded
results from the benchmark in microseconds, with the fifth
“Avg. (cycles)” containing the “Average” value converted to CPU
cycles. Both our implementations are significantly faster than
the OpenMP reference implementation. Fixing the addresses
to carefully selected values shows a 15% improvement in this
benchmark as well.

V. CONCLUSION & FUTURE WORK

In this paper we have examined the behavior of the ring bus
and the cache implementation on the Xeon PhiTM. We have seen
the physical address of a shared variable has an influence on
the performance when communicating between cores. We have
also examined a few classic algorithms for barriers on the Xeon
PhiTM, and seen how they were affected by this specific behavior

1Sources for the EPCC Microbenchmarks Suite are available at
http://www2.epcc.ed.ac.uk/computing/research activities/openmpbench/
openmp index.html

http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html


Barrier Average Min Max Std. Dev. Avg. (cycles)
OpenMP 11.06 10.72 12.34 0.458 13691
Tree 4.573 4.425 5.206 0.217 5661
Tree w/ addr. select. 3.873 3.775 4.414 0.181 4794

Fig. 9. EPCC OpenMP Microbenchmarks V3 results for “OpenMP”, “tree”,
and “tree with fixed address” barriers

of the Xeon PhiTM. We have shown that carefully selecting the
physical location of a shared variable can lead to significant
improvements for some synchronization primitives, with a gain
of 15% on the software combining tree barrier. The summary
of recommendations made by Mellor-Crummey & et al. in [5]
holds true today, with the best choice remaining tree-based
algorithms for barriers, but with the addition of address selection
on hardware such as the Xeon PhiTM.

Selecting the addresses is however still an open issue. For this
work, it was done by hand from extensive measurements for the
full complement of 244 threads. However for this work to become
useful in practice, the selection process and the barrier-building
will have to be automated. In addition, a selection valid for one
particular Xeon PhiTMcannot be assumed to be valid for another:
as at most 61 cores are active from the 62 architectured in the
silicon, the best selection for a set of cores may vary from device
to device. And the physical addressing of the memory cannot
be relied to be identical from one implementation to another.
It is likely that a kernel boot-time procedure will be required
to reserve a reliably available set of addresses, combined with
a one-time procedure to select the set of addresses for various
threads combinations.

Another aspect would be to extend this work for mutual
exclusion (locks) in set of threads and/or cores. Locks also rely
on shared variables, but with requirements different from that
of barriers, and could benefit from address selection as well.
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