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Abstract— This paper presents an optimal control scheme for a
wheeled mobile robot (WMR) with nonholonomic constraints. It
is well known that a WMR with nonholonomic constraints can
not be feedback stabilized through continuously differentiable,
time-invariant control laws. By using model predictive control
(MPC), a discontinuous control law is naturally obtained. One
of the main advantages of MPC is the ability to handle constraints
(due to state or input limitations) in a straightforward way.
Quadratic programming (QP) is used to solve a linear MPC
by successive linearization of an error model of the WMR.

I. INTRODUCTION

The field of mobile robot control has been the focus of
active research in the past decades. Despite the apparent
simplicity of the kinematic model of a wheeled mobile robot
(WMR), the existence of nonholonomic constraints turns the
design of stabilizing control laws for those systems in a
considerable challenge. Due to Brockett conditions [1], a
continuously differentiable, time-invariant stabilizing feedback
control law can not be obtained. To overcome these limita-
tions most works uses non-smooth and time-varying control
laws [2]–[6]. Recent works dealing with robust and adaptive
control of WMRs can be found in [7], [8].

However, in realistic implementations it is difficult to obtain
good performance, due to the constraints on inputs or states
that naturally arise. None of the previously cited works have
taken those constraints into account. This can be done in a
straightforward way by using model predictive control (MPC)
schemes. For a WMR this is an important issue, since the
position of the robot can be restricted to belong to a safe
region of operation. By considering input constraints, control
actions that respect actuators limits can be generated.

Furthermore, coordinate transformations of the dynamic
system to chained or power forms [2] are not necessary
anymore, which turns the choice of tuning parameters for the
MPC more intuitive. Regarding the nonholonomic features of
the WMR, a piecewise-continuous (non-smooth) control law
is implicitly generated by MPC.

Model predictive control is an optimal control strategy
that uses the model of the system to obtain an optimal
control sequence by minimizing an objective function. At each
sampling interval, the model is used to predict the behavior
of the system over a prediction horizon. Based on these

predictions, an objective function is minimized with respect to
the future sequence of inputs, thus requiring the solution of a
constrained optimization problem for each sampling interval.
Although prediction and optimization are performed over a
future horizon, only the values of the inputs for the current
sampling interval are used and the same procedure is repeated
at the next sampling time. This mechanism is known as moving
or receding horizon strategy, in reference to the way in which
the time window shifts forward from one sampling time to the
next one.

For complex, constrained, multivariable control problems,
MPC has become an accepted standard in the process indus-
tries [9]. It is used in many cases, where plants being con-
trolled are sufficiently slow to allow its implementation [10].
However, for systems with fast and/or nonlinear dynamics,
the implementation of such technique remains fundamentally
limited in applicability, due to large amount of on-line com-
putation required [11].

The model of a WMR is nonlinear. Although nonlin-
ear model predictive control (NMPC) has been well devel-
oped [10], [12], [13], the computational effort necessary is
much higher than the linear version. In NMPC there is a
nonlinear programming problem to be solved on-line, which
is nonconvex, has a larger number of decision variables and
a global minimum is in general impossible to find [14]. In
this paper, we propose a strategy to overcome at least part
of these problems. The fundamental idea consists in using a
successive linearization approach, as briefly outlined in [14],
yielding a linear, time-varying description of the system beeing
solved through linear MPC. Then, considering the control
inputs as the decision variables, it is possible to transform
the optimization problem in a Quadratic programming (QP)
problem. Since this is a convex problem, QP problems can
be solved by numerically robust solvers which lead to global
optimal solutions. It is then shown that even a real-time
implementation is possible. Although MPC is not a new
control method, works dealing with MPC of WMRs are recent
and sparse [15]–[17].

The remainder of this paper is organized as follows: in the
next section the kinematic model of the WMR is shown. The
MPC algorithm is depicted in section III. Simulation results
in MATLAB are shown in section IV. Section V presents some
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considerations regarding real-time implementation.

II. KINEMATIC MODEL OF THE WMR

A mobile robot made up of a rigid body and non deforming
wheels is considered (see Fig. 1). It is assumed that the vehicle
moves on a plane without slipping, i.e., there is a pure rolling
contact between the wheels and the ground. The kinematic
model of the WMR then is given by [18]:��� �������
	�������
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� (1)

or, in a more compact form as

������ �!�#"�$ %&" (2)

where �('*) �+�,�.-0/ describes the configuration (position and
orientation) of the center of the axis of the wheels, 1 , with
respect to a global inertial frame 2.3 "54�"7698 . $:';) 	<�=->/ is
the control input, where 	 and � are the linear and the angular
velocities, respectively.

A linear model is obtained by computing an error model
with respect to a reference car. To do so, consider a reference
car also described by (2). Hence, its trajectory �@? and $A? are
related by:

��@?B�C� �D�@?E"�$A?F% (3)

By expanding the right side of (2) in Taylor series around
the point �D� ? "�$ ? % and discarding the high order terms it
follows that

������ �!� ? "7$ ? %HGJI � �!�#"�$ %I � KKKKMLONPLOQR N R Q
�!�TSU� ? %7G

GVI � �D�#"�$ %I $ KKKK LONPL QR N R Q
�!$�SW$ ? %&" (4)

or

��X�C� �D� ? "�$ ? %HGY� L[Z ? �D��SU� ? %HGY� R Z ? �!$XSU$ ? %&" (5)

Fig. 1. Coordinate system of the WMR.

where \^][_ ` and \.ab_ ` are the jacobians of \ with respect toc and d , respectively, evaluated around the reference pointe c `Ef d `Fg .
Then, the subtraction of (3) from (5) results in:hic�j \^][_ ` iclk \.ab_ ` id (6)

Hence,
icXm
c�nXc ` represents the error with respect to the

reference car and
id m d n d ` is its associated perturbation

control input.
The approximation of

hc by using forward differences gives
the following discrete-time system model:ic epo krq g jrs epo g ic eto g k:u eto g id epo gvf (7)

with

s eto g mxwy q{z n�| ` epo g�}5~���� ` epo g��z q | ` epo g�����}�� ` epo gM�z�z q
��

u epo g mxwy �v��}��.` epo g�� z}5~����.` epo g�� zz �
��

where � is the sampling period and
o

is the sampling time.
Indeed, the convergence of c to c ` is equivalent to the con-

vergence of
ic to the set � j���c�� e i� f i� f i��g j e z f z f7�O�P�Hg���f5�X���z f�� q f�����fF���F� � .

In [2] it is shown that the nonlinear, nonholonomic system
(1) is fully controllable, i.e., it can be steered from any initial
state to any final state in finite time by using finite inputs. It is
easy to see that when the robot is not moving, the linearization
about a stationary operating point is not controllable. However,
this linearization becomes controllable as long as the control
input d is not zero [3]. This implies the tracking of a reference
trajectory being possible with linear MPC [17].

III. THE MPC ALGORITHM

It was said in section I that the essence of a MPC scheme
is to optimize predictions of process behavior over a sequence
of future control inputs. Such a prediction is accomplished
by using a process model over a finite time interval, called
the prediction horizon. At each sampling time, the model
predictive controller generates an optimal control sequence
by solving an optimization problem. The first element of
this sequence is applied to the plant. The problem is solved
again at the next sampling time using the updated process
measurements and a shifted horizon.

For the sake of simplicity, we assume in this work that the
states of the plant are always available for measurement and
that there are no plant/model mismatch.

The objective function to be minimized can be stated as a
quadratic function of the states and control inputs:

� epo g j����� ¢¡ ic@£ epo k¥¤¦� o g�§ ic eto kX¤¦� o g kk id £ epo k¥¤¨n©q�� o gMª id eto kX¤«nYq[� o gvf (8)
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where � is the prediction horizon and � , � are weighting
matrices, with ����� and ���	� . The notation 
����� ���
indicates the value of 
 at the instant  predicted at instant� .

Hence, the optimization problem can be stated as to find ����
such that: �� ��������� �"!$#%&�')( �+*,�.- (9)

The problem of minimizing (8) is solved at each time step * ,
yielding a sequence of optimal control ' �� � �/*0� *,�2143435301��� � �/*76��8:9 � *,�.- and the optimal cost ( � �/*,� . The MPC control
law is implicitly given by the first control action of the
sequence of optimal control, �� � �/*0� *,� . A block diagram with
all components of the system is shown in Fig. 2, where the
indexes �/*0� *,� are omitted.

To recast the optimization problem in a usual quadratic
programming form, we introduce the following vectors:

;< �+*=6 9 �?>
@AAAB �
< �/*=6 9 � *,��< �/*=6DCE� *,�

...�< �+*=6 � � *,�
FHGGGI ;� �/*,�?>

@AAAB �� �+*0� *,��� �+*=6 9 � *,�
...�� �+*=6 �J8K9 � *,�

FHGGGI
Thus, (8) can be rewritten as:( �+*,� � ;<0L �/*M6 9 � ;� ;< �/*=6 9 �06 ;�NL �/*E� ;� ;� �/*E�O1 (10)

with ;� >
@AAAB � P 34353 PP � 34353 P

...
...

. . .
...P P 34353 �
FHGGGI ;� >

@AAAB � P 34353 PP � 34353 P
...

...
. . .

...P P 34353 �
FHGGGI

Therefore, it is possible from (7) to write
;< �/*=6 9 � as:;< �/*=6 9 � � ;Q �/*,� �< �/*�� *,�R6 ;S �/*,� ;� �+*,�O1 (11)

with ;Q �+*,�T>
@AAAB

Q �+*0� *,�Q �/*�� *,� Q �+*=6 9 � *,�
...U �/*�1 � �

FHGGGI

Fig. 2. Block diagram of the system.
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...
. . .
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where ~��/���l��� is defined as:~��/���l�\�?�������������a� �/�M���2� �,�2�
¿From (10) and (11), we can rewrite the objective function

(8) in a standard quadratic form:� �+�,�?�u�����N� �/�E� ���/�E� �� �/�,���¢¡ � �+�,� �� �/�,�R��£��/�,�
with ���+�,�T� �M¤ �¥ �/�E� � �+�,� �¦ �¥ �+�,��� �§©¨¡k�+�,�T� � �¥ � �/�E� �¦ �� �/�,�jª« �/��� �,�£¬�+�,�T�ª« � �+�0� �E� �� � �/�E� �¦ �� �/�,�jª« �/��� �,�

The matrix � is a Hessian matrix, and must be positive def-
inite. It describes the quadratic part of the objective function,
and the vector ¡ describes the linear part. £ is independent ofª� and does not matter for the determination of ��® .

Model predictive control is based on the assumption that
for a small time horizon plant and model behavior are the
same. For this assumption to hold the plant/model mismatch
should be kept small. Obviously, for any real world plant,
control inputs are subject to physical limitations. Hence, to
avoid large plant/model mismatch those limitations should be
considered while computing control inputs. This can be done
in a straightforward way by defining upper and lower bounds
on the control input. The optimization problem must then be
solved while ensuring that the control will remain between
certain lower and upper bounds. Hence, the following control
constraint can be written:�N¯ ��° �+�,��± � �+�,��± �N¯g²O³ �+�,�O� (12)

where the subscripts ´µ�l¶ and ´¸·\¹ stands for lower and upper
bounds, respectively.

Hence, the optimization problem in (9) can be reformulated
as to find ª�R® such that:ª� ® ��º¼»¾½ ¿"À�ÁÂÃÅÄ � �/�,�OÆ (13)

s. a. Ç�È� ±É£ (14)

where
� �+�,� is the objective function and ª� is the free variable

in the optimization. Inequality (14) is a general way to describe
constraints in the control variables. For instance, when there
are just control amplitude constraints as in (12), we haveÊ¬ËÌ ËOÍ ª� ± Ê ª� ¯g²O³Ì ª� ¯ �$° Í �ÎTÏ�ÐÒÑÔÓ�Õ×Ö Ø�ÙÔÚ ÛÝÜ�Þ�ß×àOá�âäã�á�åÔæOç�á�âäá�è�âäé



which turns out that ��������	� ��
� �������
Since the free variable in the optimization is

�������� , the
constraint (12) must be rewritten with respect to this variable:� ����� ������������������� ������������ ���� ������������������ 
or, in the vector form,!� ����� ������� !����������� !�"������� !� ���� ������� !�#�������
with

!� ����� �����%$
&'''
(

�#�����)������#�����)���+*-,.�
...� ����� ���/*102��,3�

46555
7

!�#����8�����%$
&'''
(

� ���� ������ ���� ���+*9,3�
...�#����8���/*102��,3�

46555
7

!�#�:�����%$
&'''
(

� � ������ � ���+*9,3�
...� � ���/*102��,3�

46555
7

Since the state prediction is a function of the optimal
sequence to be computed, it is easy to show that state con-
straints can also be described generically by (14). Furthermore,
constraints in the rate of change of control and states can be
formulated in a similar way.

IV. SIMULATION RESULTS

In this section, simulation results are shown for the MPC
applied to the WMR. The optimization problem has been
solved with the MATLAB routine quadprog. The initial con-
figuration of the WMR and the reference car are, respectively,;%�=<:�">@? <A�B,-C#DFEHGJI and ; � �=<K�L>@? <M<M<FGJI . The weighting
matrices used are N >-O:PRQ:ST�U,� V,: W<�X Y:� and Z >-<�X�,.[�\H]^\ . The
prediction horizon is 0_>@Y . Constraints in the amplitude of
the control variables are: ` �����a>M�b<�X c�deDFf , ` ����g>h<�X c�deDFf ,i������j>@�b<�X c:k3QlO^DFf and i�����g>h<�X c�kHQlOlD�f .

It can be clearly seen that the state asymptotically converges
to the reference. In Fig. 3 and 4, the dash-dotted line stands
for the reference trajectory. Fig. 5 shows the errors of the
states converging to zero. It must be noted that, even without
error in the m state, the WMR must turn away from the
reference trajectory due to the nonholonomic constraint. In
Fig. 6, it can be seen that the control inputs are inside the
limits imposed by the constraints. Since the state and control
errors converge to zero (Fig. 5), one could say that the value
of the objective function should also converges to zero. This
fact can be observed in Fig. 7.
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V. REAL-TIME EXPERIMENTS

Figure 8 shows the mobile robot developed in our labs and
used in this work. It has a cylindrical geometry with 1.35m
in height and 0.30 cm in radius and uses a differential-drive
steering. The software is based on a real-time variation of the
Linux operating system called RTAI [19].

The use of MPC for real-time control of systems with
fast dynamics such as a WMR has been hindered for some
time due to its numerical intensive nature [11]. However,
with the development of increasingly faster processors the
use of MPC in demanding applications becomes possible.
Indeed, the data in Table I provides enough evidence that a
standard of the shelf computer is able to run a MPC based
controller for a WMR. An Athlon XP 2600+ gives an peak
performance between 576 and 1100 Mflops using double
precision computations accordingly to [20], a de-facto standard
for floating point performance measurement. Therefore, the
MPC algorithm proposed here could be computed for �	��
�
in about 10ms, while the dynamics of the mobile robot used
here is such that sampling periods between 50 and 100 ms are
adequate, revealing that a real-time implementation is plenty
possible.

A typical measure of convergence is the integrated er-
ror [17],

Fig. 8. The Twil Mobile Robot.

��� ����
����
�������! " ��#�$

where
�%�

is the number of steps to cover all the trajectory
and �'&(� is the euclidian norm.

Table I shows some results relating the computational cost
and the error � as a function of the prediction horizon � . The
computing time is the mean time to solve the optimization
problem for one step of the trajectory. The number of flops
needed to complete the calculations due at each sampling time
is also shown.

TABLE I

INFLUENCE OF PREDICTION HORIZON IN COMPUTING TIME AND )
Horizon Computing time (s) Flops )

1 0.0110 4343 3.2578
3 0.0114 9529 1.4384
5 0.0135 25643 1.3757
10 0.0271 160180 1.3695
15 0.0582 528570 1.3798
20 0.1156 1269500 1.3927
30 0.3402 4949000 1.4856

Obviously the prediction horizon must be chosen in a way
such that the computing time is smaller than the sampling
period. Here, *+�,�.- �0/ , therefore with �1�+23� or above
the MPC is not feasible. On the other hand, by increasing �

465�798;:�<>= ?A@AB CED�F�G>H�IAJ(KAIAL;M�NAIAJ(IAOAJ(P



above � there is not sensible improvement on � . Furthermore,
for ��� � the computing time is approximately seven times
smaller than the sampling period. Hence, five steps ahead is
a good choice for prediction horizon. The computations were
carried out on a computer with an Athlon XP 2600+ processor
running Linux operating system.

VI. CONCLUSION

This paper presented an application of MPC to the problem
of trajectory tracking of a nonholonomic WMR. The solution
of the optimization problem through a standard QP method
was shown. The obtained control signals were such that the
constraints imposed on the control variables were respected.

As shown above, the choice of MPC for the application
given here is well justified by some advantages: the straight-
forward way in which state/input constraints can be handled;
coordinate transformations to a chained or power form are
not necessary; the MPC implicitly generates a piecewise-
continuous control law, thus dealing with Brockett conditions.

It was clearly shown that with a successive linearization ap-
proach, the optimal control problem was successfully solved,
arising the possibility of a real time implementation. With
such technique, it was possible the transformation of the
optimization problem in a standard QP formulation, which is
fast and extremely robust numerically.
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