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Abstract 
 

We investigate practical selection of meta-parameters for SVM regression (that is, 
ε -insensitive zone and regularization parameter C). The proposed methodology advocates analytic 
parameter selection directly from the training data, rather than resampling approaches commonly 
used in SVM applications. Good generalization performance of the proposed parameter selection is 
demonstrated empirically using several low-dimensional and high-dimensional regression 
problems. Further, we point out the importance of Vapnik’s ε -insensitive loss for regression 
problems with finite samples. To this end, we compare generalization performance of SVM 
regression (with optimally chosen ε ) with regression using ‘least-modulus’ loss (ε =0). These 
comparisons indicate superior generalization performance of SVM regression, for finite sample 
settings.  
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1. Introduction 
 

This study is motivated by a growing popularity of support vector machines (SVM) for 
regression problems [3,6-14]. Their practical successes can be attributed to solid 
theoretical foundations based on VC-theory [13,14], since SVM generalization 
performance does not depend on the dimensionality of the input space. However, many 
SVM regression application studies are performed by ‘expert’ users having good 
understanding of SVM methodology. Since the quality of SVM models depends on a 
proper setting of SVM meta-parameters, the main issue for practitioners trying to apply 
SVM regression is how to set these parameter values (to ensure good generalization 
performance) for a given data set. Whereas existing sources on SVM regression [3,6-14]  
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give some recommendations on appropriate setting of SVM parameters, there is clearly no 
consensus and (plenty of) contradictory opinions. Hence, resampling remains the method 
of choice for many applications. Unfortunately, using resampling for (simultaneously) 
tuning several SVM regression parameters is very expensive in terms of computational 
costs and data requirements. 

This paper describes simple yet practical analytical approach to SVM regression 
parameter setting directly from the training data. Proposed approach (to parameter 
selection) is based on well-known theoretical understanding of SVM regression that 
provides the basic analytical form of dependencies for parameter selection. Further, we 
perform empirical tuning of such dependencies using several synthetic data sets. Practical 
validity of the proposed approach is demonstrated using several low-dimensional and 
high-dimensional regression problems.  

Recently, several researchers [10,13,14] noted similarity between Vapnik’s 
ε -insensitive loss function and Huber’s loss in robust statistics. In particular, Vapnik’s loss 
function coincides with a special form of Huber’s loss aka least-modulus loss (with ε =0). 
From the viewpoint of traditional robust statistics, there is well-known correspondence 
between the noise model and optimal loss function [10]. However, this connection between 
the noise model and the loss function is based on (asymptotic) maximum likelihood 
arguments [10]. It can be argued that for finite sample regression problems Vapnik’s 
ε -insensitive loss (with properly chosen ε -parameter) actually would yield better 
generalization than other loss function (known to be asymptotically optimal for a particular 
noise density). In order to test this assertion, we compare generalization performance of 
SVM regression (with optimally chosen ε ) with robust regression using least-modulus loss 
function (ε =0) for several noise densities.  

This paper is organized as follows. Section 2 gives a brief introduction to SVM 
regression and reviews existing methods for SVM parameter setting. Section 3 describes 
the proposed approach to selecting SVM regression parameters. Section 4 presents 
empirical comparisons demonstrating the advantages of the proposed approach. Section 5 
describes empirical comparisons for regression problems with non-Gaussian noise; these 
comparisons indicate that SVM regression (with optimally chosen ε ) provides better 
generalization performance than SVM with least-modulus loss. Section 6 describes noise 
variance estimation for SVM regression. Finally, summary and discussion are given in 
Section 7. 

 
2. Support Vector Regression and SVM Parameter Selection 
 

In regression formulation, the goal is to estimate an unknown continuous-valued 
function based on a finite number set of noisy samples ),...,1(),,( niyii =x , where 
d-dimensional input dR∈x and the output Ry ∈  . Assumed statistical model for data 
generation has the following form:  

 δ+= )(xry                                                                                                         (1) 
where )(xr is unknown target function (regression), and δ  is additive zero mean noise 
with noise variance 2σ [3,4].  
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In SVM regression, the input x is first mapped onto a m-dimensional feature space 
using some fixed (nonlinear) mapping, and then a linear model is constructed in this feature 
space [3,10,13,14]. Using mathematical notation, the linear model (in the feature space) 

),( ωxf is given by 
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m
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)(),( xx ωω                                                                                         (2) 

where mjg j ,...,1),( =x denotes a set of nonlinear transformations, and b is the “bias” 
term. Often the data are assumed to be zero mean (this can be achieved by preprocessing), 
so the bias term in (2) is dropped. 

The quality of estimation is measured by the loss function )),(,( ωxfyL . SVM 
regression uses a new type of loss function called ε -insensitive loss function proposed by 
Vapnik [13,14]:  
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The empirical risk is:  
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Note that ε -insensitive loss coincides with least-modulus loss and with a special case of 
Huber’s robust loss function [13,14] when ε =0. Hence, we shall compare prediction 
performance of SVM (with proposed chosen ε ) with regression estimates obtained using 
least-modulus loss(ε =0) for various noise densities. 

SVM regression performs linear regression in the high-dimension feature space using 
ε -insensitive loss and, at the same time, tries to reduce model complexity by minimizing 

2|||| ω . This can be described by introducing (non-negative) slack variables *, ii ξξ  
ni ,...1= , to measure the deviation of training samples outside ε -insensitive zone. Thus 

SVM regression is formulated as minimization of the following functional: 
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This optimization problem can transformed into the dual problem [13,14], and its solution 
is given by   
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where SVn is the number of Support Vectors (SVs) and the kernel function  
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It is well known that SVM generalization performance (estimation accuracy) depends 
on a good setting of meta-parameters parameters C, ε  and the kernel parameters. The 
problem of optimal parameter selection is further complicated by the fact that SVM model 
complexity (and hence its generalization performance) depends on all three parameters. 
Existing software implementations of SVM regression usually treat SVM meta-parameters 
as user-defined inputs. In this paper we focus on the choice of C and ε , rather than on 
selecting the kernel function. Selecting a particular kernel type and kernel function 
parameters is usually based on application-domain knowledge and also should reflect 
distribution of input (x) values of the training data [1,12,13,14]. For example, in this paper 
we show examples of SVM regression using radial basis function(RBF) kernels where the 
RBF width parameter should reflect the distribution/range of x-values of the training data.  

Parameter C determines the trade off between the model complexity (flatness) and the 
degree to which deviations larger than ε  are tolerated in optimization formulation (5). For 
example, if C is too large (infinity), then the objective is to minimize the empirical risk (4) 
only, without regard to model complexity part in the optimization formulation (5). 

Parameter ε controls the width of the ε -insensitive zone, used to fit the training data 
[3,13,14]. The value of ε can affect the number of support vectors used to construct the 
regression function. The bigger ε , the fewer support vectors are selected. On the other 
hand, bigger ε -values result in more ‘flat’ estimates. Hence, both C and ε -values affect 
model complexity (but in a different way). 

Existing practical approaches to the choice of C and ε can be summarized as follows: 
� Parameters C and ε are selected by users based on a priori knowledge and/or user 

expertise [3,12,13,14]. Obviously, this approach is not appropriate for non-expert 
users. Based on observation that support vectors lie outside the ε -tube and the SVM 
model complexity strongly depends on the number of support vectors, Schölkopf et al 
[11] suggest to control another parameterν (i.e., the fraction of points outside the 
ε -tube) instead of ε . Under this approach, parameter ν has to be user-defined. 
Similarly, Mattera and Haykin [7] propose to choose ε - value so that the percentage of 
support vectors in the SVM regression model is around 50% of the number of samples. 
However, one can easily show examples when optimal generalization performance is 
achieved with the number of support vectors larger or smaller than 50%. 

� Smola et al [9] and Kwok [6] proposed asymptotically optimal ε - values proportional 
to noise variance, in agreement with general sources on SVM [3,13,14]. The main 
practical drawback of such proposals is that they do not reflect sample size. Intuitively, 
the value of ε  should be smaller for larger sample size than for a small sample size 
(with the same level of noise). 

� Selecting parameter C equal to the range of output values [7]. This is a reasonable 
proposal, but it does not take into account possible effect of outliers in the training 
data. 

� Using cross-validation for parameter choice [3,12]. This is very computation and 
data-intensive. 

� Several recent references present statistical account of SVM regression [10,5] where 
the ε - parameter is associated with the choice of the loss function (and hence could be 
optimally tuned to particular noise density) whereas the C parameter is interpreted as a 



 5

traditional regularization parameter in formulation (5) that can be estimated for 
example by cross-validation [5]. 

 
As evident from the above, there is no shortage of (conflicting) opinions on optimal 

setting of SVM regression parameters. Under our approach (described next in Section 3) 
we propose: 

- Analytical selection of C parameter directly from the training data (without 
resorting to resampling); 

- Analytical selection of ε - parameter based on (known or estimated) level of noise 
in the training data. 

Further ample empirical evidence presented in this paper suggests the importance of 
ε -insensitive loss, in the sense that SVM regression (with proposed parameter selection) 
consistently achieves superior prediction performance vs other (robust) loss functions, for 
different noise densities. 
 
3. Proposed Approach for Parameter Selection 
 

Selection of parameter C. Optimal choice of regularization parameter C can be derived 
from standard parameterization of SVM solution given by expression (6):  
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Further we use kernel functions bounded in the input domain. To simplify presentation, 
assume RBF kernel function 

)
2
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so that 1),( ≤xx iK .  Hence we obtain the following upper bound on SVM regression 
function: 

      SVnCf ⋅≤)(x                                                                                                 (10) 
Expression (10) is conceptually important, as it relates regularization parameter C and 

the number of support vectors, for a given value of ε . However, note that the relative 
number of support vectors depends on the ε -value. In order to estimate the value of C 
independently of (unknown) svn , one can robustly let )(xfC ≥  for all training samples, 
which leads to setting C equal to the range of response values of training data [7]. However, 
such a setting is quite sensitive to the possible presence of outliers, so we propose to use 
instead the following prescription for regularization parameter:  

|)3||,3max(| yy yyC σσ −+=                                                                    (11) 
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where y  is the mean of the training responses (outputs), and yσ  is the standard deviation 
of the training response values. Prescription (11) can effectively handle outliers in the 
training data. In practice, the response values of training data are often scaled so that y =0; 
then the proposed C is yσ3 . 

Selection of ε . It is well-known that the value of ε  should be proportional to the input 
noise level, that is σε ∝ [3,6,9,13]. Here we assume that the standard deviation of noise 
σ  is known or can be estimated from data (practical approaches to noise estimation are 
discussed in Section 6). However, the choice of ε should also depend on the number of 
training samples. From standard statistical theory, the variance of observations about the 
trend line (for linear regression) is:  

         
nxy

2
2

/
σσ ∝                                                                                                  (12) 

This suggests the following prescription for choosing ε : 

    
n

σε ∝                                                                                                       (13) 

Based on a number of empirical comparisons, we found that (13) works well when the 
number of samples is small, however for large values of n prescription (13) yields 
ε -values that are too small. Hence we propose the following (empirical) dependency: 

n
nlnτσε =                                                                                                (14) 

Based on empirical tuning, the constant value 3=τ  gives good performance for 
various data set sizes, noise levels and target functions for SVM regression. Thus 
expression (14) is used in all empirical comparisons presented in Sections 4 and 5. 
 
4. Experimental Results for Gaussian Noise 
 

First we describe experimental procedure used for comparisons, and then present 
empirical results. 

Training data: simulated training data ),...1(),,( niyii =x  where x-values are sampled 
on uniformly-spaced grid in the input space, and y-values are generated according 
to δ+= )(xry . Different types of the target functions )(xr are used. The y-values of 
training data are corrupted by additive noise. We used Gaussian noise (results described in 
this section) and several non-Gaussian additive symmetric noise densities (discussed in 
Section 5). Since SVM approach is not sensitive to a particular noise distribution, we 
expect to show good generalization performance with different types of noise, as long as an 
optimal value of ε  (reflecting standard deviation of noise σ ) has been used. 

Test data: the test inputs are sampled randomly according to uniform distribution in 
x-space. 

Kernel function: RBF kernel functions (9) are used in all experiments, and the kernel 
width parameter p is appropriately selected to reflect the input range of the training/test 
data. Namely, the RBF width parameter is set to p ~ (0.2-0.5)* range (x). For higher 
d-dimensional problems the RBF width parameter is set so that pd ~ (0.2-0.5) where all d 
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input variables are pre-scaled to [0,1] range. Such values yield good SVM performance for 
various regression data sets. 

Performance metric: since the goal is optimal selection of SVM parameters in the 
sense of generalization, the main performance metric is prediction risk  

∑
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n
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2
arg )),((1)( ωω x                                                    (15) 

defined as MSE between SVM estimates and true values of the target function for test 
inputs. 

The first set of results show how SVM generalization performance depends on a proper 
choice of SVM parameters for univariate sinc target function:  

]10,10[)sin()( −∈= x
x

xaxr                                (16) 

The following values of a were used 1.0,10,1.0,10,1 −− to generate five data sets 
using small sample size (n=30) with additive Gaussian noise (with different noise levels σ  
as shown in Table 1) . For these data sets, we used RBF kernels with width parameter p=4.  

Table 1 shows: 
(a) Parameter values C and ε  (using expressions proposed in Section 3) for different 
training sets. 
(b) Prediction risk and percentage of support vectors (%SV) obtained by SVM regression 
with proposed parameter values. 
(c) Prediction risk and percentage of support vectors (%SV) obtained using least-modulus 
loss function (ε =0).  

We can see that the proposed method for choosing ε is better than least-modulus loss 
function, as it yields lower prediction risk and better (more sparse) representation. 
 
Table 1 
Results for univariate sinc function (small size): Data Set 1- Data Set5 
 
Data Set     a            Noise           C-selection    ε -selection             Prediction                %SV 

Level(σ )                                                         Risk  
1                1             0.2             1.58                ε =0                       0.0129                   100% 
                                                                          ε =0.2 (prop.)        0.0065                   43.3% 
2               10             2                   15                   ε =0                        1.3043                     100% 
                                                                          ε =2.0 (prop.)          0.7053                       36.7% 
3                0.1            0.02            0.16                  ε =0                         1.03e-04                  100% 
                                                                          ε =0.02 (prop.)       8.05e-05                 40.0% 
4             -10            0.2             14.9                 ε =0                        0.0317                   100% 
                                                                          ε =0.2 (prop.)         0.0265                  50.0% 
5             -0.1          0.02             0.17                 ε =0                         1.44e-04                 100% 
                                                                          ε =0.02 (prop.)       1.01e-04                46.7% 
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Fig. 1. For Data Set 1, SVM estimate using proposed parameter selection vs using 
least-modulus loss. 

 
Visual comparisons (for univariate sinc Data Set 1) between SVM estimates using 

proposed parameter selection and using least-modulus loss are shown in Fig.1, where the 
solid line is the target function, the ‘+’ denote training data, the dotted line is an estimate 
using least-modulus loss and the dashed line is the SVM estimate function using our 
method.  

The accuracy of expression (14) for selecting ‘optimal’ ε as a function of n (the 
number of training samples is demonstrated in Fig. 2. Results in Fig.2 show that proposed 
ε -values vs optimal ε -values (obtained by exhaustive search in terms of prediction risk) 
for Data Set 1 (see Table 1) for different number of training samples. 
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Fig. 2. Proposed ε -values vs optimal ε -values (obtained by exhaustive search in terms of 
prediction risk) for Data set 1 for different number of training data (n=30, 50, … , 150). 
 

Dependence of prediction risk as a function of chosen C and ε -values for Data Set 1 
(i.e., sinc target function, 30 training samples) in shown in Fig. 3a. Fig. 3b shows the 
percentage of support vectors (%SV) selected by SVM regression, which is an important 
factor affecting generalization performance. Visual inspection of results in Fig.3a indicates 
that proposed choice of ε , C gives good/ near optimal performance in terms of prediction 
risk. Also, one can clearly see that C-values above certain threshold have only minor effect 
on the prediction risk. Our method guarantees that the proposed chosen C-values result in 
SVM solutions in flat regions of prediction risk. Using three dimensional Fig.3b, we can 
see that small ε -values correspond to higher percentage of support vectors, whereas 
parameter C has negligible effect on the percentage of SV selected by SVM method.  

Fig. 4 shows prediction risk as a function of chosen C and ε -values for sinc target 
function for Data Set 2 and Data Set 3. We can see that the proposed choice of C yields 
optimal and robust C-value corresponding to SVM solutions in flat regions of prediction 
risk. 
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Fig. 3. Results for small sample size, sinc target  function: Set 1 (a) Prediction risk (b) The 
number of SV as a fraction of training data 
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Fig. 4. Results for small sample size, sinc target function: (a) Prediction Risk for Data Set 2 
(b) Prediction Risk for Data Set 3 

 
In order to investigate the effect of the sample size (on selection of ε -value), we 

generate 200 training samples using univariate sinc target function (as in Data Set 1) with 
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Gaussian noise (σ =0.2). Fig.5 shows the dependence of prediction risk on SVM parameters 
for this data set (large sample size). According to proposed expression (14) and (11), 
proposed ε is 0.1, proposed C is 1.58, which is consistent with results in Fig.5. Also, the 
prediction risk is 0.0019, which compares favorably with SVM using least-modulus loss 
(ε =0) where the prediction risk is 0.0038.  Similarly, the proposed method compares 
favorably with selection σε 8485.0= proposed by Kwok [6]. For this data set, Kwok’s 
method yields 17.0=ε and the prediction risk is 0.0033. The reason that our approach to 
ε -selection gives better results is that previous methods for selecting ε -value [6,9] do not 
depend on sample size. 
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Fig. 5. Result for large sample size sinc function (Data Set 1): Prediction risk 

 
Next we show results of SVM parameter selection for high-dimensional problems. The 

first data set is generated using two-dimensional sinc target function [13,14]  
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=x                                                                                         (17) 

defined on a uniform square lattice [-5,5]*[-5,5] , with response values corrupted with 
Gaussian noise (σ =0.1 and σ  =0.4 respectively). The number of training samples is 169, 
and the number of test samples is 676. The RBF kernel width parameter p=2 is used. Fig. 6a 
shows the target function and Fig. 6b shows the SVM estimate obtained using proposed 
parameter selection for σ  =0.1. The proposed C =1.16 and ε =0.05 (for σ  =0.1) and 
ε =0.21 (for σ  =0.4). Table 2 compares the proposed parameter selection with estimates 
obtained using least-modulus loss, in terms of prediction risk and the percentage of SV 
chosen by each method.  
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(a) 

 
(b) 

 
Fig. 6.  (a) 2D sinc target function (b) SVM regression estimate using proposed method for 
for σ  =0.1 

 
 
 



 14

Table 2 
Comparison of the proposed method for ε with least-modulus loss ( ε =0) for 
two-dimensional sinc target function data sets. 
 
Noise                                    ε -selection                          Prediction                        %SV 
Level                                                                                 Risk  
σ=0.1                                  ε =0                                      0.0080                           100% 
                                            ε  (Proposed)                        0.0020                            62.7% 
σ=0.4                                  ε =0                                      0.0369                           100% 
                                            ε  (Proposed)                        0.0229                            60.9% 

 
Next we show results of SVM parameter selection for higher dimensional additive 

target function 
54

2
321 510)5.0(20)sin(10)( xxxxxr ++−+= πx                                         (18) 

where x -values are distributed in hypercube 5]1,0[ . Output (response) values of training 
samples are corrupted by additive Gaussian noise is (with σ=0.1 and σ=0.2). Training data 
size is n=243 samples (i.e., 3 points per each input dimension). The test size is 1024. The 
RBF kernel width parameter p=0.8 is used for this data set.. The optimal value of C is 34 
and the optimal ε =0.045 for σ =0.1 and ε =0.09 for σ =0.2. Comparison results between 
the proposed methods for parameter selection with the method using least-modulus loss 
function are shown in Table 3. Clearly, the proposed approach gives better performance in 
terms of prediction risk and robustness.  

 
Table 3 
Comparison of proposed method for ε parameter selection with least-modulus loss (ε =0) 
for high-dimensional additive target function 
 
Noise                                    ε -selection                          Prediction                        %SV 
Level                                                                                 Risk  
σ=0.1                                  ε =0                                      0.0443                            100% 
                                            ε  (Proposed)                        0.0387                             86.7% 
σ=0.2                                  ε =0                                      0.1071                            100% 
                                            ε  (Proposed)                        0.0918                             90.5% 

 
5. Experimental Results for Non-Gaussian Noise 

 
This section describes empirical results for regression problems with non-Gaussian 

additive symmetric noise in the statistical model (1). The main motivation is to 
demonstrate practical advantages of Vapnik’s ε -insensitive loss vs other loss functions. 
Whereas practical advantages of SVM regression are well-known, there is a popular 
opinion [10] that one should use a particular loss function for a given noise density. Hence, 
we perform empirical comparisons between SVM regression (with proposed parameter 
selection) vs SVM regression using least-modulus loss, for several finite-sample regression 
problems. 
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First, consider Student’s t-distribution for noise. Univariate sinc target function is used 
for comparisons: ]10,10[/)sin(10)( −∈= xxxxr . Training data consists of n=30 
samples. RBF kernels with width parameter p=4 are used for this data set.  Several 
experiments have been performed using various degrees of freedom (5, 10, 20, 30, 40) for 
generating t-distribution. Empirical results indicate superior performance of the proposed 
method for parameter selection. Table 4 shows comparison results with least-modulus loss 
for Student’s noise with 5 degrees of freedom (when σ  of noise is 1.3).  According to 
proposed expressions (14) and (11), proposed ε is 1.3 and C is 16.  

 
Table 4  
Comparison of proposed method for ε with least-modulus loss (ε =0) for t-distribution 
noise 
 
ε -selection                                                      Prediction                                              %SV 
                         Risk 
ε =0                                                                  0.9583                                                  100% 
ε  (Proposed)                                                    0.6950                                                   40% 
 

Next, we show comparison results for Laplacian noise density: 

|)|exp(
2
1)( δδ −=p                                                                                  (19) 

Smola et al [10] suggest that for this noise density model, the least-modulus loss should be 
used. Whereas this suggestion might work in an asymptotical setting, it does not guarantee 
superior performance with finite samples. We compare the proposed approach for choosing 
ε with the least-modulus loss method in noise density model (19). This experiment uses the 
same sinc target function as in Table 4 (with sample size n=30). The σ  of noise for 
Laplacian noise model (19) is 1.41 (precisely 2 ). Using our proposed approach, ε =1.41 
and C is 16. Table 5 shows comparison results. Visual comparison of results in Table 5 is 
also shown in Fig. 7, where the solid line is the target function, the ‘+’ denote training data, 
the dotted line is an estimate found using least-modulus loss and the dashed line is an 
estimate found using SVM method with proposed parameter selection. 
 
Table 5 
Comparison of the proposed method for ε with least-modulus loss (ε =0) for Laplacian 
noise. 
 
ε -selection                                                         Prediction                                          %SV 
                            Risk 
ε =0                                                                    0.8217                                               100% 
ε  (Proposed)                                                      0.5913                                               46.7% 
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Fig. 7. SVM estimate using proposed parameter selection vs using least-modulus loss  

 
Finally, consider uniform distribution for the additive noise. Univariate sinc target 

function is used for comparisons: ]10,10[/)sin()( −∈= xxxxr . Several experiments 
have been performed using different noise level σ . Training sample size n=30 is used in the 
experiments. According to proposed expressions (14) and (11), C is 1.6, ε is 0.1(for 
σ=0.1), ε is 0.2(for σ=0.2), ε is 0.3(for σ=0.3). Table 6 shows comparison results. 

 

Table 6 
Comparison of proposed method for ε with least-modulus loss (ε =0) for uniformly 
distributed noise 
 
Noise                                    ε -selection                          Prediction                     %SV 
Level                                                                                 Risk  
σ=0.1                                  ε =0                                     0.0080                           100% 
                                            ε (Proposed)                        0.0036                           60% 
σ=0.2                                  ε =0                                     0.0169                           100% 
                                            ε (Proposed)                        0.0107                            43.3% 
σ=0.3                                  ε =0                                     0.0281                           100% 
                                            ε (Proposed)                        0.0197                            50% 
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6. Noise Variance Estimation 
 

The proposed method for selecting ε relies on the knowledge of the standard deviation 
of noise σ . The problem, of course, is that the noise variance is not known a priori, and it 
needs to be estimated from training data ),...1(),,( niyii =x .  

In practice, the noise variance can be readily estimated from the squared sum of 
residuals (fitting error) of the training data. Namely, the well-known approach of 
estimating noise variance (for linear models) is by fitting the data using low bias 
(high-complexity) model (say high-order polynomial) and applying the following formula 
to estimate noise [3,4]  

∑
=

−⋅
−

=
n

i
ii yy

ndn
n

1

22 )ˆ(1σ̂                                                                           (20) 

where d  is the ‘degrees of freedom’ (DOF) of the high-complexity estimator and n is the 
number of training samples. Note that for linear estimators (i.e., polynomial regression) 
DOF is simply the number of free parameters (polynomial degree); whereas the notion of 
DOF is not well defined for other types of estimators [3]. 

We used expression (20) for estimating noise variance using higher-order algebraic 
polynomials (for univariate regression problems) and k-nearest-neighbors regression. Both 
approaches yield very accurate estimates of the noise variance; however, we only show the 
results of noise estimation using k-nearest-neighbors regression. In k-nearest-neighbors 
method, the function is estimated by taking a local average of the training data. Locality is 
defined in terms of the k data points nearest the estimation point. The model complexity 
(DOF) of the k-nearest neighbors method can be estimated as: 

k
nd =                                                                                                            (21) 

Even though the accuracy of estimating DOF for k-nearest-neighbors regression via (21) 
may be questionable, it provides rather accurate noise estimates when used in conjunction 
with (20). 

Combining expressions (20) and (21), we obtain the following prescription for noise 
variance estimation via k-nearest neighbor’s method: 
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          ∑
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                   ∑
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k

1

2)ˆ(1
1

                                                                               (22) 

Typically, small values of k (in the 2-6 range) corresponding to low-bias/high variance 
estimators should be used in formula (22). In order to illustrate the effect of different 
k-values on the accuracy of noise variance estimation, we use three-dimension figure 
showing estimated noise as a function of k and n (number of training samples). Fig. 8 
shows noise estimation results for univariate sinc target function corrupted by Gaussian 
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noise with σ =0.6 (noise variance is 0.36). It is evident from Fig. 8 that k-nearest neighbor 
method provides robust and accurate noise estimates with k-values chosen in a (2-6) 
range.  
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Fig.8. Using k-nearest neighbor method for estimating noise variance for univariate sinc 
function with different k and n values when the true noise variance =0.36 
 

Since accurate estimation of noise variance does not seem to be affected much by 
specific k-value, we use k nearest neighbor method (with k=3). With k=3 expression (22) 
becomes 

∑
=

−=
n

i
ii yy

n 1

22 )ˆ(15.1σ̂ .                                                                           (23) 

We performed noise estimation experiments using k-nearest neighbor method (with 
k=3) with different target functions, different sample size and different noise levels. In all 
cases, we obtained accurate noise estimates. Here, we only show noise estimation results 
for the univariate sinc target function for different true noise levels σ=0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8 (true noise variance is 0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64 
accordingly). Fig. 9 shows the scatter plot of noise level estimates obtained via (23) for 10 
independently generated data sets (for each true noise level). Results in Fig.9 correspond to 
the least favorable experimental set-up for noise estimation (that is, small number of 
samples n=30 and large noise levels).   
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Fig. 9. Scatter plot of noise estimates obtained using k-nearest neighbors method (k=3) for 
univariate sinc function for different noise level (n=30) 
 

Empirical results presented in this section show how to estimate (accurately) the noise 
level from available training data. Hence, this underscores practical applicability of 
proposed expression (14) for ε -selection. In fact, empirical results (not shown here due to 
space constraints) indicate that SVM estimates obtained using estimated noise level for 
ε -selection yield similar prediction accuracy (within 5%) to SVM estimates obtained using 
known noise level, for data sets in Section 4 and 5.  
 
7. Summary and Discussion 
 

This paper describes practical recommendations for setting meta-parameters for SVM 
regression. Namely the values of ε and C parameters are obtained directly from the training 
data and (estimated) noise level. Extensive empirical comparisons suggest that the 
proposed parameter selection yields good generalization performance of SVM estimates 
under different noise levels, types of noise, target functions and sample sizes. Hence 
proposed approach for SVM parameter selection can be immediately used by practitioners 
interested in applying SVM to various application domains. 

Our empirical results suggest that with proposed choice of ε , the value of 
regularization parameter C has only negligible effect on the generalization performance (as 
long as C is larger than a certain threshold analytically determined from the training data). 
The proposed value of C-parameter is derived for RBF kernels; however the same 
approach can be applied to other kernels bounded in the input domain. For example, we 
successfully applied proposed parameter selection for SVM regression with polynomial 
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kernel defined in ]1,0[ (or ]1,1[− ) input domain. Future related research may be concerned 
with investigating optimal selection of parameters C and ε  for different kernel types, as 
well as optimal selection of kernel parameters (for these types of kernels). In this paper 
(using RBF kernels), we used fairly straightforward procedure for a ‘good’ setting of RBF 
width parameter independent of C and ε selection, thereby conceptually separating kernel 
parameter selection from SVM meta-parameter selection. However, it is not clear whether 
such a separation is possible with other kernel types. 

The second contribution of this paper is demonstrating the importance of ε - insensitive 
loss function on the generalization performance. Several recent sources [10,5] assert that an 
optimal choice of the loss function (i.e. least-modulus loss, Huber’s loss, quadratic loss 
etc.) should match a particular type of noise density (assumed to be known). However, 
these assertions are based on proofs asymptotic in nature. So we performed a number of 
empirical comparisons between SVM regression (with optimally chosen parameter values) 
and ‘least-modulus’ regression (with ε =0). All empirical comparisons show that SVM 
regression with ε - insensitive loss provide better prediction performance that regression 
with least-modulus loss, even in the case of Laplacian noise (for which least-modulus 
regression is known to be statistically ‘optimal’). Likewise, recent study [2] shows that 
SVM loss (with proposed ε ) outperforms other commonly used loss functions (squared 
loss, least-modulus loss) for linear  regression with finite samples. Intuitively, superior 
performance of ε -insensitive loss for finite-sample problems can be explained by noting 
that noisy data samples very close to the true target function should not contribute to the 
empirical risk. This idea is formally reflected in Vapnik’s loss function, whereas Huber’s 
loss function assigns squared loss to samples with accurate (close to the truth) response 
values. Conceptually, our findings suggest that for finite-sample regression problems we 
only need the knowledge of noise level (for optimal setting of ε ), instead of the knowledge 
of noise density. In other words, optimal generalization performance of regression 
estimates depends mainly on the noise variance rather than noise distribution. The noise 
variance itself can be estimated directly from the training data, i.e. by fitting very flexible 
(high-variance) estimator to the data. Alternatively, one can first apply least-modulus 
regression to the data, in order to estimate noise level. 

 Further research in this direction may be needed, to gain better understanding of the 
relationship between optimal loss function, noise distribution and the number of training 
samples. In particular, an interesting research issue is to find the minimum number of 
samples beyond which a theoretically optimal loss function (for a given noise density) 
indeed provides superior generalization performance. 
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